JPH05309398A - Apparatus for producing pure water - Google Patents

Apparatus for producing pure water

Info

Publication number
JPH05309398A
JPH05309398A JP4117390A JP11739092A JPH05309398A JP H05309398 A JPH05309398 A JP H05309398A JP 4117390 A JP4117390 A JP 4117390A JP 11739092 A JP11739092 A JP 11739092A JP H05309398 A JPH05309398 A JP H05309398A
Authority
JP
Japan
Prior art keywords
water
membrane
cdi
raw water
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117390A
Other languages
Japanese (ja)
Inventor
Takahito Motomura
敬人 本村
Toru Kawachi
透 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4117390A priority Critical patent/JPH05309398A/en
Publication of JPH05309398A publication Critical patent/JPH05309398A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously and efficiently produce water of high purity over a long period of time, in an apparatus for producing pure water by treating raw water using an RO(reverse osmosis) membrane device and an CDI (electrodialyser), by preventing the deterioration of an RO membrane or the ion exchange resin of the CDI due to dissolved oxygen in raw water, the lowering in the quality of treated water due to the propagation of bacteria, the lowering of the amount of treated water and the clogging of the RO membrane. CONSTITUTION:A raw water deoxidizing means is provided and raw water is successively treated in the order of deoxidizing device (vacuum degassing tower 2) RO membrane device 3 CDI 5. Since the raw water subjected to deoxidizing treatment in the vacuum degassing tower 2 is introduced into the RO membrane device 3, the deterioration of the RO membrane or the iron exchange resin of the CDI 5 due to dissolved oxygen in raw water is prevented. The propagation of bacteria is also suppressed and bacteria trouble such as fouling or the clogging of the RO membrane is also prevented and water of high purity can be efficiently produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、純水製造装置に係り、
特に、医薬、食品向用水処理システム等として有効な純
水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pure water producing apparatus,
In particular, the present invention relates to a pure water producing device effective as a water treatment system for medicines and foods.

【0002】[0002]

【従来の技術】従来、純水の製造装置として、イオン交
換膜及びイオン交換樹脂を装填した非再生型イオン交換
装置、即ち、電気透析器(以下「CDI」と略称するこ
とがある。)が知られている(特開昭61−10790
6号)。CDIは塩の大量除去から逆浸透による製造水
の純化に至るまでの幅広い原水の効果的な脱イオンが可
能である。
2. Description of the Related Art Conventionally, as a pure water production apparatus, a non-regeneration type ion exchange apparatus loaded with an ion exchange membrane and an ion exchange resin, that is, an electrodialyzer (hereinafter sometimes abbreviated as "CDI") is used. Known (Japanese Patent Laid-Open No. 61-10790)
No. 6). CDI is capable of effective deionization of a wide range of raw water, from large-scale salt removal to purification of manufactured water by reverse osmosis.

【0003】また、CDIはイオン交換樹脂のように再
生を必要とせず、完全な連続採水が可能で、極めて高純
度の水が得られるという優れた効果を奏する。
[0003] CDI does not require regeneration like ion exchange resins and allows complete continuous water sampling, and has an excellent effect that extremely high purity water can be obtained.

【0004】しかしながら、CDIによる純水製造にお
いては、原水中のSiO2 の除去が十分になされないと
いう欠点があった。即ち、CDIでのSiO2 除去率は
通水初期においては比較的高いが、通水を継続してイオ
ン交換樹脂が飽和すると低くなり、例えば、電圧100
V、電流0.2Aでは通水10〜30日後においてSi
2 の除去率は30%以下となる。
However, the production of pure water by CDI has a drawback that SiO 2 in raw water is not sufficiently removed. That is, the SiO 2 removal rate by CDI is relatively high at the initial stage of water flow, but becomes low when the ion exchange resin is saturated by continuing water flow.
Si at 10 to 30 days after passing water at V and current of 0.2A
The removal rate of O 2 is 30% or less.

【0005】このような問題点を解決し、CDIにおけ
るSiO2 除去率を向上させることにより極めて高純度
の処理水を安定に得ることができる純水製造装置とし
て、本出願人は、複数のアニオン交換膜及びカチオン交
換膜を交互に配列して濃縮室と希釈室とを交互に形成し
てなり、前記希釈室にはアニオン交換樹脂とカチオン交
換樹脂とが混合されて充填されている電気透析器(CD
I)を備える純水製造装置において、CDIに供給され
る原水を弱酸性化する手段を設けた純水製造装置を開発
し、先に特許出願した(特開平3−26390号)。
The applicant of the present invention has proposed a pure water producing apparatus capable of stably obtaining extremely high-purity treated water by solving the above problems and improving the SiO 2 removal rate in CDI. An electrodialyzer in which exchange membranes and cation exchange membranes are alternately arranged to alternately form a concentration chamber and a dilution chamber, and the dilution chamber is filled with a mixture of anion exchange resin and cation exchange resin. (CD
In the pure water production apparatus including I), a pure water production apparatus provided with means for weakly acidifying the raw water supplied to the CDI was developed, and a patent application was previously filed (Japanese Patent Laid-Open No. 3-26390).

【0006】特開平3−26390号に開示される純水
製造装置によれば、CDIに弱酸性化した原水を供給し
てCDIのイオン交換樹脂中のSiO2 を溶離させるこ
とにより、SiO2 除去率が大幅に向上し、しかもこの
ようなSiO2 の溶離によれば、SiO2 のみが除去さ
れて、他の水質に悪影響を及ぼすことはないという優れ
た効果が奏される。
[0006] According to the pure water production system disclosed in JP-A-3-26390, by raw water was weakly acidified by supplying eluted SiO 2 ion exchange resin of CDI to CDI, SiO 2 removal the rate is greatly improved, moreover according to elution of such SiO 2, only the SiO 2 is removed, an excellent effect that does not adversely affect the other water quality are obtained.

【0007】ところで、従来の超純水製造システムで
は、図2に示すように原水(市水、井水、工業用水)を
活性炭塔1で処理した後、逆浸透(RO)膜分離装置3
で処理し、このRO膜分離装置の後段に、真空脱気塔2
又は窒素脱気塔等の脱酸素装置を設置し、脱酸素処理水
をイオン交換装置4に供給している。なお、図2におい
て、活性炭塔1は原水中の塩素等の除去のために設けら
れている。即ち、1次純水製造システムで使用するRO
膜(ポリアミド系)は酸化剤による劣化が顕著であるた
め、市水等の原水中に含有される残留塩素を還元剤又は
活性炭により除去する必要がある。
By the way, in the conventional ultrapure water production system, as shown in FIG. 2, raw water (city water, well water, industrial water) is treated in the activated carbon tower 1 and then the reverse osmosis (RO) membrane separation device 3 is used.
At the rear stage of this RO membrane separator, the vacuum degassing tower 2
Alternatively, a deoxygenation device such as a nitrogen degassing tower is installed, and deoxidized treated water is supplied to the ion exchange device 4. In addition, in FIG. 2, the activated carbon tower 1 is provided for removing chlorine and the like in the raw water. That is, the RO used in the primary pure water production system
Since the membrane (polyamide type) is significantly deteriorated by an oxidizing agent, it is necessary to remove residual chlorine contained in raw water such as city water with a reducing agent or activated carbon.

【0008】例えば、特開平3−26390号において
も、CDIの前段にRO膜分離装置を設けて原水中の電
解質、TOC成分を効率的に除去して、CDIにおける
負荷を低減し、処理水の高純度化を図ること、更に、C
DIの原水を脱炭酸処理して溶存CO3 を除去すること
が好ましい旨の記載がある。脱炭酸処理の具体的手段と
して真空脱気塔が挙げられているが、脱炭酸のために真
空脱気を行なうと脱酸素も行なわれる。
For example, in Japanese Patent Laid-Open No. 26390/1990, an RO membrane separator is provided in front of the CDI to efficiently remove the electrolyte and TOC components in the raw water to reduce the load on the CDI and reduce the treated water. Aiming for high purity, and further C
It is described that it is preferable to decarboxylate the raw water of DI to remove dissolved CO 3 . A vacuum degassing tower is mentioned as a concrete means for the decarbonation treatment, but degassing is also carried out by vacuum degassing.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図2に
示す従来のシステムにおいては、原水中の溶存酸素の飽
和状態では、RO膜分離装置のRO膜(有機材質)の酸
化劣化、このRO膜の劣化に起因するイオン交換装置の
イオン交換樹脂の劣化が生じ、処理水質、処理水量の低
下があった。また、活性炭塔等により塩素を除去するた
めに、RO膜分離装置のRO膜面に微生物が増殖し、こ
れが処理水水質の低下及び膜の目詰り等の障害を引き起
こすという問題もあった。このような問題は、特に温純
水を供給するシステムでは顕著であった。
However, in the conventional system shown in FIG. 2, when the dissolved oxygen in the raw water is saturated, the RO membrane (organic material) of the RO membrane separator is oxidized and deteriorated. The deterioration of the ion-exchange resin of the ion-exchange device caused by the deterioration caused the quality of treated water and the amount of treated water to decrease. Further, since chlorine is removed by an activated carbon tower or the like, microorganisms grow on the RO membrane surface of the RO membrane separation device, which causes problems such as deterioration of treated water quality and membrane clogging. Such a problem was particularly remarkable in a system that supplies hot pure water.

【0010】本発明は上記従来の問題点を解決し、原水
をRO膜分離装置及びCDI等のイオン交換装置で処理
して純水を製造する装置において、原水中の溶存酸素に
よるRO膜、イオン交換装置のイオン交換樹脂等の劣化
や微生物の増殖による処理水の水質低下、処理水量の低
下、膜の目詰り等を防止して、高純度の純水を長期間連
続して、効率的に製造することができる純水製造装置を
提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and in an apparatus for producing pure water by treating raw water with an RO membrane separation apparatus and an ion exchange apparatus such as CDI, an RO membrane and ions produced by dissolved oxygen in the raw water. Prevents deterioration of the ion exchange resin of the exchange equipment, deterioration of the quality of treated water due to the growth of microorganisms, reduction of the amount of treated water, clogging of membranes, etc. An object is to provide a pure water production apparatus that can be produced.

【0011】[0011]

【課題を解決するための手段】請求項1の純水製造装置
は、原水を逆浸透膜分離する膜分離手段と、該膜分離手
段の透過水をイオン交換処理するイオン交換装置とを備
える純水製造装置において、該膜分離手段に供給される
原水を脱酸素処理する脱酸素手段を設けたことを特徴と
する。
A pure water producing apparatus according to claim 1 comprises a membrane separating means for separating raw water by a reverse osmosis membrane, and an ion exchange apparatus for subjecting the permeated water of the membrane separating means to an ion exchange treatment. The water producing device is characterized by being provided with a deoxidizing means for deoxidizing the raw water supplied to the membrane separating means.

【0012】請求項2の純水製造装置は、請求項1の純
水製造装置において、イオン交換装置が、複数のアニオ
ン交換膜及びカチオン交換膜を交互に配列して濃縮室と
希釈室とを交互に形成してなり、前記希釈室にはアニオ
ン交換樹脂とカチオン交換樹脂とが混合されて充填され
ている非再生型イオン交換装置であることを特徴とす
る。
A pure water producing apparatus according to a second aspect is the pure water producing apparatus according to the first aspect, wherein the ion exchange apparatus alternately arranges a plurality of anion exchange membranes and cation exchange membranes to form a concentration chamber and a dilution chamber. It is characterized in that it is a non-regeneration type ion exchange device which is formed alternately and in which the anion exchange resin and the cation exchange resin are mixed and filled in the dilution chamber.

【0013】[0013]

【作用】本発明の純水製造装置では、脱酸素手段で脱酸
素処理した原水をRO膜分離手段に導入するため、原水
中の溶存酸素によるRO膜の劣化やCDI等のイオン交
換装置のイオン交換樹脂の劣化が防止される。特に、高
温での通水処理時において、本発明の純水製造装置によ
れば、有効な劣化防止効果が得られる。また、微生物の
増殖も抑制され、ファウリング、膜の目詰り等の微生物
障害も防止され、高純度の純水を効率的に製造すること
ができる。
In the pure water producing apparatus of the present invention, since the raw water deoxidized by the deoxidizing means is introduced into the RO membrane separating means, the deterioration of the RO membrane due to the dissolved oxygen in the raw water and the ions of the ion exchange apparatus such as CDI. The deterioration of the exchange resin is prevented. In particular, during the water passing treatment at a high temperature, the pure water producing apparatus of the present invention can effectively prevent deterioration. Further, the growth of microorganisms is suppressed, microbial damage such as fouling and membrane clogging is prevented, and high-purity pure water can be efficiently produced.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は本発明の純水製造装置の一実施例を
示す系統図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the pure water producing apparatus of the present invention.

【0015】図1に示す純水製造装置は、活性炭塔1、
真空脱気塔2、逆浸透(RO)膜分離装置(以下「RO
膜装置」と称す。)3及び電気透析器(CDI)5から
主として構成されている。11は原水の導入配管、12
は活性炭塔1の処理水を真空脱気塔2に供給する配管、
13は真空脱気塔2の処理水をRO膜装置3に供給する
配管、14はRO膜装置3の処理水をCDI5に供給す
る配管、15は処理水(純水)を取り出すための配管で
ある。
The pure water producing apparatus shown in FIG.
Vacuum degassing tower 2, reverse osmosis (RO) membrane separator (hereinafter referred to as "RO
Membrane device ". ) 3 and an electrodialyzer (CDI) 5 mainly. 11 is a pipe for introducing raw water, 12
Is a pipe for supplying the treated water of the activated carbon tower 1 to the vacuum degassing tower 2,
13 is a pipe for supplying the treated water of the vacuum degassing tower 2 to the RO membrane device 3, 14 is a pipe for supplying the treated water of the RO membrane device 3 to the CDI 5, and 15 is a pipe for taking out the treated water (pure water). is there.

【0016】図1に示す構成の純水製造装置において、
工業用水、市水、井水などの原水は、活性炭塔1で残留
塩素(通常は0.5〜1.5ppm程度)が完全に除去
された後、真空脱気塔2で脱酸素処理され、次いで、R
O膜装置3にて処理され、CDI5に供給される。
In the pure water producing apparatus having the structure shown in FIG.
Raw water such as industrial water, city water, and well water is completely depleted of residual chlorine (usually about 0.5 to 1.5 ppm) in the activated carbon tower 1, and then deoxygenated in the vacuum degassing tower 2. Then R
It is processed by the O film device 3 and supplied to the CDI 5.

【0017】CDI5に供給された水中のNa+ 等のカ
チオンはカチオン交換膜を透過して、Cl- 等のアニオ
ンはアニオン交換膜を透過して、それぞれ濃縮室内に濃
縮される。CO2 が転化して生成したHCO3 -等も、ア
ニオン交換膜を透過して濃縮室内に濃縮される。このよ
うにしてアニオン、カチオンが除去された処理水は、C
DIの希釈室より配管15を経て排出され必要に応じて
後処理された後、ユースポイントへ送給される。
The cations such as Na + in the water supplied to the CDI 5 permeate the cation exchange membrane, and the anions such as Cl permeate the anion exchange membrane and are concentrated in the concentration chamber. HCO 3 − and the like produced by conversion of CO 2 also permeate the anion exchange membrane and are concentrated in the concentration chamber. The treated water from which the anions and cations have been removed in this way is C
It is discharged from the DI diluting chamber through the pipe 15, is post-treated as necessary, and is then delivered to the use point.

【0018】なお、真空脱気塔2においては、原水中の
溶存酸素(通常は7〜8ppm程度)を50ppb以下
にまで処理すると共に、他の溶存ガス(CO2 等)も除
去することが好ましい。
In the vacuum degassing tower 2, it is preferable that dissolved oxygen (usually about 7 to 8 ppm) in the raw water is treated to 50 ppb or less and other dissolved gases (CO 2 etc.) are also removed. ..

【0019】即ち、CDIによる純水の製造にあたり、
原水中に溶存するCO2 は、下記の如く、CDIにおけ
る処理に悪影響を及ぼす。
That is, in producing pure water by CDI,
CO 2 dissolved in raw water adversely affects the treatment in CDI as described below.

【0020】CDIでの電気再生において、吸着される
全カチオン、全アニオンのバランスは1:1が好まし
い。この比率が大幅にはずれる場合、多い方のイオンは
再生されずに残留することになり、処理水にリークする
ものと推定される。工業用水等を原水として利用する場
合、含有されるカチオンとアニオンとのバランスを考え
ると、CO2 の存在が大きく影響している。従って、原
水中に含有されるCO2をできるだけ少なくすること
が、CDIにおける安定処理に必要とされる。
In the electric regeneration by CDI, the balance of all cations and all anions to be adsorbed is preferably 1: 1. When this ratio is significantly deviated, it is presumed that more ions remain without being regenerated and leak into the treated water. When industrial water or the like is used as raw water, the presence of CO 2 has a great influence in consideration of the balance between the contained cations and anions. Therefore, it is necessary for stabilizing treatment in CDI to reduce CO 2 contained in raw water as much as possible.

【0021】このようなことから、真空脱気塔2におい
ては、原水中に溶存するCO2 も除去するのが好まし
い。
From the above, in the vacuum degassing tower 2, it is preferable to remove CO 2 dissolved in the raw water.

【0022】本発明において、脱酸素手段としては、図
示の真空脱気塔の他、N2 脱気塔、触媒樹脂脱気塔等を
用いることもできる。
In the present invention, as the deoxidizing means, an N 2 deaeration tower, a catalyst resin deaeration tower, etc. can be used in addition to the illustrated vacuum deaeration tower.

【0023】RO膜装置3においては、原水中の電解
質、TOC成分を効率的に除去することができ、CDI
5における負荷を低減し、高純度の処理水を得ることが
できる。このようにRO膜装置3を設けた本発明の純水
製造装置では、CDI5の濃縮水をRO膜装置3の上流
側に循環しても良い。この場合には、廃水量の低減及び
原水量の節水を図ることが可能とされる。
In the RO membrane device 3, the electrolyte and TOC components in the raw water can be efficiently removed, and the CDI
The load in 5 can be reduced, and highly purified treated water can be obtained. In the pure water production apparatus of the present invention provided with the RO membrane device 3 as described above, the concentrated water of CDI 5 may be circulated upstream of the RO membrane device 3. In this case, it is possible to reduce the amount of waste water and save the amount of raw water.

【0024】なお、RO膜装置3に装着するRO膜とし
ては、ポリアミド膜、酢酸セルロース膜、アラミド系膜
等の通常の市販膜を用いることができる。
As the RO membrane to be mounted on the RO membrane device 3, a usual commercially available membrane such as a polyamide membrane, a cellulose acetate membrane or an aramid membrane can be used.

【0025】また、図示の純水製造装置では、イオン交
換装置としてCDIを適用したが、本発明においては、
通常の混床式イオン交換装置を用いて、カチオン及びア
ニオンの除去を行なうこともできる。しかしながら、再
生が不要で連続採水が可能であり、イオン交換能にも優
れることからCDIを用いるのが最も有利である。
Further, in the illustrated pure water producing apparatus, CDI was applied as the ion exchange apparatus, but in the present invention,
Cation and anion can be removed by using a conventional mixed bed type ion exchange apparatus. However, it is most advantageous to use CDI because regeneration is unnecessary, continuous water collection is possible, and ion exchange capacity is excellent.

【0026】このような本発明の純水製造装置は、医
薬、食品向用水処理システムに極めて有効である。即
ち、医薬、食品向用水処理システムでは、定期的な熱水
殺菌(60〜90℃)による菌のコントロールを行なっ
ている。或いは高温水通水による菌のコントロールには
50〜90℃の通水が適用される。この場合、処理する
原水水温が高くなるため(40〜90℃)、RO膜やC
DIのイオン交換樹脂の酸化劣化による性能低下が特に
著しくなることから、本発明の純水製造装置による原水
の脱酸素処理効果が有効に発揮される。
The pure water producing apparatus of the present invention as described above is extremely effective as a water treatment system for pharmaceuticals and foods. That is, in a water treatment system for pharmaceuticals and foods, bacteria are controlled by regular hot water sterilization (60 to 90 ° C). Alternatively, water flow at 50 to 90 ° C. is applied to control bacteria by hot water flow. In this case, since the raw water temperature to be treated becomes high (40 to 90 ° C), RO membrane and C
Since the performance deterioration due to the oxidative deterioration of the ion exchange resin of DI becomes particularly remarkable, the deoxidizing treatment effect of the raw water by the pure water producing apparatus of the present invention is effectively exhibited.

【0027】以下に具体的な実験例及び比較実験例を挙
げて、本発明をより詳細に説明する。
The present invention will be described in more detail with reference to specific experimental examples and comparative experimental examples.

【0028】実験例1、比較実験例1 図1に示す純水製造装置(実験例1)又は図2に示す純
水製造装置(比較実験例1)を用い、市水(電気伝導度
200μs/cm)の処理を行ない、RO膜装置の処理
水(透過水)の経時的な水質変化を調べ、結果を図3に
示した。
Experimental Example 1 and Comparative Experimental Example 1 Using the pure water producing apparatus (Experimental Example 1) shown in FIG. 1 or the pure water producing apparatus (Comparative Experimental Example 1) shown in FIG. 2, city water (electrical conductivity 200 μs / cm) was performed and changes in water quality with time of treated water (permeated water) of the RO membrane device were examined, and the results are shown in FIG.

【0029】なお、RO膜装置としては、ポリアミド系
RO膜を有するNTR−759(日東電工KK製)を用
い、RO膜装置の通水条件は下記の通りとした。通水条件 給水量 :0.62m3 /hr 処理水量:0.14m3 /hr 給水 :市水 圧力 :15kg/cm2 また、実験例1において、真空脱気塔により、原水中の
溶存酸素が50ppb以下となるように脱酸素処理し
た。
As the RO membrane device, NTR-759 (manufactured by Nitto Denko KK) having a polyamide RO membrane was used, and the water passage conditions of the RO membrane device were as follows. Water supply condition Water supply amount: 0.62 m 3 / hr Treated water amount: 0.14 m 3 / hr Water supply: City water pressure: 15 kg / cm 2 In Experimental Example 1, the dissolved oxygen in the raw water was changed by the vacuum degassing tower. Deoxygenation treatment was performed so that the amount was 50 ppb or less.

【0030】図3より明らかなように、RO膜装置の前
段に脱酸素塔を設置しない比較実験例1の場合は、約1
00日通水後、RO膜装置の前段に処理水電気伝導度は
20μs/cmに上昇し、明らかに水質低下傾向を示す
のに対し、脱酸素塔を設置した実験例1では処理水電気
伝導度は10μs/cmと変化がなく、脱酸素の効果が
認められた。
As is apparent from FIG. 3, in the case of Comparative Experimental Example 1 in which the deoxidation tower is not installed in the preceding stage of the RO membrane device, about 1
After water was passed for 00 days, the electrical conductivity of the treated water increased to 20 μs / cm in front of the RO membrane device, and the water quality clearly showed a tendency to decrease, whereas in Experimental Example 1 in which the deoxidation tower was installed, the electrical conductivity of the treated water was increased. The degree was 10 μs / cm, which was unchanged, and the effect of deoxidation was recognized.

【0031】実験例2 図1に示す純水製造装置を用いて、水温50〜60℃、
電気伝導度7μs/cmの酸素飽和水を原水として処理
を行なった。なお、RO膜装置及び通水条件は、実験例
1と同様とし、真空脱気塔による処理も実験例1と同程
度とした。また、CDIとしては、ポリプロピレン系樹
脂のアニオン交換膜及びカチオン交換膜(1枚当り約
0.5m2 )を各30枚、交互に配列し、H形強酸性ア
ニオン交換樹脂とOH形強塩基性アニオン交換樹脂を容
積比40:60で混合したもの約30リットルを各希釈
室に充填したものを用いた。
Experimental Example 2 Using the pure water producing apparatus shown in FIG. 1, water temperature of 50 to 60 ° C.
The treatment was performed using oxygen-saturated water having an electric conductivity of 7 μs / cm as raw water. The RO membrane device and the water flow conditions were the same as in Experimental Example 1, and the treatment with the vacuum degassing tower was approximately the same as in Experimental Example 1. As the CDI, 30 anion exchange membranes and 30 cation exchange membranes (about 0.5 m 2 per sheet) of polypropylene resin were arranged alternately, and H type strongly acidic anion exchange resin and OH type strongly basic were used. An anion exchange resin mixed at a volume ratio of 40:60 was filled in each of the dilution chambers in an amount of about 30 liters.

【0032】CDIの通水条件は下記の通りとした。 給 水 量:0.14m3 /hr 処理水流量:0.12m3 /hr 濃縮水流量:0.02m3 /hr 電 圧 :18V CDIの処理水の経時的な水質変化を調べ、結果を図4
に示した。
The water flow conditions for CDI were as follows. Feed water amount: 0.14 m 3 / hr process water flow rate: 0.12 m 3 / hr concentrated water flow rate: 0.02 m 3 / hr Voltage: examining temporal quality change of the treated water of 18V CDI, Fig Results Four
It was shown to.

【0033】比較実験例2 図2に示す純水製造装置において、イオン交換装置とし
てCDIを用い、実験例2で処理したと同様の原水の処
理を行なった。なお、RO膜装置及びCDIの仕様及び
通水条件は実験例2と同様とした。CDIの処理水の経
時的な水質変化を調べ、結果を図4に示した。
Comparative Experimental Example 2 In the pure water producing apparatus shown in FIG. 2, the same raw water treatment as in Experimental Example 2 was performed using CDI as the ion exchange apparatus. The specifications of the RO membrane device and the CDI and the water flow conditions were the same as in Experimental Example 2. The water quality change over time of the treated water of CDI was examined, and the results are shown in FIG.

【0034】図4より明らかなように、RO膜装置の流
入水の脱酸素を行なわない比較実験例2では処理水の水
質が経時的に低下する傾向にあるのに対し、RO膜装置
の前段に真空脱気塔を設けて脱酸素する実験例2では水
質に変化はない。
As is clear from FIG. 4, in Comparative Experimental Example 2 in which the inflow water of the RO membrane device is not deoxygenated, the water quality of the treated water tends to decrease with time, whereas in the front stage of the RO membrane device, In Experimental Example 2 in which a vacuum degassing tower is installed to deoxidize water, there is no change in water quality.

【0035】なお、この比較実験例2の純水製造装置
は、特開平3−26390号に開示される純水製造装置
に相当し、CDIの給水を脱気しても、RO膜装置の給
水を脱気しない特開平3−26390号記載の純水製造
装置では、処理水質の長期維持効果が若干劣ることが明
らかである。
The pure water producing apparatus of Comparative Experimental Example 2 corresponds to the pure water producing apparatus disclosed in JP-A-3-26390, and even if the CDI feed water is degassed, the RO membrane apparatus water supply water is supplied. It is apparent that the pure water producing apparatus described in JP-A-3-26390 that does not degas the water is slightly inferior in the long-term maintenance effect of the treated water quality.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の純水製造装
置によれば、RO膜装置及びCDI等のイオン交換装置
で原水を処理して純水を製造する装置において、RO膜
装置のRO膜やCDI等のイオン交換装置のイオン交換
樹脂の酸化劣化に起因する性能低下による処理水質低
下、RO膜の微生物ファウリングや目詰りによる処理水
質、処理水量の低下を防止して、高純度の純水を長期間
連続して安定かつ効率的に製造することが可能とされ
る。
As described above in detail, according to the pure water producing apparatus of the present invention, in the RO membrane apparatus and the apparatus for producing pure water by treating the raw water with the ion exchange apparatus such as CDI, Prevents deterioration of treated water quality due to performance deterioration due to oxidative deterioration of ion exchange resin of ion exchange equipment such as RO membrane and CDI, and reduction of treated water quality and treated water quantity due to microbial fouling and clogging of RO membrane, thus achieving high purity It is possible to continuously and stably produce pure water for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の純水製造装置の一実施例を示す系統図
である。
FIG. 1 is a system diagram showing an embodiment of a pure water producing apparatus of the present invention.

【図2】従来例を示す系統図である。FIG. 2 is a system diagram showing a conventional example.

【図3】実験例1及び比較実験例1の結果を示すグラフ
である。
FIG. 3 is a graph showing the results of Experimental Example 1 and Comparative Experimental Example 1.

【図4】実験例2及び比較実験例2の結果を示すグラフ
である。
FIG. 4 is a graph showing the results of Experimental Example 2 and Comparative Experimental Example 2.

【符号の説明】[Explanation of symbols]

1 活性炭塔 2 真空脱気塔 3 RO膜装置 4 イオン交換装置 5 CDI 1 Activated carbon tower 2 Vacuum degassing tower 3 RO membrane device 4 Ion exchange device 5 CDI

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/44 J 8014−4D 1/469 1/58 T ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C02F 1/44 J 8014-4D 1/469 1/58 T

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水を逆浸透膜分離する膜分離手段と、
該膜分離手段の透過水をイオン交換処理するイオン交換
装置とを備える純水製造装置において、 該膜分離手段に供給される原水を脱酸素処理する脱酸素
手段を設けたことを特徴とする純水製造装置。
1. Membrane separation means for separating raw water by reverse osmosis membrane,
A pure water production apparatus comprising an ion exchange device for ion-exchange treatment of permeated water of the membrane separation means, characterized in that deionizing means for deoxidizing raw water supplied to the membrane separation means is provided. Water production equipment.
【請求項2】 請求項1の純水製造装置において、イオ
ン交換装置が、複数のアニオン交換膜及びカチオン交換
膜を交互に配列して濃縮室と希釈室とを交互に形成して
なり、前記希釈室にはアニオン交換樹脂とカチオン交換
樹脂とが混合されて充填されている非再生型イオン交換
装置であることを特徴とする純水製造装置。
2. The pure water producing apparatus according to claim 1, wherein the ion exchange apparatus comprises a plurality of anion exchange membranes and cation exchange membranes alternately arranged to alternately form a concentration chamber and a dilution chamber, A pure water production apparatus, which is a non-regeneration type ion exchange apparatus in which an anion exchange resin and a cation exchange resin are mixed and filled in a dilution chamber.
JP4117390A 1992-05-11 1992-05-11 Apparatus for producing pure water Pending JPH05309398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117390A JPH05309398A (en) 1992-05-11 1992-05-11 Apparatus for producing pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117390A JPH05309398A (en) 1992-05-11 1992-05-11 Apparatus for producing pure water

Publications (1)

Publication Number Publication Date
JPH05309398A true JPH05309398A (en) 1993-11-22

Family

ID=14710471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117390A Pending JPH05309398A (en) 1992-05-11 1992-05-11 Apparatus for producing pure water

Country Status (1)

Country Link
JP (1) JPH05309398A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853162A (en) * 1994-08-11 1996-02-27 Kurita Seizosho:Kk Packing material for ion-exchange resin
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
EP1890969A1 (en) * 2005-05-25 2008-02-27 The Australian National University Improved method for desalination
JP2008525166A (en) * 2004-12-23 2008-07-17 ジ・オーストラリアン・ナショナル・ユニバーシティー Increased conductivity and improved electrolysis and electrochemical processes
JP2010012434A (en) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd Structure of mbr+ro system and operation method for the system
JP2016041412A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853162A (en) * 1994-08-11 1996-02-27 Kurita Seizosho:Kk Packing material for ion-exchange resin
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2002336886A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2008525166A (en) * 2004-12-23 2008-07-17 ジ・オーストラリアン・ナショナル・ユニバーシティー Increased conductivity and improved electrolysis and electrochemical processes
EP1833590A4 (en) * 2004-12-23 2009-09-30 Univ Murdoch Increased conductivity and enhanced electrolytic and electrochemical processes
EP1890969A1 (en) * 2005-05-25 2008-02-27 The Australian National University Improved method for desalination
EP1890969A4 (en) * 2005-05-25 2008-10-01 Univ Murdoch Improved method for desalination
JP2008542002A (en) * 2005-05-25 2008-11-27 マードック ユニバーシティ Improved method for desalination
JP2010012434A (en) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd Structure of mbr+ro system and operation method for the system
JP2016041412A (en) * 2014-08-19 2016-03-31 Jfeエンジニアリング株式会社 Water desalination processing method and apparatus

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP3426072B2 (en) Ultrapure water production equipment
JPH07163979A (en) Reverse osmosis membrane treatment
JP3575271B2 (en) Pure water production method
JP4599803B2 (en) Demineralized water production equipment
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JP2007307561A (en) High-purity water producing apparatus and method
JP3413883B2 (en) Pure water production equipment
JPH05309398A (en) Apparatus for producing pure water
JP3656458B2 (en) Pure water production method
JPS6336890A (en) Apparatus for producing high-purity water
JP2000051665A (en) Desalination method
JP2001029752A (en) Manufacture of high-purity water and device therefor
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JP3464341B2 (en) Slime control method for pure water production equipment
JP6627943B2 (en) Pure water production method
JPS62110795A (en) Device for producing high-purity water
JPH10192851A (en) Water purifying treatment apparatus
JPH09122690A (en) Method for decomposing organic nitrogen and water treatment apparatus
JPH1080684A (en) Device and method for treating boron-containing water
JP4208270B2 (en) Pure water production method
JPS61200810A (en) Membrane separation apparatus
JPH11267645A (en) Production of pure water
JPH1142498A (en) Desalter