JPH0768254A - Pure water producing apparatus and its regeneration - Google Patents

Pure water producing apparatus and its regeneration

Info

Publication number
JPH0768254A
JPH0768254A JP5219434A JP21943493A JPH0768254A JP H0768254 A JPH0768254 A JP H0768254A JP 5219434 A JP5219434 A JP 5219434A JP 21943493 A JP21943493 A JP 21943493A JP H0768254 A JPH0768254 A JP H0768254A
Authority
JP
Japan
Prior art keywords
tower
water
regeneration
cation exchange
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5219434A
Other languages
Japanese (ja)
Other versions
JP3160435B2 (en
Inventor
Sadao Yukimasa
定夫 行政
Yasuto Muroshita
康人 室下
Kazuo Watanabe
和郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP21943493A priority Critical patent/JP3160435B2/en
Publication of JPH0768254A publication Critical patent/JPH0768254A/en
Application granted granted Critical
Publication of JP3160435B2 publication Critical patent/JP3160435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the formation of a precipitate at the time of the regeneration of the mixed bed type ion exchange tower of a pure water producing apparatus using raw water high in the concn. of a relatively hard component and an alkalinity component or raw water high in the content of both components. CONSTITUTION:After the hardness component in raw water is removed in a weak acidic cation exchange tower, decarbonization is performed in a decarbonization tower 2 and decarbonated water from which carbon dioxide is removed is treated in a mixed bed type ion exchange tower 4 packed with strong acidic and strong basic ion exchange resins to obtain pure water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイオン交換法による純水
製造装置及びその再生方法に関する。特に硬度成分及び
アルカリ度成分の濃度もしくは含有率の比較的高い原水
を用いて純水を製造するのに好適な純水製造装置、及び
その再生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing pure water by an ion exchange method and a method for regenerating the same. In particular, the present invention relates to a pure water production apparatus suitable for producing pure water using raw water having a relatively high concentration or content of hardness component and alkalinity component, and a method for regenerating the same.

【0002】[0002]

【従来の技術】強酸性陽イオン交換樹脂(以下SCRと
記す)と、強塩基性陰イオン交換樹脂(以下SARと記
す)とを同一塔内に充填した従来の混床式イオン交換塔
で純水を製造する場合の、再生工程と、通水工程を、図
2を参照して説明する。
2. Description of the Related Art A conventional mixed bed type ion exchange column in which a strongly acidic cation exchange resin (hereinafter referred to as SCR) and a strongly basic anion exchange resin (hereinafter referred to as SAR) are packed in the same column is pure. The regeneration process and the water passing process in the case of producing water will be described with reference to FIG.

【0003】従来、混床式イオン交換塔(以下MB塔と
記す)の構成は、図2にその一例を示すようなものであ
り、一定期間通水して純水を製造した後は、樹脂のイオ
ン交換能力の再生工程に入る。
Conventionally, the structure of a mixed bed type ion exchange column (hereinafter referred to as an MB column) is as shown in FIG. 2, and after the pure water is produced by passing water for a certain period of time, the resin is Enter the regeneration process of the ion exchange capacity of.

【0004】再生工程は、まずMB塔50の下部の配管
52から原水を供給し、樹脂層を流動化させながら、塔
内を上向流で流し塔上部の配管54から排出する逆洗操
作を行う。この操作により、塔内の上部に比重の軽いS
AR56が、下部に比重の重いSCR58が位置するよ
うに分離される。次に両樹脂を2層に沈静後、塔下部の
配管60から押水を供給しながら、配管62からアルカ
リ再生剤を供給してSAR56の再生を行い、再生廃液
は分離面に設けた再生廃液出口コレクター64を経由し
て、配管66から排出する。その後、同一ラインで再生
剤の押出洗浄を行うことによって、上部のSAR56の
再生が終了する。次に、配管62から押水を供給しなが
ら、塔下部の配管60から酸再生剤を供給してSCR5
8の再生を行い、再生廃液は分離面に設けた再生廃液出
口コレクター64を経由して、配管66から排出する。
その後、同一ラインで再生剤の押出洗浄を行うことによ
って、下部のSCR58の再生が終了する。その後、塔
内に残留する微量の酸、アルカリ及び不純物を除去する
ために、塔上部の配管68から洗浄水を供給すると同時
に、塔下部の配管52からも洗浄水を供給し、これらを
分離面に設けたコレクター64を経由して配管66から
排出する。最後に、塔内の水をその水面が樹脂面上20
〜30cmになるように配管70から抜き、塔下部の配
管72から空気を供給して、塔内のSCR58とSAR
56とをよく混合させる。その後、上部配管68から原
水を供給し、また上部配管74から塔内の空気を抜きな
がら塔内を満水状態にした後、原水を配管68から供給
し、配管70から洗浄水をブローすることによって再生
が完了する。通水工程(純水の製造工程)は、塔上部の
配管68に原水を供給することにより行われ、塔下部の
水質計76を経由して配管78から純水が得られる。
In the regeneration step, first, raw water is supplied from the pipe 52 at the bottom of the MB tower 50, and while the resin layer is fluidized, a backwash operation is carried out in which the water flows upward in the tower and is discharged from the pipe 54 at the top of the tower. To do. By this operation, S with a low specific gravity is
The AR 56 is separated such that the SCR 58 having a high specific gravity is located in the lower part. Next, after both resins have settled into two layers, while supplying the pressed water from the pipe 60 at the lower part of the tower, the alkaline regenerant is supplied from the pipe 62 to regenerate the SAR 56, and the recycled waste liquid is the recycled waste liquid outlet provided on the separation surface. It is discharged from the pipe 66 via the collector 64. After that, the regeneration of the upper SAR 56 is completed by performing the extrusion cleaning of the regenerant on the same line. Next, while supplying the pressed water from the pipe 62, the acid regenerant is supplied from the pipe 60 at the lower part of the tower to supply SCR5.
8 is regenerated, and the regenerated waste liquid is discharged from the pipe 66 via the regenerated waste liquid outlet collector 64 provided on the separation surface.
After that, the regeneration of the lower SCR 58 is completed by extruding and washing the regenerant on the same line. After that, in order to remove a trace amount of acid, alkali and impurities remaining in the tower, the washing water is supplied from the pipe 68 at the upper part of the tower and the washing water is also supplied from the pipe 52 at the lower part of the tower to separate these. It is discharged from the pipe 66 via the collector 64 provided in the. Finally, the water in the tower is 20
It is pulled out from the pipe 70 to be about 30 cm, and air is supplied from the pipe 72 at the lower part of the tower to supply SCR58 and SAR in the tower.
Mix well with 56. After that, the raw water is supplied from the upper pipe 68, the inside of the tower is filled with air from the upper pipe 74 while the tower is filled with water, and then the raw water is supplied from the pipe 68 and the cleaning water is blown from the pipe 70. Playback is complete. The water passing step (pure water manufacturing step) is performed by supplying raw water to the pipe 68 in the upper part of the tower, and pure water is obtained from the pipe 78 via the water quality meter 76 in the lower part of the tower.

【0005】純水の純度は水質計76でモニタしてお
り、その純度が規定値を満足しない間は、配管70から
ブローし、純水ラインの配管78には送水しないように
する。以上がMB塔50の再生工程と通水工程である
が、この装置には以下のような問題点がある。
The purity of pure water is monitored by a water quality meter 76. When the purity does not satisfy a specified value, the pure water is blown from a pipe 70 and is not fed to a pure water line pipe 78. The above is the regeneration process and the water passage process of the MB tower 50, but this device has the following problems.

【0006】前記のSCR58中には原水中のカルシウ
ムイオンやマグネシウムイオン等が吸着されており、ま
たSAR56中には原水中のシリカ、及び炭酸等が吸着
されている。再生時にこれらの樹脂とアルカリ再生剤で
ある苛性ソーダ液が接触すると、水酸化カルシウム、水
酸化マグネシウム、ケイ酸カルシウム、ケイ酸マグネシ
ウム、炭酸カルシウム、炭酸マグネシウム等の種々の沈
殿が生成する。この現象をさけるため、逆洗の沈静時に
SCR58とSAR56の分離をよくする必要がある
が、実際には再生廃液の出口部に設けたコレクター64
近辺における両樹脂の分離は必ずしも完全なものではな
く、SCR58とSAR56が互いに一部混合されてい
るのが一般的である。そのため、アルカリ再生剤(通常
苛性ソーダ液)とSCR58の接触を完全に避けること
は出来ず、このため前記沈殿の発生が避けられない。
Calcium ions and magnesium ions in the raw water are adsorbed in the SCR 58, and silica and carbonic acid in the raw water are adsorbed in the SAR 56. When these resins come into contact with a caustic soda solution which is an alkali regenerating agent during regeneration, various precipitates of calcium hydroxide, magnesium hydroxide, calcium silicate, magnesium silicate, calcium carbonate, magnesium carbonate and the like are formed. To avoid this phenomenon, it is necessary to improve the separation of SCR58 and SAR56 when the backwash is sedated. However, in reality, the collector 64 provided at the outlet of the recycled waste liquid is used.
Separation of both resins in the vicinity is not always perfect, and it is general that SCR58 and SAR56 are partially mixed with each other. Therefore, contact between the alkaline regenerant (usually caustic soda solution) and SCR58 cannot be completely avoided, and therefore the above-mentioned precipitation is unavoidable.

【0007】また、前記洗浄水、押出水等の再生用水は
一般に原水を使用するため、原水のカルシウム濃度やマ
グネシウム濃度等が高い場合にはSAR56の再生工程
で、アルカリ再生剤や再生後のSARと原水中のカルシ
ウム、マグネシウム、炭酸塩、シリカ等が反応して、前
記のような種々なる沈殿が一部生成するという問題が生
じることもある。
[0007] Further, since the raw water is generally used as the reclaimed water such as the washing water and the extruded water, when the raw water has a high calcium concentration or magnesium concentration, in the regeneration process of SAR56, the alkali regenerant or the SAR after regeneration is used. There may be a problem that calcium, magnesium, carbonate, silica and the like in the raw water react with each other to partially form the various precipitates as described above.

【0008】再生工程で生じるこれらの沈殿物は、原水
中に存在するカルシウム、マグネシウム、炭酸塩、シリ
カ等の量が多い場合と、絶対量としてはそれ程多くなく
ても、上記硬度成分の含有割合が多い場合に特に沈殿物
の量が増え、問題となる。通常、再生工程で、これらの
沈殿が、若干生成するのは、やむを得ないもので、生成
した沈殿は、再生工程の終了段階で実施する空気混合工
程で微細化され、再生後の活性化した樹脂に再吸着させ
ることによって解決している。しかし沈殿物の量が増え
てくると、再生後に水質が悪化して純水の採水が出来な
い場合や、1サイクル当りの採水量が少なくなって計画
値を満足できない場合が起きる。以上の理由により、M
B塔50に供給できる原水水質はカルシウム、マグネシ
ウム等の硬度成分、及び炭酸塩共に70mgCaCO3
/1以下であり、シリカ値は30mgCaCO3/l以
下であると一般に言われている。
These precipitates produced in the regeneration step are contained in the raw water in a large amount of calcium, magnesium, carbonate, silica and the like, and in the case where the absolute amount is not so large, the content ratio of the hardness component is large. When the amount is large, the amount of precipitates increases, which is a problem. Usually, it is unavoidable that a small amount of these precipitates are generated in the regeneration process, and the generated precipitate is finely divided in the air mixing process performed at the end stage of the regeneration process, and the activated resin after regeneration is used. It is solved by re-adsorbing to. However, if the amount of sediment increases, the quality of water may deteriorate after regeneration and pure water cannot be sampled, or the amount of water collected per cycle may decrease and the planned value may not be satisfied. For the above reasons, M
The raw water quality that can be supplied to the B tower 50 is 70 mg CaCO 3 for both hardness components such as calcium and magnesium and carbonate.
It is generally said that the silica value is not more than 1/1 and the silica value is not more than 30 mgCaCO 3 / l.

【0009】また全カチオン成分のうち硬度成分の構成
割合は50%以下、全アニオンのうち炭酸イオンの構成
割合は50%以下であると一般に言われている。
It is generally said that the hardness component constitutes 50% or less of all cation components, and the carbonate ion component constitutes 50% or less of all anions.

【0010】従来、上記の水質値を超える場合は、MB
塔方式にせずに、SCRを充填したK塔、脱炭酸塔、S
ARを充填したA塔による、いわゆる2床3塔型の純水
製造装置、あるいはこの後段に混床式ポリッシャー(以
下MBPと記す)を設置して純水を製造する方法を採用
していた。
Conventionally, when the water quality value exceeds the above, MB
K column filled with SCR, decarbonation column, S without column system
A so-called two-bed, three-column type deionized water producing device using an A tower filled with AR, or a method of producing deionized water by installing a mixed bed polisher (hereinafter referred to as MBP) at the subsequent stage has been adopted.

【0011】上記2床3塔型純水製造装置では、K塔、
A塔の両塔共に、再生剤を別々に供給し、A塔の再生用
水はK塔処理水、または純水を使用するので、再生時に
各種の沈殿物を生成することはない。しかし2床3塔型
純水製造装置では必ずしも混床式純水製造装置のように
高純度水が得られないので、この後段にMBPを設置す
る場合が多い。
In the above-mentioned two-bed, three-tower pure water producing apparatus, the K tower,
Since the regenerant is separately supplied to both towers A and the tower K treated water or pure water is used for regeneration, various precipitates are not generated during the regeneration. However, in the two-bed, three-tower type pure water production system, high-purity water cannot always be obtained as in the mixed bed type pure water production system, and therefore MBP is often installed in the latter stage.

【0012】この場合、前段の2床3塔型の純水製造装
置で沈殿物の原因となる硬度成分、炭酸塩、シリカが除
かれているので、MBPの再生時に沈殿物は生成しない
からである。
In this case, since the hardness component, carbonate, and silica which cause the precipitate are removed in the two-bed, three-column type deionized water producing apparatus in the previous stage, the precipitate is not generated when the MBP is regenerated. is there.

【0013】しかし、この方法では設備費が高くなる欠
点がある。また、MB塔単独で対応するための他の方法
として、再生工程で純水を使用する方法がとられること
もある。しかしながら、本方法もSCRやSARに吸着
されている成分にアルカリ再生剤が接触することによっ
て沈殿が生成するので、この方法もあまり有効ではな
い。
However, this method has a drawback that the equipment cost is high. Further, as another method for dealing with the MB tower alone, there may be a method of using pure water in the regeneration step. However, this method is also not very effective because a precipitate is generated when the alkali regenerant comes into contact with the components adsorbed on SCR and SAR.

【0014】[0014]

【発明が解決しようとする課題】本発明者は、原水中に
存在する硬度成分、炭酸塩、シリカ等の量とその構成割
合が、前述のように一定値以上になるとMB塔の再生工
程中に、種々の沈殿が生じ、純度の低下、採水量の確保
が出来なくなる問題を解決するために鋭意検討した結
果、原水中のこれらの成分のうち、硬度成分と炭酸塩を
予め別の手段でその一部または大部分を除去した後、M
B塔に供給すると、再生工程における沈殿生成を有効に
抑制できることに想到し、本発明を完成するに至ったも
ので、その目的とするところは、比較的硬度成分、アル
カリ度成分の濃度の高い原水、あるいはこれらの成分の
含有率の高い原水を使用する場合にも、MB塔の再生の
際に沈殿生成が少なく、また再生後の純水の純度の立上
がりの早い純水製造装置、及びその再生方法を提供する
ことにある。さらに本発明の他の目的は、従来のMB塔
に別の手段を付加したとしても、その再生時間を延長さ
せない再生方法を提供することを目的とする。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention The inventor of the present invention is aware that when the amount of hardness components, carbonates, silica, etc. present in raw water and their composition ratios exceed a certain value as described above, during the MB tower regeneration process. In addition, as a result of diligent studies to solve the problems that various precipitates occur, the deterioration of purity, and the inability to secure the amount of water collected, as a result, among these components in the raw water, the hardness component and the carbonate are preliminarily separated by different means. After removing some or most of it, M
It was conceived that, when supplied to the B tower, precipitation formation in the regeneration step could be effectively suppressed, and the present invention was completed. The purpose of the present invention is to provide a relatively high concentration of hardness component and alkalinity component. Even when raw water or raw water having a high content rate of these components is used, there is little precipitate formation during regeneration of the MB tower, and the pure water production apparatus has a rapid rise in the purity of pure water after regeneration, and It is to provide a reproduction method. Still another object of the present invention is to provide a regeneration method that does not extend the regeneration time even if another means is added to the conventional MB tower.

【0015】[0015]

【課題を解決するための手段】上記目的を達成する本発
明は、弱酸性陽イオン交換樹脂を充填した陽イオン交換
塔と、脱炭酸装置と、脱炭酸水槽と、強酸性陽イオン交
換樹脂と強塩基性陰イオン交換樹脂とを同一塔内に充填
した混床式イオン交換塔とを有してなり、原水を陽イオ
ン交換塔、脱炭酸装置、脱炭酸水槽、混床式イオン交換
塔に順次通水して混床式イオン交換塔から純水を取り出
すように構成したことを特徴とする純水製造装置であ
る。
Means for Solving the Problems The present invention which achieves the above object, comprises a cation exchange column filled with a weakly acidic cation exchange resin, a decarboxylation apparatus, a decarbonation water tank, and a strongly acidic cation exchange resin. It has a mixed bed type ion exchange tower packed with a strongly basic anion exchange resin in the same tower, and the raw water is used as a cation exchange tower, a decarboxylation device, a decarbonation water tank, and a mixed bed type ion exchange tower. An apparatus for producing pure water, characterized in that pure water is taken out from a mixed bed type ion exchange tower by sequentially passing water.

【0016】また本発明は上記純水製造装置の再生方法
において、混床式イオン交換塔内の強酸性陽イオン交換
樹脂に酸再生剤を通薬して前記強酸性陽イオン交換樹脂
を再生すると共に、前記通薬により生成する酸性再生廃
液を陽イオン交換塔に送って前記陽イオン交換塔内の弱
酸性陽イオン交換樹脂を再生することを特徴とする純水
製造装置の再生方法である。
According to the present invention, in the method for regenerating the pure water producing apparatus, an acid regenerant is passed through the strong acid cation exchange resin in the mixed bed type ion exchange column to regenerate the strong acid cation exchange resin. At the same time, the acidic regeneration waste liquid generated by the above-mentioned replenishment is sent to a cation exchange tower to regenerate the weakly acidic cation exchange resin in the cation exchange tower.

【0017】また更に本発明は上記純水製造装置の再生
方法において、まず混床式イオン交換塔内の強塩基性陰
イオン交換樹脂を再生し、次いで強酸性陽イオン交換樹
脂を再生すると共に前記強酸性陽イオン交換樹脂の再生
により生成する酸性再生廃液を陽イオン交換塔に送って
弱酸性陽イオン交換樹脂を再生し、かつ前記強塩基性陰
イオン交換樹脂を再生している間は、原水を陽イオン交
換塔に通水して、当該処理水を強塩基性陰イオン交換樹
脂の再生工程に利用することを特徴とする純水製造装置
の再生方法である。
Furthermore, the present invention is the method of regenerating the pure water producing apparatus, wherein the strong basic anion exchange resin in the mixed bed type ion exchange column is first regenerated, and then the strong acid cation exchange resin is regenerated. The acidic regeneration waste liquid generated by the regeneration of the strongly acidic cation exchange resin is sent to the cation exchange column to regenerate the weakly acidic cation exchange resin, and while the strongly basic anion exchange resin is regenerated, the raw water Is passed through a cation exchange tower, and the treated water is used in the step of regenerating the strongly basic anion exchange resin.

【0018】以下、図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0019】本発明による純水製造装置の機器構成を図
1に示す。本発明の装置は、陽イオン交換塔1(以下K
W塔と記す)、脱炭酸装置としての脱炭酸塔2(以下D
塔と記す)、脱炭酸水槽3(以下DWTと記す)、及び
MB塔4から構成されている。以下に各構成機器、及び
その処理機能について説明する。KW塔1の内部には、
H形の弱酸性陽イオン交換樹脂5(以下WCRと記す)
が充填されている。配管18から原水をKW塔1に供給
すると、原水中のアルカリ度成分(HCO3 -)に相当す
る硬度成分がWCR5により吸着除去され、アルカリ度
成分の大部分が炭酸に変わる。D塔2の内部にはラシヒ
リングやテラレットパッキン等の脱炭酸用充填材6が充
填されている。上部の配管19からKW塔1の処理水を
D塔2に供給し、下部の配管23から空気を供給する
と、D塔2の内部の脱炭酸用充填材6の表面で、供給水
と空気とが向流接触し、これにより供給水中に溶解して
いる炭酸が空気中に移動し、配管25から系外に排出さ
れる。なお、脱炭酸装置としては、このような脱炭酸塔
の他に、例えば真空脱気塔や加熱脱気塔、あるいは脱気
膜を用いた膜脱気装置等の公知のものを使用することが
できる。炭酸が除去された処理水(脱炭酸水)はD塔の
下部に設けられたDWT3に流入する。この脱炭酸水中
の残存炭酸量は一般に5〜10mg・CaCo3 /l程
度となる。得られた脱炭酸水は、次いでMB塔4に供給
され、ここで不純物イオンが除去されて純水となり、純
水出口管21から取り出される。上述のような純水の採
水を行って規定の採水量に達したら、KW塔1及びMB
塔4の再生を行う。
FIG. 1 shows the equipment configuration of the pure water producing apparatus according to the present invention. The apparatus of the present invention is a cation exchange tower 1 (hereinafter K
W tower), decarbonation tower 2 (hereinafter D
It is composed of a tower), a decarbonated water tank 3 (hereinafter referred to as DWT), and an MB tower 4. Each constituent device and its processing function will be described below. Inside the KW Tower 1,
H type weakly acidic cation exchange resin 5 (hereinafter referred to as WCR)
Is filled. When raw water is supplied to the KW tower 1 from the pipe 18, the hardness component corresponding to the alkalinity component (HCO 3 ) in the raw water is adsorbed and removed by the WCR 5, and most of the alkalinity component is changed to carbonic acid. The inside of the D tower 2 is filled with a decarboxylation filler 6 such as Raschig ring or terraret packing. When the treated water of the KW tower 1 is supplied to the D tower 2 from the upper pipe 19 and the air is supplied from the lower pipe 23, the supply water and the air are supplied on the surface of the decarboxylation filler 6 inside the D tower 2. Come into countercurrent contact, whereby the carbonic acid dissolved in the feed water moves into the air and is discharged from the pipe 25 to the outside of the system. As the decarbonation device, in addition to such a decarbonation tower, a known device such as a vacuum degassing tower, a heating degassing tower, or a membrane degassing apparatus using a degassing membrane may be used. it can. The treated water from which the carbonic acid has been removed (decarbonated water) flows into the DWT 3 provided at the bottom of the D tower. The amount of residual carbonic acid in this decarbonated water is generally about 5 to 10 mg · CaCo 3 / l. The obtained decarbonated water is then supplied to the MB tower 4, where the impurity ions are removed to become pure water, which is taken out from the pure water outlet pipe 21. When pure water is sampled as described above to reach the prescribed amount, the KW tower 1 and MB
Regenerate tower 4.

【0020】次に、KW塔1及びMB塔4の再生方法に
ついて説明をする。再生に際しては、MB塔4の再生か
ら開始する。
Next, a method of regenerating the KW tower 1 and the MB tower 4 will be described. At the time of regeneration, the regeneration of the MB tower 4 is started.

【0021】MB塔4の再生は逆洗工程から始まる。即
ち、MB塔4の下部の配管16から逆洗水をMB塔4内
に供給し、MB塔4内にほぼ均一に混合されているSC
RとSARとを流動状態とする。SCRとSARとは比
重が異なるため、上記操作により互いに分離する。前記
逆洗水は上部配管17から排出される。その後、逆洗水
の流入を停止し、樹脂を沈静させることにより、SCR
8とSAR7とはMB塔4内で分離状態を保って沈降す
る。
Regeneration of the MB tower 4 begins with a backwash process. That is, the backwash water is supplied into the MB tower 4 from the pipe 16 at the bottom of the MB tower 4, and the SC is almost uniformly mixed in the MB tower 4.
R and SAR are in a fluid state. Since SCR and SAR have different specific gravities, they are separated from each other by the above operation. The backwash water is discharged from the upper pipe 17. After that, by stopping the inflow of backwash water and allowing the resin to settle, SCR
8 and SAR 7 settle in the MB tower 4 while maintaining a separated state.

【0022】次にSAR7の再生工程を行う。Next, the SAR7 regeneration process is performed.

【0023】配管10からアルカリ再生剤を供給すると
共に、塔下部の配管16から押水を供給し、生じる再生
廃液を再生廃液出口コレクター9に集液し、配管12か
ら排出させる。アルカリ再生剤は公知のものが使用でき
る。その後、アルカリ再生剤の代りに脱炭酸水を同一ラ
インで供給し、SAR7を満している再生剤の押出工程
を行う。その後配管16から押水を供給すると同時に、
配管20から脱炭酸水を供給して配管12から排出させ
るSAR7の洗浄を行うことにより、SAR7の再生が
完了する。なお、上記SAR7の再生工程が終了するま
では、KW塔に原水を通水し続けている。またSAR7
の再生用水としては前述の説明では脱炭酸水を用いた
が、場合によっては、KW塔処理水を直接用いてもさし
つかえない。次いで、MB塔4内のSCR8とKW塔1
内のWCR5の再生工程を行う。即ち、まずKW塔1に
供給している原水の供給を停止して脱炭酸水の製造を中
断する。次いでMB塔4の下部配管11から酸再生剤を
供給すると共に、配管10から押水を供給し、これによ
って生成する酸性再生廃液を再生廃液出口コレクター9
で集水する。集められた酸性再生廃液は配管13を経由
させてKW塔1の再生剤入口管28に導き、KW塔1内
のWCR5と接触させ、これによって当該WCR5を再
生させた後、下部配管14から排出させる。その後、酸
再生剤の代わりに脱炭酸水槽3中の脱炭酸水に切り換え
て同一操作をすることにより、SCR8及びWCR5の
押出工程を行い、その後、MB塔4とKW塔1の洗浄工
程をそれぞれ独立して実施する。
The alkali regenerant is supplied from the pipe 10 and the pressed water is supplied from the pipe 16 at the lower part of the tower to collect the generated regeneration waste liquid in the regeneration waste liquid outlet collector 9 and discharge it from the pipe 12. Known alkali regenerants can be used. Then, decarbonated water is supplied in the same line instead of the alkali regenerant, and the regenerant filling SAR7 is extruded. After that, at the same time as supplying water from the pipe 16,
The regeneration of SAR7 is completed by cleaning the SAR7 which is supplied with decarbonated water from the pipe 20 and discharged from the pipe 12. It should be noted that raw water is continuously passed through the KW tower until the regeneration process of SAR7 is completed. See also SAR7
Although decarbonated water was used as the reclaimed water in the above description, in some cases, the KW tower treated water may be used directly. Next, SCR 8 in MB tower 4 and KW tower 1
WCR5 regeneration process is performed. That is, first, the supply of raw water supplied to the KW tower 1 is stopped and the production of decarbonated water is interrupted. Next, the acid regenerant is supplied from the lower pipe 11 of the MB tower 4 and the pressurizing water is supplied from the pipe 10, and the acid regeneration waste liquid generated thereby is recycled waste liquid outlet collector 9
To collect water. The collected acidic regeneration waste liquid is guided to the regenerant inlet pipe 28 of the KW tower 1 via the pipe 13 and brought into contact with the WCR 5 in the KW tower 1, thereby regenerating the WCR 5 and then discharged from the lower pipe 14. Let Then, the extruding process of SCR8 and WCR5 is performed by switching to the decarbonated water in the decarbonated water tank 3 instead of the acid regenerant and performing the same operation, and then the washing process of the MB tower 4 and the KW tower 1 respectively. Implement independently.

【0024】MB塔4の洗浄は上部配管20と下部配管
16とから脱炭酸水を供給し、再生廃液出口コレクター
9を経て配管12から排出することにより行う。
The washing of the MB tower 4 is performed by supplying decarbonated water from the upper pipe 20 and the lower pipe 16 and discharging it from the pipe 12 through the regeneration waste liquid outlet collector 9.

【0025】KW塔1の洗浄は配管18から原水を供給
し、配管14から排出することによって行う。これによ
ってSCR8、及びWCR5の再生が完了する。
The washing of the KW tower 1 is performed by supplying raw water from the pipe 18 and discharging it from the pipe 14. This completes the reproduction of SCR8 and WCR5.

【0026】上記酸再生剤としては、強酸性陽イオン交
換樹脂の再生用に用いる公知の濃度、量の薬剤をそのま
ま用いることができる。
As the acid regenerant, a known concentration and amount of a chemical used for regenerating a strongly acidic cation exchange resin can be used as it is.

【0027】この工程中は前述のように脱炭酸水の製造
を中断しているので、この工程で用いる脱炭酸水は脱炭
酸水槽3内に貯留してある脱炭酸水を用いるものであ
る。
Since the production of decarbonated water is suspended during this step as described above, the decarbonated water used in this step is the decarbonated water stored in the decarbonated water tank 3.

【0028】次に、MB塔4内のSCR8とSAR7の
混合工程から満水ブロー工程までと、KW塔1の逆洗工
程とを行うものであるが、これは常法による。なお、K
W塔1の逆洗工程は原水を用いても脱炭酸水を用いても
良い。
Next, the steps from the mixing step of the SCR 8 and the SAR 7 in the MB tower 4 to the full water blowing step and the backwashing step of the KW tower 1 are carried out by a conventional method. In addition, K
The backwashing process of the W tower 1 may use raw water or decarbonated water.

【0029】また、KW塔1の逆洗工程は、MB塔4の
逆洗と同時に再生工程の一番最初に実施しても良い。
The backwashing step of the KW tower 1 may be carried out at the very beginning of the regenerating step simultaneously with the backwashing of the MB tower 4.

【0030】なお、KW塔1の再生に廃酸を使用せず、
新しい酸再生剤を使用する場合は、当該酸再生剤をKW
塔1の配管29より供給する。
It should be noted that waste acid is not used for the regeneration of the KW tower 1,
When using a new acid regenerant, add KW
Supply from the pipe 29 of the tower 1.

【0031】KW塔1に充填されたWCR5は再生効率
が良いため、上述のようにMB塔4に充填されている強
酸性カチオン交換樹脂の酸性再生廃液を利用して再生で
きる。
Since the WCR 5 packed in the KW tower 1 has high regeneration efficiency, it can be regenerated by using the acidic regeneration waste liquid of the strongly acidic cation exchange resin packed in the MB tower 4 as described above.

【0032】[0032]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0033】本発明により、純水を製造する場合、KW
塔1に供給する原水の硬度成分、炭酸塩等の量が比較的
多い場合、あるいはその構成割合が大きい場合にその効
果があることは前述の通りである。
In the case of producing pure water according to the present invention, KW
As described above, the effect is obtained when the hardness component, carbonate, etc., of the raw water supplied to the tower 1 are relatively large, or when the composition ratio is large.

【0034】本発明の実施例に使用した原水水質を表1
に示す。
The raw water quality used in the examples of the present invention is shown in Table 1.
Shown in.

【0035】[0035]

【表1】 図1に示す構成の装置を用いた。使用した各構成機器に
ついて説明する。KW塔1は内径350mm、高さ16
00mmの円筒状であり、その内部にWCR5としてア
ンバーライトIRC−76(商品名)を75 l充填し
た。
[Table 1] The apparatus having the configuration shown in FIG. 1 was used. Each of the components used will be described. The KW tower 1 has an inner diameter of 350 mm and a height of 16
It had a cylindrical shape of 00 mm and was filled with 75 l of Amberlite IRC-76 (trade name) as WCR5.

【0036】また内径300mm、高さ1600mmの
円筒状のD塔2には、外形59mm、高さ19mmの充
填剤6(ラシヒリング)を高さが1200mmになるよ
うに充填し、通水時は下部の配管23より空気を100
Nm3 /Hで供給した。内径450mm、高さ3400
mmの円筒状のMB塔4にSCR8としてアンバーライ
トIR−124(商品名)を80 l、SAR7として
アンバーライトIRA−410(商品名)を190 l
充填した。
A cylindrical D tower 2 having an inner diameter of 300 mm and a height of 1600 mm was filled with a filler 6 (Raschig ring) having an outer diameter of 59 mm and a height of 19 mm to a height of 1200 mm. Air from pipe 23 of 100
Supplied in Nm 3 / H. Inner diameter 450 mm, height 3400
Amberlite IR-124 (trade name) as an SCR 8 and an Amberlite IRA-410 (trade name) as a SAR 7 in a cylindrical MB tower 4 mm of 80 l and 190 l, respectively.
Filled.

【0037】以下、再生工程について説明する。先ずM
B塔4の逆洗工程について説明する。
The regeneration process will be described below. First M
The backwashing process of the B tower 4 will be described.

【0038】MB塔4の下部の配管16から逆洗水を1
500 l/H流量で15分間供給してSCRとSAR
を分離させ、上部の配管17から逆洗水を排出した。そ
の後、逆洗水の流入を停止してイオン交換樹脂を沈静さ
せると、SCR8とSAR7の沈降と両樹脂の分離が完
了した。この状態で分離は良好であったが、両樹脂の境
界面にはSCR8とSAR7の混合部が約30mmにわ
たり存在した。次にSAR7の再生工程について説明す
る。
1 backwash water is supplied from the pipe 16 at the bottom of the MB tower 4.
Supply SCR and SAR at a flow rate of 500 l / H for 15 minutes
And the backwash water was discharged from the upper pipe 17. After that, when the flow of backwash water was stopped and the ion exchange resin was allowed to settle, the precipitation of SCR8 and SAR7 and the separation of both resins were completed. In this state, the separation was good, but a mixed portion of SCR8 and SAR7 was present over the boundary surface between the two resins for about 30 mm. Next, the reproducing process of SAR7 will be described.

【0039】先ず、配管10から4%(重量%、以下同
様)苛性ソーダ水溶液の720 lを1000 l/H
の流量で供給し、同時に塔下部の配管16から押水とし
て脱炭酸水を360 l/Hの流量で供給し、再生廃液
出口コレクター9に集液し、配管12からアルカリ再生
廃液を排出した。その後、4%苛性ソーダ水溶液の代り
に脱炭酸水を、同一ルート、同一流量で12分間供給し
て、薬液の押出工程を実施した。更に塔上部の配管20
から2300 l/H、塔下部の配管16から1500
l/Hの流量で洗浄水として脱炭酸水を同時に5分間
供給し、コレクター9に集液し、配管12から排出し
た。なお、ここまでは、KW塔に原水を通水して脱炭酸
水を製造し続けていた。
First, 720 l of a 4% (weight%, the same applies hereinafter) caustic soda aqueous solution was introduced from the pipe 10 to 1000 l / H.
And at the same time, decarbonated water as feed water was supplied at a flow rate of 360 l / H from the pipe 16 at the bottom of the tower to collect the regeneration waste liquid outlet collector 9 and discharge the alkali regeneration waste liquid from the pipe 12. Then, decarbonated water was supplied instead of the 4% caustic soda aqueous solution at the same route and at the same flow rate for 12 minutes to carry out the chemical solution extrusion step. Further piping 20 at the top of the tower
To 2300 l / H, piping 16 to 1500 at the bottom of the tower
Decarbonated water was supplied as washing water at a flow rate of 1 / H for 5 minutes at the same time to collect the liquid in the collector 9 and discharge it from the pipe 12. Up to this point, raw water was passed through the KW tower to continue producing decarbonated water.

【0040】次にMB塔4のSCR8とKW塔1のWC
R5の再生工程について説明する。
Next, the SCR 8 of the MB tower 4 and the WC of the KW tower 1
The R5 regeneration process will be described.

【0041】先ずMB塔4の下部配管11から5%塩酸
140 lを360 l/Hの流量で供給し、同時に配
管10から押水として脱炭酸水を1000 l/Hの流
量で供給した。再生廃液出口コレクター9から酸性再生
廃液を取り出し、これを配管13を経由して、KW塔1
の再生剤入口管28に導き、KW塔1内に供給し、下部
配管14から排出させた。その後、5%HClを、脱炭
酸水に切り替え、同一ルート、同一流量で15分間薬液
の押出工程を実施した。
First, 140 l of 5% hydrochloric acid was supplied from the lower pipe 11 of the MB tower 4 at a flow rate of 360 l / H, and at the same time, decarbonated water as feed water was supplied at a flow rate of 1000 l / H. The acidic regeneration waste liquid is taken out from the regeneration waste liquid outlet collector 9, and is passed through the pipe 13 to the KW tower 1
Was introduced into the KW tower 1 and was discharged from the lower pipe 14. After that, 5% HCl was switched to decarbonated water, and a chemical solution extrusion step was performed for 15 minutes at the same route and at the same flow rate.

【0042】更に塔上部の配管20から2300 l/
H、塔下部の配管16から1500l/Hの流量で、洗
浄水として脱炭酸水を同時に5分間供給し、コレクター
9に集液し、配管12から排出した。
From the pipe 20 at the upper part of the tower, 2300 l /
H, decarbonated water was simultaneously supplied as washing water for 5 minutes from the pipe 16 at the bottom of the tower at a flow rate of 1500 l / H, and the collected liquid was collected in the collector 9 and discharged from the pipe 12.

【0043】この時KW塔1の洗浄は配管18から原水
を4m3 /Hの流量で5分間供給し、下部配管14から
排出する方法で、MB塔4のSCR8の洗浄工程とは独
立して実施した。
At this time, the KW tower 1 is washed by supplying raw water from the pipe 18 at a flow rate of 4 m 3 / H for 5 minutes and discharging it from the lower pipe 14, independently of the washing process of the SCR 8 of the MB tower 4. Carried out.

【0044】なお、前記再生工程のうち、MB塔4のS
CR8の通薬、押出、洗浄工程のみ、脱炭酸水槽3に貯
留した脱炭酸水を使用し、それ以前の工程、つまり、逆
洗、SAR7の通薬、押出、洗浄工程までは、前述のご
とくKW塔1、D塔2で脱炭酸水を製造しながら、これ
を脱炭酸水槽3経由でMB塔4に再生用水として供給し
た。
In the regeneration step, the S of the MB tower 4 is
The decarbonated water stored in the decarbonated water tank 3 is used only for the CR8 passage, extrusion, and washing steps, and the previous steps, that is, backwashing, SAR7 passage, extrusion, and washing steps are as described above. While producing decarbonated water in the KW tower 1 and the D tower 2, this was supplied as regeneration water to the MB tower 4 via the decarbonated water tank 3.

【0045】次にMB塔4のSCR8とSAR7の混合
工程から、満水ブロー工程までと、KW塔1の逆洗工程
について説明する。
Next, the steps from the mixing step of the SCR 8 and the SAR 7 of the MB tower 4 to the full water blowing step, and the backwashing step of the KW tower 1 will be described.

【0046】MB塔4の下部の配管15から水抜工程と
して塔内の水を抜くに際し、上部の配管24から空気を
入れながら塔内の水を20分間でほぼ完全に抜いた。次
に塔下部の配管11から、混合準備工程として逆洗水を
1500 l/Hの流量で樹脂面上200mmの高さに
水位が上る迄供給した。この所要時間は約6分であっ
た。続いて、塔下部の配管22から混合工程として圧縮
空気(1.9kg/cm 2 )を18Nm3 /Hの流量で
5分間供給し、上部の空気抜き管24から排気した。こ
の工程でSCR8とSAR7がよく混合された。混合終
了後、上部配管20から脱炭酸水を7m3 /Hの流量で
供給しながら、下部配管15から塔内の水を排出する工
程を塔内が満水状態になるまで実施した。この満水ブロ
ー工程の所要時間は7分であった。満水後は上部配管2
0から脱炭酸水を供給し、下部配管15から3000
l/Hの流量で排出させるブロー洗浄を実施した。水質
計30の純度(電気伝導率)の指示値は、満水ブロー工
程2分で、1μS/cm(25℃)を示し、満水ブロー
終了時には0.5μS/cm(25℃)を示した。次の
ブロー洗浄5分後の純度は、0.2μS/cm(25
℃)を示した。 MB塔4の水抜工程では脱炭酸水を使
用しないので、この工程の間にKW塔1の逆洗工程を実
施した。
The process of draining water from the pipe 15 at the bottom of the MB tower 4
Then, when draining water from the tower, air is blown from the upper pipe 24.
The water in the tower was drained almost completely in 20 minutes while being put. Next
Backwash water from the pipe 11 at the bottom of the tower as a mixing preparation step.
At a flow rate of 1500 l / H, a height of 200 mm above the resin surface
It was supplied until the water level rose. This takes about 6 minutes
It was Subsequently, compression is performed from the pipe 22 at the bottom of the tower as a mixing process.
Air (1.9kg / cm 2 ) 18 Nm3 At a flow rate of / H
It was supplied for 5 minutes and exhausted from the upper air vent tube 24. This
In the step of SCR8 and SAR7 were mixed well. End of mixing
After completion, decarbonate water 7m from the upper pipe 203 At a flow rate of / H
A process for discharging the water in the tower from the lower pipe 15 while supplying it.
The process was repeated until the inside of the tower was filled with water. This full water bro
-The time required for the process was 7 minutes. Upper pipe 2 after full water
Decarbonated water is supplied from 0, and the lower pipe 15 to 3000
Blow cleaning was performed by discharging at a flow rate of 1 / H. Water quality
The indicated value of purity (electrical conductivity) of 30 is the full water blow
After about 2 minutes, it shows 1μS / cm (25 ℃) and blows with full water.
At the end, it showed 0.5 μS / cm (25 ° C.). next
The purity after 5 minutes of blow cleaning is 0.2 μS / cm (25
° C). Decarbonated water is used in the draining process of the MB tower 4.
Since it is not used, the backwashing process of the KW tower 1 is performed during this process.
gave.

【0047】逆洗方法はKW塔1の下部配管26から原
水を1000 l/Hの流量で15分間供給して上部配
管27から逆洗水を排出した。
In the backwashing method, raw water was supplied from the lower pipe 26 of the KW tower 1 at a flow rate of 1000 l / H for 15 minutes, and the backwash water was discharged from the upper pipe 27.

【0048】その後、5分間休止してWCRを沈静する
ことによって、KW塔1の再生が完了した。このように
MB塔4の再生工程の途中にKW塔1の再生を行うこと
によって本発明法の再生所要時間は、従来のMB塔4の
再生所要時間と同じ時間で実施することができた。つま
り、MB塔4の再生時間以外に余分の時間を必要としな
いものである。次に、通水工程を実施した。
Then, the regeneration of the KW tower 1 was completed by resting the WCR for 5 minutes. Thus, by performing the regeneration of the KW tower 1 during the regeneration process of the MB tower 4, the regeneration required time of the method of the present invention can be carried out at the same time as the regeneration required time of the conventional MB tower 4. That is, no extra time is required other than the regeneration time of the MB tower 4. Next, the water passing step was carried out.

【0049】原水をKW塔1、D塔2、脱炭酸水槽3、
MB塔4の順に4m3 /Hの流量で通水し、MB塔4の
出口配管に設置した水質計30で純水の純度(電気伝導
率)を監視した。その結果、通水1時間でその純度は
0.1μS/cm(25℃)に達し、最高純度は0.0
7μS/cm(25℃)が得られた。
Raw water is supplied to KW tower 1, D tower 2, decarbonated water tank 3,
Water was passed through the MB tower 4 in this order at a flow rate of 4 m 3 / H, and the purity (electrical conductivity) of pure water was monitored by a water quality meter 30 installed in the outlet pipe of the MB tower 4. As a result, the purity reached 0.1 μS / cm (25 ° C.) within 1 hour of passing water, and the maximum purity was 0.0
7 μS / cm (25 ° C.) was obtained.

【0050】通水の終了時の電気伝導率を1μS/cm
(25℃)として、前記再生工程と通水工程とを5サイ
クル実施した結果、純水の採水量は1サイクル当り39
3〜40m3 で安定した。 (比較例)KW塔1に供給すべき原水を直接MB塔4に
送り(つまり、KW塔、D塔、脱炭酸水槽を用いない
で)、前記と同様な方法で再生と通水を繰り返した。そ
の結果、MB塔の再生終了時の洗浄ブロー工程で、純度
(電気伝導率)は2μS/cm(25℃)であったの
で、MB塔4の再生工程の水抜き、混合準備、空気混
合、満水ブロー、洗浄ブロー工程を再度行った。結果
は、洗浄ブロー15分後にやっと1μS/cm(25
℃)の純度が得られた。また通水時の最高純度は0.4
μS/cm(25℃)であった。通水終点を1μS/c
m(25℃)とした時、純水の採水量は、1サイクル当
り12m3 から17m3 に大きく変動した。
The electric conductivity at the end of water flow is 1 μS / cm.
As a result of performing the regeneration step and the water passing step for 5 cycles at (25 ° C.), the amount of pure water taken is 39 per cycle.
stable in m 3 ~40m 3. (Comparative Example) Raw water to be supplied to the KW tower 1 was directly sent to the MB tower 4 (that is, without using the KW tower, the D tower, and the decarbonated water tank), and regeneration and water passage were repeated in the same manner as described above. . As a result, since the purity (electrical conductivity) was 2 μS / cm (25 ° C.) in the washing and blowing step at the end of regeneration of the MB tower, water removal, mixing preparation, air mixing in the regeneration step of the MB tower 4, The full water blow and washing blow steps were repeated. The result is that after 15 minutes of cleaning blow, the value of 1 μS / cm (25
C.) purity was obtained. Also, the maximum purity when passing water is 0.4.
It was μS / cm (25 ° C.). The end point of water flow is 1 μS / c
when the m (25 ° C.), adoption water of pure water was varied significantly from one cycle per 12m 3 to 17m 3.

【0051】参考のために実施例におけるKW塔1処理
水とD塔2の処理水(MB塔の供給水)との分析値を表
2に示す。
For reference, Table 2 shows the analytical values of the treated water of the KW tower 1 and the treated water of the D tower 2 (supply water of the MB tower) in the examples.

【0052】[0052]

【表2】 表1の原水と表2のD塔処理水(脱炭酸水)を比較する
と判るように、原水をKW塔1とD塔2とで処理するこ
とによって、全カチオンで43%、全アニオンで49%
のイオンが除去された。また除去された成分は、前記の
ようにMB塔4の再生工程で生成する各種沈殿物の原因
となるイオン、つまり硬度成分と炭酸イオンであった。
これらの除去率は硬度成分で79%、炭酸イオンで93
%であった。従って本発明におけるMB塔4の再生工程
では沈殿物がほとんど生成せず、またMB塔4の供給水
のイオン量が大幅に減少するので、同一規模のMB塔を
使用する場合には上述のごとく純水の採水量が従来より
大幅に増加する。換言すれば同一量の純水を得ようとす
る場合には、従来のMB塔単独の場合に較べてMB塔に
充填するSCR、SARの樹脂量が少なくなるというこ
とである。また一般的に硬度成分を吸着したSCRの再
生効率は悪くなるが、本発明によればこの硬度成分の多
くをKW塔1の再生効率の良いWCR5で除去できるの
で、全体の再生効率が良くなるのと相まって、同一量の
純水を得ようとする場合には再生剤使用量も大幅に減少
する。
[Table 2] As can be seen by comparing the raw water in Table 1 and the treated water (decarbonated water) in the D tower in Table 2, by treating the raw water in the KW tower 1 and the D tower 2, 43% of all cations and 49 of all anions were obtained. %
Ions were removed. Further, the removed components were ions that cause various precipitates generated in the regeneration step of the MB tower 4 as described above, that is, hardness components and carbonate ions.
These removal rates are 79% for hardness components and 93 for carbonate ions.
%Met. Therefore, in the regeneration step of the MB tower 4 in the present invention, almost no precipitate is generated, and the amount of ions in the feed water of the MB tower 4 is greatly reduced. Therefore, when the MB towers of the same scale are used, as described above. The amount of pure water sampled will be significantly increased compared to the past. In other words, when the same amount of pure water is to be obtained, the amount of SCR and SAR resin charged in the MB tower is smaller than that in the conventional MB tower alone. Further, generally, the regeneration efficiency of the SCR that adsorbs the hardness component is deteriorated, but according to the present invention, most of the hardness component can be removed by the WCR 5 having a high regeneration efficiency of the KW tower 1, so that the overall regeneration efficiency is improved. Combined with this, when trying to obtain the same amount of pure water, the amount of regenerant used is also greatly reduced.

【0053】また従来のMB塔だけで構成された純水製
造装置では、再生終了時の純度の立上がりが悪く、また
通水時の最高純度も本発明法より悪かった。
Further, in the pure water production apparatus constituted only by the conventional MB tower, the purity rises at the end of regeneration and the maximum purity at the time of passing water is worse than that of the method of the present invention.

【0054】[0054]

【発明の効果】本発明においては、前述のようにMB塔
の前段にKW塔及びD塔を設けたので、MB塔に供給さ
れる脱炭酸水の水質は、KW塔に供給される原水の水質
に比較し、相当量の硬度成分、アルカリ度成分及び炭酸
が除去されている。このため、MB塔の再生時に問題と
なる沈殿生成が起らなくなる上、MB塔のイオン負荷が
減少する。
As described above, in the present invention, since the KW tower and the D tower are provided in front of the MB tower, the quality of the decarbonated water supplied to the MB tower is the same as that of the raw water supplied to the KW tower. Compared to water quality, a considerable amount of hardness component, alkalinity component and carbonic acid are removed. For this reason, precipitation which is a problem during regeneration of the MB tower does not occur, and the ion load on the MB tower is reduced.

【0055】更に、本発明の純水製造装置はKW塔を有
するものであるが、この再生はMB塔のSCRの再生と
同時に、しかもSCRの再生廃液を用いて行えるので、
この場合にはMB塔単独で構成されている従来の純水製
造装置の再生に必要な時間と同じ時間で再生でき、何ら
余分の再生時間を必要とするものではないと共に、再生
剤の利用効率の向上が図れる等の効果を奏する。
Further, the pure water producing apparatus of the present invention has a KW tower. Since this regeneration can be performed at the same time as the regeneration of the SCR of the MB tower and by using the regeneration waste liquid of the SCR,
In this case, it can be regenerated in the same time as the time required for regenerating the conventional pure water producing apparatus composed of the MB tower alone, no extra regeneration time is required, and the utilization efficiency of the regenerant is increased. There is an effect such as improvement of

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の純水製造装置の一構成例を示すフロー
図である。
FIG. 1 is a flow chart showing an example of the configuration of a pure water producing apparatus of the present invention.

【図2】従来の純水製造装置の一構成例を示すフロー図
である。
FIG. 2 is a flow diagram showing a configuration example of a conventional pure water production apparatus.

【符号の説明】[Explanation of symbols]

1 陽イオン交換塔(KW塔) 2 脱炭酸塔(D塔) 3 脱炭酸水槽(DWT) 4 混床式イオン交換塔(MB塔) 5 弱酸性陽イオン交換樹脂(WCR) 6 脱炭酸用充填材 7 強塩基性陰イオン交換樹脂(SAR) 8 強酸性陽イオン交換樹脂(SCR) 9 再生廃液出口コレクター 1 Cation exchange tower (KW tower) 2 Decarbonation tower (D tower) 3 Decarbonation water tank (DWT) 4 Mixed bed type ion exchange tower (MB tower) 5 Weakly acidic cation exchange resin (WCR) 6 Packing for decarboxylation Material 7 Strongly basic anion exchange resin (SAR) 8 Strongly acidic cation exchange resin (SCR) 9 Regeneration waste liquid outlet collector

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月29日[Submission date] August 29, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】配管10からアルカリ再生剤を供給すると
共に、塔下部の配管11から押水を供給し、生じる再生
廃液を再生廃液出口コレクター9に集液し、配管12か
ら排出させる。アルカリ再生剤は公知のものが使用でき
る。その後、アルカリ再生剤の代りに脱炭酸水を同一ラ
インで供給し、SAR7を満している再生剤の押出工程
を行う。その後配管16から押水を供給すると同時に、
配管20から脱炭酸水を供給して配管12から排出させ
るSAR7の洗浄を行うことにより、SAR7の再生が
完了する。なお、上記SAR7の再生工程が終了するま
では、KW塔に原水を通水し続けている。またSAR7
の再生用水としては前述の説明では脱炭酸水を用いた
が、場合によっては、KW塔処理水を直接用いてもさし
つかえない。次いで、MB塔4内のSCR8とKW塔1
内のWCR5の再生工程を行う。即ち、まずKW塔1に
供給している原水の供給を停止して脱炭酸水の製造を中
断する。次いでMB塔4の下部配管11から酸再生剤を
供給すると共に、配管10から押水を供給し、これによ
って生成する酸性再生廃液を再生廃液出口コレクター9
で集水する。集められた酸性再生廃液は配管13を経由
させてKW塔1の再生剤入口管28に導き、KW塔1内
のWCR5と接触させ、これによって当該WCR5を再
生させた後、下部配管14から排出させる。その後、酸
再生剤の代わりに脱炭酸水槽3中の脱炭酸水に切り換え
て同一操作をすることにより、SCR8及びWCR5の
押出工程を行い、その後、MB塔4とKW塔1の洗浄工
程をそれぞれ独立して実施する。
The alkali regenerant is supplied from the pipe 10 and the pressed water is supplied from the pipe 11 in the lower part of the tower, and the generated waste liquid is collected in the waste liquid outlet collector 9 and discharged from the pipe 12. Known alkali regenerants can be used. Then, decarbonated water is supplied in the same line instead of the alkali regenerant, and the regenerant filling SAR7 is extruded. After that, at the same time as supplying water from the pipe 16,
The regeneration of SAR7 is completed by cleaning the SAR7 which is supplied with decarbonated water from the pipe 20 and discharged from the pipe 12. It should be noted that raw water is continuously passed through the KW tower until the regeneration process of SAR7 is completed. See also SAR7
Although decarbonated water was used as the reclaimed water in the above description, in some cases, the KW tower treated water may be used directly. Next, SCR 8 in MB tower 4 and KW tower 1
WCR5 regeneration process is performed. That is, first, the supply of raw water supplied to the KW tower 1 is stopped and the production of decarbonated water is interrupted. Next, the acid regenerant is supplied from the lower pipe 11 of the MB tower 4 and the pressurizing water is supplied from the pipe 10, and the acid regeneration waste liquid generated thereby is recycled waste liquid outlet collector 9
To collect water. The collected acidic regeneration waste liquid is guided to the regenerant inlet pipe 28 of the KW tower 1 via the pipe 13 and brought into contact with the WCR 5 in the KW tower 1, thereby regenerating the WCR 5 and then discharged from the lower pipe 14. Let Then, the extruding process of SCR8 and WCR5 is performed by switching to the decarbonated water in the decarbonated water tank 3 instead of the acid regenerant and performing the same operation, and then the washing process of the MB tower 4 and the KW tower 1 respectively. Implement independently.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】先ず、配管10から4%(重量%、以下同
様)苛性ソーダ水溶液の720 lを1000 l/H
の流量で供給し、同時に塔下部の配管11から押水とし
て脱炭酸水を360 l/Hの流量で供給し、再生廃液
出口コレクター9に集液し、配管12からアルカリ再生
廃液を排出した。その後、4%苛性ソーダ水溶液の代り
に脱炭酸水を、同一ルート、同一流量で12分間供給し
て、薬液の押出工程を実施した。更に塔上部の配管20
から2300 l/H、塔下部の配管16から1500
l/Hの流量で洗浄水として脱炭酸水を同時に5分間
供給し、コレクター9に集液し、配管12から排出し
た。なお、ここまでは、KW塔に原水を通水して脱炭酸
水を製造し続けていた。
First, 720 l of a 4% (weight%, the same applies hereinafter) caustic soda aqueous solution was introduced from the pipe 10 to 1000 l / H.
At the same time, and at the same time, decarbonated water was supplied at a flow rate of 360 l / H from the pipe 11 at the lower part of the tower as the pressed water, and was collected in the regeneration waste liquid outlet collector 9, and the alkali regeneration waste liquid was discharged from the pipe 12. Then, decarbonated water was supplied instead of the 4% caustic soda aqueous solution at the same route and at the same flow rate for 12 minutes to carry out the chemical solution extrusion step. Further piping 20 at the top of the tower
To 2300 l / H, piping 16 to 1500 at the bottom of the tower
Decarbonated water was supplied as washing water at a flow rate of 1 / H for 5 minutes at the same time to collect the liquid in the collector 9 and discharge it from the pipe 12. Up to this point, raw water was passed through the KW tower to continue producing decarbonated water.

フロントページの続き (72)発明者 渡辺 和郎 大阪府大阪市北区堂島1丁目5番17号堂島 グランドビル オルガノ株式会社大阪支店 内Front page continued (72) Inventor Kazuro Watanabe 1-5-17 Dojima, Kita-ku, Osaka-shi, Osaka Dojima Grand Building Organo Co., Ltd. Osaka Branch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弱酸性陽イオン交換樹脂を充填した陽イ
オン交換塔と、脱炭酸装置と、脱炭酸水槽と、強酸性陽
イオン交換樹脂と強塩基性陰イオン交換樹脂とを同一塔
内に充填した混床式イオン交換塔とを有してなり、原水
を陽イオン交換塔、脱炭酸装置、脱炭酸水槽、混床式イ
オン交換塔に順次通水して混床式イオン交換塔から純水
を取り出すように構成したことを特徴とする純水製造装
置。
1. A cation exchange column filled with a weakly acidic cation exchange resin, a decarboxylation device, a decarbonation water tank, a strongly acidic cation exchange resin and a strongly basic anion exchange resin in the same column. It has a packed mixed-bed type ion exchange tower, and the raw water is passed through the cation-exchange tower, the decarbonation device, the decarbonated water tank, and the mixed-bed type ion-exchange tower in order, and pure water is mixed from the mixed-bed type ion-exchange tower. An apparatus for producing pure water, which is configured to take out water.
【請求項2】 請求項1に記載した純水製造装置の再生
方法において、混床式イオン交換塔内の強酸性陽イオン
交換樹脂に酸再生剤を通薬して前記強酸性陽イオン交換
樹脂を再生すると共に、前記通薬により生成する酸性再
生廃液を陽イオン交換塔に送って前記陽イオン交換塔内
の弱酸性陽イオン交換樹脂を再生することを特徴とする
純水製造装置の再生方法。
2. The method for regenerating a pure water production apparatus according to claim 1, wherein the acid regenerant is passed through the strong acid cation exchange resin in the mixed bed type ion exchange tower. And a weak acid cation exchange resin in the cation exchange tower by regenerating the acid regeneration waste liquid generated by the above-mentioned replenishment to the cation exchange tower to regenerate the pure water producing apparatus. .
【請求項3】 請求項1に記載した純水製造装置の再生
方法において、まず混床式イオン交換塔内の強塩基性陰
イオン交換樹脂を再生し、次いで強酸性陽イオン交換樹
脂を再生すると共に前記強酸性陽イオン交換樹脂の再生
により生成する酸性再生廃液を陽イオン交換塔に送って
弱酸性陽イオン交換樹脂を再生し、かつ前記強塩基性陰
イオン交換樹脂を再生している間は、原水を陽イオン交
換塔に通水して、当該処理水を強塩基性陰イオン交換樹
脂の再生工程に利用することを特徴とする純水製造装置
の再生方法。
3. The method of regenerating the pure water producing apparatus according to claim 1, wherein the strong basic anion exchange resin in the mixed bed ion exchange column is first regenerated, and then the strong acid cation exchange resin is regenerated. Along with the regeneration of the weakly acidic cation exchange resin by sending the acidic regeneration waste liquid generated by the regeneration of the strongly acidic cation exchange resin to a cation exchange column, and while regenerating the strong basic anion exchange resin, A method for regenerating a pure water producing apparatus, characterized in that raw water is passed through a cation exchange tower and the treated water is used in a step of regenerating a strongly basic anion exchange resin.
JP21943493A 1993-09-03 1993-09-03 Pure water production apparatus and method for regenerating the same Expired - Fee Related JP3160435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21943493A JP3160435B2 (en) 1993-09-03 1993-09-03 Pure water production apparatus and method for regenerating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21943493A JP3160435B2 (en) 1993-09-03 1993-09-03 Pure water production apparatus and method for regenerating the same

Publications (2)

Publication Number Publication Date
JPH0768254A true JPH0768254A (en) 1995-03-14
JP3160435B2 JP3160435B2 (en) 2001-04-25

Family

ID=16735347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21943493A Expired - Fee Related JP3160435B2 (en) 1993-09-03 1993-09-03 Pure water production apparatus and method for regenerating the same

Country Status (1)

Country Link
JP (1) JP3160435B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110914A3 (en) * 1999-11-19 2001-07-18 Rohm And Haas Company Water treatment method and apparatus
KR100892257B1 (en) * 2007-08-20 2009-04-09 (주)우리텍 A Process Steam Condensate Recycling Apparatus
KR101470620B1 (en) * 2014-04-10 2014-12-10 (주) 시온텍 Ion exchange softening device for removing evaporation residue and hardness of water
CN115054947A (en) * 2022-06-29 2022-09-16 成都长力元生物科技有限公司 Method for purifying low mannose filtrate and regenerating ion exchange column

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110914A3 (en) * 1999-11-19 2001-07-18 Rohm And Haas Company Water treatment method and apparatus
KR100892257B1 (en) * 2007-08-20 2009-04-09 (주)우리텍 A Process Steam Condensate Recycling Apparatus
KR101470620B1 (en) * 2014-04-10 2014-12-10 (주) 시온텍 Ion exchange softening device for removing evaporation residue and hardness of water
CN115054947A (en) * 2022-06-29 2022-09-16 成都长力元生物科技有限公司 Method for purifying low mannose filtrate and regenerating ion exchange column

Also Published As

Publication number Publication date
JP3160435B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
EP3012230B1 (en) Method and apparatus for reducing regenerant and wastewater by using compressed air
KR101918771B1 (en) Ion-exchange device
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
WO2011040278A1 (en) Ion-exchange device, column therefor, and water treatment device
US4176056A (en) Cyclic operation of a bed of mixed ion exchange resins
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
US2841550A (en) Process of operating a demineralizing installation
JP3160435B2 (en) Pure water production apparatus and method for regenerating the same
JPH10137751A (en) Ion exchange method and ion exchange column used for ion exchange method
JPH05253576A (en) Treatment of fluorine-containing water
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JP5609181B2 (en) Ion exchanger
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP2002361247A (en) Method for manufacturing pure water
JP2000202440A (en) System for producing highly deionized water
GB2063094A (en) Water purification by ion exchange
JP2940651B2 (en) Pure water production equipment
JPH0143593B2 (en)
JP7184152B1 (en) Separation column for mixed ion exchange resin and method for separating mixed ion exchange resin using the same
JP2607544B2 (en) Ion exchange tower used for upflow regeneration
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JPH0999244A (en) Method for separating and regenerating ion exchange resin
JP2597552Y2 (en) Pure water production equipment
JP2742975B2 (en) Regeneration method of ion exchange device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees