JPH0443705B2 - - Google Patents
Info
- Publication number
- JPH0443705B2 JPH0443705B2 JP59114168A JP11416884A JPH0443705B2 JP H0443705 B2 JPH0443705 B2 JP H0443705B2 JP 59114168 A JP59114168 A JP 59114168A JP 11416884 A JP11416884 A JP 11416884A JP H0443705 B2 JPH0443705 B2 JP H0443705B2
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- resin
- water
- exchange resin
- hydrogen peroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 66
- 238000005342 ion exchange Methods 0.000 claims description 35
- 239000011347 resin Substances 0.000 claims description 23
- 229920005989 resin Polymers 0.000 claims description 23
- 239000003957 anion exchange resin Substances 0.000 claims description 21
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 19
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 18
- 239000003729 cation exchange resin Substances 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 238000005192 partition Methods 0.000 claims description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 58
- 239000007788 liquid Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 15
- 239000003456 ion exchange resin Substances 0.000 description 13
- 229920003303 ion-exchange polymer Polymers 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000012528 membrane Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000002351 wastewater Substances 0.000 description 7
- 238000011084 recovery Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000001223 reverse osmosis Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はイオン交換装置に係り、特に液中の過
酸化水素を効率良く除去することができるイオン
交換装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion exchange device, and particularly to an ion exchange device that can efficiently remove hydrogen peroxide from a liquid.
[発明の背景と従来の技術]
イ 発明の背景
近年、LSIや超LSIの開発・量産が盛んに実施
されている。このLSIや超LSIの製造においては、
多くの洗浄工程で純水が用いられていることか
ら、純水の製造技術についても種々研究がなされ
ており、半導体製造のために超純水(理論純水に
極めて近い純水)の製造技術が開発されている。[Background of the Invention and Prior Art] A. Background of the Invention In recent years, the development and mass production of LSIs and super LSIs have been actively carried out. In manufacturing this LSI and super LSI,
Since pure water is used in many cleaning processes, various studies have been conducted on pure water production technology, and technology for producing ultrapure water (pure water that is extremely close to theoretically pure water) is being developed for semiconductor manufacturing. is being developed.
この超純水を用いて例えば半導体ウエーハを洗
浄するシステムにおいては、洗浄廃液を回収して
循環使用する。これは、主に、
水資源の節約、
洗浄廃水とはいえ、一般の超純水製造システ
ムの原水よりも清澄である、
洗浄廃水中には微量とはいえ種々の不純物を
含有し、そのまま放流廃棄できない、
等の理由に基くものである。 In a system that uses this ultrapure water to clean, for example, semiconductor wafers, cleaning waste liquid is collected and recycled for use. This is mainly to conserve water resources, and although it is cleaning wastewater, it is clearer than the raw water of general ultrapure water production systems.Washing wastewater contains various impurities, albeit in small amounts, and can be discharged as is. This is based on reasons such as that it cannot be disposed of.
従来、この廃水の回収は第2図に示す如きシス
テムによる。 Conventionally, this waste water collection has been performed using a system as shown in FIG.
即ち、半導体洗浄工程1からの廃水を、まず回
収システムAの活性炭吸着塔2において活性炭吸
着処理し、イオン交換塔3で処理して脱塩した
後、さらに必要なときは逆浸透膜装置(図示せ
ず)を介して紫外線酸化装置4で処理する。紫外
線酸化装置4においては、有機物を完全に酸化分
解させるために、一般に、酸化剤として過酸化水
素を添加し、過酸化水素存在下で紫外線を照射し
て処理が行なわれる。 That is, the wastewater from the semiconductor cleaning process 1 is first subjected to activated carbon adsorption treatment in the activated carbon adsorption tower 2 of the recovery system A, then treated and desalted in the ion exchange tower 3, and then further processed by the reverse osmosis membrane device (Fig. (not shown) in an ultraviolet oxidation device 4. In the ultraviolet oxidation device 4, in order to completely oxidize and decompose organic substances, hydrogen peroxide is generally added as an oxidizing agent, and the treatment is performed by irradiating ultraviolet rays in the presence of hydrogen peroxide.
このような活性炭吸着塔2、イオン交換塔3及
び紫外線酸化装置4からなる回収システムAから
の処理水は、純水製造システムBに戻される。こ
の純水製造システムBは、前処理システムC(凝
集槽5及び二層瀘過器6からなる。)、1次純水シ
ステムD(逆浸透膜装置7、脱気塔8及びイオン
交換装置9からなる。)及びサブシステムE(紫外
線殺菌装置10、混床式イオン交換装置11及び
限外瀘過膜装置12からなる。)から構成されて
いるが、回収システムAからの処理水中には紫外
線酸化装置4で添加された過酸化水素が残留して
いるため、この処理水を純水製造システムBにそ
のまま循環するとイオン交換装置のイオン交換樹
脂が酸化して劣化したり、限外瀘過膜(UF)又
は逆浸透膜(RO)が劣化したりする。イオン交
換樹脂のうち、カチオン交換樹脂は過酸化水素に
より酸化されて樹脂の主鎖が切れ樹脂が劣化する
のみであるが、アニオン交換樹脂は酸化されて劣
化する際にイオン交換基のアミンが切れて処理水
系に溶出し、処理水水質を悪化させるという問題
を引き起こす。 The treated water from the recovery system A, which includes the activated carbon adsorption tower 2, the ion exchange tower 3, and the ultraviolet oxidation device 4, is returned to the pure water production system B. This pure water production system B includes a pretreatment system C (consisting of a coagulation tank 5 and a double-layer filter 6), a primary pure water system D (a reverse osmosis membrane device 7, a degassing tower 8, and an ion exchange device 9). ) and subsystem E (consisting of an ultraviolet sterilizer 10, a mixed bed ion exchange device 11, and an ultrafiltration membrane device 12). Since the hydrogen peroxide added in the oxidizer 4 remains, if this treated water is circulated directly to the pure water production system B, the ion exchange resin in the ion exchange device will oxidize and deteriorate, or the ultrafiltration membrane will be damaged. (UF) or reverse osmosis membrane (RO) may deteriorate. Among ion exchange resins, cation exchange resins are oxidized by hydrogen peroxide, which breaks the main chain of the resin and causes the resin to deteriorate; however, when anion exchange resins are oxidized and deteriorate, the amine of the ion exchange group is cut off. This causes problems such as leaching into the treated water system and deteriorating the quality of the treated water.
そこで、このような水系から過酸化水素を効率
良く除去する方法を開発することが要望されてい
た。 Therefore, it has been desired to develop a method for efficiently removing hydrogen peroxide from such aqueous systems.
ロ 従来の技術及び発明が解決しようとする問題
点
従来、液中の過酸化水素を除去する方法には、
還元剤を添加する方法と、活性炭と接触させる方
法が提案されている。還元剤としては、亜硫酸ナ
トリウム、亜硫酸水素ナトリウム、チオ硫酸ナト
リウム等が用いられ、これらは過酸化水素と速い
反応速度で反応して確実に過酸化水素を除去する
ことができる半面、還元剤の添加量のコントロー
ルが難しく、過酸化水素を確実に除去するために
は、過剰量を添加する必要があり、還元剤が液中
に残留するという欠点を有する。同時に液中のイ
オン量が増加するため、後段のイオン交換装置へ
の負荷を増大させるという欠点も有する。B. Problems to be solved by conventional techniques and inventions Conventionally, methods for removing hydrogen peroxide from liquids include:
A method of adding a reducing agent and a method of contacting with activated carbon have been proposed. As reducing agents, sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, etc. are used, and while these react with hydrogen peroxide at a fast reaction rate and can reliably remove hydrogen peroxide, it is difficult to add a reducing agent. It is difficult to control the amount, and in order to reliably remove hydrogen peroxide, it is necessary to add an excessive amount, which has the disadvantage that the reducing agent remains in the liquid. At the same time, since the amount of ions in the liquid increases, it also has the disadvantage of increasing the load on the subsequent ion exchange device.
一方、活性炭と接触させる方法は、通常、充填
層を形成してこれに通液するが、空間速度(SV)
が最大でも20(1/hr)程度しかとれず、装置が
大型化する欠点がある。また、長い間使用する
と、活性炭が崩壊して処理液中に流出したり、充
填層に細菌等の微生物が繁殖し、処理液中に流出
する等の欠点がある。 On the other hand, in the method of contacting activated carbon, a packed bed is usually formed and the liquid is passed through it, but the space velocity (SV)
can only be obtained at a maximum of about 20 (1/hr), which has the disadvantage of increasing the size of the equipment. In addition, when used for a long time, activated carbon may disintegrate and flow out into the processing solution, or microorganisms such as bacteria may grow in the packed bed and flow out into the processing solution.
本発明の目的とするところは、過酸化水素を含
有する液から極めて効率良く過酸化水素を除去す
ることができ、優れた水質の純水を得ることがで
きるイオン交換装置を提供することにある。 An object of the present invention is to provide an ion exchange device that can remove hydrogen peroxide extremely efficiently from a solution containing hydrogen peroxide and can obtain pure water of excellent quality. .
[問題点を解決するための手段及び作用]
本出願人は、上記従来技術の問題点を解消し、
処理液中のイオン量を増加させることなく、また
微生物を繁殖させることなく、簡単な操作で迅速
かつ確実に過酸化水素を除去する方法として、過
酸化水素を含有する液をパラジウム触媒と接触さ
せることを特徴とする過酸化水素の除去方法を提
案し、先に特許出願した。(特願昭58−179917号、
以下「先願」という。)この先願の方法によれば、
過酸化水素を含有する液から極めて効率良く過酸
化水素を除去することができる。[Means and effects for solving the problems] The applicant has solved the problems of the above-mentioned prior art,
A solution containing hydrogen peroxide is brought into contact with a palladium catalyst as a method to quickly and reliably remove hydrogen peroxide with a simple operation without increasing the amount of ions in the treated solution or propagating microorganisms. We have proposed a method for removing hydrogen peroxide with the following characteristics, and have previously applied for a patent. (Special Application No. 179917, 1983,
Hereinafter referred to as "prior application". ) According to the method of this earlier application,
Hydrogen peroxide can be removed extremely efficiently from a liquid containing hydrogen peroxide.
本発明のイオン交換装置はこの先願の方法に基
きなされたものであつて、パラジウムなどの触媒
をイオン交換樹脂に担持させた触媒樹脂の床と混
床式イオン交換樹脂の床とを1塔内に有する2床
1塔型としたものであり、
イオン交換塔内をストレーナ付画壁で2室に区
画し、一方の室に原水供給口を、そして他方の室
に処理水排水口を設け、該一方の室にアニオン交
換樹脂にパラジウム触媒を担持させた触媒樹脂を
充填し、該他方の室に陽イオン交換樹脂と陰イオ
ン交換樹脂を充填して該他方の室を混床式とした
ことを特徴とするイオン交換装置、
を要旨とするものである。 The ion exchange apparatus of the present invention is based on the method of this prior application, and includes a catalyst resin bed in which a catalyst such as palladium is supported on an ion exchange resin and a mixed bed type ion exchange resin bed in one column. The inside of the ion exchange tower is divided into two chambers by a wall with a strainer, one chamber has a raw water supply inlet, and the other chamber has a treated water outlet. One chamber is filled with a catalyst resin in which an anion exchange resin supports a palladium catalyst, and the other chamber is filled with a cation exchange resin and an anion exchange resin to form a mixed bed type. An ion exchange device characterized by the following.
即ち本発明によれば、原水はまず触媒樹脂床に
導入され、含有する過酸化水素が分解された後、
混床式のイオン交換樹脂床に導入されて処理され
るのである。 That is, according to the present invention, raw water is first introduced into a catalytic resin bed, and after the hydrogen peroxide it contains is decomposed,
It is introduced into a mixed bed type ion exchange resin bed for treatment.
[発明の実施例]
以下に本発明の実施例を図面を参照して詳細に
説明する。[Embodiments of the Invention] Examples of the present invention will be described in detail below with reference to the drawings.
第1図a及びbは本発明の実施例に係るイオン
交換装置を示す断面の概略図であり、aは採水
時、bは再生時(薬注工程)を示す図である。 FIGS. 1a and 1b are schematic cross-sectional views showing an ion exchange device according to an embodiment of the present invention, where a shows a state during water sampling and FIG. 1b shows a state during regeneration (chemical injection process).
第1図に示す本発明のイオン交換装置は、イオ
ン交換塔20の上部に原水供給口21を有し、下
部に処理水排水口22を有する。塔20の内部に
は、両面にストレーナ31を設けた多孔板からな
る画壁23が設けられ、塔20内が上下2室に区
画されている。そして供給口21、排出口22に
はそれぞれ弁35,36を有する配管41,42
が接続されている。 The ion exchange apparatus of the present invention shown in FIG. 1 has a raw water supply port 21 at the top of an ion exchange tower 20, and a treated water drain port 22 at the bottom. A partition wall 23 made of a perforated plate with strainers 31 provided on both sides is provided inside the tower 20, and the inside of the tower 20 is divided into two upper and lower chambers. The supply port 21 and the discharge port 22 are provided with pipes 41 and 42 having valves 35 and 36, respectively.
is connected.
しかして上室24には触媒樹脂Sが充填され、
下室25には混床式イオン交換可能にイオン交換
樹脂Rが充填されている。下室25の下部には、
イオン交換樹脂の流出を防ぎまた処理水等の流出
水あるいは再生液等の流入水の通液を円滑にする
ために、上面にストレーナ32を設けた多孔板2
6が設けられている。27は上室24内の樹脂S
層よりも上方に設けられた散液管であり、弁37
を有する配管43が接続されている。また28は
逆洗時にアニオン交換樹脂とカチオン交換樹脂と
が分離した際、両樹脂の境界に位置するように設
けられた、再生廃液取出管であつて、弁39を有
する配管45が接続されている。この再生廃液取
出管28は多孔管にサランネツト(サランは登録
商標)等を巻き付けて樹脂が流出しないように構
成されている。なお排出用配管42の弁36と排
出口22との間の部分には、弁38を有する配管
44が接続されている。 Thus, the upper chamber 24 is filled with catalyst resin S,
The lower chamber 25 is filled with ion exchange resin R to enable mixed bed ion exchange. At the bottom of the lower chamber 25,
A perforated plate 2 is provided with a strainer 32 on its upper surface in order to prevent the ion exchange resin from flowing out and to facilitate the passage of outflow water such as treated water or inflow water such as regeneration liquid.
6 is provided. 27 is the resin S in the upper chamber 24
It is a liquid dispersion pipe provided above the layer, and the valve 37
A pipe 43 having a diameter is connected to the pipe 43. Reference numeral 28 denotes a regenerated waste liquid extraction pipe which is installed at the boundary between the anion exchange resin and cation exchange resin when they are separated during backwashing, and is connected to a pipe 45 having a valve 39. There is. This recycled waste liquid extraction pipe 28 is constructed by wrapping a Saran net (Saran is a registered trademark) or the like around a porous pipe to prevent resin from flowing out. Note that a pipe 44 having a valve 38 is connected to a portion of the discharge pipe 42 between the valve 36 and the discharge port 22.
本発明において、触媒樹脂はイオン交換樹脂に
パラジウムを担持させたものであるが、その担持
量はイオン交換樹脂に対し0.1〜10%程度とする
のが好ましい。 In the present invention, the catalyst resin is an ion exchange resin supported with palladium, and the amount supported is preferably about 0.1 to 10% relative to the ion exchange resin.
この触媒樹脂に用いるアニオン交換樹脂は、少
ないパラジウム担持量で優れた効果を発揮する。
アニオン交換樹脂としては、スチレン−ジビニル
ベンゼン共重合体を母体とした強塩基性アニオン
交換樹脂が好適である。アニオン交換樹脂のイオ
ン形は、Cl形でもOH形でも良いが、OH形の方
が処理能力が大きくより好ましい。Cl形のアニオ
ン交換樹脂をOH形とするには、これに水酸化ナ
トリウム等のアルカリを通液するのが良い。 The anion exchange resin used for this catalyst resin exhibits excellent effects with a small amount of palladium supported.
As the anion exchange resin, a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer is suitable. The ionic form of the anion exchange resin may be either the Cl type or the OH type, but the OH type is more preferable due to its larger processing capacity. To convert a Cl type anion exchange resin into an OH type, it is best to pass an alkali such as sodium hydroxide through it.
アニオン交換樹脂にパラジウムを担持させるに
は、アニオン交換樹脂をカラムに充填し、次いで
塩化パラジウムの酸性溶液を通水するのが良い。
その際、パラジウム担持量は0.2〜10g−Pd/
−樹脂である。 In order to support palladium on an anion exchange resin, it is preferable to fill a column with the anion exchange resin and then pass water through an acidic solution of palladium chloride.
At that time, the amount of palladium supported is 0.2 to 10g-Pd/
- It is a resin.
触媒樹脂としては具体的にはLewait
OC−
1045(パラジウムを担持したCl形強塩基性アニオ
ン交換樹脂)(バイエル社製)あるいはこれを
OH形としたものが挙げられる。 Specifically, the catalyst resin is Lewait OC−
1045 (Cl type strongly basic anion exchange resin supporting palladium) (manufactured by Bayer) or this
One example is the OH type.
混床式のイオン交換のための樹脂は、強酸性カ
チオン交換樹脂のH形と強塩基性アニオン交換樹
脂のOH形とを混合して用いる。具体的にはダイ
ヤイオン
PA312(三菱化成工業(株)社製)とダイ
ヤイオン
PK228(同社製)とを混合したものが
好適である。 The resin for mixed bed ion exchange is a mixture of a strongly acidic cation exchange resin in the H form and a strongly basic anion exchange resin in the OH form. Specifically, a mixture of Diaion PA312 (manufactured by Mitsubishi Chemical Industries, Ltd.) and Diaion PK228 (manufactured by the same company) is suitable.
以下に本発明のイオン交換装置の採水及び再生
の手順について説明する。 Below, the procedure for water sampling and regeneration of the ion exchange device of the present invention will be explained.
イ 採水(第1図a参照)
弁35,36を開、弁37,38,39を閉
として、原水を配管41、原水供給口21より
塔20に導入し、まず上室24の触媒樹脂と接
触させ、原水中に含有される過酸化水素を除去
する。過酸化水素は触媒樹脂と接触して水と酸
素に分解される。B. Water sampling (see Figure 1a) Open the valves 35 and 36 and close the valves 37, 38, and 39, and introduce raw water into the tower 20 through the pipe 41 and the raw water supply port 21. First, the catalyst resin in the upper chamber 24 to remove hydrogen peroxide contained in the raw water. Hydrogen peroxide comes into contact with the catalyst resin and is decomposed into water and oxygen.
上室24で過酸化水素を除去された原水は、
多孔板23に設けられたストレーナ31のスリ
ツトを通過して下室25に入り、イオン交換処
理され、処理水は多孔板26のストレーナ32
のスリツトを通過して塔20下部の処理水排出
口22より排出され、配管42により次工程へ
送給される。 The raw water from which hydrogen peroxide has been removed in the upper chamber 24 is
The water passes through the slit of the strainer 31 provided on the perforated plate 23 and enters the lower chamber 25, where it is subjected to ion exchange treatment.
The treated water passes through the slit, is discharged from the treated water outlet 22 at the bottom of the tower 20, and is sent to the next process via the pipe 42.
ロ 再生(第1図b参照)
処理水水質が低下して、イオン交換能が低下
したとみられる時、あるいは所定量の採水を行
なつた後、弁35及び36を閉とし、原水の供
給を停止する。次いで弁38を開とし逆洗水を
配管44から塔20下部へ導入すると共に、弁
35と原水供給口21との間の原水配管41か
ら分岐させた排水管(図示せず)から排出させ
る。逆洗後所定時間塔内を静置しておくと、下
室25内においては第1図bの如く比重の重い
カチオン交換樹脂52は下に、軽いアニオン交
換樹脂51は上になる。カチオン交換樹脂52
とアニオン交換樹脂51が分離した後、弁3
7,38,39を開とし、配管43から
NaOH溶液を、配管44からHCl溶液を各々塔
20に通液し、再生廃液を取出管28及び配管
45により排出する。NaOH溶液を塔上部か
ら供給することにより、アニオン交換樹脂51
の再生が行なわれると共に触媒樹脂SもOH形
とされ、同時に再生される。またこのように触
媒樹脂SにNaOH溶液を通液することにより
生菌の繁殖を防止することができる。カチオン
交換樹脂は塔下部からのHCl溶液により再生さ
れる。(b) Regeneration (see Figure 1b) When the quality of the treated water has deteriorated and the ion exchange capacity has decreased, or after a predetermined amount of water has been sampled, valves 35 and 36 are closed and the raw water is supplied. stop. Next, the valve 38 is opened, and the backwash water is introduced from the pipe 44 to the lower part of the tower 20, and is discharged from a drain pipe (not shown) branched from the raw water pipe 41 between the valve 35 and the raw water supply port 21. When the inside of the column is left standing for a predetermined period of time after backwashing, in the lower chamber 25, as shown in FIG. 1b, the cation exchange resin 52 with a heavy specific gravity is on the bottom, and the anion exchange resin 51 with a light specific gravity is on the top. Cation exchange resin 52
After separation of the anion exchange resin 51 and the anion exchange resin 51, the valve 3
7, 38, 39 are opened, and from piping 43
The NaOH solution and the HCl solution are passed through the column 20 through the pipe 44, and the regenerated waste liquid is discharged through the take-out pipe 28 and the pipe 45. By supplying NaOH solution from the top of the column, anion exchange resin 51
At the same time, the catalyst resin S is also converted into OH type and regenerated at the same time. Furthermore, by passing the NaOH solution through the catalyst resin S in this manner, the proliferation of viable bacteria can be prevented. The cation exchange resin is regenerated by HCl solution from the bottom of the column.
上記の如き薬注を行なつた後、通常の方法で押
出(薬品を無駄なく使用するために樹脂層中に存
在する再生液を同様の流速で押出す。)、洗浄(薬
品を洗い流す。)、水抜き(樹脂の表面近くまで水
を抜く。)、混合(下部から空気を吹き込みカチオ
ン交換樹脂とアニオン交換樹脂とを混合し混床す
る。)、原水供給開始、捨て水(処理水の水質が上
がるまで採水しないで捨てる。)を行なつた後、
採水を再開する。 After dosing the chemicals as described above, extrude using the usual method (extrude the regenerating liquid present in the resin layer at the same flow rate in order to use the chemicals without wasting them), and wash (wash away the chemicals). , water removal (draining water to near the surface of the resin), mixing (blow air from below to mix cation exchange resin and anion exchange resin to create a mixed bed), start supplying raw water, discard water (water quality of treated water) Do not collect water until the temperature rises and discard it.) After doing this,
Resume water sampling.
なお本発明のイオン交換装置は、種々の液の純
水化に適用可能である。例えば用廃水系に過酸化
水素を添加し、酸化、還元、殺菌、洗浄を行なつ
た処理液又は廃液(例えば、過酸化水素の存在下
に紫外線を照射し有機物を酸化分解した処理水)、
フエントン試薬を用いて廃水処理を行なつた処理
水、6価クロムを含有する廃水を過酸化水素で還
元処理した処理水、逆浸透膜、限外瀘過膜、イオ
ン交換膜、透析膜等を過酸化水素で殺菌又は洗浄
した廃液等の処理にも好適である。 Note that the ion exchange device of the present invention is applicable to purifying various liquids. For example, treated liquid or waste liquid obtained by adding hydrogen peroxide to the industrial wastewater system and performing oxidation, reduction, sterilization, and cleaning (for example, treated water obtained by irradiating ultraviolet rays in the presence of hydrogen peroxide to oxidize and decompose organic substances),
Treated water treated with wastewater using Fuenton's reagent, treated water treated by reducing hexavalent chromium-containing wastewater with hydrogen peroxide, reverse osmosis membranes, ultrafiltration membranes, ion exchange membranes, dialysis membranes, etc. It is also suitable for treating waste liquids etc. that have been sterilized or washed with hydrogen peroxide.
とりわけ本発明装置は、半導体製造工程から排
出される洗浄廃水を超純水として回収再利用する
ために過酸化水素の存在下に紫外線を照射し有機
物を酸化分解した処理水の処理に好適である。こ
の場合には、第3図に示す如く、本発明のイオン
交換装置19を従来のイオン交換装置(第2図の
9)に置き換え、紫外線酸化装置4の処理水を直
接に本発明のイオン交換装置19に導入する。こ
のようにすることにより、紫外線酸化装置4から
の処理水はイオン交換樹脂に接触する前に触媒樹
脂と接触し、含有される過酸化水素が分解される
ため、イオン交換樹脂の劣化を防止し高純度の純
水を得ることができる。 In particular, the device of the present invention is suitable for treating treated water that has been irradiated with ultraviolet rays in the presence of hydrogen peroxide to oxidize and decompose organic matter in order to collect and reuse cleaning wastewater discharged from semiconductor manufacturing processes as ultrapure water. . In this case, as shown in FIG. 3, the ion exchange device 19 of the present invention is replaced with a conventional ion exchange device (9 in FIG. 2), and the treated water of the ultraviolet oxidation device 4 is directly exchanged with the ion exchange device of the present invention. It is introduced into the device 19. By doing this, the treated water from the ultraviolet oxidation device 4 comes into contact with the catalyst resin before coming into contact with the ion exchange resin, and the hydrogen peroxide contained therein is decomposed, thereby preventing deterioration of the ion exchange resin. High purity pure water can be obtained.
[発明の効果]
以上詳述した通り、本発明のイオン交換装置
は、触媒樹脂と混床式イオン交換樹脂との2床1
塔型のイオン交換装置であり、過酸化水素を含有
する液、例えば過酸化水素を含有する紫外線酸化
処理水をイオン負荷を増大させることなく、迅速
かつ確実に処理することができる。従つて処理液
の下流側に悪影響を与えることがなく、後続のイ
オン交換樹脂、限外瀘過膜、逆浸透膜等の劣化を
防止することができる。また塔内を2区画に分画
したため、装置の小型化が図れ、設置スペースが
少なくて足りる。しかも、混床中のアニオン交換
樹脂の再生時に同時に触媒樹脂をOH形にするこ
とも可能であり、再生操作も容易である。[Effects of the Invention] As detailed above, the ion exchange apparatus of the present invention has two beds of catalyst resin and mixed bed type ion exchange resin.
It is a tower-type ion exchange device, and can quickly and reliably treat a liquid containing hydrogen peroxide, such as ultraviolet oxidation treated water containing hydrogen peroxide, without increasing the ion load. Therefore, there is no adverse effect on the downstream side of the treatment liquid, and deterioration of subsequent ion exchange resins, ultrafiltration membranes, reverse osmosis membranes, etc. can be prevented. Furthermore, since the inside of the tower is divided into two sections, the device can be made smaller and requires less installation space. Moreover, it is possible to simultaneously convert the catalyst resin into the OH form when regenerating the anion exchange resin in the mixed bed, and the regeneration operation is easy.
本発明のイオン交換装置は特にIC、LSI等の半
導体製造工場で用いる洗浄配水の回収再利用工程
に用いるに好適である。 The ion exchange device of the present invention is particularly suitable for use in the recovery and reuse process of cleaning water used in semiconductor manufacturing factories such as IC and LSI.
本発明のイオン交換装置によれば極めて純度の
高い純水を容易に製造することができ、従つて、
本発明の工業的有用生は極めて高い。 According to the ion exchange device of the present invention, extremely high purity water can be easily produced, and therefore,
The industrial usefulness of the present invention is extremely high.
第1図a及びbは本発明のイオン交換装置の実
施例を示す概略断面図、第2図は従来の一般的な
純水製造・回収システムを示す系統図、第3図は
本発明のイオン交換装置を組み込んだ場合の純水
製造・回収システムを示す系統図である。
A……回収工程、B……純水製造工程、C……
前処理工程、D……1次純水工程、E……サブ工
程、4……紫外線酸化装置、9……従来のイオン
交換装置、19……本発明のイオン交換装置、2
0……塔、21……原水供給口、22……処理水
排出口、23……多孔板、24……上室、25…
…下室、31,32……ストレーナ。
Figures 1a and b are schematic sectional views showing an embodiment of the ion exchange device of the present invention, Figure 2 is a system diagram showing a conventional general pure water production/recovery system, and Figure 3 is a schematic cross-sectional view showing an embodiment of the ion exchange device of the present invention. FIG. 2 is a system diagram showing a pure water production/recovery system in which an exchange device is incorporated. A...Recovery process, B...Pure water production process, C...
Pretreatment step, D... Primary pure water step, E... Sub-step, 4... Ultraviolet oxidation device, 9... Conventional ion exchange device, 19... Ion exchange device of the present invention, 2
0... Tower, 21... Raw water supply port, 22... Treated water outlet, 23... Perforated plate, 24... Upper chamber, 25...
...Lower chamber, 31, 32...Strainer.
Claims (1)
区画し、一方の室に原水供給口を、そして他方の
室に処理水排水口を設け、該一方の室にアニオン
交換樹脂にパラジウム触媒を担持させた触媒樹脂
を充填し、該他方の室に陽イオン交換樹脂と陰イ
オン交換樹脂を充填して該他方の室を混床式とし
たことを特徴とするイオン交換装置。1 The interior of the ion exchange tower is divided into two chambers by a partition with a strainer, one chamber is provided with a raw water supply port, the other chamber is provided with a treated water drain port, and the palladium catalyst is added to the anion exchange resin in one chamber. An ion exchange device characterized in that the other chamber is filled with a supported catalyst resin and the other chamber is filled with a cation exchange resin and an anion exchange resin to form a mixed bed type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11416884A JPS60257840A (en) | 1984-06-04 | 1984-06-04 | Ion exchange apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11416884A JPS60257840A (en) | 1984-06-04 | 1984-06-04 | Ion exchange apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60257840A JPS60257840A (en) | 1985-12-19 |
JPH0443705B2 true JPH0443705B2 (en) | 1992-07-17 |
Family
ID=14630871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11416884A Granted JPS60257840A (en) | 1984-06-04 | 1984-06-04 | Ion exchange apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60257840A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62210095A (en) * | 1986-03-11 | 1987-09-16 | Kurita Water Ind Ltd | Ion exchange device |
JPS6362592A (en) * | 1986-09-03 | 1988-03-18 | Sony Corp | Treatment of waste water in cleaning of semiconductor |
JPH02265604A (en) * | 1989-04-06 | 1990-10-30 | Kurita Water Ind Ltd | Removing equipment for dissolved oxygen in water |
DE19626697A1 (en) * | 1996-07-03 | 1998-01-08 | Bayer Ag | Process for the destruction of oxidizing substances in aqueous liquids |
US20070221581A1 (en) * | 2004-03-31 | 2007-09-27 | Kurita Water Industries Ltd. | Ultrapure Water Production Plant |
JP2006192354A (en) * | 2005-01-12 | 2006-07-27 | Kurita Water Ind Ltd | Non-regenerative type ion exchange vessel and ultrapure water production apparatus |
CN105439244A (en) * | 2016-01-06 | 2016-03-30 | 上海振世能源科技有限公司 | Ion exchange resin desalting device |
KR102489442B1 (en) * | 2018-03-27 | 2023-01-17 | 노무라마이크로사이엔스가부시키가이샤 | Anion exchange resin and water treatment method using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549625A (en) * | 1978-08-21 | 1980-04-10 | Gen Electric | Microwave oven structure |
-
1984
- 1984-06-04 JP JP11416884A patent/JPS60257840A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549625A (en) * | 1978-08-21 | 1980-04-10 | Gen Electric | Microwave oven structure |
Also Published As
Publication number | Publication date |
---|---|
JPS60257840A (en) | 1985-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0433893B1 (en) | Process and system for purifying pure water or ultrapure water | |
CN101374769B (en) | Method and apparatus for removing hydrogen peroxide | |
JP3180348B2 (en) | Pure water production method | |
JPH0790219B2 (en) | Pure water production apparatus and production method | |
TW201016617A (en) | Process and equipment for the treatment of water containing organic matter | |
JPH1043759A (en) | Purifying method of waste water and its device | |
JP5441714B2 (en) | Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus | |
JPH11114596A (en) | Production of ultrapure water and ultrapure water producing device | |
JPH0443705B2 (en) | ||
JP2006192354A (en) | Non-regenerative type ion exchange vessel and ultrapure water production apparatus | |
KR101928203B1 (en) | Exchange period elongation apparatus of ro membrane | |
JP3968678B2 (en) | Method for treating tetraalkylammonium ion-containing liquid | |
JP4649808B2 (en) | New plant equipment and pipe cleaning method | |
JPS6235838B2 (en) | ||
JP2950621B2 (en) | Ultrapure water production method | |
JP3095600B2 (en) | Removal method of hydrogen peroxide by granular activated carbon packed tower | |
JPH10202296A (en) | Ultrapure water producer | |
JP2000301005A (en) | Method for reutilizing effluent in regeneration of ion exchange resin | |
JP2742975B2 (en) | Regeneration method of ion exchange device | |
JP2891790B2 (en) | Regeneration method of anion exchange resin | |
JP2002336887A (en) | Extrapure water making device and extrapure water making method | |
JP3992996B2 (en) | Wastewater treatment method and apparatus | |
JPS6287299A (en) | Apparatus for producing ultrapure water | |
JP3951456B2 (en) | Pure water production equipment | |
RU2808013C1 (en) | Method for purifying groundwater from radon, alpha activity, iron, manganese, hardness salts and carbon dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |