JP5061410B2 - Ultrapure water production apparatus and ultrapure water production method - Google Patents

Ultrapure water production apparatus and ultrapure water production method Download PDF

Info

Publication number
JP5061410B2
JP5061410B2 JP2001141892A JP2001141892A JP5061410B2 JP 5061410 B2 JP5061410 B2 JP 5061410B2 JP 2001141892 A JP2001141892 A JP 2001141892A JP 2001141892 A JP2001141892 A JP 2001141892A JP 5061410 B2 JP5061410 B2 JP 5061410B2
Authority
JP
Japan
Prior art keywords
water
activated carbon
biological activated
ultrapure water
carbon tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001141892A
Other languages
Japanese (ja)
Other versions
JP2002336887A (en
Inventor
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001141892A priority Critical patent/JP5061410B2/en
Publication of JP2002336887A publication Critical patent/JP2002336887A/en
Application granted granted Critical
Publication of JP5061410B2 publication Critical patent/JP5061410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は超純水製造装置及び超純水製造方法に係り、特に、有機物(TOC)濃度がきわめて低い超純水を製造することができる超純水製造装置及び超純水製造方法に関する。
【0002】
【従来の技術】
従来、半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム1、一次純水系システム2、サブシステム3から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される。図2において各システムの役割は次の通りである。
【0003】
凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。
【0004】
逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)を備える一次純水系システム2では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素の除去を行う。
【0005】
低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜分離装置を備えるサブシステム3では、水の純度をより一層高め超純水にする。なお、低圧紫外線酸化装置では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換樹脂で除去される。限外濾過膜分離装置では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。
【0006】
このような従来の超純水製造装置で得られる超純水のTOC濃度は、おおむね1μg/L程度である。
【0007】
ところで、LSIの超微細化、高集積化に伴い、超LSIチップ製造における洗浄水としての超純水中の不純物の影響はより大きくなってきている。超LSIチップ不良の大部分はパターン欠陥であり、その主な原因は超純水中の不純物である。超純水中の不純物は主に低分子系有機物であり、従って、低分子系有機物成分をより一層効率良く除去する高性能の超純水製造装置が必要となってくる。
【0008】
特開平6−126271号公報には、一次純水系システムに、通常の活性炭と細孔径20〜1000Åの細孔を全細孔の5〜10%以上持つ高性能活性炭とシリカアルミナ系吸着剤との3層からなる多層吸着装置を設置することにより、逆浸透膜分離装置やイオン交換装置では除去することが難しい有機物を効率良く除去することが報告されているが、この方法は単なる吸着法であるため、充填剤の吸着能が飽和に達してしまうと破過してしまうという欠点がある。また、吸着によるTOC除去効果が期待できるのは、初期吸着と呼ばれる通水開始から約2ヶ月ぐらいの間であり、それ以降の除去効果は期待できないという欠点もある。
【0009】
【発明が解決しようとする課題】
本発明は上記従来の問題点を解決し、原水中の有機物、特に低分子系有機物成分を効率的に除去することができ、TOC濃度がきわめて低く、高純度な超純水を製造することができる超純水製造装置及び超純水製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の超純水製造装置は、一次純水系システムと、該一次純水系システムの処理水を処理するサブシステムとを有する超純水製造装置において、該一次純水系システムに生物活性炭塔が設けられており、該生物活性炭塔は、該生物活性炭塔中の活性炭への菌体付着量が10 個/gより少なくなるような量の塩素系抗菌剤の存在下に原水を処理して、原水中の有機物を生物的に分解するものであり、前記原水が、工水、市水、井水、或いはこれに回収水(超純水のコースポイントで回収された使用済超純水)を混合した水を凝集、加圧浮上(沈殿)、又は濾過装置を含む前処理システムで処理して得られた水であり、該生物活性炭塔内の菌体付着量が10 個/g−活性炭以上10 個/g−活性炭未満であることを特徴とする。
【0011】
本発明の超純水製造方法は、原水を一次純水系システムで処理した後サブシステムで処理する超純水製造方法において、前記原水が、工水、市水、井水、或いはこれに回収水(超純水のコースポイントで回収された使用済超純水)を混合した水を凝集、加圧浮上(沈殿)、又は濾過装置を含む前処理システムで処理して得られた水であり、該一次純水系システムにおいて、原水を生物活性炭塔に、該生物活性炭塔中の活性炭への菌体付着量が10 個/gより少なくなるような量の塩素系抗菌剤の存在下に通水して原水中の有機物を生物的に分解する方法であって、該生物活性炭塔内の菌体付着量が10 個/g−活性炭以上10 個/g−活性炭未満であることを特徴とする。
【0012】
本発明は、超純水中に含まれる有機物が低分子系有機物であることに注目し、低分子有機物の分解性能に優れている生物処理と活性炭による吸着処理効果を併せ持った生物活性炭塔を一次純水系システムに導入することにより、超純水中のTOC濃度の低減を可能とした。
【0013】
この生物活性炭塔の有機物除去機構は
(1) 活性炭による有機物吸着効果
(2) 生物膜による有機物分解効果
(3) 活性炭内の微生物が活性炭に吸着した有機物を分解して細孔容積を回復させる生物再生効果
の3つの機構よりなり、生物活性炭を使用することによって、活性炭自体の吸着能が飽和に達するまでの時間は大幅に延長される。
【0014】
このような生物活性炭塔では、塔内での微生物の繁殖により、塔内の圧力損失の増加が懸念されるが、本発明では、抗菌剤の存在下に処理を行うため、塔内での微生物の必要以上の繁殖は抑制され、このような目詰まりは抑制される。また、酸化剤等の抗菌剤が生物活性炭塔内で分解される際に酸素が放出されるため、塔内が溶存酸素不足となることもない。
【0015】
また、生物活性炭塔の後段に設置される逆浸透膜分離装置及びイオン交換装置においては、生物活性炭塔からリークする余剰菌による目詰まりが懸念されるが、上述の如く、本発明では抗菌剤によりある一定以上の菌が生物活性炭塔内に増殖することを抑制しているため、菌体のリークは最小限に抑えられ、逆浸透膜分離装置やイオン交換装置が目詰まりを起こすことはない。
【0016】
生物活性炭塔において生分解性有機物はほぼ完全に分解除去されるため、その後段での微生物の繁殖を抑制することも可能となる。
【0017】
なお、本発明において、抗菌剤の存在量を制限することはきわめて重要であり、抗菌剤の存在量が多過ぎると生物活性炭塔内の菌を死滅させてしまい、生物活性炭塔としての機能を得ることができなくなる。本発明においては、このような制限された量の抗菌剤により、生物活性炭塔内の菌の一部は死滅又は活性を失うが、残部の菌は若干活性が低下するもののなお活性を有するような状態に維持する。
【0018】
一般に、生物活性炭塔中の菌体付着量は処理条件によっても異なるが、抗菌剤を存在させない場合、10個/g−活性炭以上となる。本発明では、制限された量の抗菌剤の存在下で、生物活性炭塔中の菌体付着量をこれよりも少なく、1個/g以上10個/g未満となるように、微生物の増殖を抑制する。
【0019】
このような抗菌剤の存在量は、用いる塩素系抗菌剤や、処理条件等によっても異なるが、生物活性炭塔に流入する水の残留塩素濃度が0.5〜5mg/Lとなるようにする。
【0020】
【発明の実施の形態】
以下に図面を参照して本発明の超純水製造装置及び超純水製造方法の実施の形態を詳細に説明する。
【0021】
図1は本発明の超純水製造装置の実施の形態を示す系統図である。
【0022】
一次純水系システム2の原水は、工水、市水、井水、或いはこれに回収水(超純水のコースポイントで回収された使用済超純水)を混合した水を凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1で処理して得られた水である。
【0023】
生物活性炭塔に流入する水を前処理しておくことにより、生物活性炭塔の活性炭の寿命が長くなる。即ち、凝集沈殿処理等の前処理を行っていない水には、有機物中の生分解性の低い高分子系有機物成分の割合が多く、このような水を生物活性炭塔に通水すると、前述の生物による有機物の分解及び活性炭の再生効果が得られないために、活性炭が早期に破過してしまう。これに対し、本発明では、生物活性炭塔を一次純水系システム2に設け、前処理を経た水を生物活性炭塔に通水することにより、高分子系有機物は前処理で除去され、低分子系有機物は生物活性炭で除去される。しかも、この低分子系有機物が生物活性炭で生物的に分解されるため、生物活性炭の寿命が著しく長い。
【0024】
生物活性炭塔は、生物活性炭塔給水の溶存酸素濃度を高めるために、図1に示す如く、脱炭酸塔の後段に設けることが好ましく、また、生物活性炭塔から放出される余剰菌体の除去という観点から逆浸透膜分離装置の前段に設置するのが好ましい。即ち、脱炭酸塔では、炭酸の除去のために一般に空気を吹き込むため、空気中の酸素が水中に溶け込み、生物活性炭塔に必要な溶存酸素を確保することができる。一般に、工水、市水、井水、更には回収水を前処理して得られる水のTOCは、1mg/L程度であるので、この脱炭酸塔で溶解する程度の酸素量で生物活性炭塔に必要な酸素量を十分にまかなうことができる。また、本発明では、抗菌剤を存在させることで生物活性炭塔からの菌体の流出を抑制するが、菌体の流出を完全に防止できるものではないため、後段の逆浸透膜分離手段で除去するようにするのが好ましい。その他、生物活性炭塔の後段に余剰菌の繁殖防止のため紫外線殺菌塔を設置しても良く、また生物活性炭塔の後段で殺菌剤を添加しても良い。
【0025】
なお、生物活性炭塔から流出した菌体による逆浸透膜分離装置の目詰まりを防止するために、生物活性炭塔と逆浸透膜分離装置との間には保安フィルターを設けることが望ましい。
【0026】
生物活性炭塔に充填する活性炭種としては石炭系、椰子殻系等のいずれでも良く、破砕炭、造粒炭、成形炭、クロス状、繊維状等、その形状、種類等に特に制限はない。
【0027】
生物活性炭塔への活性炭の充填方式は、流動床、膨張層、固定床などのいずれでもよいが、菌体のリークが少ないところから、固定床が好ましい。生物活性炭塔の通水方式は上向流通水であっても下向流通水であっても良い。
【0028】
生物活性炭塔の生物担持量は、通水初期の状態でメタノール除去速度10μg/L/min以上を達成できるようなものであることが好ましい。このメタノール除去速度は、例えば、生物活性炭塔にTOCとしてメタノールを含有する水をSV20hr−1で通水したときの入口TOC濃度と出口TOC濃度とから、TOC除去量を求め、これを滞留時間(HRT)で除して求められる。
【0029】
本発明においては、このような生物活性炭塔に、制限された量の抗菌剤の存在下に原水を通水する。
【0030】
ここで、抗菌剤としては、殺菌剤、酸化剤等が用いられるが、好ましくは、酸化剤であり、具体的には、次亜塩素酸塩のような塩素系酸化剤や、オゾン、過酸化水素などを用いることができる。
【0031】
本発明では、生物活性炭塔の給水中にこのような抗菌剤を存在させることにより、生物活性炭塔内の菌体の過剰な増殖を抑制し、生物活性炭塔からの菌体の流出を抑制する。TOC除去効果と菌体の流出抑制効果を得ることができる生物活性炭塔内の菌体付着量は、10個/g−活性炭以上10個/g−活性炭未満である。
【0032】
このような菌体付着量を得るための抗菌剤濃度は、用いる抗菌剤の種類や処理条件等に応じても異なるが、例えば塩素系酸化剤を用いた場合、生物活性炭塔の給水(入口)の残留塩素濃度で0.5〜5mg/L程度である。この残留塩素濃度が0.5mg/L未満では、生物活性炭塔内での菌体の増殖を抑制し得ず、5mg/Lを超えると生物活性炭塔内の菌体が死滅してしまい生物分解能を得ることができなくなる上に活性炭の劣化で寿命が短縮することとなる。生物活性炭塔給水のより好ましい残留塩素濃度は1〜3mg/Lである。
【0033】
従って、本発明では、生物活性炭塔の給水の残留塩素濃度等の抗菌剤濃度がこのような濃度となるように適宜原水に抗菌剤を添加するが、一般に市水系原水を用いる場合、市水には残留塩素が0.5mg/L程度含まれているため、抗菌剤の添加が不要な場合もある。しかし、市水以外の井水や工水、回収水を原水とする場合、或いは市水を用いる場合でもこれら市水や回収水、工水等の割合が多く、原水の抗菌剤濃度が不足する場合には、抗菌剤を添加する。
【0034】
抗菌剤の添加箇所は、生物活性炭塔の前段であれば良く、特に制限はないが、抗菌剤の添加により、生物活性炭塔に到るまでの配管やタンク内の微生物の繁殖をも抑制する意味合いから、前処理システム1の凝集槽の前段に添加することが好ましい。凝集槽の前段で酸化剤を添加した場合には、原水由来のFe,Mn等を酸化剤により酸化させてその溶解度を低下させ、これにより凝集沈殿によるFe,Mnの除去効率を高めることもできる。
【0035】
Fe,Mnなどが除去されずに逆浸透膜分離装置に通水されると、逆浸透膜がこれらの物質によってファウリングを起こす可能性があるため、このように予めFe,Mnを除去することは安定運転のために有利である。
【0036】
また、凝集沈殿のような前処理を必要としない原水の場合には、原水タンクの入口側に抗菌剤を添加するのが好ましい。
【0037】
生物活性炭塔への通水速度は、SV5〜30hr−1程度とするのが好ましい。この生物活性炭塔の給水の水温は10〜35℃、pHは4〜8であることが好ましく、従って、必要に応じて、生物活性炭塔の前段に熱交換器やpH調整剤添加手段を設けることが望ましい。
【0038】
なお、図示の通り、生物活性炭塔を一次純水系システムの脱炭酸塔と逆浸透膜分離装置との間に設けることにより、脱炭酸塔による溶存酸素供給及び逆浸透膜分離装置による流出菌体の捕捉を行うことができる。
【0039】
【実施例】
以下に実験例、実施例及び比較例を挙げて、本発明をより具体的に説明する。
【0040】
実験例1
市水(TOC濃度1mg/L、塩素濃度0.6mg/L、pH6.8、水温20℃)を原水として、通常の活性炭塔と生物活性炭塔とにそれぞれ通水SV:20hr−1,通水速度20L/hrで1年間通水し、TOCの除去性能を比較する実験を行い、結果を図3に示した。
【0041】
なお、活性炭塔及び生物活性炭塔に用いた活性炭種はクラレケミカル社製石炭系活性炭「KW10−32」であり、活性炭充填量は1Lとした。生物活性炭塔は、メタノール分解除去速度10μg/L/minとなるように生物を担持させたものである。原水には、活性炭塔又は生物活性炭塔の入口の残留塩素濃度が1mg/Lとなるように、NaClOを添加した。また、TOC除去性能は、活性炭塔又は生物活性炭塔の入口のTOC濃度と出口のTOC濃度とをアナテル社製「A−1000XP」で測定し、(出口TOC濃度÷入口TOC濃度)でTOCのリーク率を求めることにより調べた。
【0042】
図3より明らかなように、通水開始後1ヶ月ぐらいまでは両者の結果に大きな相違は見られなかったが、1ヶ月を過ぎたあたりから両者の除去性能には開きが生じ、通常の活性炭塔では通水開始200日で原水TOCに対し90%以上がリークした。しかし、生物活性炭塔では65%と通常の活性炭塔に比べ1.4倍のTOC除去性能を発揮した。
【0043】
これは、通常の活性炭塔では、活性炭による吸着性能のみでTOCを除去するため、早期に活性炭の吸着能が飽和し、TOCがリークしてくるのに対して、生物活性炭塔では、活性炭による吸着のみならず、生物によるTOC分解と生物による活性炭の吸着能の再生作用が得られ、長期に亘りTOC除去能が維持されることによるものである。
【0044】
実験例2
市水を原水として、実験例1で用いたものと同様の生物活性炭塔に同様の条件で通水した。このとき生物活性炭塔を1日1回の頻度で逆洗し、1日当たりの圧力損失の増加の程度を調べ、結果を図4に示した(なお、図4において、0.1kgf/cm/日は約10Pa/日である。)。
【0045】
比較のため、市水にNaHSOを添加して残留塩素濃度を0mg/Lとしたこと以外は上記と同様にして通水実験を行い、1日当たりの圧力損失の増加の程度を調べ、結果を図4に示した。
【0046】
図4より、生物活性炭塔入口の残留塩素濃度が0mg/Lでは、生物活性炭塔内での菌体の増殖が激しく、生物活性炭塔の目詰まりで圧力損失が増大するが、残留塩素濃度を1mg/Lとすることで、菌体の過度な増殖を抑制して、生物活性炭塔内の圧力損失の増加を抑制することができることがわかる。
【0047】
なお、通水期間中の生物活性炭塔内の活性炭に対する菌体付着量を蛍光色素を用いた直接計数法により調べたところ、残留塩素濃度を1mg/Lとした場合には、10〜10個/gの範囲に維持されていたが、残留塩素濃度を0mg/Lとした場合には、10〜10個/gに増殖していた。
【0048】
実施例1
市水(TOC濃度1mg/L、pH6.8、水温20℃、塩素濃度0.6mg/L)を、2m/hrの処理量で一次純水系システムとしての脱炭酸塔、生物活性炭塔、逆浸透膜分離装置、混床式イオン交換装置、脱気装置及び逆浸透膜分離装置に順次通水した後、サブシステムとしての低圧紫外線酸化装置、イオン交換純水装置、及び限外濾過膜分離装置に順次通水して処理して超純水を製造する超純水製造装置において、生物活性炭塔の出口水のTOC濃度と、得られた超純水(限外濾過膜分離装置の出口水)のTOC濃度を調べ、結果を表1に示した。TOC濃度はアナテル社製「A−1000XP」を用いて測定した。
【0049】
なお、用いた生物活性炭塔は、実験例1で用いたものと同様の活性炭種及びメタノール除去性能のものであり、通水SVは20hr−1とした。また、市水にはNaClOを添加して生物活性炭塔の入口の残留塩素濃度が1mg/Lとなるように調整した。
【0050】
比較例1
実施例1において、生物活性炭塔の代りに通常の活性炭塔を用いたこと以外は同様にして超純水の製造を行い、活性炭塔の出口水のTOC濃度と得られた超純水のTOC濃度を調べ、結果を表1に示した。
【0051】
比較例2
実施例1において、NaHSOを添加することにより生物活性炭塔の入口の残留塩素濃度を0mg/Lとしたこと以外は同様にして超純水の製造を行い、活性炭塔の出口水のTOC濃度と得られた超純水のTOC濃度を調べ、結果を表1に示した。
【0052】
【表1】

Figure 0005061410
【0053】
表1より次のことが明らかである。
【0054】
即ち、活性炭塔で処理した比較例1では、通水日数に伴いTOC値が増加し超純水中のTOC値は1μg/L程度で安定した。これは図3で示した活性炭塔での傾向と同じである。一方、生物活性炭塔を用いた実施例1においては通水日数によらず超純水のTOC濃度は0.3μg/L程度で安定しており、図3で示した、生物活性炭塔単独の時とは傾向が異なる。これは、一部のTOC成分が生物活性炭塔内で完全に分解、吸着除去されなかったとしても、生物活性炭塔を通過することにより生物によって何らかの形態変化を受け、後段の逆浸透膜分離装置やイオン交換装置で除去可能物質に変化したため、TOC濃度が低い値で安定するためと考えられる。
【0055】
なお、生物活性炭塔の入口の残留塩素濃度を0mg/Lとした比較例2では、生物活性炭塔内での菌体の増殖が著しく、1日当りの圧力損失の増加が大きかった。
【0056】
【発明の効果】
以上詳述した通り、本発明の超純水製造装置及び超純水製造方法によれば、TOC濃度が著しく低い、不純物の問題のない高純度な超純水を長期に亘り安定に製造することができる。本発明の超純水製造装置及び超純水製造方法により製造された超純水は、超LSIチップ洗浄水として、良好な洗浄効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の超純水製造装置の実施の形態を示す系統図である。
【図2】従来の超純水製造装置を示す系統図である。
【図3】実験例1の結果を示すグラフである。
【図4】実験例2の結果を示すグラフである。
【符号の説明】
1 前処理システム
2 一次純水系システム
3 サブシステム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrapure water production apparatus and an ultrapure water production method, and more particularly to an ultrapure water production apparatus and an ultrapure water production method capable of producing ultrapure water having an extremely low organic substance (TOC) concentration.
[0002]
[Prior art]
Conventionally, as shown in FIG. 2, ultrapure water used as semiconductor cleaning water is raw water (industrial water, industrial water, etc.) in an ultrapure water production apparatus comprising a pretreatment system 1, a primary pure water system 2, and a subsystem 3. Manufactured by treating city water, well water, etc.). In FIG. 2, the role of each system is as follows.
[0003]
In the pretreatment system 1 composed of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc., suspended substances and colloidal substances in raw water are removed. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.
[0004]
In the primary pure water system 2 including a reverse osmosis membrane separation device, a deaeration device, and an ion exchange device (such as a mixed bed type or a 4-bed, 5-tower type), ions and organic components in raw water are removed. The reverse osmosis membrane separation apparatus removes salts and ionic and colloidal TOC. The ion exchange apparatus removes salts and removes the TOC component adsorbed or ion exchanged by the ion exchange resin. In the deaerator, inorganic carbon (IC) and dissolved oxygen are removed.
[0005]
In the subsystem 3 including the low-pressure ultraviolet oxidation device, the ion-exchange pure water device, and the ultrafiltration membrane separation device, the purity of water is further increased to ultrapure water. In the low-pressure ultraviolet oxidizer, TOC is decomposed into organic acids and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. Organic substances and CO 2 produced by the decomposition are removed by an ion exchange resin in the subsequent stage. In the ultrafiltration membrane separation device, the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.
[0006]
The TOC concentration of ultrapure water obtained with such a conventional ultrapure water production apparatus is about 1 μg / L.
[0007]
By the way, with the miniaturization and high integration of LSIs, the influence of impurities in ultrapure water as cleaning water in the manufacture of VLSI chips is increasing. Most of the defects of VLSI chips are pattern defects, and the main cause is impurities in ultrapure water. Impurities in ultrapure water are mainly low molecular organic substances, and therefore, a high-performance ultrapure water production apparatus that more efficiently removes low molecular organic components becomes necessary.
[0008]
Japanese Patent Application Laid-Open No. 6-126271 discloses a high-performance activated carbon having a primary pure water system having 5 to 10% of total pores having a pore diameter of 20 to 1000 mm and a silica alumina type adsorbent. It has been reported that organic substances that are difficult to remove by reverse osmosis membrane separation devices and ion exchange devices can be efficiently removed by installing a three-layer multilayer adsorption device, but this method is a simple adsorption method. For this reason, there is a drawback in that if the adsorption capacity of the filler reaches saturation, it breaks through. Further, the TOC removal effect by adsorption can be expected for about two months from the start of water flow called initial adsorption, and there is also a drawback that the removal effect after that cannot be expected.
[0009]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, can efficiently remove organic substances in raw water, particularly low molecular organic components, and can produce ultrapure water having a very low TOC concentration and high purity. An object of the present invention is to provide an ultrapure water production apparatus and a method for producing ultrapure water.
[0010]
[Means for Solving the Problems]
The ultrapure water production apparatus of the present invention is an ultrapure water production apparatus having a primary pure water system and a subsystem for treating treated water of the primary pure water system, wherein a biological activated carbon tower is provided in the primary pure water system. The biological activated carbon tower treats raw water in the presence of an amount of a chlorinated antibacterial agent such that the amount of bacterial cells attached to the activated carbon in the biological activated carbon tower is less than 10 6 cells / g , all SANYO to decompose the raw water of organic matter in the biological, the raw water, industrial water, city water, well water, or this in the recovered water (ultrapure water spent ultra-pure water that has been recovered in the course points) agglomerating the mixed water, the dissolved air flotation (precipitation), or a water obtained by treatment with pretreatment system comprising a filtration device, cell adhesion amount of organism activated carbon tower is 10 4 / g- wherein the 10 der Rukoto less than 6 / g- activated carbon or activated carbon.
[0011]
The ultrapure water production method of the present invention is an ultrapure water production method in which raw water is treated with a primary pure water system and then treated with a subsystem, wherein the raw water is industrial water, city water, well water, or recovered water. (Spent ultrapure water collected at the course point of ultrapure water) is water obtained by coagulation, pressure flotation (precipitation), or processing by a pretreatment system including a filtration device, in the primary pure water system system, the biological activated carbon column raw water, water flow in the presence of an amount of chlorine-based antibacterial agents such as bacteria adhering amount of the activated carbon organism activated carbon column in is less than 10 6 cells / g And biologically decomposing organic matter in the raw water, characterized in that the bacterial cell adhesion amount in the biological activated carbon tower is 10 4 / g-activated carbon or more and less than 10 6 / g-activated carbon. To do.
[0012]
The present invention pays attention to the fact that the organic matter contained in the ultrapure water is a low-molecular-weight organic matter, and the biological activated carbon tower having both the biological treatment excellent in the decomposition performance of the low-molecular organic matter and the adsorption treatment effect by activated carbon is used as a primary. By introducing it into a pure water system, the TOC concentration in ultrapure water can be reduced.
[0013]
The organic matter removal mechanism of this biological activated carbon tower
(1) Organic matter adsorption effect by activated carbon
(2) Organic matter decomposition effect by biofilm
(3) It consists of three mechanisms of the bioregeneration effect in which the microorganisms in the activated carbon decompose the organic matter adsorbed on the activated carbon to restore the pore volume. By using biological activated carbon, the adsorption capacity of the activated carbon itself reaches saturation. The time until is greatly extended.
[0014]
In such a biological activated carbon tower, there is a concern about an increase in pressure loss in the tower due to the propagation of microorganisms in the tower, but in the present invention, since the treatment is performed in the presence of an antibacterial agent, the microorganisms in the tower More than necessary breeding is suppressed, and such clogging is suppressed. In addition, since oxygen is released when an antibacterial agent such as an oxidant is decomposed in the biological activated carbon tower, the inside of the tower does not become deficient in dissolved oxygen.
[0015]
Further, in the reverse osmosis membrane separation apparatus and ion exchange apparatus installed at the subsequent stage of the biological activated carbon tower, there is a concern about clogging due to excess bacteria leaking from the biological activated carbon tower. Since the growth of a certain number or more of the bacteria is suppressed in the biological activated carbon tower, the leakage of the bacterial cells is minimized, and the reverse osmosis membrane separation device and the ion exchange device are not clogged.
[0016]
Since the biodegradable organic matter is almost completely decomposed and removed in the biological activated carbon tower, it is possible to suppress the propagation of microorganisms in the subsequent stage.
[0017]
In the present invention, it is extremely important to limit the amount of the antibacterial agent present. If the amount of the antibacterial agent is too large, the bacteria in the biological activated carbon tower are killed, and a function as a biological activated carbon tower is obtained. I can't do that. In the present invention, such a limited amount of the antibacterial agent kills or loses some of the fungi in the biological activated carbon tower, but the remaining fungus has a slight decrease in activity but still has activity. Maintain state.
[0018]
Generally, the amount of bacterial cells attached to the biological activated carbon tower varies depending on the treatment conditions, but when no antibacterial agent is present, it is 10 6 / g-activated carbon or more. In the present invention, in the presence of a limited amount of antimicrobial agent, less than this cell adhesion amount in a biological activated carbon column, such that 1 0 4 / g or more 10 6 cells / less than g, the microorganism It suppresses the growth.
[0019]
Abundance of such antimicrobial agents, chlorine-based antibacterial agent or to be used, varies depending processing conditions, it as the residual chlorine concentration of the water flowing to the biological activated carbon column is 0.5 to 5 mg / L .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an ultrapure water production apparatus and an ultrapure water production method of the present invention will be described below in detail with reference to the drawings.
[0021]
FIG. 1 is a system diagram showing an embodiment of the ultrapure water production apparatus of the present invention.
[0022]
The raw water of the primary pure water system 2 agglomerates, pressurizes and floats water from industrial water, city water, well water, or water mixed with recovered water (used ultrapure water collected at the course point of ultrapure water). (Precipitation) is water obtained by treatment with a pretreatment system 1 comprising a filtration device or the like.
[0023]
By pretreating the water flowing into the biological activated carbon tower, the life of the activated carbon in the biological activated carbon tower is extended. That is, in the water that has not been subjected to pretreatment such as coagulation sedimentation treatment, the ratio of the high-molecular-weight organic matter component having low biodegradability in the organic matter is large, and when such water is passed through the biological activated carbon tower, Since the organic matter cannot be decomposed by living organisms and the activated carbon is not regenerated, the activated carbon breaks through early. On the other hand, in the present invention, the biological activated carbon tower is provided in the primary pure water system 2 and the pre-treated water is passed through the biological activated carbon tower, so that the high molecular weight organic matter is removed by the pretreatment, and the low molecular weight system. Organic matter is removed with biological activated carbon. Moreover, since this low molecular weight organic substance is biologically decomposed by biological activated carbon, the life of biological activated carbon is remarkably long.
[0024]
In order to increase the dissolved oxygen concentration of the biological activated carbon tower feed water, the biological activated carbon tower is preferably provided at the rear stage of the decarboxylation tower as shown in FIG. 1, and the removal of surplus cells released from the biological activated carbon tower From the viewpoint, it is preferably installed in the front stage of the reverse osmosis membrane separation device. That is, in the decarbonation tower, air is generally blown to remove carbonic acid, so that oxygen in the air dissolves in the water, and the dissolved oxygen necessary for the biological activated carbon tower can be secured. Generally, since the TOC of water obtained by pretreatment of industrial water, city water, well water, and recovered water is about 1 mg / L, the biological activated carbon tower has an oxygen amount that can be dissolved in this decarbonation tower. Can sufficiently cover the amount of oxygen required. Further, in the present invention, the presence of an antibacterial agent suppresses the outflow of bacterial cells from the biological activated carbon tower, but since it cannot completely prevent the outflow of bacterial cells, it is removed by a reverse osmosis membrane separation means in the subsequent stage. It is preferable to do so. In addition, an ultraviolet sterilization tower may be installed after the biological activated carbon tower in order to prevent surplus bacteria from growing, and a sterilizing agent may be added after the biological activated carbon tower.
[0025]
In addition, in order to prevent clogging of the reverse osmosis membrane separation device due to bacterial cells flowing out from the biological activated carbon tower, it is desirable to provide a security filter between the biological activated carbon tower and the reverse osmosis membrane separation device.
[0026]
The activated carbon type to be packed in the biological activated carbon tower may be any of coal-based, coconut shell-based, etc., and there are no particular restrictions on the shape, type, etc. of crushed coal, granulated coal, formed coal, cloth, fiber, etc.
[0027]
The activated carbon filling system for the biological activated carbon tower may be any of a fluidized bed, an expanded bed, a fixed bed, and the like. The water flow system of the biological activated carbon tower may be upward circulating water or downward circulating water.
[0028]
The biological support amount of the biological activated carbon tower is preferably such that a methanol removal rate of 10 μg / L / min or more can be achieved in the initial stage of water flow. The methanol removal rate is determined, for example, by calculating the TOC removal amount from the inlet TOC concentration and the outlet TOC concentration when water containing methanol as TOC is passed through the biological activated carbon tower with SV20hr −1 , and this is determined as the residence time ( HRT).
[0029]
In the present invention, raw water is passed through such a biological activated carbon tower in the presence of a limited amount of antibacterial agent.
[0030]
Here, as the antibacterial agent, a bactericidal agent, an oxidizing agent, and the like are used, but an oxidizing agent is preferable, and specifically, a chlorine-based oxidizing agent such as hypochlorite, ozone, and peroxide. Hydrogen or the like can be used.
[0031]
In the present invention, the presence of such an antibacterial agent in the feed water of the biological activated carbon tower suppresses the excessive growth of the bacterial cells in the biological activated carbon tower and suppresses the outflow of the bacterial cells from the biological activated carbon tower. The microbial cell adhesion amount in the biological activated carbon tower capable of obtaining the TOC removal effect and the bacterial cell outflow suppression effect is 10 4 pieces / g-activated carbon or more and less than 10 6 pieces / g-activated carbon.
[0032]
The concentration of the antibacterial agent for obtaining such a bacterial cell adhesion amount varies depending on the type of antibacterial agent used and the treatment conditions, but for example, when a chlorinated oxidant is used, the feed water (inlet) of the biological activated carbon tower The residual chlorine concentration is about 0.5 to 5 mg / L. If the residual chlorine concentration is less than 0.5 mg / L, the growth of the cells in the biological activated carbon tower cannot be suppressed, and if it exceeds 5 mg / L, the cells in the biological activated carbon tower are killed and the biological resolution is reduced. It cannot be obtained and the life is shortened due to the deterioration of the activated carbon. The more preferable residual chlorine concentration of biological activated carbon tower feed water is 1 to 3 mg / L.
[0033]
Therefore, in the present invention, an antibacterial agent is appropriately added to the raw water so that the concentration of the antibacterial agent such as the residual chlorine concentration of the feed water of the biological activated carbon tower is such a concentration. Generally, when using city water-based raw water, Since residual chlorine is contained in an amount of about 0.5 mg / L, it may not be necessary to add an antibacterial agent. However, even when using well water, industrial water, and recovered water other than city water as raw water, or using city water, the proportion of these city water, recovered water, industrial water, etc. is large, and the concentration of antibacterial agent in raw water is insufficient. In some cases, an antibacterial agent is added.
[0034]
The antibacterial agent can be added at the front stage of the biological activated carbon tower, and is not particularly limited. However, the addition of the antibacterial agent has the effect of suppressing the growth of microorganisms in the piping and tanks leading to the biological activated carbon tower. Therefore, it is preferable to add to the pre-stage of the coagulation tank of the pretreatment system 1. When an oxidizing agent is added at the front stage of the coagulation tank, Fe, Mn and the like derived from raw water are oxidized by the oxidizing agent to reduce the solubility thereof, thereby improving the removal efficiency of Fe and Mn by coagulation precipitation. .
[0035]
