JP7215094B2 - Ion exchange resin regeneration device - Google Patents

Ion exchange resin regeneration device Download PDF

Info

Publication number
JP7215094B2
JP7215094B2 JP2018211528A JP2018211528A JP7215094B2 JP 7215094 B2 JP7215094 B2 JP 7215094B2 JP 2018211528 A JP2018211528 A JP 2018211528A JP 2018211528 A JP2018211528 A JP 2018211528A JP 7215094 B2 JP7215094 B2 JP 7215094B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
pipe
anion exchange
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211528A
Other languages
Japanese (ja)
Other versions
JP2020075226A (en
Inventor
恒康 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018211528A priority Critical patent/JP7215094B2/en
Publication of JP2020075226A publication Critical patent/JP2020075226A/en
Application granted granted Critical
Publication of JP7215094B2 publication Critical patent/JP7215094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、復水脱塩装置のイオン交換樹脂再生装置に係り、特に火力発電所、原子力発電所等における復水脱塩装置用のイオン交換樹脂再生装置に関する。 The present invention relates to an ion-exchange resin regeneration device for condensate demineralization equipment, and more particularly to an ion-exchange resin regeneration device for condensate demineralization equipment in thermal power plants, nuclear power plants, and the like.

通常、復水脱塩は、イオン交換樹脂再生のためにカチオン交換樹脂再生塔、アニオン交換樹脂再生塔および樹脂貯槽が設置されており、薬液再生は硫酸および苛性ソーダで行なわれる(例えば特許文献1,2)。 Condensate desalination is usually performed by installing a cation exchange resin regeneration tower, an anion exchange resin regeneration tower and a resin storage tank for ion exchange resin regeneration, and chemical regeneration is performed with sulfuric acid and caustic soda (for example, Patent Document 1, 2).

特許文献1に記載のイオン交換再生装置及び再生方法について図5及び図6(a)~(c)を参照して説明する。この再生装置は、復水脱塩塔1、カチオン交換樹脂再生塔3、アニオン交換樹脂再生塔5、樹脂貯槽8及びこれらを接続して樹脂移送を可能にする配管2,4,6,7,9を有する塔外再生方式を用いた復水脱塩装置におけるイオン交換樹脂再生装置である。復水脱塩塔1には、カチオン交換樹脂とアニオン交換樹脂とが混合状態で充填されている。 The ion exchange regeneration device and regeneration method described in Patent Document 1 will be described with reference to FIGS. 5 and 6(a) to (c). This regeneration device includes a condensate demineralization tower 1, a cation exchange resin regeneration tower 3, an anion exchange resin regeneration tower 5, a resin storage tank 8, and pipes 2, 4, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 13, 14, 14, 14, 14, 14, 15, 16, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 9 is an ion-exchange resin regeneration device in a condensate demineralization unit using an extra-tower regeneration method. The condensate demineralization tower 1 is filled with a mixture of cation exchange resin and anion exchange resin.

通常運転時には、配管2,4,6,7,9は、各配管に設けられた弁(図示略)が閉とされることにより通液停止している。配管1a、1bのみを介して復水脱塩塔1に復水を通水することにより、脱塩処理を行う。この再生装置によるイオン交換樹脂再生は次の樹脂抜き・分離工程、逆洗再生工程及び樹脂混合・返送工程によって行われる。 During normal operation, the passage of liquid through the pipes 2, 4, 6, 7, and 9 is stopped by closing the valves (not shown) provided in each pipe. Desalination is performed by passing condensate through the condensate demineralization tower 1 only through the pipes 1a and 1b. Regeneration of the ion-exchange resin by this regenerator is carried out through the following resin removal/separation process, backwashing regeneration process, and resin mixing/returning process.

<樹脂抜き・分離工程>
(i) 配管1a、1bの通液を停止し、復水脱塩塔1を主系統から切り離す。
(ii) 復水脱塩塔1内のイオン交換樹脂を、配管2を通じてカチオン交換樹脂再生塔3に移送する。(図6(a))
(iii) 図6(b)の通り、カチオン交換樹脂再生塔3に逆洗水を上向流にて通水することにより、混合状態のイオン交換樹脂を比重差でアニオン交換樹脂とカチオン交換樹脂の上下2層に分離する。
(iv) 図6(c)の通り、配管4を通じてアニオン交換樹脂を選択的に引き抜き、アニオン交換樹脂再生塔5に移送する。
<Resin removal/separation process>
(i) Stop the liquid flow through the pipes 1a and 1b and disconnect the condensate demineralization tower 1 from the main system.
(ii) Transfer the ion exchange resin in the condensate demineralization tower 1 to the cation exchange resin regeneration tower 3 through the pipe 2 . (Fig. 6(a))
(iii) As shown in FIG. 6(b), by passing backwash water through the cation exchange resin regeneration tower 3 in an upward flow, the ion exchange resins in the mixed state are separated from the anion exchange resin and the cation exchange resin by the difference in specific gravity. separated into two upper and lower layers.
(iv) As shown in FIG. 6( c ), the anion exchange resin is selectively withdrawn through the pipe 4 and transferred to the anion exchange resin regeneration tower 5 .

なお、特許文献2には、その後、さらに図6(d)~(f)の通り、再度樹脂分離及び移送を行うことが行うことが記載されている。即ち、アニオン交換樹脂がアニオン交換樹脂排出口4aのレベルまで排出・移送されると、図6(c)の通り、アニオン交換樹脂排出口4aとカチオン交換樹脂層上面との間には、アニオン交換樹脂とカチオン交換樹脂との混在層が残存する。 Incidentally, Patent Document 2 describes that after that, the resin is separated and transferred again as shown in FIGS. 6(d) to 6(f). That is, when the anion exchange resin is discharged and transported to the level of the anion exchange resin discharge port 4a, as shown in FIG. A mixed layer of resin and cation exchange resin remains.

そこで、逆洗水をLVを速めて上向流通水する逆洗を行い、混在層とカチオン交換樹脂層との界面を押し上げると共に混在層においてさらなる樹脂分離を促進し(図6(d))、この界面がアニオン交換樹脂排出口4a付近まで下がるように逆洗水上向流速を調整し(図6(e))、次いで、混在層を構成するアニオン交換樹脂及びカチオン交換樹脂の混合樹脂を、アニオン交換樹脂排出口4a、配管4及び配管7Aを介して樹脂貯槽8に移送する(図6(f))。これにより、カチオン交換樹脂再生塔3内のカチオン交換樹脂中のアニオン交換樹脂の残留量が著しく少なくなる。 Therefore, backwashing is performed by accelerating the LV of the backwash water and circulating it upward to push up the interface between the mixed layer and the cation exchange resin layer and promote further resin separation in the mixed layer (Fig. 6(d)). The backwash water upward flow rate is adjusted so that this interface is lowered to the vicinity of the anion exchange resin outlet 4a (FIG. 6(e)), and then the mixed resin of the anion exchange resin and the cation exchange resin constituting the mixed layer is treated with an anion It is transferred to the resin storage tank 8 via the replacement resin discharge port 4a, the pipe 4 and the pipe 7A (Fig. 6(f)). As a result, the residual amount of the anion exchange resin in the cation exchange resin in the cation exchange resin regeneration tower 3 is significantly reduced.

<逆洗再生工程>
(v) カチオン交換樹脂再生塔3内でイオン交換樹脂を水に浸漬した状態で下部より空気を吹き込み(エアスクラビング)、樹脂に付着した腐食生成物(クラッド等)を脱離する。
(vi) カチオン交換樹脂はカチオン交換樹脂再生塔3、アニオン交換樹脂はアニオン交換樹脂再生塔5において、それぞれ酸、アルカリを注入して薬液再生を行う。
<Backwash regeneration process>
(v) In the cation exchange resin regeneration tower 3, while the ion exchange resin is immersed in water, air is blown from below (air scrubbing) to detach corrosion products (crud, etc.) adhering to the resin.
(vi) In the cation exchange resin regeneration tower 3 and the anion exchange resin regeneration tower 5, acid and alkali are respectively injected to regenerate the cation exchange resin and the anion exchange resin regeneration tower 5.

<樹脂混合・返送工程>
(vii) 薬液再生が終了した後、再生したカチオン交換樹脂およびアニオン交換樹脂を、それぞれ配管6と配管7を通じて樹脂貯槽8に移送する。
(viii) 樹脂貯槽8において洗浄および混合操作を行う。
(ix) 樹脂貯槽8内のイオン交換樹脂を混合状態のまま配管9を通じて復水脱塩塔1に返送する。
(x) 配管9を通液停止し、復水脱塩塔1を予備塔として待機状態とする。
<Resin mixing/returning process>
(vii) After chemical regeneration is completed, the regenerated cation exchange resin and anion exchange resin are transferred to the resin storage tank 8 through the pipes 6 and 7, respectively.
(viii) washing and mixing operations in the resin reservoir 8;
(ix) The ion exchange resin in the resin storage tank 8 is returned to the condensate demineralization tower 1 through the pipe 9 in a mixed state.
(x) The flow of liquid through the pipe 9 is stopped, and the condensate demineralization tower 1 is put on standby as a standby tower.

これにより、再生が終了するので、配管1a、1bを介して復水通水を再開し、脱塩処理運転に戻る。 As a result, the regeneration is completed, and the flow of condensate is resumed via the pipes 1a and 1b, and the desalting operation is resumed.

特開昭55-051445号公報JP-A-55-051445 特開2018-126687号公報JP 2018-126687 A

従来のカチオン交換樹脂再生塔にあっては、図示は省略するが、アニオン交換樹脂排出口4aの下方に、排水配管および薬注配管が配置されていた。排水配管はウェッジワイヤなどで樹脂は流出せず水および微小鉄クラッドのみが排出される直管である。薬注配管は放射状配管に下方を向いた小穴が設けられたもので、樹脂排出口4aの下方に設置される。 In the conventional cation exchange resin regeneration tower, although not shown, a drainage pipe and a chemical injection pipe were arranged below the anion exchange resin discharge port 4a. The drainage pipe is a wedge wire or the like, and is a straight pipe that does not allow the resin to flow out but only water and fine iron clad to be discharged. The chemical injection pipe is a radial pipe provided with a small hole facing downward, and is installed below the resin discharge port 4a.

しかしながら、これら配管が設置されている箇所は、混合樹脂の逆洗分離における樹脂分離境界面近傍であるため、逆洗流が薬注配管に当たり乱流が生じ、樹脂分離境界面を乱すことでアニオン交換樹脂層へのカチオン交換樹脂の混入を促進する原因となっていた。 However, since the location where these pipes are installed is near the resin separation boundary surface in the backwashing separation of the mixed resin, the backwash flow hits the chemical injection pipe and causes turbulence, disturbing the resin separation boundary surface and anion This has been a cause of accelerating the contamination of the cation exchange resin into the exchange resin layer.

本発明は、樹脂分離境界面近傍の逆洗水の流れの乱れを低減し、樹脂分離精度を向上することができるイオン交換樹脂再生装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide an ion-exchange resin regeneration apparatus capable of reducing turbulence in the flow of backwash water in the vicinity of the resin separation interface and improving resin separation accuracy.

本発明のイオン交換樹脂再生装置は、復水脱塩塔と、カチオン交換樹脂再生塔と、アニオン交換樹脂再生塔と、樹脂貯槽とが配管により樹脂移送可能に接続された復水脱塩用イオン交換樹脂再生装置において、前記カチオン交換樹脂再生塔の上下方向途中に設けられたアニオン交換樹脂排出口と前記アニオン交換樹脂再生塔とを接続する樹脂移送配管に、再生剤供給用の薬注部が接続されていることを特徴とする。 The ion-exchange resin regeneration apparatus of the present invention comprises a condensate demineralization tower, a cation-exchange resin regeneration tower, an anion-exchange resin regeneration tower, and a resin storage tank, which are connected by piping so as to allow resin transfer. In the exchange resin regeneration apparatus, a chemical injection part for supplying a regenerant is provided in a resin transfer pipe connecting an anion exchange resin outlet provided in the middle of the cation exchange resin regeneration tower in the vertical direction and the anion exchange resin regeneration tower. characterized by being connected.

本発明の一態様では、前記薬注部は、上下方向に設けられ、前記再生剤が下方に向って流れる薬注配管と、該薬注配管に設けられた薬注弁とを有する。 In one aspect of the present invention, the chemical feeding section is provided vertically and has a chemical feeding pipe through which the regenerant flows downward, and a chemical feeding valve provided in the chemical feeding pipe.

本発明の一態様では、前記アニオン交換樹脂排出口よりも上位に管状排水口が設けられている。 In one aspect of the present invention, a tubular outlet is provided above the anion exchange resin outlet.

本発明では、アニオン交換樹脂引抜配管と薬注配管を共用する。即ち、アニオン交換樹脂引抜配管から薬液の注入を行うようにして、カチオン交換樹脂再生塔内の薬注配管を省略する。また、好ましくは、管状排水口をアニオン交換樹脂排出口より上方に配置する。これにより、樹脂排出口の下方の構造物を排除し、混合樹脂分離用の逆洗水の整流化を行う。 In the present invention, the anion exchange resin withdrawal pipe and the chemical injection pipe are shared. That is, the chemical injection pipe in the cation exchange resin regeneration tower is omitted by injecting the chemical solution from the anion exchange resin withdrawal pipe. Also preferably, the tubular outlet is located above the anion exchange resin outlet. As a result, the structure below the resin discharge port is eliminated, and the backwash water for separating the mixed resin is rectified.

また、カチオン交換樹脂再生塔内の構成が簡易となり、カチオン交換樹脂再生塔の製作が容易になる。 In addition, the structure inside the cation exchange resin regeneration tower is simplified, and the production of the cation exchange resin regeneration tower is facilitated.

実施の形態に係るイオン交換樹脂再生装置の系統図である。1 is a system diagram of an ion-exchange resin regeneration device according to an embodiment; FIG. 図1のカチオン交換樹脂再生塔の一部の断面図である。FIG. 2 is a cross-sectional view of a portion of the cation exchange resin regeneration tower of FIG. 1; 図2の樹脂排出口の断面図である。FIG. 3 is a cross-sectional view of the resin outlet of FIG. 2; (a)は放射配管の平面図、(b)はその側面図である。(a) is a plan view of the radiation pipe, and (b) is a side view thereof. 従来例に係るイオン交換樹脂再生装置の系統図である。1 is a system diagram of an ion-exchange resin regeneration device according to a conventional example; FIG. カチオン交換樹脂再生塔内の樹脂分離工程の説明図である。FIG. 3 is an explanatory diagram of a resin separation step in a cation exchange resin regeneration tower; 比較例を示す断面図である。FIG. 5 is a cross-sectional view showing a comparative example;

以下、図面を参照して実施の形態について説明する。図1は、実施の形態に係るイオン交換樹脂再生装置を示す系統図であり、カチオン交換樹脂再生塔は概略的な縦断面として示されている。 Embodiments will be described below with reference to the drawings. FIG. 1 is a system diagram showing an ion-exchange resin regeneration apparatus according to an embodiment, and a cation-exchange resin regeneration tower is shown as a schematic longitudinal section.

カチオン交換樹脂再生塔10内の下部に下部集水板11が設置されており、該下部集水板11の上側に樹脂が貯留される。該下部集水板11には、弁V8を有した樹脂排出用の配管12が接続されている。カチオン交換樹脂再生塔10の底部管板には、後述の再生水供給用配管37が接続されている。 A lower water collecting plate 11 is installed in the lower part of the cation exchange resin regeneration tower 10, and resin is stored on the upper side of the lower water collecting plate 11. A resin discharge pipe 12 having a valve V8 is connected to the lower water collecting plate 11 . The bottom tube plate of the cation exchange resin regeneration tower 10 is connected to a later-described reclaimed water supply pipe 37 .

カチオン交換樹脂再生塔10の頂部には、弁V4を有した樹脂導入用の配管13が接続されている。カチオン交換樹脂再生塔10内の上部に、多孔管よりなる排水部14が設置されており、該排水部14には、逆洗水排出弁V6を有した配管15が接続されている。 A resin introduction pipe 13 having a valve V4 is connected to the top of the cation exchange resin regeneration tower 10 . A drain section 14 made of a perforated pipe is installed in the upper part of the cation exchange resin regeneration tower 10, and a pipe 15 having a backwash water discharge valve V6 is connected to the drain section 14.

カチオン交換樹脂再生塔10の上下方向途中の側面の一部に、透光性窓部(符号略)が設けられ、該窓部に対面してカチオン交換樹脂再生塔10内のカチオン交換樹脂とアニオン交換樹脂との境界面を検知するセンサ17が設置されている。センサ17としては、カチオン交換樹脂とアニオン交換樹脂との色の相違に基づいて境界面を検知する光学センサ等を用いることができるが、これに限定されない。後述の通り、このセンサ17の検知信号に基づいて、再生水供給用の弁V3が制御される。 A translucent window (reference numerals omitted) is provided on a part of the side surface of the cation exchange resin regeneration tower 10 in the vertical direction. A sensor 17 is installed to detect the interface with the replacement resin. As the sensor 17, an optical sensor or the like that detects the interface based on the difference in color between the cation exchange resin and the anion exchange resin can be used, but it is not limited to this. As will be described later, based on the detection signal of this sensor 17, the reclaimed water supply valve V3 is controlled.

カチオン交換樹脂再生塔10内の上下方向の途中にアニオン交換樹脂排出口20及び管状排水口18(図2)が設置されている。該アニオン交換樹脂排出口20は、分岐配管30を介して、アニオン交換樹脂排出用及び薬注用の配管31の一端側に連なっている。 An anion exchange resin discharge port 20 and a tubular discharge port 18 (FIG. 2) are installed midway in the vertical direction in the cation exchange resin regeneration tower 10 . The anion exchange resin discharge port 20 is connected to one end side of a pipe 31 for discharging the anion exchange resin and for chemical injection via a branch pipe 30 .

配管31の他端は、再生水弁V2、配管32,33を介して再生水の供給部に連なっている。再生水としては、電気伝導率1mS/m以下の純水などが例示される。 The other end of the pipe 31 is connected to a reclaimed water supply unit via a reclaimed water valve V2 and pipes 32 and 33 . Examples of reclaimed water include pure water having an electrical conductivity of 1 mS/m or less.

配管31の途中からアニオン交換樹脂抜出配管35が分岐しており、該配管35に樹脂移送弁V7が設けられている。 An anion exchange resin extraction pipe 35 is branched from the middle of the pipe 31, and the pipe 35 is provided with a resin transfer valve V7.

また、配管31の途中に薬注配管36が接続されており、該配管36に薬注弁V1が設けられている。配管36は配管31から上方に立ち上がっている。薬注弁V1は配管36の下部に設けられており、これにより、弁V1よりも下位側の配管36内に残留する薬液(硫酸水溶液)量を少なくしている。
アニオン交換樹脂抜出管35の分岐位置と薬注配管36の分岐位置の順序はどちらでも可能であるが、塔10に近い方をアニオン交換樹脂抜出配管35とすると、薬注配管36から薬注注入後のフラッシング時にアニオン交換樹脂抜出配管35の方に薬液が拡散するリスクがあるので、図1のように塔10に近い方を薬注配管36として当該リスクを低減することが好ましい。
A chemical injection pipe 36 is connected in the middle of the pipe 31, and the pipe 36 is provided with a chemical injection valve V1. A pipe 36 rises upward from the pipe 31 . The chemical feed valve V1 is provided at the bottom of the pipe 36, thereby reducing the amount of the chemical solution (sulfuric acid aqueous solution) remaining in the pipe 36 on the lower side than the valve V1.
The order of the branch position of the anion exchange resin extraction pipe 35 and the branch position of the chemical injection pipe 36 can be either, but if the anion exchange resin extraction pipe 35 is the one closer to the tower 10, the chemical Since there is a risk that the chemical solution will diffuse toward the anion exchange resin extraction pipe 35 during flushing after injection, it is preferable to reduce the risk by using the chemical injection pipe 36 near the tower 10 as shown in FIG.

再生水供給用配管33からは、配管34,39が分岐している。配管34は、弁V3を介して前記配管37に連なっている。配管37の途中から配管38が分岐しており、該配管38に排水弁V9が設けられている。配管39は、弁V5を介して前記配管15に連なっている。 Pipes 34 and 39 are branched from the reclaimed water supply pipe 33 . A pipe 34 is connected to the pipe 37 via a valve V3. A pipe 38 branches from the middle of the pipe 37, and the pipe 38 is provided with a drain valve V9. A pipe 39 is connected to the pipe 15 via a valve V5.

前記アニオン交換樹脂排出口20の構成について、図2,3を参照して説明する。 The configuration of the anion exchange resin outlet 20 will be described with reference to FIGS.

配管31の前記一端は複数本(好ましくは3~6本)の放射状の分岐配管30に分岐している。各分岐配管30の先端側は下方に向って曲がっている。各分岐配管30の先端側の下端にそれぞれアニオン交換樹脂排出口20が設けられている。排出口20は、図3に示す通り、下方に向って開放している。この排出口20は、下方ほど径が大きくなるテーパ形状のカバー24を有している。 The one end of the pipe 31 is branched into a plurality of (preferably 3 to 6) radial branch pipes 30 . The tip side of each branch pipe 30 is bent downward. An anion exchange resin discharge port 20 is provided at the lower end of each branch pipe 30 on the tip side. The outlet 20 opens downward as shown in FIG. The discharge port 20 has a tapered cover 24 whose diameter increases downward.

各排出口20の設置レベルは同一である。即ち各排出口20の下端(開口面)は同一水平面上に位置している。 The installation level of each outlet 20 is the same. That is, the lower ends (opening surfaces) of the discharge ports 20 are positioned on the same horizontal plane.

分岐配管30の下端には、外向き鍔状のフランジ21が設けられている。分岐配管30の下端開口及び該フランジ21の下側に、所定間隔をおいて、水平なバッフル22が配置されている。バッフル22はボルト23によってフランジ21に取り付けられている。分岐配管30の下部外周を囲むように、テーパ形のカバー24が設けられている。カバー24は上方に向って小径となっている。カバー24の上端は配管30に連結されている。カバー24の下部外周縁は、フランジ21の外周縁に連結されている。 An outward flange-shaped flange 21 is provided at the lower end of the branch pipe 30 . A horizontal baffle 22 is arranged at a predetermined interval below the lower end opening of the branch pipe 30 and the flange 21 . Baffle 22 is attached to flange 21 by bolts 23 . A tapered cover 24 is provided so as to surround the outer periphery of the lower portion of the branch pipe 30 . The diameter of the cover 24 decreases upward. The upper end of cover 24 is connected to pipe 30 . A lower outer peripheral edge of the cover 24 is connected to an outer peripheral edge of the flange 21 .

図2の通り、管状排水口18は、水平な多孔管よりなる。管状排水口18は、分岐配管30の水平な放射状部よりも下位かつアニオン交換樹脂排出口20の開口面よりも上位に配置されている。管状排水口18には、排水配管18aが連なっており、該配管18aに弁(図示略)が設けられている。 As shown in FIG. 2, the tubular drain 18 consists of a horizontal perforated tube. The tubular outlet 18 is arranged below the horizontal radial portion of the branch pipe 30 and above the opening surface of the anion exchange resin outlet 20 . A drain pipe 18a is connected to the tubular drain port 18, and the pipe 18a is provided with a valve (not shown).

このイオン交換樹脂再生装置は、次の樹脂抜き・分離工程、再生工程及び樹脂混合・返送工程によって運転される。 This ion-exchange resin regeneration apparatus is operated through the following resin extraction/separation process, regeneration process, and resin mixing/return process.

(1) 樹脂導入
V4,V6を開とし、脱塩塔から混合樹脂をカチオン交換樹脂再生塔10に移送する。
(1) Resin introduction V4 and V6 are opened, and the mixed resin is transferred from the demineralization tower to the cation exchange resin regeneration tower 10.

(2) 樹脂の逆洗分離
V4を閉、V3,V6を開とし、再生水をLV8~15m/hrで塔10内に上向流通水してカチオン交換樹脂とアニオン交換樹脂を上下2層に分離する。
(2) Resin backwashing separation V4 is closed, V3 and V6 are open, and the reclaimed water is circulated upward into the tower 10 at LV 8 to 15 m/hr to separate the cation exchange resin and the anion exchange resin into two upper and lower layers. do.

(3) 樹脂分離境界面の高さ調整
V3の開度調整を行うと共に、V6を開とし、センサ17で検知される樹脂分離境界面の高さがバッフル型の樹脂排出口20の下端から150~30mm下方の位置になるように逆洗流量を調整する。
(3) Adjusting the height of the resin separation boundary surface Adjust the opening of V3 and open V6 so that the height of the resin separation boundary surface detected by the sensor 17 is 150 degrees from the lower end of the baffle-type resin discharge port 20. Adjust the backwash flow rate so that the position is ~30 mm below.

(4) アニオン交換樹脂引抜き
V3の開度調整を継続した状態で、樹脂移送弁V7を開け、次に塔上部の逆洗水排出弁V6を閉める。アニオン交換樹脂抜出配管35から流出する逆洗水に随伴して、アニオン交換樹脂が引き抜かれ、アニオン交換樹脂再生塔へ移送される。この間、樹脂分離境界面は同じ高さになるようにV3を調整する。
(4) Extraction of anion exchange resin While continuing to adjust the opening of V3, open the resin transfer valve V7 and then close the backwash water discharge valve V6 at the top of the tower. Along with the backwash water flowing out from the anion exchange resin withdrawal pipe 35, the anion exchange resin is withdrawn and transferred to the anion exchange resin regeneration tower. During this time, V3 is adjusted so that the resin separation boundary surface has the same height.

アニオン交換樹脂の引抜きが終了した後、逆洗水排出弁V6を開けて、樹脂移送弁V7を閉める。 After the withdrawal of the anion exchange resin is completed, the backwash water discharge valve V6 is opened and the resin transfer valve V7 is closed.

(5) 樹脂分離堺界面の高さ調整
V6を開とすると共に、V3を開度調整し、センサ17で検知される樹脂分離境界面の高さがバッフル型の樹脂排出口20の下端(開口面)から0~20mm下方の位置になるように逆洗流量を調整する。
(5) Adjusting the height of the resin separation boundary interface Open V6 and adjust the opening of V3 so that the height of the resin separation boundary surface detected by the sensor 17 is the lower end (opening) of the baffle-type resin discharge port 20. Adjust the backwash flow rate so that the position is 0 to 20 mm below the surface).

(6) 再度のアニオン交換樹脂引抜き
樹脂移送弁V7を開け、次に塔上部の逆洗水排出弁V6を閉める。アニオン交換樹脂抜出配管35から流出する逆洗水に随伴して、分離境界面近傍のアニオン交換樹脂(および混入したカチオン交換樹脂)がアニオン交換樹脂再生塔へ移送される(アニオン交換樹脂再生塔側の樹脂受入弁を開)。この間、樹脂分離境界面は同じ高さになるようにV3を調整する。
(6) Re-extraction of anion exchange resin Open the resin transfer valve V7, and then close the backwash water discharge valve V6 at the top of the tower. Accompanied by the backwash water flowing out from the anion-exchange resin withdrawal pipe 35, the anion-exchange resin (and mixed cation-exchange resin) near the separation interface is transferred to the anion-exchange resin regeneration tower (anion-exchange resin regeneration tower open the resin receiving valve on the side). During this time, V3 is adjusted so that the resin separation boundary surface has the same height.

アニオン交換樹脂の引抜きが完了した後、逆洗水排出弁V6を開けて樹脂移送弁V7を閉める。V3を閉めて逆洗を止める。 After the withdrawal of the anion exchange resin is completed, the backwash water discharge valve V6 is opened and the resin transfer valve V7 is closed. Close V3 to stop backflushing.

(7) カチオン交換樹脂の再生
カチオン交換樹脂が沈降した後、V6閉、V1,V9を開とし、再生用硫酸を所定時間、所定SVで供給する。
(7) Regeneration of cation exchange resin After the cation exchange resin settles, V6 is closed, V1 and V9 are opened, and sulfuric acid for regeneration is supplied for a predetermined time at a predetermined SV.

(8) 押出し再生
その後、V1閉、V2,V9を開とし、再生水で押出し再生を行う。
(8) Extrusion regeneration After that, V1 is closed, V2 and V9 are opened, and extrusion regeneration is performed with reclaimed water.

(9) 水洗
その後、V2閉、V5,V9を開とし、水洗を行う。
(9) Wash with water After that, close V2 and open V5 and V9 to wash with water.

本発明では、アニオン交換樹脂排出口20の代わりに、図4に示すアニオン交換樹脂排出口40を設置してもよい。 In the present invention, instead of the anion exchange resin outlet 20, an anion exchange resin outlet 40 shown in FIG. 4 may be installed.

このアニオン交換樹脂排出口40は、中空のボス部41と、該ボス部41から放射方向(この実施の形態では放射8方向)に延在する水平な管状体42とを有する。管状体42には、樹脂流入口43が設けられている。なお、図4(a)はアニオン交換樹脂排出口の平面図、図4(b)は図4(a)のB-B矢視図である。管状体42よりも高位かつ配管31よりも下位に管状排水口18が略水平に設置されている。 The anion exchange resin outlet 40 has a hollow boss portion 41 and a horizontal tubular body 42 extending radially from the boss portion 41 (eight radial directions in this embodiment). A resin inlet 43 is provided in the tubular body 42 . 4(a) is a plan view of an anion exchange resin discharge port, and FIG. 4(b) is a view taken along line BB of FIG. 4(a). A tubular drain port 18 is installed substantially horizontally above the tubular body 42 and below the pipe 31 .

[実施例1]
図1~3の構成を有するイオン交換樹脂再生装置において、カチオン交換樹脂再生塔(内径1900mm、塔高5000mm)10内の下部集水板11から高さ1600mmの位置にアニオン交換樹脂排出口20を配置した。イオン交換樹脂としては以下のものを用いた。
[Example 1]
In the ion-exchange resin regeneration apparatus having the configuration shown in FIGS. 1 to 3, an anion-exchange resin outlet 20 is provided at a height of 1600 mm from the lower catchment plate 11 in the cation-exchange resin regeneration tower (inner diameter 1900 mm, tower height 5000 mm) 10. placed. The following ion exchange resins were used.

カチオン交換樹脂:ダイヤイオンUBk14HK(層高約1300mm)
アニオン交換樹脂:ダイヤイオンPA312LOH(層高約500mm)
Cation exchange resin: Diaion UBk14HK (layer height about 1300 mm)
Anion exchange resin: Diaion PA312LOH (layer height about 500 mm)

上記カチオン交換樹脂3900Lとアニオン交換樹脂1500Lとを混合状態でカチオン交換樹脂再生塔10内に収容した。その後、上記工程(1)~(9)を下記のようにして行った。そして、カチオン交換樹脂再生塔10から分離して抜き出したアニオン交換樹脂に混入したカチオン交換樹脂の量をカチオン交換樹脂混入率(体積%)として算出して効果検証を行った。結果を再生率と共に表1に示す。 3900 L of the cation exchange resin and 1500 L of the anion exchange resin were placed in the cation exchange resin regeneration tower 10 in a mixed state. After that, the above steps (1) to (9) were carried out as follows. Then, the amount of the cation exchange resin mixed in the anion exchange resin separated and extracted from the cation exchange resin regeneration tower 10 was calculated as the cation exchange resin mixing ratio (% by volume) to verify the effect. The results are shown in Table 1 together with the regeneration rate.

逆洗水排出弁V6を開けて逆洗分離を行い、カチオン交換樹脂とアニオン交換樹脂を分離した後で、センサ17で樹脂分離境界面がアニオン交換樹脂排出口20下端から下方へ110mm位置になるようにV3で逆洗流量を調整した。逆洗を継続し、樹脂移送弁V7を開けてから逆洗水排出弁V6を閉じてアニオン交換樹脂移送を行った。移送中の樹脂を採取し、アニオン交換樹脂中に含まれるカチオン交換樹脂混入率を測定した。 After backwash separation is performed by opening the backwash water discharge valve V6 to separate the cation exchange resin and the anion exchange resin, the sensor 17 detects that the resin separation boundary surface is positioned 110 mm downward from the lower end of the anion exchange resin discharge port 20. The backwash flow rate was adjusted with V3 as follows. Backwashing was continued, and after opening the resin transfer valve V7, the backwash water discharge valve V6 was closed to transfer the anion exchange resin. The resin during transfer was sampled and the cation exchange resin mixing ratio contained in the anion exchange resin was measured.

次に、樹脂分離境界面の位置が樹脂排出口20下端から下方へ20mmになるように逆洗LVを調節して、樹脂分離境界面近傍の樹脂移送を行った。移送を20分間行った後、逆洗を止めてカチオン交換樹脂を沈降させた。 Next, the backwash LV was adjusted so that the position of the resin separation boundary surface was 20 mm downward from the lower end of the resin discharge port 20, and the resin was transferred in the vicinity of the resin separation boundary surface. After 20 minutes of transfer, the backwash was stopped and the cation exchange resin was allowed to settle.

次いで、薬注弁V1と排水弁V9を開けて、6%硫酸をSV3(1/Hr)で45分間通水した。次いで、V1を閉じて再生水弁V2を開けて再生水をSV3(1/Hr)で60分間通水した。再生水のSVを30(1/Hr)に上げて洗浄を行った。その後、塔内に空気を供給して樹脂を混合し、均一樹脂を採取しR-H比率から再生率を求めた。 Next, the chemical feed valve V1 and the drain valve V9 were opened to pass 6% sulfuric acid at SV3 (1/Hr) for 45 minutes. Next, V1 was closed, reclaimed water valve V2 was opened, and reclaimed water was passed at SV3 (1/Hr) for 60 minutes. Washing was performed by raising the SV of the reclaimed water to 30 (1/Hr). Thereafter, air was supplied into the tower to mix the resin, and the homogeneous resin was sampled and the regeneration rate was determined from the RH ratio.

[実施例2]
アニオン交換樹脂排出口付近の構成を図4の通りとしたこと以外は実施例1と同一の操作を行った。カチオン交換樹脂混入率及び再生率の測定結果を表1に示す。
[Example 2]
The same operation as in Example 1 was performed except that the configuration near the anion exchange resin outlet was changed as shown in FIG. Table 1 shows the measurement results of the cation exchange resin mixing rate and regeneration rate.

[比較例1]
図7の通り、図2において、管状排出口18をアニオン交換樹脂排出口20より200mm下位とした。また、管状排出口18より150mm下位に、放射状の管状薬注口(図4と同様形状)50を配置した。薬注用の配管36は、配管31ではなく、この管状薬注口50に連なる配管51に接続した。また、該配管51を、弁V10及び配管52を介して前記配管39に接続した。
[Comparative Example 1]
As shown in FIG. 7, the tubular outlet 18 is located 200 mm lower than the anion exchange resin outlet 20 in FIG. A radial tubular drug injection port (same shape as in FIG. 4) 50 was arranged 150 mm below the tubular discharge port 18 . The chemical injection pipe 36 was connected not to the pipe 31 but to the pipe 51 connected to the tubular medicine injection port 50 . Also, the pipe 51 was connected to the pipe 39 via the valve V10 and the pipe 52 .

実施例1と同様に、逆洗水排出弁V6を開けて逆洗分離を行い、カチオン交換樹脂とアニオン交換樹脂を分離した後で、センサ17で検知される樹脂分離境界面が樹脂排出口20下端から110mm下方になるようにV3によって逆洗流量を調整した。逆洗を継続し、樹脂移送弁V7を開けてから逆洗水排出弁V6を閉じてアニオン交換樹脂移送を行った。移送中の樹脂を採取し、アニオン交換樹脂中に含まれるカチオン交換樹脂混入率を測定した。次に、樹脂分離境界面の位置が樹脂排出口20下端から20mm下方になるように逆洗LVを調節して、樹脂分離境界面近傍の樹脂移送を行った。移送を20分間行った後、逆洗を止めてカチオン交換樹脂を沈降させた。 In the same manner as in Example 1, the backwash water discharge valve V6 is opened to perform backwash separation to separate the cation exchange resin and the anion exchange resin. The backwash flow rate was adjusted by V3 so as to be 110 mm below the lower end. Backwashing was continued, and after opening the resin transfer valve V7, the backwash water discharge valve V6 was closed to transfer the anion exchange resin. The resin during transfer was sampled and the cation exchange resin mixing ratio contained in the anion exchange resin was measured. Next, the backwash LV was adjusted so that the position of the resin separation boundary surface was 20 mm below the lower end of the resin discharge port 20, and the resin was transferred near the resin separation boundary surface. After 20 minutes of transfer, the backwash was stopped and the cation exchange resin was allowed to settle.

薬注弁V1と排水弁V9を開けて、6%硫酸をSV3(1/Hr)で45分間通水し、V1を閉じて再生水弁V10を開けて再生水をSV3(1/Hr)で60分間通水した。再生水のSVを30(1/Hr)に上げて洗浄を行った。その後、塔内に空気を供給して樹脂を混合し、均一樹脂を採取しR-H比率から再生率を求めた。 Open chemical injection valve V1 and drain valve V9, pass 6% sulfuric acid at SV3 (1/Hr) for 45 minutes, close V1, open reclaimed water valve V10, and reclaimed water at SV3 (1/Hr) for 60 minutes. water flowed. Washing was performed by raising the SV of the reclaimed water to 30 (1/Hr). Thereafter, air was supplied into the tower to mix the resin, and the homogeneous resin was sampled and the regeneration rate was determined from the RH ratio.

[比較例2]
比較例1において、アニオン交換樹脂排出口20を図3に示した放射状アニオン交換樹脂排出口40とした。その他は比較例1と同一の操作を行った。カチオン交換樹脂混入率及び再生率の測定結果を表1に示す。
[Comparative Example 2]
In Comparative Example 1, the anion exchange resin discharge port 20 was replaced with the radial anion exchange resin discharge port 40 shown in FIG. Otherwise, the same operation as in Comparative Example 1 was performed. Table 1 shows the measurement results of the cation exchange resin mixing rate and regeneration rate.

Figure 0007215094000001
Figure 0007215094000001

<結果と考察>
表1において、混入率の許容値0.02vol%以下の場合は○、超過した場合は×を表示してある。同様に、再生率の合格値80%以上の場合は○、未満の場合は×を表示してある。
<Results and discussion>
In Table 1, when the allowable value of the mixing rate is 0.02 vol% or less, ◯ is displayed, and when it exceeds the allowable value, x is displayed. Similarly, when the reproduction ratio is 80% or more, the value is indicated by ◯, and when the value is less than 80%, the value is indicated by ×.

実施例1、2では、樹脂混入率と再生率がともに満足のいく性能を有している。一方、比較例1、2は、再生率は満足のいく性能を示すが、樹脂混入率が許容値を超過した。この原因は、アニオン樹脂排出口の下方の内部構造の存在が逆洗水流の乱流原因となり、樹脂分離作用を阻害したためと考えられる。 In Examples 1 and 2, both resin mixing rate and regeneration rate are satisfactory. On the other hand, Comparative Examples 1 and 2 showed satisfactory performance in terms of regeneration rate, but the resin mixing rate exceeded the allowable value. The reason for this is thought to be that the presence of the internal structure below the anion resin discharge port causes turbulence in the backwash water flow, inhibiting the resin separation action.

1 復水脱塩塔
3,10 カチオン交換樹脂再生塔
4 アニオン交換樹脂移送配管
4a アニオン交換樹脂排出口
5 アニオン交換樹脂再生塔
8 樹脂貯槽
17 樹脂界面検知センサ
18 管状排水口
20,40 アニオン交換樹脂排水口
22 バッフル
50 薬注口
1 condensate demineralization tower 3, 10 cation exchange resin regeneration tower 4 anion exchange resin transfer pipe 4a anion exchange resin outlet 5 anion exchange resin regeneration tower 8 resin storage tank 17 resin interface detection sensor 18 tubular drainage port 20, 40 anion exchange resin Drain port 22 Baffle 50 Chemical injection port

Claims (3)

復水脱塩塔と、カチオン交換樹脂再生塔と、アニオン交換樹脂再生塔と、樹脂貯槽とが配管により樹脂移送可能に接続された復水脱塩用イオン交換樹脂再生装置において、
前記カチオン交換樹脂再生塔の上下方向途中に設けられたアニオン交換樹脂排出口と前記アニオン交換樹脂再生塔とを接続する樹脂移送配管に、再生剤供給用の薬注部が接続されていることを特徴とするイオン交換樹脂再生装置。
In an ion-exchange resin regeneration device for condensate demineralization, in which a condensate demineralization tower, a cation exchange resin regeneration tower, an anion exchange resin regeneration tower, and a resin storage tank are connected by piping so as to allow resin transfer,
A chemical injection unit for supplying a regenerant is connected to a resin transfer pipe connecting an anion exchange resin discharge port provided in the vertical direction of the cation exchange resin regeneration tower and the anion exchange resin regeneration tower. An ion exchange resin regeneration device characterized by:
前記薬注部は、上下方向に設けられ、前記再生剤が下方に向って流れる薬注配管と、該薬注配管に設けられた薬注弁とを有することを特徴とする請求項1に記載のイオン交換樹脂再生装置。 2. The chemical-feeding unit according to claim 1, wherein the chemical-feeding unit is provided vertically and has a chemical-feeding pipe through which the regenerant flows downward, and a chemical-feeding valve provided in the chemical-feeding pipe. ion exchange resin regenerator. 前記アニオン交換樹脂排出口よりも上方の位置に管状排水口が設けられていることを特徴とする請求項1又は2に記載のイオン交換樹脂再生装置。 3. An ion-exchange resin regeneration apparatus according to claim 1, wherein a tubular drainage port is provided at a position above said anion-exchange resin outlet.
JP2018211528A 2018-11-09 2018-11-09 Ion exchange resin regeneration device Active JP7215094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018211528A JP7215094B2 (en) 2018-11-09 2018-11-09 Ion exchange resin regeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211528A JP7215094B2 (en) 2018-11-09 2018-11-09 Ion exchange resin regeneration device

Publications (2)

Publication Number Publication Date
JP2020075226A JP2020075226A (en) 2020-05-21
JP7215094B2 true JP7215094B2 (en) 2023-01-31

Family

ID=70723170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211528A Active JP7215094B2 (en) 2018-11-09 2018-11-09 Ion exchange resin regeneration device

Country Status (1)

Country Link
JP (1) JP7215094B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479312B (en) * 2020-11-05 2022-12-20 西安热工研究院有限公司 Method for adjusting height and proportion of mixed fat layer in resin in-vitro regeneration separation tower
CN113070103A (en) * 2021-04-26 2021-07-06 上海邢东化工科技有限公司 Purification process and purification equipment of weak acid cation exchange resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361245A (en) 2001-06-08 2002-12-17 Japan Organo Co Ltd Method and device for regenerating ion exchange resin in condensate demineralizer
JP2018126687A (en) 2017-02-08 2018-08-16 栗田工業株式会社 Ion exchange resin regeneration apparatus and method
JP2019181363A (en) 2018-04-09 2019-10-24 栗田工業株式会社 Cation exchange resin regeneration tower

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635943B2 (en) * 1971-07-21 1981-08-20
FR2301302A1 (en) * 1975-02-20 1976-09-17 Traitement Eaux Cie Europ Separation of granular materials of different density - is for separate regeneration of cationic and anionic exchange resins
JPS58159889A (en) * 1982-03-16 1983-09-22 Ebara Corp Discharge for ion exchange resin
JP3147396B2 (en) * 1991-03-26 2001-03-19 日本原子力発電株式会社 Method for regenerating cation exchange resin in mixed bed type desalination equipment
JP3852487B2 (en) * 1995-09-21 2006-11-29 栗田工業株式会社 Regeneration method of ion exchange resin
JP3837762B2 (en) * 1995-10-04 2006-10-25 栗田工業株式会社 Ion exchange resin separation and regeneration method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361245A (en) 2001-06-08 2002-12-17 Japan Organo Co Ltd Method and device for regenerating ion exchange resin in condensate demineralizer
JP2018126687A (en) 2017-02-08 2018-08-16 栗田工業株式会社 Ion exchange resin regeneration apparatus and method
JP2019181363A (en) 2018-04-09 2019-10-24 栗田工業株式会社 Cation exchange resin regeneration tower

Also Published As

Publication number Publication date
JP2020075226A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US4298696A (en) Regeneration of ion exchange materials
JP7215094B2 (en) Ion exchange resin regeneration device
KR101918771B1 (en) Ion-exchange device
US4806236A (en) Apparatus for upflow ion exchange
JP7124397B2 (en) Cation exchange resin regeneration tower
JP6776926B2 (en) Ion exchange resin regeneration device and regeneration method
JP2012205993A (en) Ion exchange apparatus and column body thereof
JP4346088B2 (en) Ion-exchange resin drug regeneration method and apparatus
US4663051A (en) Regeneration of mixed bed demineralizers
JPH0478344B2 (en)
JP2002028501A (en) Ion exchange tower, ion exchange resin transferring vessel, transferring device of ion exchange resin and method for transferring ion exchange resin
EP0594334B1 (en) Method of regenerating resin beads for use in water purification
US5212205A (en) Regeneration of deep bed condensate polishers
JP2654053B2 (en) Condensate desalination equipment
JPH0511495B2 (en)
JP7184152B1 (en) Separation column for mixed ion exchange resin and method for separating mixed ion exchange resin using the same
SE445303B (en) SET AND APPARATUS FOR TREATING A MIXTURE OF USED ANCIENT RESINTS AND COTTON RESIN
JP2708201B2 (en) Adjustment method of resin separation interface for separation and regeneration tower
JP4147139B2 (en) Method and apparatus for regenerating pure water device
JPS6218271Y2 (en)
JP2023100390A (en) Separation column of mixed ion exchange resin, and separation method of mixed ion exchange resin using the same
GB2027610A (en) Regeneration of Ion Exchange Materials
JPS56141844A (en) Regeneration method for ion exchange resin of sugar solution desalting apparatus
CN203494228U (en) Oil-gas-water three-phase separating device
JPS60132653A (en) Method for transferring ion exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R150 Certificate of patent or registration of utility model

Ref document number: 7215094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150