JP2002336887A - Extrapure water making device and extrapure water making method - Google Patents

Extrapure water making device and extrapure water making method

Info

Publication number
JP2002336887A
JP2002336887A JP2001141892A JP2001141892A JP2002336887A JP 2002336887 A JP2002336887 A JP 2002336887A JP 2001141892 A JP2001141892 A JP 2001141892A JP 2001141892 A JP2001141892 A JP 2001141892A JP 2002336887 A JP2002336887 A JP 2002336887A
Authority
JP
Japan
Prior art keywords
water
activated carbon
carbon tower
biological activated
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001141892A
Other languages
Japanese (ja)
Other versions
JP5061410B2 (en
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001141892A priority Critical patent/JP5061410B2/en
Publication of JP2002336887A publication Critical patent/JP2002336887A/en
Application granted granted Critical
Publication of JP5061410B2 publication Critical patent/JP5061410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the extrapure water having extremely low TOC concentration and high purity by efficiently removing organic substances, especially low- molecular organic components, in raw water. SOLUTION: In the extrapure water making device having the primary pure water system 2 and a subsystem 3 for treating the treated water of the primary pure water system 2, the organic substance in the raw water is biologically decomposed by passing the raw water through a biological active carbon tower in the presence of a limited amount of an antimicrobial agent at the primary pure water system 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超純水製造装置及び
超純水製造方法に係り、特に、有機物(TOC)濃度が
きわめて低い超純水を製造することができる超純水製造
装置及び超純水製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrapure water production apparatus and an ultrapure water production method, and more particularly to an ultrapure water production apparatus and an ultrapure water production apparatus capable of producing ultrapure water having an extremely low organic matter (TOC) concentration. It relates to a method for producing pure water.

【0002】[0002]

【従来の技術】従来、半導体洗浄用水として用いられて
いる超純水は、図2に示すように前処理システム1、一
次純水系システム2、サブシステム3から構成される超
純水製造装置で原水(工業用水、市水、井水等)を処理
することにより製造される。図2において各システムの
役割は次の通りである。
2. Description of the Related Art Conventionally, ultrapure water used as semiconductor cleaning water is an ultrapure water producing apparatus comprising a pretreatment system 1, a primary pure water system 2, and a subsystem 3, as shown in FIG. It is manufactured by treating raw water (industrial water, city water, well water, etc.). In FIG. 2, the role of each system is as follows.

【0003】凝集、加圧浮上(沈殿)、濾過(膜濾過)
装置などよりなる前処理システム1では、原水中の懸濁
物質やコロイド物質の除去を行う。また、この過程では
高分子系有機物、疎水性有機物などの除去も可能であ
る。
Coagulation, pressure flotation (sedimentation), filtration (membrane filtration)
In the pretreatment system 1 including devices and the like, suspended substances and colloid substances in raw water are removed. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.

【0004】逆浸透膜分離装置、脱気装置及びイオン交
換装置(混床式又は4床5塔式など)を備える一次純水
系システム2では、原水中のイオンや有機成分の除去を
行う。なお、逆浸透膜分離装置では、塩類を除去すると
共に、イオン性、コロイド性のTOCを除去する。イオ
ン交換装置では、塩類を除去すると共にイオン交換樹脂
によって吸着又はイオン交換されるTOC成分の除去を
行う。脱気装置では無機系炭素(IC)、溶存酸素の除
去を行う。
[0004] In a primary pure water system 2 provided with a reverse osmosis membrane separation device, a degassing device, and an ion exchange device (such as a mixed-bed type or a four-bed five-column type), ions and organic components in raw water are removed. The reverse osmosis membrane separator removes salts and ionic and colloidal TOC. The ion exchange device removes salts and removes TOC components adsorbed or ion-exchanged by the ion exchange resin. The deaerator removes inorganic carbon (IC) and dissolved oxygen.

【0005】低圧紫外線酸化装置、イオン交換純水装置
及び限外濾過膜分離装置を備えるサブシステム3では、
水の純度をより一層高め超純水にする。なお、低圧紫外
線酸化装置では、低圧紫外線ランプより出される185
nmの紫外線によりTOCを有機酸、さらにはCO
で分解する。分解により生成した有機物及びCOは後
段のイオン交換樹脂で除去される。限外濾過膜分離装置
では、微粒子が除去され、イオン交換樹脂の流出粒子も
除去される。
[0005] In a subsystem 3 including a low-pressure ultraviolet oxidation apparatus, an ion-exchange pure water apparatus, and an ultrafiltration membrane separation apparatus,
Further increase the purity of water to ultrapure water. In the low-pressure ultraviolet oxidation device, 185 emitted from the low-pressure ultraviolet lamp is used.
The TOC is decomposed into organic acids and further to CO 2 by ultraviolet light of nm. Organic matter and CO 2 generated by the decomposition are removed by a subsequent ion exchange resin. In the ultrafiltration membrane separation device, the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.

【0006】このような従来の超純水製造装置で得られ
る超純水のTOC濃度は、おおむね1μg/L程度であ
る。
[0006] The TOC concentration of ultrapure water obtained by such a conventional ultrapure water production apparatus is about 1 µg / L.

【0007】ところで、LSIの超微細化、高集積化に
伴い、超LSIチップ製造における洗浄水としての超純
水中の不純物の影響はより大きくなってきている。超L
SIチップ不良の大部分はパターン欠陥であり、その主
な原因は超純水中の不純物である。超純水中の不純物は
主に低分子系有機物であり、従って、低分子系有機物成
分をより一層効率良く除去する高性能の超純水製造装置
が必要となってくる。
[0007] With the miniaturization and high integration of LSIs, the influence of impurities in ultrapure water as cleaning water in the manufacture of VLSI chips has become greater. Super L
The majority of SI chip failures are pattern defects, and the main cause is impurities in ultrapure water. The impurities in the ultrapure water are mainly low molecular organic substances, and therefore, a high-performance ultrapure water production apparatus that removes the low molecular organic components more efficiently is required.

【0008】特開平6−126271号公報には、一次
純水系システムに、通常の活性炭と細孔径20〜100
0Åの細孔を全細孔の5〜10%以上持つ高性能活性炭
とシリカアルミナ系吸着剤との3層からなる多層吸着装
置を設置することにより、逆浸透膜分離装置やイオン交
換装置では除去することが難しい有機物を効率良く除去
することが報告されているが、この方法は単なる吸着法
であるため、充填剤の吸着能が飽和に達してしまうと破
過してしまうという欠点がある。また、吸着によるTO
C除去効果が期待できるのは、初期吸着と呼ばれる通水
開始から約2ヶ月ぐらいの間であり、それ以降の除去効
果は期待できないという欠点もある。
[0008] Japanese Patent Application Laid-Open No. 6-126271 discloses that a primary pure water system is provided with ordinary activated carbon and a pore size of 20 to 100.
By installing a multi-layer adsorption apparatus consisting of three layers of high-performance activated carbon having 5% or more of 0% of the total pores and silica-alumina-based adsorbent, it can be removed by a reverse osmosis membrane separation apparatus or an ion exchange apparatus. Although it has been reported that organic substances which are difficult to remove are efficiently removed, this method is a mere adsorption method, and has a drawback that when the adsorption capacity of the filler reaches saturation, it breaks through. In addition, TO by adsorption
The effect of removing C can be expected only for about two months from the start of water flow, which is called initial adsorption, and there is a drawback that the effect of removing C after that cannot be expected.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解決し、原水中の有機物、特に低分子系有機物成
分を効率的に除去することができ、TOC濃度がきわめ
て低く、高純度な超純水を製造することができる超純水
製造装置及び超純水製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and can efficiently remove organic substances, particularly low molecular weight organic substances, in raw water, have a very low TOC concentration, and have a high purity. It is an object of the present invention to provide an ultrapure water production apparatus and an ultrapure water production method capable of producing ultrapure water.

【0010】[0010]

【課題を解決するための手段】本発明の超純水製造装置
は、一次純水系システムと、該一次純水系システムの処
理水を処理するサブシステムとを有する超純水製造装置
において、該一次純水系システムに生物活性炭塔が設け
られている超純水製造装置であって、該生物活性炭塔
は、制限された量の抗菌剤の存在下に原水を処理して、
原水中の有機物を生物的に分解するものであることを特
徴とする。
An ultrapure water producing apparatus according to the present invention is an ultrapure water producing apparatus having a primary pure water system and a subsystem for treating treated water of the primary pure water system. An ultrapure water production apparatus provided with a biological activated carbon tower in a pure water system, wherein the biological activated carbon tower processes raw water in the presence of a limited amount of an antibacterial agent,
It is characterized by biologically decomposing organic matter in raw water.

【0011】本発明の超純水製造方法は、原水を一次純
水系システムで処理した後サブシステムで処理する超純
水製造方法において、該一次純水系システムにおいて、
原水を制限された量の抗菌剤の存在下に生物活性炭塔に
通水して原水中の有機物を生物的に分解することを特徴
とする。
An ultrapure water production method according to the present invention is an ultrapure water production method in which raw water is treated in a primary pure water system and then processed in a subsystem.
It is characterized in that raw water is passed through a biological activated carbon tower in the presence of a limited amount of an antibacterial agent to biologically decompose organic matter in the raw water.

【0012】本発明は、超純水中に含まれる有機物が低
分子系有機物であることに注目し、低分子有機物の分解
性能に優れている生物処理と活性炭による吸着処理効果
を併せ持った生物活性炭塔を一次純水系システムに導入
することにより、超純水中のTOC濃度の低減を可能と
した。
The present invention focuses on the fact that the organic matter contained in ultrapure water is a low molecular weight organic substance. By introducing the tower into the primary pure water system, it was possible to reduce the TOC concentration in ultrapure water.

【0013】この生物活性炭塔の有機物除去機構は 活性炭による有機物吸着効果 生物膜による有機物分解効果 活性炭内の微生物が活性炭に吸着した有機物を分解
して細孔容積を回復させる生物再生効果 の3つの機構よりなり、生物活性炭を使用することによ
って、活性炭自体の吸着能が飽和に達するまでの時間は
大幅に延長される。
[0013] The organic matter removal mechanism of this biological activated carbon tower has three mechanisms: an organic matter adsorption effect by activated carbon; an organic matter decomposing effect by biofilm; and a biological regeneration effect in which microorganisms in activated carbon decompose organic matter adsorbed on activated carbon to recover pore volume. By using biological activated carbon, the time required for the activated carbon itself to reach its adsorption capacity is greatly extended.

【0014】このような生物活性炭塔では、塔内での微
生物の繁殖により、塔内の圧力損失の増加が懸念される
が、本発明では、抗菌剤の存在下に処理を行うため、塔
内での微生物の必要以上の繁殖は抑制され、このような
目詰まりは抑制される。また、酸化剤等の抗菌剤が生物
活性炭塔内で分解される際に酸素が放出されるため、塔
内が溶存酸素不足となることもない。
In such a biological activated carbon tower, there is a concern that the pressure loss in the tower may increase due to the propagation of microorganisms in the tower. However, in the present invention, the treatment is carried out in the presence of an antibacterial agent. Unnecessary reproduction of microorganisms in the soil is suppressed, and such clogging is suppressed. Further, since oxygen is released when an antibacterial agent such as an oxidizing agent is decomposed in the biological activated carbon tower, the inside of the tower does not become short of dissolved oxygen.

【0015】また、生物活性炭塔の後段に設置される逆
浸透膜分離装置及びイオン交換装置においては、生物活
性炭塔からリークする余剰菌による目詰まりが懸念され
るが、上述の如く、本発明では抗菌剤によりある一定以
上の菌が生物活性炭塔内に増殖することを抑制している
ため、菌体のリークは最小限に抑えられ、逆浸透膜分離
装置やイオン交換装置が目詰まりを起こすことはない。
Further, in the reverse osmosis membrane separation device and the ion exchange device installed at the subsequent stage of the biological activated carbon tower, clogging due to excess bacteria leaking from the biological activated carbon tower is a concern. Antimicrobial agents prevent more than a certain amount of bacteria from growing in the biological activated carbon tower, minimizing cell leakage and clogging reverse osmosis membrane separation devices and ion exchange devices. There is no.

【0016】生物活性炭塔において生分解性有機物はほ
ぼ完全に分解除去されるため、その後段での微生物の繁
殖を抑制することも可能となる。
Since the biodegradable organic matter is almost completely decomposed and removed in the biological activated carbon tower, it is possible to suppress the growth of microorganisms in the subsequent stage.

【0017】なお、本発明において、抗菌剤の存在量を
制限することはきわめて重要であり、抗菌剤の存在量が
多過ぎると生物活性炭塔内の菌を死滅させてしまい、生
物活性炭塔としての機能を得ることができなくなる。本
発明においては、このような制限された量の抗菌剤によ
り、生物活性炭塔内の菌の一部は死滅又は活性を失う
が、残部の菌は若干活性が低下するもののなお活性を有
するような状態に維持する。
In the present invention, it is extremely important to limit the amount of the antibacterial agent. If the amount of the antibacterial agent is too large, the bacteria in the activated carbon tower will be killed, and the activity of the activated carbon tower will be reduced. The function cannot be obtained. In the present invention, such a limited amount of the antibacterial agent causes some of the bacteria in the biological activated carbon tower to die or lose their activity, while the remaining bacteria have a slightly reduced activity but still have activity. Keep in state.

【0018】一般に、生物活性炭塔中の菌体付着量は処
理条件によっても異なるが、抗菌剤を存在させない場
合、10個/g−活性炭以上となる。本発明では、制
限された量の抗菌剤の存在下で、生物活性炭塔中の菌体
付着量をこれよりも少なく、例えば10個/g以上1
個/g未満となるように、微生物の増殖を抑制する
ことが好ましい。
[0018] Generally, cell adhesion amount in biological activated carbon column varies depending processing conditions, if the absence of an antimicrobial agent, a 106 / g- activated carbon or more. In the present invention, in the presence of a limited amount of an antibacterial agent, the amount of cells adhering to the biological activated carbon tower is smaller than this, for example, 10 4 cells / g or more and 1
0 to less than 6 / g, it is preferable to inhibit the growth of microorganisms.

【0019】このような抗菌剤の存在量は、用いる抗菌
剤や、処理条件等によっても異なるが、例えば塩素系抗
菌剤を用いた場合、生物活性炭塔に流入する水の残留塩
素濃度が0.5〜5mg/L程度となるようにするのが
好ましい。
The amount of such an antibacterial agent varies depending on the antibacterial agent to be used, the treatment conditions, and the like. For example, when a chlorine-based antibacterial agent is used, the residual chlorine concentration of water flowing into the biological activated carbon tower is 0.1%. It is preferable that the concentration be about 5 to 5 mg / L.

【0020】[0020]

【発明の実施の形態】以下に図面を参照して本発明の超
純水製造装置及び超純水製造方法の実施の形態を詳細に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the ultrapure water production apparatus and the ultrapure water production method of the present invention will be described below in detail with reference to the drawings.

【0021】図1は本発明の超純水製造装置の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the ultrapure water production apparatus of the present invention.

【0022】一次純水系システム2の原水は、工水、市
水、井水、或いはこれに回収水(超純水のコースポイン
トで回収された使用済超純水)を混合した水を凝集、加
圧浮上(沈殿)、濾過装置等よりなる前処理システム1
で処理して得られた水である。
The raw water of the primary pure water system 2 is made up of industrial water, city water, well water or water obtained by mixing recovered water (used ultrapure water collected at a course point of ultrapure water). Pretreatment system 1 consisting of pressure flotation (sedimentation), filtration device, etc.
Is water obtained by the treatment described above.

【0023】生物活性炭塔に流入する水を前処理してお
くことにより、生物活性炭塔の活性炭の寿命が長くな
る。即ち、凝集沈殿処理等の前処理を行っていない水に
は、有機物中の生分解性の低い高分子系有機物成分の割
合が多く、このような水を生物活性炭塔に通水すると、
前述の生物による有機物の分解及び活性炭の再生効果が
得られないために、活性炭が早期に破過してしまう。こ
れに対し、本発明では、生物活性炭塔を一次純水系シス
テム2に設け、前処理を経た水を生物活性炭塔に通水す
ることにより、高分子系有機物は前処理で除去され、低
分子系有機物は生物活性炭で除去される。しかも、この
低分子系有機物が生物活性炭で生物的に分解されるた
め、生物活性炭の寿命が著しく長い。
By pre-treating the water flowing into the biological activated carbon tower, the life of the activated carbon in the biological activated carbon tower is extended. In other words, water that has not been subjected to a pretreatment such as coagulation and sedimentation treatment has a high proportion of a low-biodegradable high-molecular organic substance component in the organic substance.When such water is passed through a biological activated carbon tower,
Activated carbon breaks down early because the above-mentioned organisms do not have the effect of decomposing organic matter and regenerating activated carbon. On the other hand, in the present invention, the biological activated carbon tower is provided in the primary pure water system 2, and the water subjected to the pretreatment is passed through the biological activated carbon tower, whereby the high-molecular organic matter is removed by the pretreatment, and the low-molecular organic substance is removed. Organic matter is removed with biological activated carbon. In addition, since the low-molecular organic matter is biologically decomposed by the biologically activated carbon, the life of the biologically activated carbon is extremely long.

【0024】生物活性炭塔は、生物活性炭塔給水の溶存
酸素濃度を高めるために、図1に示す如く、脱炭酸塔の
後段に設けることが好ましく、また、生物活性炭塔から
放出される余剰菌体の除去という観点から逆浸透膜分離
装置の前段に設置するのが好ましい。即ち、脱炭酸塔で
は、炭酸の除去のために一般に空気を吹き込むため、空
気中の酸素が水中に溶け込み、生物活性炭塔に必要な溶
存酸素を確保することができる。一般に、工水、市水、
井水、更には回収水を前処理して得られる水のTOC
は、1mg/L程度であるので、この脱炭酸塔で溶解す
る程度の酸素量で生物活性炭塔に必要な酸素量を十分に
まかなうことができる。また、本発明では、抗菌剤を存
在させることで生物活性炭塔からの菌体の流出を抑制す
るが、菌体の流出を完全に防止できるものではないた
め、後段の逆浸透膜分離手段で除去するようにするのが
好ましい。その他、生物活性炭塔の後段に余剰菌の繁殖
防止のため紫外線殺菌塔を設置しても良く、また生物活
性炭塔の後段で殺菌剤を添加しても良い。
The biological activated carbon tower is preferably provided at the subsequent stage of the decarbonation tower as shown in FIG. 1 in order to increase the dissolved oxygen concentration in the feed water of the biological activated carbon tower. It is preferable to install it in the preceding stage of the reverse osmosis membrane separation device from the viewpoint of removal of odor. That is, in the decarbonation tower, since air is generally blown to remove carbonic acid, oxygen in the air dissolves in water, and dissolved oxygen required for the biological activated carbon tower can be secured. Generally, industrial water, city water,
TOC of water obtained by pre-processing well water and recovered water
Is about 1 mg / L, so that the amount of oxygen enough to be dissolved in the decarbonation tower can sufficiently cover the amount of oxygen required for the biological activated carbon tower. In the present invention, the presence of an antibacterial agent suppresses the outflow of cells from the biological activated carbon tower. However, this does not completely prevent the outflow of cells, so that the cells are removed by a reverse osmosis membrane separation means at the subsequent stage. It is preferable to do so. In addition, an ultraviolet disinfection tower may be provided at the subsequent stage of the biological activated carbon tower to prevent the propagation of surplus bacteria, and a bactericide may be added at the latter stage of the biological activated carbon tower.

【0025】なお、生物活性炭塔から流出した菌体によ
る逆浸透膜分離装置の目詰まりを防止するために、生物
活性炭塔と逆浸透膜分離装置との間には保安フィルター
を設けることが望ましい。
In order to prevent clogging of the reverse osmosis membrane separation device by the cells flowing out of the biological activated carbon tower, it is desirable to provide a security filter between the biological activated carbon tower and the reverse osmosis membrane separation device.

【0026】生物活性炭塔に充填する活性炭種としては
石炭系、椰子殻系等のいずれでも良く、破砕炭、造粒
炭、成形炭、クロス状、繊維状等、その形状、種類等に
特に制限はない。
The type of activated carbon to be filled in the biological activated carbon tower may be any of coal type, coconut shell type, etc., and is particularly limited to its shape and type such as crushed coal, granulated coal, molded coal, cloth, fiber and the like. There is no.