If the water is passed through the reverse osmosis membrane separator without removing Fe, Mn, etc., the reverse osmosis membrane may cause fouling by these substances. Is advantageous for stable operation.
[0036]
In the case of raw water that does not require pretreatment such as coagulation sedimentation, it is preferable to add an antibacterial agent to the inlet side of the raw water tank.
[0037]
The water flow rate to the biological activated carbon tower is preferably about SV5 to 30 hr- 1 . It is preferable that the temperature of the feed water of the biological activated carbon tower is 10 to 35 ° C. and the pH is 4 to 8. Therefore, if necessary, a heat exchanger and a pH adjuster addition means are provided in the front stage of the biological activated carbon tower. Is desirable.
[0038]
As shown in the figure, by providing a biological activated carbon tower between the decarbonation tower of the primary pure water system and the reverse osmosis membrane separation device, the dissolved oxygen supply by the decarbonation tower and the effluent cells by the reverse osmosis membrane separation device Capture can be performed.
[0039]
【Example】
Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples, and comparative examples.
[0040]
Experimental example 1
Using municipal water (TOC concentration 1 mg / L, chlorine concentration 0.6 mg / L, pH 6.8, water temperature 20 ° C.) as raw water, water is passed through normal activated carbon tower and biological activated carbon tower SV: 20 hr −1 , respectively. An experiment was conducted in which water was passed at a speed of 20 L / hr for one year and the removal performance of TOC was compared. The results are shown in FIG.
[0041]
The activated carbon used in the activated carbon tower and the biological activated carbon tower was Kuraray Chemical Co., Ltd. coal-based activated carbon “KW10-32”, and the activated carbon filling amount was 1 L. The biological activated carbon tower is one in which an organism is supported so as to have a methanol decomposition removal rate of 10 μg / L / min. NaClO was added to the raw water so that the residual chlorine concentration at the inlet of the activated carbon tower or biological activated carbon tower was 1 mg / L. In addition, the TOC removal performance is determined by measuring the TOC concentration at the inlet of the activated carbon tower or the biological activated carbon tower and the TOC concentration at the outlet with “A-1000XP” manufactured by Anatel, and leaking the TOC by (outlet TOC concentration ÷ inlet TOC concentration). We investigated by finding the rate.
[0042]
As can be seen from FIG. 3, there was no significant difference between the two results until about one month after the start of water flow. More than 90% of the tower leaked from the raw water TOC 200 days after the start of water flow. However, the biological activated carbon tower exhibited TOC removal performance of 65%, 1.4 times that of a normal activated carbon tower.
[0043]
This is because the normal activated carbon tower removes TOC only by the adsorption performance by activated carbon, so the adsorption capacity of activated carbon is saturated early and TOC leaks, whereas the biological activated carbon tower is adsorbed by activated carbon. Not only that, TOC decomposition by living organisms and regeneration of the adsorption ability of activated carbon by living organisms are obtained, and the TOC removal capability is maintained for a long time.
[0044]
Experimental example 2
Using city water as raw water, water was passed through the same biological activated carbon tower as used in Experimental Example 1 under the same conditions. At this time, the biological activated carbon tower was backwashed once a day, and the degree of increase in pressure loss per day was examined. The results are shown in FIG. 4 (in FIG. 4, 0.1 kgf / cm 2 / The day is about 10 4 Pa / day.)
[0045]
For comparison, a water flow experiment was conducted in the same manner as described above except that NaHSO 3 was added to city water to make the residual chlorine concentration 0 mg / L, and the degree of increase in pressure loss per day was examined. This is shown in FIG.
[0046]
As shown in FIG. 4, when the residual chlorine concentration at the biological activated carbon tower inlet is 0 mg / L, the bacterial cells grow rapidly in the biological activated carbon tower and the pressure loss increases due to clogging of the biological activated carbon tower, but the residual chlorine concentration is 1 mg. It turns out that the excessive proliferation of a microbial cell can be suppressed by setting it as / L, and the increase in the pressure loss in a biological activated carbon tower can be suppressed.
[0047]
In addition, when the amount of bacterial cells attached to the activated carbon in the biological activated carbon tower during the water flow period was examined by a direct counting method using a fluorescent dye, when the residual chlorine concentration was 1 mg / L, 10 5 to 10 6. pieces / g was maintained in the range of, but if the residual chlorine concentration of 0 mg / L had proliferated 10 7 to 10 8 / g.
[0048]
Example 1
City water (TOC concentration 1 mg / L, pH 6.8, water temperature 20 ° C., chlorine concentration 0.6 mg / L) at a treatment amount of 2 m 3 / hr as decarbonation tower, biological activated carbon tower, reverse After passing water sequentially through the osmosis membrane separator, mixed bed ion exchanger, deaerator, and reverse osmosis membrane separator, the low-pressure ultraviolet oxidizer, ion-exchange pure water device, and ultrafiltration membrane separator as subsystems In the ultrapure water production device that produces ultrapure water by sequentially passing water through the TOC, the TOC concentration of the outlet water of the biological activated carbon tower and the obtained ultrapure water (outlet water of the ultrafiltration membrane separation device) The TOC concentration was examined, and the results are shown in Table 1. The TOC concentration was measured using “A-1000XP” manufactured by Anatel.
[0049]
The biological activated carbon tower used was the same activated carbon type and methanol removal performance as used in Experimental Example 1, and the water flow SV was 20 hr −1 . In addition, NaClO was added to the city water so that the residual chlorine concentration at the inlet of the biological activated carbon tower was adjusted to 1 mg / L.
[0050]
Comparative Example 1
In Example 1, ultrapure water was produced in the same manner except that a normal activated carbon tower was used instead of the biological activated carbon tower, and the TOC concentration of the outlet water of the activated carbon tower and the TOC concentration of the obtained ultrapure water were obtained. The results are shown in Table 1.
[0051]
Comparative Example 2
In Example 1, ultrapure water was produced in the same manner except that the residual chlorine concentration at the inlet of the biological activated carbon tower was set to 0 mg / L by adding NaHSO 3 , and the TOC concentration of the outlet water of the activated carbon tower was The TOC concentration of the obtained ultrapure water was examined, and the results are shown in Table 1.
[0052]
[Table 1]
Figure 0005061410
[0053]
From Table 1, the following is clear.
[0054]
That is, in Comparative Example 1 treated with the activated carbon tower, the TOC value increased with the number of water passage days, and the TOC value in ultrapure water was stabilized at about 1 μg / L. This is the same as the tendency in the activated carbon tower shown in FIG. On the other hand, in Example 1 using a biological activated carbon tower, the TOC concentration of ultrapure water is stable at about 0.3 μg / L regardless of the number of days of water passage, and the biological activated carbon tower shown in FIG. The trend is different. This is because even if some TOC components are not completely decomposed and adsorbed and removed in the biological activated carbon tower, they undergo some form change by the organism by passing through the biological activated carbon tower. This is considered to be because the TOC concentration is stabilized at a low value because it has been changed to a removable substance by the ion exchange device.
[0055]
In Comparative Example 2 where the residual chlorine concentration at the inlet of the biological activated carbon tower was 0 mg / L, the growth of the cells in the biological activated carbon tower was remarkable, and the increase in pressure loss per day was large.
[0056]
【Effect of the invention】
As described above in detail, according to the ultrapure water production apparatus and the ultrapure water production method of the present invention, high purity ultrapure water having an extremely low TOC concentration and no problem of impurities can be stably produced over a long period of time. Can do. The ultrapure water produced by the ultrapure water production apparatus and the ultrapure water production method of the present invention can obtain a good cleaning effect as VLSI chip cleaning water.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus of the present invention.
FIG. 2 is a system diagram showing a conventional ultrapure water production apparatus.
FIG. 3 is a graph showing the results of Experimental Example 1.
4 is a graph showing the results of Experimental Example 2. FIG.
[Explanation of symbols]
1 Pretreatment system 2 Primary pure water system 3 Subsystem

Claims (4)

一次純水系システムと、該一次純水系システムの処理水を処理するサブシステムとを有する超純水製造装置において、
該一次純水系システムに生物活性炭塔が設けられており、
該生物活性炭塔は、該生物活性炭塔中の活性炭への菌体付着量が10 個/gより少なくなるような量の塩素系抗菌剤の存在下に原水を処理して、原水中の有機物を生物的に分解するものであり、
前記原水が、工水、市水、井水、或いはこれに回収水(超純水のコースポイントで回収された使用済超純水)を混合した水を凝集、加圧浮上(沈殿)、又は濾過装置を含む前処理システムで処理して得られた水であり、
該生物活性炭塔内の菌体付着量が10 個/g−活性炭以上10 個/g−活性炭未満であることを特徴とする超純水製造装置。
In an ultrapure water production apparatus having a primary pure water system and a subsystem for treating treated water of the primary pure water system,
The primary pure water system is provided with a biological activated carbon tower,
The biological activated carbon tower treats raw water in the presence of an amount of a chlorinated antibacterial agent so that the amount of bacterial cells attached to the activated carbon in the biological activated carbon tower is less than 10 6 cells / g. the all SANYO be decomposed biological,
The raw water agglomerates, floats under pressure (precipitation), or water obtained by mixing industrial water, city water, well water, or water mixed with recovered water (used ultrapure water collected at the course point of ultrapure water), or Water obtained by treatment with a pretreatment system including a filtration device,
Cell adhesion amount of organism activated carbon tower is 10 4 / g- charcoal or 106 / g- charcoal less der Rukoto characterized ultrapure water production system.
請求項1において、前記生物活性炭塔に流入する水の残留塩素濃度が0.5〜5mg/Lであることを特徴とする超純水製造装置。Oite to claim 1, the residual chlorine concentration of the water flowing into the biological activated carbon column is characterized in that it is a 0.5 to 5 mg / L ultrapure water production system. 原水を一次純水系システムで処理した後サブシステムで処理する超純水製造方法において、
前記原水が、工水、市水、井水、或いはこれに回収水(超純水のコースポイントで回収された使用済超純水)を混合した水を凝集、加圧浮上(沈殿)、又は濾過装置を含む前処理システムで処理して得られた水であり、
該一次純水系システムにおいて、原水を生物活性炭塔に、該生物活性炭塔中の活性炭への菌体付着量が10 個/gより少なくなるような量の塩素系抗菌剤の存在下に通水して原水中の有機物を生物的に分解する方法であって、
該生物活性炭塔内の菌体付着量が10 個/g−活性炭以上10 個/g−活性炭未満であることを特徴とする超純水製造方法。
In the ultrapure water production method in which raw water is treated with a primary pure water system and then treated with a subsystem,
The raw water agglomerates, floats under pressure (precipitation), or water obtained by mixing industrial water, city water, well water, or water mixed with recovered water (used ultrapure water collected at the course point of ultrapure water), or Water obtained by treatment with a pretreatment system including a filtration device,
In the primary pure water system system, the biological activated carbon column raw water, water flow in the presence of an amount of chlorine-based antibacterial agents such as bacteria adhering amount of the activated carbon organism activated carbon column in is less than 10 6 cells / g A method of biologically degrading organic matter in raw water ,
The method for producing ultrapure water, wherein the amount of bacterial cells in the biological activated carbon tower is 10 4 / g-activated carbon or more and less than 10 6 / g-activated carbon .
請求項において、前記生物活性炭塔に通水する水の残留塩素濃度が0.5〜5mg/Lであることを特徴とする超純水製造方法。4. The method for producing ultrapure water according to claim 3 , wherein the residual chlorine concentration of water passing through the biological activated carbon tower is 0.5 to 5 mg / L.
JP2001141892A 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method Expired - Fee Related JP5061410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141892A JP5061410B2 (en) 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141892A JP5061410B2 (en) 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method

Publications (2)

Publication Number Publication Date
JP2002336887A JP2002336887A (en) 2002-11-26
JP5061410B2 true JP5061410B2 (en) 2012-10-31

Family

ID=18988274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141892A Expired - Fee Related JP5061410B2 (en) 2001-05-11 2001-05-11 Ultrapure water production apparatus and ultrapure water production method

Country Status (1)

Country Link
JP (1) JP5061410B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848641B2 (en) * 2005-02-01 2011-12-28 栗田工業株式会社 Pure water production method and apparatus
JP5412834B2 (en) * 2009-01-06 2014-02-12 栗田工業株式会社 Ultrapure water production method and apparatus
US8916048B2 (en) * 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
JP5604914B2 (en) * 2010-03-05 2014-10-15 栗田工業株式会社 Water treatment method and ultrapure water production method
JP5604913B2 (en) * 2010-03-05 2014-10-15 栗田工業株式会社 Water treatment method and ultrapure water production method
JP5573605B2 (en) * 2010-11-04 2014-08-20 住友金属鉱山株式会社 Ultrapure water production system and cleaning method thereof, and ultrapure water production method using the same
JP5915127B2 (en) * 2011-12-05 2016-05-11 栗田工業株式会社 Backwashing method of biological activated carbon tower

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632821B2 (en) * 1984-11-02 1994-05-02 栗田工業株式会社 Method for suppressing the growth of microorganisms in pure water
JPH0645036B2 (en) * 1984-11-02 1994-06-15 栗田工業株式会社 Ultrapure water production system
JPH0634996B2 (en) * 1986-05-02 1994-05-11 栗田工業株式会社 Biological treatment method of water containing trace organic matter
JP2772363B2 (en) * 1989-10-02 1998-07-02 オルガノ株式会社 Wastewater recovery method in semiconductor manufacturing process
JPH0461984A (en) * 1990-06-28 1992-02-27 Ebara Infilco Co Ltd Bacteriostatic method of active carbon
JPH0787914B2 (en) * 1991-08-08 1995-09-27 栗田工業株式会社 Membrane separation method
JP2520206B2 (en) * 1991-09-06 1996-07-31 日本碍子株式会社 Activated carbon treatment method for water
JPH05115868A (en) * 1991-10-28 1993-05-14 Kankyo Eng Kk Advanced treatment of waste water
JPH05277475A (en) * 1992-03-31 1993-10-26 Kurita Water Ind Ltd Treatment method for water containing organic substance
JPH05309398A (en) * 1992-05-11 1993-11-22 Kurita Water Ind Ltd Apparatus for producing pure water
JP3468784B2 (en) * 1992-08-25 2003-11-17 栗田工業株式会社 Ultrapure water production equipment
JPH0679272A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Device for production of pure water
JP3491328B2 (en) * 1994-04-15 2004-01-26 栗田工業株式会社 Ultrapure water production equipment
JPH07290071A (en) * 1994-04-21 1995-11-07 Japan Organo Co Ltd Method for removing organic matter and device therefor
JP3417052B2 (en) * 1994-05-23 2003-06-16 栗田工業株式会社 Ultrapure water production method
JP3919259B2 (en) * 1995-07-24 2007-05-23 オルガノ株式会社 Ultrapure water production equipment
JP3546548B2 (en) * 1995-08-01 2004-07-28 栗田工業株式会社 Ultrapure water production equipment
JP3918199B2 (en) * 1995-09-29 2007-05-23 栗田工業株式会社 Activated carbon treatment equipment
JP3433601B2 (en) * 1996-01-09 2003-08-04 栗田工業株式会社 Wastewater recovery and purification equipment
JP3464341B2 (en) * 1996-05-07 2003-11-10 栗田工業株式会社 Slime control method for pure water production equipment
JP4208270B2 (en) * 1997-03-10 2009-01-14 栗田工業株式会社 Pure water production method
JP3651306B2 (en) * 1999-04-02 2005-05-25 栗田工業株式会社 Method and apparatus for treating water containing trace organic matter
JP3721871B2 (en) * 1999-07-29 2005-11-30 栗田工業株式会社 Production method of ultra pure water
JP4608765B2 (en) * 2000-11-27 2011-01-12 栗田工業株式会社 Biodegradation method of TOC component

Also Published As

Publication number Publication date
JP2002336887A (en) 2002-11-26

Similar Documents

Publication Publication Date Title
TWI408107B (en) Extra-pure water production equipment and operating method thereof
JP5412834B2 (en) Ultrapure water production method and apparatus
KR101809769B1 (en) Water treatment method and ultrapure water production method
JPH0790219B2 (en) Pure water production apparatus and production method
WO2011108478A1 (en) Water treatment method and process for producing ultrapure water
TWI568683B (en) Water treatment method and method for producing ultrapure water
US9085475B2 (en) Ultrapure water producing method and apparatus
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JPH07284799A (en) Ultra-pure water manufacturing apparatus
JP5055662B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP4608765B2 (en) Biodegradation method of TOC component
JPS6336890A (en) Apparatus for producing high-purity water
JP3948337B2 (en) Ultrapure water production apparatus and ultrapure water production method
JPS62110795A (en) Device for producing high-purity water
JP3969185B2 (en) Pure water production equipment
JP2002355683A (en) Ultrapure water making method and apparatus
JP3433601B2 (en) Wastewater recovery and purification equipment
JP3387311B2 (en) Ultrapure water production equipment
JP5782675B2 (en) Water treatment method and ultrapure water production method
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
JP2002307080A (en) Apparatus for producing ultrapure water
US20230242419A1 (en) Ultrapure water production system and ultrapure water production method
JPH07328693A (en) Ultrapure water producing device
JPH03293087A (en) Production of ultra-pure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5061410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees