JP6627943B2 - Pure water production method - Google Patents

Pure water production method Download PDF

Info

Publication number
JP6627943B2
JP6627943B2 JP2018187691A JP2018187691A JP6627943B2 JP 6627943 B2 JP6627943 B2 JP 6627943B2 JP 2018187691 A JP2018187691 A JP 2018187691A JP 2018187691 A JP2018187691 A JP 2018187691A JP 6627943 B2 JP6627943 B2 JP 6627943B2
Authority
JP
Japan
Prior art keywords
water
mixture
chamber
flow
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187691A
Other languages
Japanese (ja)
Other versions
JP2018199136A (en
Inventor
直也 杉本
直也 杉本
修 笠間
修 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2018187691A priority Critical patent/JP6627943B2/en
Publication of JP2018199136A publication Critical patent/JP2018199136A/en
Application granted granted Critical
Publication of JP6627943B2 publication Critical patent/JP6627943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、純水製造方法に関し、詳しくは、逆浸透膜装置(RO)とその後段に配置された電気式脱イオン装置(EDI)とを利用した経済的に有利な純水製造方法に関する。   The present invention relates to a method for producing pure water, and more particularly, to an economically advantageous method for producing pure water using a reverse osmosis membrane device (RO) and an electric deionization device (EDI) arranged at a subsequent stage.

高純度の純水を製造するための純水製造システムには、一般に、前処理装置としてのROと、得られたRO透過水を高度処理する脱イオン装置としてのEDIとが組み込まれている(例えば特許文献1〜3)。   A pure water production system for producing high-purity pure water generally incorporates RO as a pretreatment device and EDI as a deionization device for highly treating the obtained RO permeated water ( For example, Patent Documents 1 to 3).

ところで、EDIは、基本的には、陽極を備えた陽極室と陰極を備えた陰極室との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室および濃縮室から構成され、脱塩室には陽イオン交換体および陰イオン交換体の混合物が収容されて構成されている。   By the way, EDI is basically composed of a plurality of sets of anion exchange membranes and cation exchange membranes formed alternately and sequentially formed between an anode chamber having an anode and a cathode chamber having a cathode. It comprises a salt room and a concentration room, and the desalination room contains a mixture of a cation exchanger and an anion exchanger.

陽極および陰極から直流電流を通ずると、各脱塩室では被処理水(RO透過水)中の不純物イオンが陰イオン交換基および陽イオン交換基により捕捉除去され、純水が製造されると共に、捕捉された不純物イオンは脱塩室の隔膜でもある陰イオン交換膜および陽イオン交換膜により電気透析されて隣接する濃縮室に移動し、濃縮されて排出される。   When a direct current is passed from the anode and the cathode, impurity ions in the water to be treated (RO permeated water) are trapped and removed by an anion exchange group and a cation exchange group in each desalting chamber, and pure water is produced. The trapped impurity ions are electrodialyzed by an anion exchange membrane and a cation exchange membrane which are also diaphragms of a desalting chamber, move to an adjacent concentration chamber, are concentrated and discharged.

そして、EDIの上記の各脱塩室および濃縮室への通水方向は、特に制限されないが、上から下方向に通水する場合に懸念される空気の巻き込みを防止するとの観点から、脱塩室および濃縮室ともに上向流するのが一般的である。   The flow direction of the EDI to each of the desalting chamber and the concentrating chamber is not particularly limited. However, from the viewpoint of preventing the entrapment of air, which is a concern when water flows from the top to the bottom, the desalting is performed. It is common for both the chamber and the concentrator to flow upward.

特開2000−317457号公報JP 2000-317457 A 特開2001−104959号公報JP 2001-104959 A 特開2002−320971号公報JP-A-2002-320971

ところで、EDIの被処理水はイオン交換膜への析出成分(弱電解質であるシリカ)の閉塞等の影響が懸念されるため、水質制限値が規定されている。それ故、EDIの前段に配置されるROの被処理水にも水質制限値が設けられ、EDIの水質制限値を守るためには、ROを二段にする、ROの回収率を下げるなどの対策が講じられるが、それでは、処理システムの煩雑化及び処理費用の増大を招くこととなる。処理費用の削減策として、ROの回収率をアップさせた場合は、ROの経年使用による交換頻度の増大に繋がることが考えられる。因みに、EDIに被処理水として供給されるROの透過水のシリカ濃度は、通常1.0mg/L以下、好ましくは1.0mg/L以下とされている。   By the way, the water to be treated by EDI is liable to be affected by clogging of precipitated components (silica which is a weak electrolyte) on the ion-exchange membrane, so that a water quality limit value is specified. Therefore, a water quality limit value is also provided for the water to be treated by the RO disposed upstream of the EDI, and in order to maintain the water quality limit value of the EDI, the RO is divided into two stages, and the RO recovery rate is reduced. Although some countermeasures are taken, this leads to complication of the processing system and an increase in processing cost. Increasing the RO recovery rate as a measure to reduce processing costs may lead to an increase in the frequency of replacement due to the aging of ROs. Incidentally, the silica concentration of the RO permeated water supplied to the EDI as the water to be treated is usually 1.0 mg / L or less, preferably 1.0 mg / L or less.

本発明は上記実情に鑑みなされたものであり、その目的は、EDIにおけるシリカの除去効果を高めることにより、規定されているEDIの被処理水の水質制限値を上回るRO処理水の通液を可能とした経済的に有利な純水製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to enhance the removal effect of silica in EDI to reduce the flow of RO treated water exceeding the specified water quality limit value for EDI to be treated. It is an object of the present invention to provide an economically advantageous pure water production method that is made possible.

本発明者らは、鋭意検討を重ねた結果、意外にも、EDIの上記の各脱塩室および濃縮室への通水方向によってシリカの除去効果が異なり、通水方向を向流にするならば、シリカの除去効果が顕著に高められるとの知見を得た。   The present inventors have conducted intensive studies and, as a result, surprisingly, the effect of removing silica differs depending on the direction of water flow to each of the above-mentioned desalting chambers and concentration chambers of EDI. For example, it has been found that the effect of removing silica is significantly enhanced.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、逆浸透膜装置とその後段に配置された電気式脱イオン装置とを利用した純水製造方法において、電気式脱イオン装置として、陽極を備えた陽極室と陰極を備えた陰極室との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室および濃縮室から構成され、脱塩室および濃縮室には陽イオン交換体および陰イオン交換体の混合物が収容されて成る電気式脱イオン装置であって、上記の陽イオン交換体および陰イオン交換体の混合物が陽イオン交換樹脂および陰イオン交換樹脂の混合物である電気式脱イオン装置を使用し、上記の各脱塩室の通水方向と上記の各濃縮室への通水方向とを向流方向にし、電気式脱イオン装置に被処理水として供給される逆浸透膜装置の透過水のシリカ濃度を1.5〜3.0mg/Lの範囲とすることを特徴とする純水製造方法に存する。   The present invention has been completed based on the above findings, and the gist of the present invention is to provide a method for producing pure water using a reverse osmosis membrane device and an electric deionization device arranged at a subsequent stage, wherein The apparatus comprises a plurality of sets of a desalination chamber and a concentration chamber, which are sequentially formed by alternately arranging an anion exchange membrane and a cation exchange membrane between an anode chamber having an anode and a cathode chamber having a cathode. An electric deionization apparatus in which a mixture of a cation exchanger and an anion exchanger is accommodated in a desalination chamber and a concentration chamber, wherein the mixture of the cation exchanger and the anion exchanger is cation-exchanged. Using an electric deionization apparatus that is a mixture of an ion exchange resin and an anion exchange resin, the water flow direction of each of the above desalting chambers and the water flow direction to each of the above concentration chambers are countercurrent to each other. As water to be treated in a deionizer It resides the silica concentration of the permeate of the reverse osmosis unit to be fed to the pure water production method characterized by the range of 1.5~3.0mg / L.

本発明によれば、軟水器の削減、RO導入本数の低減又はRO水回収率の向上、RO劣化の際の交換頻度の低減が可能であり、従来法より、低コスト、省スペース且つメンテナンスが少なく長期連続運転可能な純水製造方法が提供される。   Advantageous Effects of Invention According to the present invention, it is possible to reduce the number of water softeners, reduce the number of introduced ROs or improve the RO water recovery rate, and reduce the frequency of replacement when RO is deteriorated. A method for producing pure water that can be operated continuously for a long time with a small amount is provided.

図1はEDIの一例の垂直縦断正面略図である。FIG. 1 is a schematic vertical front view of an example of an EDI.

以下、本発明を詳細に説明する。本発明の純水製造方法においては、ROとその後段に配置されたEDIとを利用する。   Hereinafter, the present invention will be described in detail. In the pure water production method of the present invention, RO and EDI arranged at the subsequent stage are used.

ROとしては、その形式や膜の種類は特に制限されず、水処理分野で使用されている各種のものを使用することが出来る。運転圧力などの処理条件についても同様である。   RO is not particularly limited in its type and membrane type, and various types used in the field of water treatment can be used. The same applies to processing conditions such as operating pressure.

EDIとしても、上記と同様であり、特に制限されないが、例えば、特開2001−137859号公報により本出願人が提案した図1に示すものを使用することが出来る。   The EDI is the same as the above, and is not particularly limited. For example, the EDI shown in FIG. 1 proposed by the present applicant in Japanese Patent Application Laid-Open No. 2001-137859 can be used.

図1に示すEDI(1)は、陽極(2)を備えた陽極室(3)と陰極(4)を備えた陰極室(5)との間に陰イオン交換膜(61)及び陽イオン交換膜(71)を交互に配列して順次形成される複数組の脱塩室(81)、(82)・・・及び濃縮室(91)、(92)・・・から構成される。   EDI (1) shown in FIG. 1 comprises an anion exchange membrane (61) and a cation exchange between an anode chamber (3) having an anode (2) and a cathode chamber (5) having a cathode (4). A plurality of sets of desalting chambers (81), (82)... And concentrating chambers (91), (92).

すなわち、陰イオン交換膜(61)と陽イオン交換膜(71)とに挟まれて脱塩室(81)が構成され、同様にして陰イオン交換膜(62)と陽イオン交換膜(72)とに挟まれて第2の脱塩室(82)が形成される。この様に陰イオン交換膜(61)と陽イオン交換膜(71)とが交互に配列され、図示の装置の場合は5個の脱塩室が形成されている。一方、陽イオン交換膜(71)と陰イオン交換膜(62)とに挟まれて第1濃縮室(91)が形成され、同様にして陽イオン交換膜(72)と陰イオン交換膜(63)とに挟まれて第2濃縮室(92)が形成される。この様にして図示の装置の場合は4個の濃縮室が形成されている。そして、上記の5個の脱塩室には陽イオン交換体および陰イオン交換体の混合物(A)がそれぞれ収容されている。また、4個の濃縮室にも陽イオン交換体および陰イオン交換体の混合物(a)がそれぞれ収容されている。   That is, a desalting chamber (81) is formed between the anion exchange membrane (61) and the cation exchange membrane (71), and similarly, the anion exchange membrane (62) and the cation exchange membrane (72) To form a second desalting chamber (82). In this way, the anion exchange membrane (61) and the cation exchange membrane (71) are alternately arranged, and in the case of the illustrated apparatus, five desalting chambers are formed. On the other hand, a first enrichment chamber (91) is formed between the cation exchange membrane (71) and the anion exchange membrane (62). Similarly, the cation exchange membrane (72) and the anion exchange membrane (63) are formed. ) To form a second concentration chamber (92). Thus, in the case of the illustrated apparatus, four concentrating chambers are formed. The mixture (A) of the cation exchanger and the anion exchanger is housed in each of the five desalting chambers. Also, the mixture (a) of the cation exchanger and the anion exchanger is stored in each of the four concentrating chambers.

図1に示すEDI(1)は、上記の様に濃縮室にも陽イオン交換体および陰イオン交換体の混合物(a)を収納しているために電気的安定性に優れる特徴を有する。   The EDI (1) shown in FIG. 1 has a feature of being excellent in electrical stability because the mixture (a) of the cation exchanger and the anion exchanger is stored in the concentration chamber as described above.

上記の脱塩室および濃縮室を形成するためのイオン交換膜としては、通常のEDIで採
用されているものが使用され、例えば、商品名「セレミオン(旭硝子(株))」、「ネオセプタ(トクヤマ(株))」、「アシプレックス(旭化成(株))」等の市販品が挙げられる。
As the ion exchange membrane for forming the desalting chamber and the concentrating chamber, those used in ordinary EDI are used. For example, trade names “Selemion (Asahi Glass Co., Ltd.)”, “Neosepta (Tokuyama)” And Aciplex (Asahi Kasei Corporation).

上記の脱塩室に充填されるイオン交換体としては、通常の純水製造時の脱塩処理に使用されているイオン交換樹脂の他に所定厚さの不織布状に加工されたイオン交換繊維を使用することが出来る。イオン交換樹脂は、通常の純水製造に採用されているイオン交換樹脂から適宜選定される。例えば、強酸性陽イオン交換樹脂としては、「ダイヤイオン(三菱化学(株)登録商標)SK1B」、「PK208」等、強塩基性陰イオン交換樹脂としては、「ダイヤイオンSA10A」、「PA316」等が挙げられる。イオン交換繊維としては、具体的には、ポリスチレン系繊維と補助剤との複合繊維にイオン交換基を導入したもの、ポリビニルアルコールの繊維基体にイオン交換基を導入したもの、ポリオレフィン系の繊維に放射線を照射して放射線グラフト重合を利用してイオン交換基を導入したもの等の市販品が利用できる。上記の陽イオン交換体および陰イオン交換体とは、一般的には両者の交換容量が同じとなる量で使用される。   As the ion exchanger filled in the above-mentioned desalting chamber, ion-exchange fibers processed into a nonwoven fabric of a predetermined thickness in addition to the ion-exchange resin used for the desalination treatment during the production of ordinary pure water are used. Can be used. The ion exchange resin is appropriately selected from ion exchange resins used in ordinary pure water production. For example, as the strongly acidic cation exchange resin, "Diaion (Mitsubishi Chemical Corporation) SK1B", "PK208" and the like, and as the strongly basic anion exchange resin, "Diaion SA10A", "PA316" And the like. Specific examples of the ion-exchange fiber include those obtained by introducing an ion-exchange group into a composite fiber of a polystyrene-based fiber and an auxiliary agent, those obtained by introducing an ion-exchange group into a polyvinyl alcohol fiber base, and radiation-irradiated polyolefin-based fibers. And commercially available products such as those into which an ion exchange group has been introduced using radiation graft polymerization. The above-mentioned cation exchanger and anion exchanger are generally used in such amounts that the exchange capacities of both are the same.

また、イオン交換体は、再生型および塩型の何れの型で使用してもよいが、水質の立ち上がりを早くするのには再生型を使用するのがよい。なお、陽イオン交換樹脂および陰イオン交換樹脂の再生型混合樹脂としては、例えば、三菱化学(株)製の商品「SMT100L」等がある。   Further, the ion exchanger may be used in any of a regeneration type and a salt type, but it is preferable to use a regeneration type in order to speed up the rise of water quality. In addition, as a regeneration type mixed resin of a cation exchange resin and an anion exchange resin, there is, for example, a product “SMT100L” manufactured by Mitsubishi Chemical Corporation.

本発明の最大の特徴は、上記の各脱塩室の通水方向と上記の各濃縮室への通水方向とを向流方向にしてEDIの運転を行うことにより、EDIに被処理水として供給されるROの透過水のシリカ濃度を1.5〜3.0mg/L(好ましくは1.5〜2.5mg/L)の範囲に高めた点にある。上記の向流方式により、EDIにおけるシリカの除去効果が顕著に高められる(換言すれば、EDIに被処理水として供給されるROの透過水のシリカ濃度を厳しく制限せずに上記のような高濃度の範囲にし得る)理由は次のように推定される。   The greatest feature of the present invention is that by operating the EDI with the flow direction of each desalting chamber and the flow direction of each of the above-mentioned concentrating chambers as countercurrent directions, the EDI is treated as water to be treated. The point is that the silica concentration of the permeated water of the supplied RO is increased to the range of 1.5 to 3.0 mg / L (preferably 1.5 to 2.5 mg / L). By the above-mentioned countercurrent method, the effect of removing the silica in the EDI is remarkably enhanced (in other words, the silica concentration in the RO permeated water supplied to the EDI as the water to be treated is not severely restricted, and the silica concentration is high as described above. The reason may be in the range of concentration) is presumed as follows.

向流の場合、当然ながら、濃縮水の入口側と被処理水の出口側とは並列であり、濃縮水の出口側と被処理水の入口側とは並列になる。このとき、被処理水の塩成分は、電気脱塩により濃縮水側に移動し、濃縮水の塩濃度を上昇させる。この上昇傾向は、被処理水の入口側の方が大きくなる。その結果、向流方式であれば、濃縮水の塩濃度が上昇しても、直ちに出口から濃縮水を排水することができ、濃縮水が濃縮室内部(イオン交換膜、特にアニオン交換膜)に接触する時間も短く、濃縮室内部での塩成分の析出(電圧上昇と脱塩効率の低下の原因)を抑えることが可能になる。   In the case of counterflow, the inlet side of the concentrated water and the outlet side of the water to be treated are of course parallel, and the outlet side of the concentrated water and the inlet side of the water to be treated are parallel. At this time, the salt component of the to-be-treated water moves to the concentrated water side by electric desalination, and increases the salt concentration of the concentrated water. This upward tendency is greater on the inlet side of the water to be treated. As a result, in the case of the countercurrent method, even if the salt concentration of the concentrated water increases, the concentrated water can be immediately drained from the outlet, and the concentrated water flows into the concentration chamber (ion exchange membrane, particularly anion exchange membrane). The contact time is short, and it is possible to suppress the precipitation of salt components in the concentration chamber (a cause of an increase in voltage and a decrease in desalination efficiency).

濃縮室内部での塩成分の析出を抑えることができれば、電流の流れも阻害されず、脱塩効率を維持し易くなり、弱電解質(シリカ成分)の除去効果も改善される。換言すれば、電圧上昇と脱塩効率の低下の原因である濃縮室内部での塩成分の析出を抑制することにより、弱電解質(シリカ成分)除去効果が維持される。   If the precipitation of the salt component in the concentration chamber can be suppressed, the flow of current is not hindered, the desalting efficiency is easily maintained, and the effect of removing the weak electrolyte (silica component) is improved. In other words, the effect of removing the weak electrolyte (silica component) is maintained by suppressing the precipitation of the salt component inside the concentration chamber, which is the cause of the increase in the voltage and the decrease in the desalination efficiency.

本発明で使用するEDI(1)においては、濃縮室にも陽イオン交換体および陰イオン交換体の混合物が収容されているため、空気の巻き込みによる偏流等の影響は殆どなく、濃縮室の通水方向は上向流、下向流どちらも可能である。従って、脱塩室の通水方向を下向流、濃縮室の通水方向を上向流とする向流方式にすることも可能である。   In the EDI (1) used in the present invention, a mixture of a cation exchanger and an anion exchanger is also contained in the enrichment chamber. The water direction can be either upward flow or downward flow. Therefore, it is also possible to adopt a countercurrent system in which the direction of water flow in the desalting chamber is downward, and the direction of water flow in the enrichment chamber is upward.

しかしながら、図1に示すように、脱塩室への通水方向を上向流とし、濃縮室への通水方向を下向流とする態様の向流方式が推奨される。何故ならば、イオン交換およびイオンの流れが起こる脱塩室では、より安定した流れが必要とされ、通水方向を上向流とすることにより空気の巻き込みの機会を一層確実に防止するのが好ましいからである。   However, as shown in FIG. 1, a counterflow method in which the direction of water flow to the desalination chamber is an upward flow and the direction of water flow to the concentration chamber is a downward flow is recommended. This is because a more stable flow is required in the desalination chamber where ion exchange and ion flow occur, and it is necessary to prevent the opportunity of air entrapment more reliably by making the flow direction upward. This is because it is preferable.

図1に示すEDI(1)は次の様に運転される。5個の各脱塩室には、並行して被処理水(RO透過水)を脱塩室側流入管(131)から供給する。脱イオンされた水(純水)は脱塩室側流出管(132)から流出される。4個の各濃縮室には、並行して濃縮水を濃縮室側流入管(141)から供給する。各濃縮室に供給された濃縮水は、不純物イオンを濃縮した濃縮水として濃縮室側流出管(142)から排出される。また、濃縮室への濃縮水の供給と同時に、被処理水(電極水)を、陽極室側流入管(121)から陽極室(3)に、陰極室側流入管(123)から陰極室(5)にそれぞれ導入し、各々、陽極室側流出管(122)、陰極室側流出管(124)から排出させる。   EDI (1) shown in FIG. 1 operates as follows. Water to be treated (RO permeated water) is supplied to the five desalting chambers in parallel from the desalting chamber side inlet pipe (131). The deionized water (pure water) flows out of the outflow pipe (132) on the desalination chamber side. Concentrated water is supplied to the four concentrating chambers in parallel from the concentrating chamber side inflow pipe (141). The concentrated water supplied to each of the concentration chambers is discharged from the concentration chamber-side outflow pipe (142) as concentrated water in which impurity ions are concentrated. Simultaneously with the supply of the concentrated water to the concentration chamber, water to be treated (electrode water) is supplied from the anode chamber side inflow pipe (121) to the anode chamber (3) and from the cathode chamber side inflow pipe (123) to the cathode chamber ( 5) and discharged from the anode chamber side outflow pipe (122) and the cathode chamber side outflow pipe (124), respectively.

上記の各流路により通水させながら、陽極(2)及び陰極(4)から直流電流を通ずると、各脱塩室では被処理水中の不純物イオンが陽イオン交換体および陰イオン交換体の混合物が有する陰イオン交換基および陽イオン交換基により捕捉除去され、純水が製造されると共に、陽イオン交換体および陰イオン交換体の混合物に捕捉された不純物イオンは脱塩室の隔膜でもある陰イオン交換膜および陽イオン交換膜により電気透析されて隣接する濃縮室に移動して濃縮され濃縮室側流出管(142)から排出される。   When a direct current is passed from the anode (2) and the cathode (4) while allowing water to flow through each of the above channels, impurity ions in the water to be treated are mixed in each desalting chamber with a mixture of a cation exchanger and an anion exchanger. Is trapped and removed by the anion exchange group and the cation exchange group of the compound to produce pure water, and the impurity ions trapped in the mixture of the cation exchanger and the anion exchanger are formed on the anion, which is also the diaphragm of the desalting chamber. It is electrodialyzed by the ion-exchange membrane and the cation-exchange membrane, moves to the adjacent concentration chamber, is concentrated, and is discharged from the outlet pipe (142) on the concentration chamber side.

本発明においては、ROとその後段に配置されたEDIとを利用するが、EDIにおけるシリカ除去率が高められるため、ROは1段処理で充分であるばかりか、EDIの被処理水の水質制限値規定を必要以上に考慮してROの回収率を下げる必要もない。従って、経済的に有利な純水製造方法を実現するため、本発明におけるRO透過水(EDI被処理水)のシリカ濃度は、従来の1.0mg/L以下に対し、大幅に高い範囲、すなわち、1.5〜3.0(好ましく1.5〜2.5)mg/Lの範囲としている。   In the present invention, the RO and the EDI arranged in the subsequent stage are used. However, since the silica removal rate in the EDI is increased, the RO is not only sufficient in one-stage treatment, but also the quality of the water to be treated by the EDI is limited. It is not necessary to lower the RO recovery rate by considering the value regulation more than necessary. Therefore, in order to realize an economically advantageous pure water production method, the silica concentration of the RO permeated water (EDI-treated water) in the present invention is in a much higher range than the conventional 1.0 mg / L or less, ie, , 1.5 to 3.0 (preferably 1.5 to 2.5) mg / L.

以下、本発明を実施例および比較例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded.

実施例1:
ROにはモジュール「SU−710」(東レ(株)製)を用いた。EDIには、図1に示す構造を有し、以下に記載の仕様のものを使用した。
Example 1
For the RO, a module “SU-710” (manufactured by Toray Industries, Inc.) was used. The EDI having the structure shown in FIG. 1 and having the following specifications was used.

(EDIの仕様)
陰イオン交換膜としては、セレミオンAMD[旭硝子(株)製、セレミオンは同社登録商標]を使用し、陽イオン交換膜としては、セレミオンCMD[旭硝子(株)製]を使用した。脱塩室および濃縮室に充填するイオン交換樹脂としては、陽イオン交換樹脂および陰イオン交換樹脂の再生型混合樹脂(三菱化学(株)製の商品「ダイヤイオンSMT100L」:含水率50重量%)を使用した。脱塩室数45室、濃縮室数44室、脱塩室は、縦390mm、横130mm、厚さ2mmであり、濃縮室は、縦390mm、横130mm、厚さ2mmである。
(EDI specifications)
As an anion exchange membrane, Selemion AMD (manufactured by Asahi Glass Co., Ltd., Selemion is a registered trademark of the company) was used, and as a cation exchange membrane, Selemion CMD (manufactured by Asahi Glass Co., Ltd.) was used. As the ion exchange resin to be filled in the desalting chamber and the concentration chamber, a regenerated mixed resin of a cation exchange resin and an anion exchange resin (a product "Diaion SMT100L" manufactured by Mitsubishi Chemical Corporation: water content of 50% by weight) It was used. The number of the desalination chambers is 45, the number of the concentration chambers is 44, and the number of the desalination chambers is 390 mm in length, 130 mm in width and 2 mm in thickness. The concentration chamber is 390 mm in length, 130 mm in width and 2 mm in thickness.

原水として横浜市水を使用し、活性炭塔で処理した後にROで処理し、シリカ濃度:1.5mg/L、電気伝導度:20μS/cmの透過水を得、これを被処理水としてEDIに供給して処理し、純水を製造した。   Using Yokohama City Water as raw water, treated with activated carbon tower and then treated with RO to obtain permeated water with silica concentration: 1.5 mg / L, electric conductivity: 20 μS / cm, which was used as EDI water as treated water. It was supplied and treated to produce pure water.

EDIの運転においては、脱塩室への通水方向を上向流とし、濃縮室への通水方向を下向流とする向流方式を採用した。脱塩室および濃縮室への通水量は、共に、LV100m/hとし、通水と同時に両電極室の電極板に4Aの直流電流を印可した。通水時間は700時間、EDI水回収率は90%とした。   In the EDI operation, a countercurrent method was adopted in which the direction of water flow to the desalination chamber was an upward flow, and the direction of water flow to the concentration chamber was a downward flow. The flow rate of water to the desalting chamber and the concentrating chamber was set to LV 100 m / h, and a DC current of 4 A was applied to the electrode plates of both electrode chambers simultaneously with the flow of water. The water flow time was 700 hours, and the EDI water recovery rate was 90%.

比較のために、EDIの運転において、濃縮室への通水方向を上向流に変更して並流方式を採用した以外は、上記と同一の操作を行って純水を製造した。   For comparison, in the operation of the EDI, pure water was produced by performing the same operation as described above, except that the direction of water flow to the concentration chamber was changed to an upward flow and a parallel flow method was employed.

得られた純水中のシリカを分析し、上記の向流方式と並流方式におけるシリカ除去率の比較を行った結果、向流方式のシリカ除去率は並流方式に比して4.9倍高い値であった。シリカの分析はモリブデン青吸光光度法によって行った。   The silica in the obtained pure water was analyzed, and the silica removal rate in the above-described countercurrent method and that in the cocurrent method were compared. As a result, the silica removal rate in the countercurrent method was 4.9 compared to the cocurrent method. It was twice as high. The analysis of silica was performed by molybdenum blue absorption spectroscopy.

1:EDI
2:陽極
3:陽極室
4:陰極
5:陰極室
61:陰イオン交換膜
71:陽イオン交換膜
81:脱塩室
91:濃縮室
121:陽極室側流入管
122:陽極室側流出管
123:陰極室側流入管
124:陰極室側流出管
131:脱塩室側流入管
132:脱塩室側流出管
141:濃縮室側流入管
142:濃縮室側流出管
A:陽イオン交換体および陰イオン交換体の混合物
a:陽イオン交換体および陰イオン交換体の混合物















1: EDI
2: anode 3: anode compartment 4: cathode 5: cathode compartment 61: anion exchange membrane 71: cation exchange membrane 81: desalination compartment 91: enrichment compartment 121: anode compartment side inlet pipe 122: anode compartment side outlet pipe 123 : Cathode chamber side inflow pipe 124: cathode chamber side outflow pipe 131: desalination chamber side inflow pipe 132: desalination chamber side outflow pipe 141: enrichment chamber side inflow pipe 142: enrichment chamber side outflow pipe A: cation exchanger and Mixture of anion exchanger a: Mixture of cation exchanger and anion exchanger















Claims (4)

逆浸透膜装置とその後段に配置された電気式脱イオン装置とを利用した純水製造方法において、電気式脱イオン装置として、陽極を備えた陽極室と陰極を備えた陰極室との間に陰イオン交換膜および陽イオン交換膜を交互に配列して順次形成される複数組の脱塩室および濃縮室から構成され、脱塩室および濃縮室には陽イオン交換体および陰イオン交換体の混合物が収容されて成る電気式脱イオン装置であって、上記の陽イオン交換体および陰イオン交換体の混合物が陽イオン交換樹脂および陰イオン交換樹脂の混合物である電気式脱イオン装置を使用し、上記の各脱塩室の通水方向と上記の各濃縮室への通水方向とを向流方向にし、電気式脱イオン装置に被処理水として供給される逆浸透膜装置の透過水のシリカ濃度を1.5〜3.0mg/Lの範囲とすることを特徴とする純水製造方法。   In a pure water production method using a reverse osmosis membrane device and an electric deionization device arranged in a subsequent stage, as an electric deionization device, a cathode chamber having an anode and a cathode chamber having a cathode are provided. It consists of a plurality of sets of desalting and concentrating chambers which are sequentially formed by alternately arranging an anion exchange membrane and a cation exchange membrane. An electric deionization apparatus containing a mixture, wherein the mixture of the cation exchanger and the anion exchanger is a mixture of a cation exchange resin and an anion exchange resin. The direction of water flow in each of the desalting chambers and the direction of water flow to each of the concentrating chambers are set in countercurrent directions, and the permeated water of the reverse osmosis membrane device supplied to the electric deionization device as the water to be treated. Silica concentration 1.5-3.0mg Pure water production method characterized by the range of L. イオン交換樹脂の混合物が強酸性陽イオン交換樹脂および強塩基性陰イオン交換樹脂の混合物である請求項1に記載の純水製造方法。 The method for producing pure water according to claim 1 , wherein the mixture of ion exchange resins is a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin. イオン交換樹脂の混合物が陽イオン交換樹脂および陰イオン交換樹脂の再生型混合樹脂である請求項1又は2に記載の純水製造方法。 The pure water production method according to claim 1 or 2, wherein the mixture of the ion exchange resin is a regenerated type mixed resin of a cation exchange resin and an anion exchange resin. 前記の各脱塩室の通水方向を上向流とし、上記の各濃縮室への通水方向を下向流とすることを特徴とする、請求項1〜3いずれか1項に記載の純水製造方法。

The flow direction of water in each of the desalting chambers is an upward flow, and the flow direction of water to each of the enrichment chambers is a downward flow, The method according to any one of claims 1 to 3, wherein Pure water production method.

JP2018187691A 2018-10-02 2018-10-02 Pure water production method Active JP6627943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187691A JP6627943B2 (en) 2018-10-02 2018-10-02 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187691A JP6627943B2 (en) 2018-10-02 2018-10-02 Pure water production method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014021037A Division JP6571312B2 (en) 2014-02-06 2014-02-06 Pure water production method

Publications (2)

Publication Number Publication Date
JP2018199136A JP2018199136A (en) 2018-12-20
JP6627943B2 true JP6627943B2 (en) 2020-01-08

Family

ID=64667748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187691A Active JP6627943B2 (en) 2018-10-02 2018-10-02 Pure water production method

Country Status (1)

Country Link
JP (1) JP6627943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987682A (en) * 2019-04-01 2019-07-09 长春佳百力环境科技有限公司 A kind of wide water temperature module of continuous electric desalination
CN112321057A (en) * 2020-09-24 2021-02-05 北京大禹惠民环境科技有限公司 Preparation facilities of micro molecule oxygen-enriched water

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137859A (en) * 1999-11-18 2001-05-22 Nippon Rensui Co Ltd Electric regeneration type pure water production device
JP3794268B2 (en) * 2001-01-05 2006-07-05 栗田工業株式会社 Electrodeionization apparatus and operation method thereof
JP2003136065A (en) * 2001-11-05 2003-05-13 Kurita Water Ind Ltd Treatment apparatus of boiler feed water
JP3956836B2 (en) * 2002-11-15 2007-08-08 栗田工業株式会社 Electrodeionization equipment
JP5282860B2 (en) * 2007-05-18 2013-09-04 栗田工業株式会社 Electrodeionization equipment
JP2010201361A (en) * 2009-03-04 2010-09-16 Japan Organo Co Ltd Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP5295927B2 (en) * 2009-10-23 2013-09-18 オルガノ株式会社 Electric deionized water production equipment

Also Published As

Publication number Publication date
JP2018199136A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US6149788A (en) Method and apparatus for preventing scaling in electrodeionization units
US6482304B1 (en) Apparatus and method of recirculating electrodeionization
US9393527B2 (en) Membrane separation devices and water treatment plants
US10442708B2 (en) Method and appliance for treating water
JP6011655B2 (en) Electrodeionization device and pure water production device
AU2003244175A1 (en) Electrodeionization apparatus
JP6728876B2 (en) Electric deionization device and method for producing deionized water
JP3575271B2 (en) Pure water production method
JP6627943B2 (en) Pure water production method
JP5295927B2 (en) Electric deionized water production equipment
JP5145305B2 (en) Electric deionized water production equipment
CN112789241B (en) Method for purifying hydrogen peroxide
JP6571312B2 (en) Pure water production method
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
US8758624B2 (en) Water treatment process, and membrane separation process and water treatment plant suitable therefor
JP2012239965A (en) Electric deionized water producing apparatus
JP2011000576A (en) Electric deionized water producing apparatus and method for producing deionized water
TWI701218B (en) Water treatment device and water treatment method
JP5379025B2 (en) Electric deionized water production equipment
JP3593892B2 (en) Pure water production method and apparatus
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP2018143922A (en) Water treating device
JP2002205071A (en) Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP6181510B2 (en) Pure water production equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150