【0027】生物活性炭塔への活性炭の充填方式は、流
動床、膨張層、固定床などのいずれでもよいが、菌体の
リークが少ないところから、固定床が好ましい。生物活
性炭塔の通水方式は上向流通水であっても下向流通水で
あっても良い。
The activated carbon may be filled into the biological activated carbon tower by any of a fluidized bed, an expanded bed, a fixed bed and the like, but a fixed bed is preferred because there is little leakage of cells. The water flow method of the biological activated carbon tower may be upward flowing water or downward flowing water.

【0028】生物活性炭塔の生物担持量は、通水初期の
状態でメタノール除去速度10μg/L/min以上を
達成できるようなものであることが好ましい。このメタ
ノール除去速度は、例えば、生物活性炭塔にTOCとし
てメタノールを含有する水をSV20hr−1で通水し
たときの入口TOC濃度と出口TOC濃度とから、TO
C除去量を求め、これを滞留時間(HRT)で除して求
められる。
It is preferable that the biologically active amount of the biological activated carbon tower is such that a methanol removal rate of 10 μg / L / min or more can be achieved in the initial state of water flow. The methanol removal rate is determined, for example, from the TOC concentration at the inlet and the TOC concentration at the outlet when water containing methanol as TOC is passed through the biological activated carbon tower at SV20 hr -1.
The amount of C removed is determined and divided by the residence time (HRT).

【0029】本発明においては、このような生物活性炭
塔に、制限された量の抗菌剤の存在下に原水を通水す
る。
In the present invention, raw water is passed through such a biological activated carbon tower in the presence of a limited amount of an antibacterial agent.

【0030】ここで、抗菌剤としては、殺菌剤、酸化剤
等が用いられるが、好ましくは、酸化剤であり、具体的
には、次亜塩素酸塩のような塩素系酸化剤や、オゾン、
過酸化水素などを用いることができる。
Here, as the antibacterial agent, a bactericide, an oxidizing agent and the like are used. Preferably, the oxidizing agent is used. Specifically, a chlorine-based oxidizing agent such as hypochlorite, ozone ,
Hydrogen peroxide or the like can be used.

【0031】本発明では、生物活性炭塔の給水中にこの
ような抗菌剤を存在させることにより、生物活性炭塔内
の菌体の過剰な増殖を抑制し、生物活性炭塔からの菌体
の流出を抑制する。TOC除去効果と菌体の流出抑制効
果を得ることができる生物活性炭塔内の菌体付着量は、
10個/g−活性炭以上10個/g−活性炭未満で
ある。
In the present invention, by allowing such an antibacterial agent to be present in the water supplied to the biological activated carbon tower, excessive growth of the cells in the biological activated carbon tower is suppressed, and the outflow of the cells from the biological activated carbon tower is prevented. Suppress. The amount of adhered cells in the biological activated carbon tower, which can obtain the TOC removal effect and the effect of suppressing the outflow of cells,
It is 10 4 pieces / g-activated carbon or more and less than 10 6 pieces / g-activated carbon.

【0032】このような菌体付着量を得るための抗菌剤
濃度は、用いる抗菌剤の種類や処理条件等に応じても異
なるが、例えば塩素系酸化剤を用いた場合、生物活性炭
塔の給水(入口)の残留塩素濃度で0.5〜5mg/L
程度である。この残留塩素濃度が0.5mg/L未満で
は、生物活性炭塔内での菌体の増殖を抑制し得ず、5m
g/Lを超えると生物活性炭塔内の菌体が死滅してしま
い生物分解能を得ることができなくなる上に活性炭の劣
化で寿命が短縮することとなる。生物活性炭塔給水のよ
り好ましい残留塩素濃度は1〜3mg/Lである。
The concentration of the antibacterial agent for obtaining such an amount of adhered cells varies depending on the kind of the antibacterial agent to be used, the treatment conditions, and the like. (Inlet) residual chlorine concentration of 0.5 to 5 mg / L
It is about. If the residual chlorine concentration is less than 0.5 mg / L, the growth of cells in the biological activated carbon tower cannot be suppressed, and
If the amount exceeds g / L, the cells in the biologically activated carbon tower will be killed, biodegradability cannot be obtained, and the life of the activated carbon will be shortened due to deterioration of the activated carbon. The more preferable residual chlorine concentration of the biological activated carbon tower feed water is 1 to 3 mg / L.

【0033】従って、本発明では、生物活性炭塔の給水
の残留塩素濃度等の抗菌剤濃度がこのような濃度となる
ように適宜原水に抗菌剤を添加するが、一般に市水系原
水を用いる場合、市水には残留塩素が0.5mg/L程
度含まれているため、抗菌剤の添加が不要な場合もあ
る。しかし、市水以外の井水や工水、回収水を原水とす
る場合、或いは市水を用いる場合でもこれら市水や回収
水、工水等の割合が多く、原水の抗菌剤濃度が不足する
場合には、抗菌剤を添加する。
Therefore, in the present invention, the antibacterial agent is appropriately added to the raw water so that the concentration of the antibacterial agent such as the residual chlorine concentration in the feed water of the biological activated carbon tower becomes such a concentration. Since city water contains about 0.5 mg / L of residual chlorine, it may not be necessary to add an antibacterial agent. However, when using well water, industrial water, and recovered water other than city water as raw water, or when using city water, the ratio of these city water, recovered water, industrial water, etc. is large, and the antibacterial agent concentration of raw water is insufficient. In some cases, an antimicrobial agent is added.

【0034】抗菌剤の添加箇所は、生物活性炭塔の前段
であれば良く、特に制限はないが、抗菌剤の添加によ
り、生物活性炭塔に到るまでの配管やタンク内の微生物
の繁殖をも抑制する意味合いから、前処理システム1の
凝集槽の前段に添加することが好ましい。凝集槽の前段
で酸化剤を添加した場合には、原水由来のFe,Mn等
を酸化剤により酸化させてその溶解度を低下させ、これ
により凝集沈殿によるFe,Mnの除去効率を高めるこ
ともできる。
The location where the antibacterial agent is added is not particularly limited as long as it is in front of the biological activated carbon tower, and the addition of the antibacterial agent can also increase the growth of microorganisms in pipes and tanks up to the biological activated carbon tower. From the standpoint of suppression, it is preferable to add the compound to a stage preceding the coagulation tank of the pretreatment system 1. When an oxidizing agent is added in the previous stage of the coagulation tank, Fe, Mn, etc. derived from raw water are oxidized by the oxidizing agent to lower the solubility thereof, thereby improving the efficiency of removing Fe and Mn by coagulation sedimentation. .

【0035】Fe,Mnなどが除去されずに逆浸透膜分
離装置に通水されると、逆浸透膜がこれらの物質によっ
てファウリングを起こす可能性があるため、このように
予めFe,Mnを除去することは安定運転のために有利
である。
If water is passed through the reverse osmosis membrane separator without removing Fe, Mn, etc., the reverse osmosis membrane may cause fouling due to these substances. Elimination is advantageous for stable operation.

【0036】また、凝集沈殿のような前処理を必要とし
ない原水の場合には、原水タンクの入口側に抗菌剤を添
加するのが好ましい。
In the case of raw water that does not require pretreatment such as coagulation and sedimentation, it is preferable to add an antibacterial agent to the inlet side of the raw water tank.

【0037】生物活性炭塔への通水速度は、SV5〜3
0hr−1程度とするのが好ましい。この生物活性炭塔
の給水の水温は10〜35℃、pHは4〜8であること
が好ましく、従って、必要に応じて、生物活性炭塔の前
段に熱交換器やpH調整剤添加手段を設けることが望ま
しい。
The water flow rate to the biological activated carbon tower is SV 5 to 3
It is preferably set to about 0 hr -1 . The water temperature of the feed water of the biological activated carbon tower is preferably 10 to 35 ° C., and the pH is preferably 4 to 8. Therefore, if necessary, a heat exchanger or a pH adjuster adding means may be provided in the preceding stage of the biological activated carbon tower. Is desirable.

【0038】なお、図示の通り、生物活性炭塔を一次純
水系システムの脱炭酸塔と逆浸透膜分離装置との間に設
けることにより、脱炭酸塔による溶存酸素供給及び逆浸
透膜分離装置による流出菌体の捕捉を行うことができ
る。
As shown in the figure, by providing a biological activated carbon tower between the decarbonation tower of the primary pure water system and the reverse osmosis membrane separator, the supply of dissolved oxygen by the decarbonation tower and the outflow by the reverse osmosis membrane separator are performed. Bacteria can be captured.

【0039】[0039]

【実施例】以下に実験例、実施例及び比較例を挙げて、
本発明をより具体的に説明する。
EXAMPLES Hereinafter, experimental examples, examples and comparative examples will be described.
The present invention will be described more specifically.

【0040】実験例1 市水(TOC濃度1mg/L、塩素濃度0.6mg/
L、pH6.8、水温20℃)を原水として、通常の活
性炭塔と生物活性炭塔とにそれぞれ通水SV:20hr
−1,通水速度20L/hrで1年間通水し、TOCの
除去性能を比較する実験を行い、結果を図3に示した。
Experimental Example 1 City water (TOC concentration 1 mg / L, chlorine concentration 0.6 mg / L
L, pH 6.8, water temperature 20 ° C.) as raw water and passed through a normal activated carbon tower and a biological activated carbon tower, respectively SV: 20 hr
−1 , water was passed at a flow rate of 20 L / hr for one year, and an experiment was performed to compare the TOC removal performance. The results are shown in FIG. 3.

【0041】なお、活性炭塔及び生物活性炭塔に用いた
活性炭種はクラレケミカル社製石炭系活性炭「KW10
−32」であり、活性炭充填量は1Lとした。生物活性
炭塔は、メタノール分解除去速度10μg/L/min
となるように生物を担持させたものである。原水には、
活性炭塔又は生物活性炭塔の入口の残留塩素濃度が1m
g/Lとなるように、NaClOを添加した。また、T
OC除去性能は、活性炭塔又は生物活性炭塔の入口のT
OC濃度と出口のTOC濃度とをアナテル社製「A−1
000XP」で測定し、(出口TOC濃度÷入口TOC
濃度)でTOCのリーク率を求めることにより調べた。
The activated carbon used in the activated carbon tower and the biological activated carbon tower was a coal-based activated carbon “KW10” manufactured by Kuraray Chemical Co., Ltd.
-32 ", and the activated carbon filling amount was 1 L. The biological activated carbon tower has a methanol decomposition removal rate of 10 μg / L / min.
An organism is supported so that In the raw water,
Residual chlorine concentration at the entrance of activated carbon tower or biological activated carbon tower is 1m
NaClO was added to give g / L. Also, T
The OC removal performance is determined by the T at the entrance of the activated carbon tower or the biological activated carbon tower.
The OC concentration and the TOC concentration at the outlet were determined by "A-1"
000XP ”, and the value of (TOC concentration at outlet ÷ TOC at inlet)
Concentration) to determine the TOC leak rate.

【0042】図3より明らかなように、通水開始後1ヶ
月ぐらいまでは両者の結果に大きな相違は見られなかっ
たが、1ヶ月を過ぎたあたりから両者の除去性能には開
きが生じ、通常の活性炭塔では通水開始200日で原水
TOCに対し90%以上がリークした。しかし、生物活
性炭塔では65%と通常の活性炭塔に比べ1.4倍のT
OC除去性能を発揮した。
As is apparent from FIG. 3, no significant difference was observed between the two results about one month after the start of water flow, but after about one month, there was a difference in the removal performance of the two. In a normal activated carbon tower, 90% or more of the raw water TOC leaked 200 days after the start of water flow. However, the biological activated carbon tower has a T value of 65%, which is 1.4 times that of a normal activated carbon tower.
It exhibited OC removal performance.

【0043】これは、通常の活性炭塔では、活性炭によ
る吸着性能のみでTOCを除去するため、早期に活性炭
の吸着能が飽和し、TOCがリークしてくるのに対し
て、生物活性炭塔では、活性炭による吸着のみならず、
生物によるTOC分解と生物による活性炭の吸着能の再
生作用が得られ、長期に亘りTOC除去能が維持される
ことによるものである。
This is because, in a normal activated carbon tower, TOC is removed only by the adsorption performance by activated carbon, so that the activated carbon adsorption capacity is saturated and TOC leaks at an early stage, whereas in a biological activated carbon tower, Not only adsorption by activated carbon,
This is because the TOC decomposition by the organism and the regeneration of the ability to adsorb activated carbon by the organism are obtained, and the TOC removal ability is maintained for a long time.

【0044】実験例2 市水を原水として、実験例1で用いたものと同様の生物
活性炭塔に同様の条件で通水した。このとき生物活性炭
塔を1日1回の頻度で逆洗し、1日当たりの圧力損失の
増加の程度を調べ、結果を図4に示した(なお、図4に
おいて、0.1kgf/cm/日は約10Pa/日
である。)。
Experimental Example 2 Using city water as raw water, water was passed through the same biological activated carbon tower as used in Experimental Example 1 under the same conditions. At this time, the biological activated carbon tower was backwashed once a day, and the degree of increase in pressure loss per day was examined. The results are shown in FIG. 4 (in FIG. 4, 0.1 kgf / cm 2 / The day is about 10 4 Pa / day).

【0045】比較のため、市水にNaHSOを添加し
て残留塩素濃度を0mg/Lとしたこと以外は上記と同
様にして通水実験を行い、1日当たりの圧力損失の増加
の程度を調べ、結果を図4に示した。
For comparison, a water flow experiment was carried out in the same manner as above except that NaHSO 3 was added to city water to reduce the residual chlorine concentration to 0 mg / L, and the degree of increase in the pressure loss per day was examined. The results are shown in FIG.

【0046】図4より、生物活性炭塔入口の残留塩素濃
度が0mg/Lでは、生物活性炭塔内での菌体の増殖が
激しく、生物活性炭塔の目詰まりで圧力損失が増大する
が、残留塩素濃度を1mg/Lとすることで、菌体の過
度な増殖を抑制して、生物活性炭塔内の圧力損失の増加
を抑制することができることがわかる。
As shown in FIG. 4, when the residual chlorine concentration at the entrance of the biological activated carbon tower is 0 mg / L, the bacterial growth in the biological activated carbon tower is intense, and the pressure loss increases due to clogging of the biological activated carbon tower. It can be seen that by setting the concentration to 1 mg / L, excessive growth of the cells can be suppressed, and an increase in pressure loss in the biological activated carbon tower can be suppressed.

【0047】なお、通水期間中の生物活性炭塔内の活性
炭に対する菌体付着量を蛍光色素を用いた直接計数法に
より調べたところ、残留塩素濃度を1mg/Lとした場
合には、10〜10個/gの範囲に維持されていた
が、残留塩素濃度を0mg/Lとした場合には、10
〜10個/gに増殖していた。
The amount of bacterial cells attached to activated carbon in the biological activated carbon tower during the water flow period was examined by a direct counting method using a fluorescent dye. As a result, when the residual chlorine concentration was 1 mg / L, 10 5 10 6 / g had been maintained in the range of, in the case where the residual chlorine concentration of 0 mg / L, the 10 7
10 had grown to eight / g.

【0048】実施例1 市水(TOC濃度1mg/L、pH6.8、水温20
℃、塩素濃度0.6mg/L)を、2m/hrの処理
量で一次純水系システムとしての脱炭酸塔、生物活性炭
塔、逆浸透膜分離装置、混床式イオン交換装置、脱気装
置及び逆浸透膜分離装置に順次通水した後、サブシステ
ムとしての低圧紫外線酸化装置、イオン交換純水装置、
及び限外濾過膜分離装置に順次通水して処理して超純水
を製造する超純水製造装置において、生物活性炭塔の出
口水のTOC濃度と、得られた超純水(限外濾過膜分離
装置の出口水)のTOC濃度を調べ、結果を表1に示し
た。TOC濃度はアナテル社製「A−1000XP」を
用いて測定した。
Example 1 City water (TOC concentration 1 mg / L, pH 6.8, water temperature 20)
C., chlorine concentration 0.6 mg / L) at a treatment rate of 2 m 3 / hr, a decarbonation tower, a biological activated carbon tower, a reverse osmosis membrane separation apparatus, a mixed bed type ion exchange apparatus, and a deaeration apparatus as a primary pure water system. And after passing water sequentially through the reverse osmosis membrane separation device, low pressure ultraviolet oxidation device as a subsystem, ion exchange pure water device,
And an ultrapure water production apparatus for producing ultrapure water by sequentially passing water through an ultrafiltration membrane separation apparatus and treating the TOC concentration of the outlet water of the biological activated carbon tower with the obtained ultrapure water (ultrafiltration). The TOC concentration of the outlet water of the membrane separation device was examined, and the results are shown in Table 1. The TOC concentration was measured using "A-1000XP" manufactured by Anatel.

【0049】なお、用いた生物活性炭塔は、実験例1で
用いたものと同様の活性炭種及びメタノール除去性能の
ものであり、通水SVは20hr−1とした。また、市
水にはNaClOを添加して生物活性炭塔の入口の残留
塩素濃度が1mg/Lとなるように調整した。
The biological activated carbon tower used had the same activated carbon type and methanol removal performance as those used in Experimental Example 1, and the water flow SV was 20 hr -1 . In addition, NaClO was added to the city water so that the residual chlorine concentration at the entrance of the biological activated carbon tower was adjusted to 1 mg / L.

【0050】比較例1 実施例1において、生物活性炭塔の代りに通常の活性炭
塔を用いたこと以外は同様にして超純水の製造を行い、
活性炭塔の出口水のTOC濃度と得られた超純水のTO
C濃度を調べ、結果を表1に示した。
Comparative Example 1 Ultrapure water was produced in the same manner as in Example 1 except that a normal activated carbon tower was used instead of the biological activated carbon tower.
TOC concentration of outlet water of activated carbon tower and TO of obtained ultrapure water
The C concentration was examined, and the results are shown in Table 1.

【0051】比較例2 実施例1において、NaHSOを添加することにより
生物活性炭塔の入口の残留塩素濃度を0mg/Lとした
こと以外は同様にして超純水の製造を行い、活性炭塔の
出口水のTOC濃度と得られた超純水のTOC濃度を調
べ、結果を表1に示した。
Comparative Example 2 Ultrapure water was produced in the same manner as in Example 1 except that the residual chlorine concentration at the inlet of the biological activated carbon tower was changed to 0 mg / L by adding NaHSO 3 . The TOC concentration of the outlet water and the TOC concentration of the obtained ultrapure water were examined, and the results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】表1より次のことが明らかである。The following is clear from Table 1.

【0054】即ち、活性炭塔で処理した比較例1では、
通水日数に伴いTOC値が増加し超純水中のTOC値は
1μg/L程度で安定した。これは図3で示した活性炭
塔での傾向と同じである。一方、生物活性炭塔を用いた
実施例1においては通水日数によらず超純水のTOC濃
度は0.3μg/L程度で安定しており、図3で示し
た、生物活性炭塔単独の時とは傾向が異なる。これは、
一部のTOC成分が生物活性炭塔内で完全に分解、吸着
除去されなかったとしても、生物活性炭塔を通過するこ
とにより生物によって何らかの形態変化を受け、後段の
逆浸透膜分離装置やイオン交換装置で除去可能物質に変
化したため、TOC濃度が低い値で安定するためと考え
られる。
That is, in Comparative Example 1, which was treated with an activated carbon tower,
The TOC value increased with the passage of water, and the TOC value in the ultrapure water was stabilized at about 1 μg / L. This is the same as the tendency in the activated carbon tower shown in FIG. On the other hand, in Example 1 using the biological activated carbon tower, the TOC concentration of the ultrapure water was stable at about 0.3 μg / L regardless of the number of days of water passage. And the tendency is different. this is,
Even if some TOC components are not completely decomposed and adsorbed and removed in the biological activated carbon tower, they undergo some form change by living organisms by passing through the biological activated carbon tower, and the reverse osmosis membrane separation device or ion exchange device in the latter stage It is considered that the TOC concentration was stabilized at a low value because the substance was changed to a removable substance by the above method.

【0055】なお、生物活性炭塔の入口の残留塩素濃度
を0mg/Lとした比較例2では、生物活性炭塔内での
菌体の増殖が著しく、1日当りの圧力損失の増加が大き
かった。
In Comparative Example 2 in which the residual chlorine concentration at the inlet of the biological activated carbon tower was 0 mg / L, the growth of the cells in the biological activated carbon tower was remarkable, and the increase in the pressure loss per day was large.

【0056】[0056]

【発明の効果】以上詳述した通り、本発明の超純水製造
装置及び超純水製造方法によれば、TOC濃度が著しく
低い、不純物の問題のない高純度な超純水を長期に亘り
安定に製造することができる。本発明の超純水製造装置
及び超純水製造方法により製造された超純水は、超LS
Iチップ洗浄水として、良好な洗浄効果を得ることがで
きる。
As described above in detail, according to the ultrapure water production apparatus and the ultrapure water production method of the present invention, high purity ultrapure water having a very low TOC concentration and no problem of impurities can be produced for a long time. It can be manufactured stably. The ultrapure water produced by the ultrapure water production apparatus and the ultrapure water production method of the present invention is super LS
A good cleaning effect can be obtained as the I-chip cleaning water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超純水製造装置の実施の形態を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus according to the present invention.

【図2】従来の超純水製造装置を示す系統図である。FIG. 2 is a system diagram showing a conventional ultrapure water production apparatus.

【図3】実験例1の結果を示すグラフである。FIG. 3 is a graph showing the results of Experimental Example 1.

【図4】実験例2の結果を示すグラフである。FIG. 4 is a graph showing the results of Experimental Example 2.

【符号の説明】[Explanation of symbols]

1 前処理システム 2 一次純水系システム 3 サブシステム 1 Pretreatment system 2 Primary pure water system 3 Subsystem

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 C02F 1/50 531R 550 550L 560 560D 560E 560H 560Z 1/76 1/76 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C02F 1/50 C02F 1/50 531R 550 550L 560 560D 560E 560H 560Z 1/76 1/76 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一次純水系システムと、該一次純水系シ
ステムの処理水を処理するサブシステムとを有する超純
水製造装置において、 該一次純水系システムに生物活性炭塔が設けられてお
り、 該生物活性炭塔は、制限された量の抗菌剤の存在下に原
水を処理して、原水中の有機物を生物的に分解するもの
であることを特徴とする超純水製造装置。
1. An ultrapure water production apparatus having a primary pure water system and a subsystem for treating treated water of the primary pure water system, wherein the primary pure water system is provided with a biological activated carbon tower, An apparatus for producing ultrapure water, wherein the biological activated carbon tower is configured to treat raw water in the presence of a limited amount of an antibacterial agent to biologically decompose organic substances in the raw water.
【請求項2】 請求項1において、該生物活性炭塔中の
活性炭への菌体付着量が10個/gより少なくなるよ
うな量の抗菌剤の存在下に原水を処理することを特徴と
する超純水製造装置。
2. The method of claim 1, and characterized by treating the raw water in the presence of an amount of an antimicrobial agent, such as cell adhesion amount to the activated carbon of the organism activated carbon column in is less than 10 6 cells / g Ultrapure water production equipment.
【請求項3】 請求項1又は2において、該抗菌剤が塩
素系抗菌剤であり、前記生物活性炭塔に流入する水の残
留塩素濃度が0.5〜5mg/Lであることを特徴とす
る超純水製造装置。
3. The method according to claim 1, wherein the antibacterial agent is a chlorine-based antibacterial agent, and a residual chlorine concentration of water flowing into the biological activated carbon tower is 0.5 to 5 mg / L. Ultrapure water production equipment.
【請求項4】 原水を一次純水系システムで処理した後
サブシステムで処理する超純水製造方法において、 該一次純水系システムにおいて、原水を制限された量の
抗菌剤の存在下に生物活性炭塔に通水して原水中の有機
物を生物的に分解することを特徴とする超純水製造方
法。
4. A method for producing ultrapure water in which raw water is treated in a primary pure water system and then processed in a subsystem, wherein the raw water is treated in the primary pure water system in the presence of a limited amount of an antibacterial agent. A method for producing ultrapure water, characterized in that organic water in raw water is biologically decomposed by passing water through the water.
【請求項5】 請求項4において、該生物活性炭塔中の
活性炭への菌体付着量が10個/gより少なくなるよ
うな量の抗菌剤の存在下に原水を通水することを特徴と
する超純水製造方法。
5. The method of claim 4, characterized in that passed through the raw water in the presence of an amount of an antimicrobial agent, such as cell adhesion amount to the activated carbon of the organism activated carbon column in is less than 10 6 cells / g Ultrapure water production method.
【請求項6】 請求項4又は5において、該抗菌剤が塩
素系抗菌剤であり、前記生物活性炭塔に通水する水の残
留塩素濃度が0.5〜5mg/Lであることを特徴とす
る超純水製造方法。
6. The antibacterial agent according to claim 4, wherein the antibacterial agent is a chlorine-based antibacterial agent, and the concentration of residual chlorine in water passing through the biological activated carbon tower is 0.5 to 5 mg / L. Ultrapure water production method.
JP2001141892A 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method Expired - Fee Related JP5061410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141892A JP5061410B2 (en) 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141892A JP5061410B2 (en) 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method

Publications (2)

Publication Number Publication Date
JP2002336887A true JP2002336887A (en) 2002-11-26
JP5061410B2 JP5061410B2 (en) 2012-10-31

Family

ID=18988274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141892A Expired - Fee Related JP5061410B2 (en) 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method

Country Status (1)

Country Link
JP (1) JP5061410B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212484A (en) * 2005-02-01 2006-08-17 Kurita Water Ind Ltd Pure water production method and apparatus
WO2010079684A1 (en) * 2009-01-06 2010-07-15 栗田工業株式会社 Method and device for manufacturing ultrapure water
WO2011108478A1 (en) * 2010-03-05 2011-09-09 栗田工業株式会社 Water treatment method and process for producing ultrapure water
JP2011183273A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
JP2012096187A (en) * 2010-11-04 2012-05-24 Sumitomo Metal Mining Co Ltd Ultrapure water production system, method for washing the same, and method for producing ultrapure water using the same
JP2013116456A (en) * 2011-12-05 2013-06-13 Kurita Water Ind Ltd Backwash method of biological activated carbon tower

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111198A (en) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd Apparatus for producing ultra-pure water
JPS61111192A (en) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd Method for suppressing propagation of microorganism in water
JPS62258798A (en) * 1986-05-02 1987-11-11 Kurita Water Ind Ltd Biological treatment of water containing trace organic material
JPH03118889A (en) * 1989-10-02 1991-05-21 Japan Organo Co Ltd Method for recovering waste water of process for producing semiconductor
JPH0461984A (en) * 1990-06-28 1992-02-27 Ebara Infilco Co Ltd Bacteriostatic method of active carbon
JPH0564782A (en) * 1991-09-06 1993-03-19 Ngk Insulators Ltd Treatment of water with activated carbon
JPH05115868A (en) * 1991-10-28 1993-05-14 Kankyo Eng Kk Advanced treatment of waste water
JPH05277475A (en) * 1992-03-31 1993-10-26 Kurita Water Ind Ltd Treatment method for water containing organic substance
JPH05309398A (en) * 1992-05-11 1993-11-22 Kurita Water Ind Ltd Apparatus for producing pure water
JPH05329477A (en) * 1991-08-08 1993-12-14 Kurita Water Ind Ltd Membrane separation
JPH0663592A (en) * 1992-08-25 1994-03-08 Kurita Water Ind Ltd Ultra-pure water producing apparatus
JPH0679272A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Device for production of pure water
JPH07284799A (en) * 1994-04-15 1995-10-31 Kurita Water Ind Ltd Ultra-pure water manufacturing apparatus
JPH07290071A (en) * 1994-04-21 1995-11-07 Japan Organo Co Ltd Method for removing organic matter and device therefor
JPH07313994A (en) * 1994-05-23 1995-12-05 Kurita Water Ind Ltd Production of ultrapure water
JPH0938670A (en) * 1995-08-01 1997-02-10 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JPH0994585A (en) * 1995-07-24 1997-04-08 Japan Organo Co Ltd Method for producing ultrapure water and apparatus therefor
JPH0994568A (en) * 1995-09-29 1997-04-08 Kurita Water Ind Ltd Active carbon treatment apparatus
JPH09187785A (en) * 1996-01-09 1997-07-22 Kurita Water Ind Ltd Recovery and purification device for drain
JPH09294989A (en) * 1996-05-07 1997-11-18 Kurita Water Ind Ltd Slime control method for pure water preparation device
JPH10249340A (en) * 1997-03-10 1998-09-22 Kurita Water Ind Ltd Production of pure water
JP2000288578A (en) * 1999-04-02 2000-10-17 Kurita Water Ind Ltd Method and apparatus for treating water containing trace of organic matter
JP2001038390A (en) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd Production of ultrapure water
JP2002159984A (en) * 2000-11-27 2002-06-04 Kurita Water Ind Ltd Biodegradation method for toc component

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111198A (en) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd Apparatus for producing ultra-pure water
JPS61111192A (en) * 1984-11-02 1986-05-29 Kurita Water Ind Ltd Method for suppressing propagation of microorganism in water
JPS62258798A (en) * 1986-05-02 1987-11-11 Kurita Water Ind Ltd Biological treatment of water containing trace organic material
JPH03118889A (en) * 1989-10-02 1991-05-21 Japan Organo Co Ltd Method for recovering waste water of process for producing semiconductor
JPH0461984A (en) * 1990-06-28 1992-02-27 Ebara Infilco Co Ltd Bacteriostatic method of active carbon
JPH05329477A (en) * 1991-08-08 1993-12-14 Kurita Water Ind Ltd Membrane separation
JPH0564782A (en) * 1991-09-06 1993-03-19 Ngk Insulators Ltd Treatment of water with activated carbon
JPH05115868A (en) * 1991-10-28 1993-05-14 Kankyo Eng Kk Advanced treatment of waste water
JPH05277475A (en) * 1992-03-31 1993-10-26 Kurita Water Ind Ltd Treatment method for water containing organic substance
JPH05309398A (en) * 1992-05-11 1993-11-22 Kurita Water Ind Ltd Apparatus for producing pure water
JPH0663592A (en) * 1992-08-25 1994-03-08 Kurita Water Ind Ltd Ultra-pure water producing apparatus
JPH0679272A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Device for production of pure water
JPH07284799A (en) * 1994-04-15 1995-10-31 Kurita Water Ind Ltd Ultra-pure water manufacturing apparatus
JPH07290071A (en) * 1994-04-21 1995-11-07 Japan Organo Co Ltd Method for removing organic matter and device therefor
JPH07313994A (en) * 1994-05-23 1995-12-05 Kurita Water Ind Ltd Production of ultrapure water
JPH0994585A (en) * 1995-07-24 1997-04-08 Japan Organo Co Ltd Method for producing ultrapure water and apparatus therefor
JPH0938670A (en) * 1995-08-01 1997-02-10 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JPH0994568A (en) * 1995-09-29 1997-04-08 Kurita Water Ind Ltd Active carbon treatment apparatus
JPH09187785A (en) * 1996-01-09 1997-07-22 Kurita Water Ind Ltd Recovery and purification device for drain
JPH09294989A (en) * 1996-05-07 1997-11-18 Kurita Water Ind Ltd Slime control method for pure water preparation device
JPH10249340A (en) * 1997-03-10 1998-09-22 Kurita Water Ind Ltd Production of pure water
JP2000288578A (en) * 1999-04-02 2000-10-17 Kurita Water Ind Ltd Method and apparatus for treating water containing trace of organic matter
JP2001038390A (en) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd Production of ultrapure water
JP2002159984A (en) * 2000-11-27 2002-06-04 Kurita Water Ind Ltd Biodegradation method for toc component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212484A (en) * 2005-02-01 2006-08-17 Kurita Water Ind Ltd Pure water production method and apparatus
WO2010079684A1 (en) * 2009-01-06 2010-07-15 栗田工業株式会社 Method and device for manufacturing ultrapure water
JP2010158605A (en) * 2009-01-06 2010-07-22 Kurita Water Ind Ltd Method of producing ultrapure water and apparatus therefor
KR101602003B1 (en) * 2009-01-06 2016-03-17 쿠리타 고교 가부시키가이샤 Method and device for manufacturing ultrapure water
US9017556B2 (en) 2009-01-06 2015-04-28 Kurita Water Industries Ltd. Ultrapure water production method and apparatus therefor
TWI494282B (en) * 2010-03-05 2015-08-01 Kurita Water Ind Ltd Water treatment method and manufacturing method of ultra pure water
WO2011108478A1 (en) * 2010-03-05 2011-09-09 栗田工業株式会社 Water treatment method and process for producing ultrapure water
JP2011183273A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
CN102781850A (en) * 2010-03-05 2012-11-14 栗田工业株式会社 Water treatment method and process for producing ultrapure water
US20130032532A1 (en) * 2010-03-05 2013-02-07 Kurita Water Industries, Ltd. Water treatment method and method for producing ultrapure water
US8916048B2 (en) 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
JP2012096187A (en) * 2010-11-04 2012-05-24 Sumitomo Metal Mining Co Ltd Ultrapure water production system, method for washing the same, and method for producing ultrapure water using the same
JP2013116456A (en) * 2011-12-05 2013-06-13 Kurita Water Ind Ltd Backwash method of biological activated carbon tower

Also Published As

Publication number Publication date
JP5061410B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
TWI408107B (en) Extra-pure water production equipment and operating method thereof
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
TWI485115B (en) The method and apparatus for producing ultra pure water
JPH0790219B2 (en) Pure water production apparatus and production method
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JPH07284799A (en) Ultra-pure water manufacturing apparatus
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
JP5055662B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP4608765B2 (en) Biodegradation method of TOC component
JPS6336890A (en) Apparatus for producing high-purity water
JPS62110795A (en) Device for producing high-purity water
JP2018089598A (en) Water treating device
JP3948337B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2002355683A (en) Ultrapure water making method and apparatus
JP3969185B2 (en) Pure water production equipment
JP4826864B2 (en) Ultrapure water production equipment
JP3433601B2 (en) Wastewater recovery and purification equipment
JP3387311B2 (en) Ultrapure water production equipment
JP5782675B2 (en) Water treatment method and ultrapure water production method
US20230242419A1 (en) Ultrapure water production system and ultrapure water production method
JPH07328693A (en) Ultrapure water producing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees