JP5295927B2 - Electric deionized water production equipment - Google Patents

Electric deionized water production equipment Download PDF

Info

Publication number
JP5295927B2
JP5295927B2 JP2009244356A JP2009244356A JP5295927B2 JP 5295927 B2 JP5295927 B2 JP 5295927B2 JP 2009244356 A JP2009244356 A JP 2009244356A JP 2009244356 A JP2009244356 A JP 2009244356A JP 5295927 B2 JP5295927 B2 JP 5295927B2
Authority
JP
Japan
Prior art keywords
chamber
cation
anion
water
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009244356A
Other languages
Japanese (ja)
Other versions
JP2011088085A (en
Inventor
慶介 佐々木
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2009244356A priority Critical patent/JP5295927B2/en
Publication of JP2011088085A publication Critical patent/JP2011088085A/en
Application granted granted Critical
Publication of JP5295927B2 publication Critical patent/JP5295927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide electric deionized water making apparatus capable of making effective use of a hydrogen ion or hydroxide ion generated in an anode chamber or cathode chamber by ensuring good water quality of water to be treated. <P>SOLUTION: The electric deionized water making apparatus is disposed between the cathode chamber E1 and cathode side concentration chamber C1, made adjacent to a cathode side concentration chamber through a second anion exchange membrane a2, made adjacent to the cathode chamber through a third anion exchange membrane a3, charged with at least an anion exchanger, disposed between a sub anion desalting chamber S2 through which the water to be treated passes or the anode chamber E2 and an anode side condensation chamber C2, made adjacent to the anode side condensation chamber through a second cation exchange membrane c2, made adjacent to the anode chamber through a third cation exchange membrane c3, charged with at least a cation exchanger, and has at least either one sub cation desalting chamber S1 through which the water to be treated passes. The inflow directions of the water to be treated flowing into the sub desalting chambers S1, S2 and electrode water flowing into the electrode chambers E2, E1 adjacent to the sub desalting chamber are the same. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電気式脱イオン水製造装置に関し、特に電極室に電極水を通水させる構成に関する。   The present invention relates to an electrical deionized water production apparatus, and more particularly to a configuration for passing electrode water through an electrode chamber.

脱イオン水の製造装置として、イオン交換体に被処理水を通水して脱イオンを行う製造装置が知られている。この装置ではイオン交換体のイオン交換基が飽和して脱塩性能が劣化したときに、酸やアルカリといった薬剤によって再生を行う必要がある。すなわち、イオン交換基に吸着した陰イオンや陽イオンを、酸あるいはアルカリ由来のH+、OH-と置き換える処理が必要となる。近年、このような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置(以下、脱イオン水製造装置という場合がある。)が実用化されている。 As a deionized water production apparatus, a production apparatus that performs deionization by passing water to be treated through an ion exchanger is known. In this apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is deteriorated, it is necessary to regenerate with a chemical such as acid or alkali. That is, the anion and cation adsorbed on ion exchange groups, acid or alkali from the H +, OH - and replacing processing is required. In recent years, in order to eliminate such disadvantages in operation, an electric deionized water production apparatus (hereinafter sometimes referred to as a deionized water production apparatus) that does not require regeneration by a chemical agent has been put into practical use.

脱イオン水製造装置は、電気泳動と電気透析とを組み合わせた装置である。脱イオン水製造装置は、アニオン交換膜とカチオン交換膜との間にイオン交換体を充填し主脱塩室とし、アニオン交換膜及びカチオン交換膜の外側に各々濃縮室を設け、さらにその外側に陽極を備える陽極室と、陰極を備える陰極室と、を配置した装置である。   The deionized water production apparatus is an apparatus that combines electrophoresis and electrodialysis. In the deionized water production apparatus, an ion exchanger is filled between an anion exchange membrane and a cation exchange membrane to form a main desalting chamber, and a concentration chamber is provided outside the anion exchange membrane and the cation exchange membrane, respectively, and further outside the chamber. This is an apparatus in which an anode chamber having an anode and a cathode chamber having a cathode are arranged.

脱イオン水製造装置により脱イオン水を製造するには、電極に直流電圧を印加した状態で主脱塩室に被処理水を通水する。被処理水中のイオン成分は脱塩室内のイオン交換体で吸着され、脱イオン化(脱塩)処理が行われる。脱塩室ではまた、印加電圧によって脱塩室のアニオン交換体とカチオン交換体の界面で水分解が起こり、水素イオンと水酸化物イオンが発生する(2H2O→H++OH-)。イオン交換体に吸着されたイオン成分はこの水素イオン及び水酸化物イオンと交換されて、イオン交換体から遊離する。遊離したイオン成分はイオン交換膜まで電気泳動し、イオン交換膜で電気透析されて、濃縮室を流れる水に排出される。このように、脱イオン水製造装置では、水素イオン及び水酸化物イオンが、イオン交換体を再生する酸、アルカリの再生剤として連続的に作用する。このため、薬剤による再生は基本的に不要であり、薬剤によるイオン交換体の再生を行わずに連続運転ができる。 In order to produce deionized water by the deionized water production apparatus, water to be treated is passed through the main demineralization chamber with a DC voltage applied to the electrodes. The ionic component in the water to be treated is adsorbed by the ion exchanger in the demineralization chamber and subjected to deionization (demineralization) treatment. In the desalting chamber, the applied voltage causes water decomposition at the interface between the anion exchanger and the cation exchanger in the desalting chamber to generate hydrogen ions and hydroxide ions (2H 2 O → H + + OH ). The ion component adsorbed on the ion exchanger is exchanged with the hydrogen ions and hydroxide ions to be released from the ion exchanger. The liberated ion component is electrophoresed to the ion exchange membrane, electrodialyzed on the ion exchange membrane, and discharged into the water flowing through the concentration chamber. Thus, in the deionized water production apparatus, hydrogen ions and hydroxide ions continuously act as acid and alkali regenerators for regenerating the ion exchanger. For this reason, the regeneration by the medicine is basically unnecessary, and the continuous operation can be performed without the regeneration of the ion exchanger by the medicine.

脱イオン水製造装置の陽極室と陰極室では、水の電気分解反応が生じ、この反応よっても水素イオンと水酸化物イオンとが生成される(2H2O→O2+4H++4e-/2H2O+2e-→H2+2OH-)。そこで、陽極室で生成される水素イオンと陰極室で生成される水酸化物イオンもイオン交換体の再生に利用しようとする試みがなされている。陽極室及び陰極室では豊富な水素イオンと水酸化物イオンとが生成されるため、これらを有効利用することができれば、脱イオン水製造装置の陽極・陰極間の印加電圧を低減し、使用電力量の低減を図ることが可能となる。 The electrolysis reaction of water occurs in the anode chamber and the cathode chamber of the deionized water production apparatus, and this reaction also generates hydrogen ions and hydroxide ions (2H 2 O → O 2 + 4H + + 4e / 2H). 2 O + 2e → H 2 + 2OH ). Therefore, attempts have been made to use hydrogen ions generated in the anode chamber and hydroxide ions generated in the cathode chamber for the regeneration of the ion exchanger. Abundant hydrogen ions and hydroxide ions are generated in the anode and cathode chambers. If these can be used effectively, the applied voltage between the anode and cathode of the deionized water production system can be reduced and the power used. The amount can be reduced.

特許文献1には、陽極室及び陰極室を主脱塩室として利用する脱イオン水製造装置が開示されている。陽極室には陽イオン交換体が、陰極室には陰イオン交換体が充填されている。このため、陽極室で発生した水素イオンが陽イオン交換体を再生し、陰極室で発生した水酸化物イオンが陰イオン交換体を再生することができる。   Patent Document 1 discloses a deionized water production apparatus that uses an anode chamber and a cathode chamber as main demineralization chambers. The anode chamber is filled with a cation exchanger, and the cathode chamber is filled with an anion exchanger. For this reason, the hydrogen ions generated in the anode chamber can regenerate the cation exchanger, and the hydroxide ions generated in the cathode chamber can regenerate the anion exchanger.

特許第3793229号公報Japanese Patent No. 3793229

陽極室及び陰極室には、水の電気分解により生じたガス成分や酸化性物質が含まれている。このため、特許文献1に記載のように陽極室及び陰極室を主脱塩室として用いると、脱イオンした被処理水にこれらの物質が含まれる可能性がある。このような現象が生じると、機能材の酸化劣化などが進行し純水製造などの目的で脱イオン水製造装置を用いる場合に所望の水質が得られない可能性がある。   The anode chamber and the cathode chamber contain gas components and oxidizing substances generated by water electrolysis. For this reason, when the anode chamber and the cathode chamber are used as the main desalting chamber as described in Patent Document 1, these substances may be contained in the deionized water to be treated. When such a phenomenon occurs, there is a possibility that the desired water quality cannot be obtained when the deionized water production apparatus is used for the purpose of producing pure water because oxidation deterioration of the functional material proceeds.

本発明は、被処理水の良好な水質を確保可能であるとともに、陽極室または陰極室で生成される水素イオンと水酸化物イオンの少なくともいずれか一方をイオン交換体の再生に利用することで消費電力の低減が可能な電気式脱イオン水製造装置を提供することを目的とする。   The present invention makes it possible to ensure good water quality of the water to be treated, and to utilize at least one of hydrogen ions and hydroxide ions generated in the anode chamber or the cathode chamber for regeneration of the ion exchanger. An object of the present invention is to provide an electric deionized water production apparatus capable of reducing power consumption.

本発明の電気式脱イオン水製造装置は、陽極室と陰極室とからなり各々を電極水が流通する一対の電極室と、一対の電極室の間に位置し、カチオン交換体及びアニオン交換体が充填され、被処理水が流通する主脱塩室と、一対の電極室の間に位置し、主脱塩室の陰極室側で、第1のカチオン交換膜を介して主脱塩室に隣接して位置する陰極側濃縮室と、一対の電極室の間に位置し、主脱塩室の陽極室側で、第1のアニオン交換膜を介して主脱塩室に隣接して位置する陽極側濃縮室と、を有している。電気式脱イオン水製造装置はまた、陰極室と陰極側濃縮室の間に位置し、第2のアニオン交換膜を介して陰極側濃縮室と隣接し、第3のアニオン交換膜を介して陰極室と隣接し、少なくともアニオン交換体が充填され、被処理水が流通する副アニオン脱塩室、または陽極室と陽極側濃縮室の間に位置し、第2のカチオン交換膜を介して陽極側濃縮室と隣接し、第3のカチオン交換膜を介して陽極室と隣接し、少なくともカチオン交換体が充填され、被処理水が流通する副カチオン脱塩室の、少なくともいずれか一方の副脱塩室を有している。副脱塩室に流入する被処理水と、副脱塩室に隣接する電極室に流入する電極水の流入方向は同じである。   The electric deionized water production apparatus of the present invention comprises a pair of electrode chambers, each comprising an anode chamber and a cathode chamber, through which electrode water flows, and a cation exchanger and an anion exchanger. Is located between the pair of electrode chambers and the main desalting chamber through the first cation exchange membrane. Located between the adjacent cathode-side concentrating chamber and the pair of electrode chambers, on the anode chamber side of the main desalting chamber, adjacent to the main desalting chamber via the first anion exchange membrane And an anode side concentrating chamber. The electric deionized water production apparatus is also located between the cathode chamber and the cathode side concentrating chamber, is adjacent to the cathode side concentrating chamber via the second anion exchange membrane, and is connected to the cathode via the third anion exchange membrane. A secondary anion desalting chamber, which is adjacent to the chamber and filled with at least an anion exchanger and in which the water to be treated flows, or located between the anode chamber and the anode-side concentrating chamber, and the anode side through the second cation exchange membrane At least one of the secondary cation desalting chambers adjacent to the concentrating chamber, adjacent to the anode chamber through the third cation exchange membrane, filled with at least a cation exchanger, and in which the water to be treated flows. Has a room. The inflow directions of the water to be treated flowing into the sub-desalting chamber and the electrode water flowing into the electrode chamber adjacent to the sub-desalting chamber are the same.

本発明によれば、陰極室と陰極側濃縮室の間に副アニオン脱塩室が設けられ、あるいは陽極室と陽極側濃縮室の間に副カチオン脱塩室が設けられ、あるいはこれらの両者が設けられている。陰極室で発生した水酸化物イオンは第3のアニオン交換膜を通って副アニオン脱塩室に移動する。副アニオン脱塩室では流入した被処理水のアニオン成分がアニオン交換体に吸着され、アニオン成分が吸着したアニオン交換体は、陰極室から移動してきた水酸化物イオンによって再生される。被処理水は主脱塩室にも流入し、アニオン成分がアニオン交換体に吸着される。主脱塩室では、主脱塩室内での水分解反応により水が水素イオンと水酸化物イオンとに解離するため、アニオン成分が吸着したアニオン交換体は、主脱塩室内で生成された水酸化物イオンによって再生される。   According to the present invention, a secondary anion desalination chamber is provided between the cathode chamber and the cathode side enrichment chamber, or a secondary cation desalination chamber is provided between the anode chamber and the anode side enrichment chamber, or both of them are Is provided. The hydroxide ions generated in the cathode chamber move to the secondary anion desalting chamber through the third anion exchange membrane. In the secondary anion desalting chamber, the anion component of the treated water that has flowed in is adsorbed by the anion exchanger, and the anion exchanger that has adsorbed the anion component is regenerated by the hydroxide ions that have moved from the cathode chamber. The water to be treated also flows into the main desalting chamber, and the anion component is adsorbed on the anion exchanger. In the main desalting chamber, water is dissociated into hydrogen ions and hydroxide ions by the water splitting reaction in the main desalting chamber, so that the anion exchanger with adsorbed anion components is the water produced in the main desalting chamber. Regenerated by oxide ions.

陽極室で発生した水素イオンは第3のカチオン交換膜を通って副カチオン脱塩室に移動する。副カチオン脱塩室では流入した被処理水のカチオン成分がカチオン交換体に吸着され、カチオン成分が吸着したカチオン交換体は、陽極室から移動してきた水素イオンによって再生される。主脱塩室では、カチオン成分が吸着したカチオン交換体は、主脱塩室内での水分解反応により生成された水素イオンによって再生される。   Hydrogen ions generated in the anode chamber move to the secondary cation desalting chamber through the third cation exchange membrane. In the secondary cation desalting chamber, the cation component of the treated water that has flowed in is adsorbed by the cation exchanger, and the cation exchanger that has adsorbed the cation component is regenerated by the hydrogen ions that have moved from the anode chamber. In the main desalting chamber, the cation exchanger on which the cation component is adsorbed is regenerated by hydrogen ions generated by the water splitting reaction in the main desalting chamber.

このようにして、主脱塩室内での水分解反応により生成される水素イオン及び水酸化物イオンに加えて、陰極室で発生した水酸化物イオンまたは陽極室で発生した水素イオンの少なくともいずれか一方をイオン交換体の再生に有効利用することが可能となる。しかも、陽極室及び陰極室は、被処理水が流入する副カチオン脱塩室あるいは副アニオン脱塩室と、第3のカチオン交換膜あるいは第3のアニオン交換膜によって仕切られているので、陽極室及び陰極室に含まれるガス成分や酸化性物質によって被処理水の水質が悪化することが防止される。   Thus, in addition to hydrogen ions and hydroxide ions generated by the water splitting reaction in the main desalting chamber, at least one of hydroxide ions generated in the cathode chamber or hydrogen ions generated in the anode chamber One of them can be effectively used for regeneration of the ion exchanger. In addition, since the anode chamber and the cathode chamber are separated from the secondary cation desalting chamber or the secondary anion desalting chamber into which the water to be treated flows, and the third cation exchange membrane or the third anion exchange membrane, the anode chamber In addition, the quality of the water to be treated is prevented from being deteriorated by the gas component and the oxidizing substance contained in the cathode chamber.

また、電極室に隣接して副脱塩室が設けられている構成では、電極水に含まれるイオン成分が隣接する副脱塩室に移動し、カチオン成分及びアニオン成分が除去された被処理水を汚染する可能性がある。電極水に含まれるイオン成分は、電極室に入ると陽極室と陰極室との間の電位によって、隣接する副脱塩室に移動する。このイオン成分の移動は、電極水が電極室に入るとすぐに生じ、多くのイオン成分は電極室の入口付近で副脱塩室に移動すると考えられる。本実施態様によれば、副脱塩室に流入する被処理水と、副脱塩室に隣接する電極室に流入する電極水の流入方向が同じである。すなわち、副アニオン脱塩室が設けられている場合は、副アニオン脱塩室を流れる被処理水とこれに隣接する陰極室を流れる電極水の流れの向きが同じである。同様に、副カチオン脱塩室が設けられている場合は、副カチオン脱塩室を流れる被処理水とこれに隣接する陽極室を流れる電極水の流れの向きが同じである。この構成のために、副脱塩室に移動するイオン成分の多くは副脱塩室の入口近傍に流入する。このためイオン成分は副脱塩室で十分に除去され、最終的に濃縮室を通って系外に排出される。このように、副脱塩室と電極室の流れの向きを揃えることによっても、処理水の水質が悪化することが防止される。   In addition, in a configuration in which a sub-desalting chamber is provided adjacent to the electrode chamber, the ionic component contained in the electrode water moves to the adjacent sub-desalting chamber, and the water to be treated from which the cation component and the anion component have been removed. May contaminate. When the ion component contained in the electrode water enters the electrode chamber, it moves to the adjacent sub-desalting chamber by the potential between the anode chamber and the cathode chamber. This movement of the ionic component occurs as soon as the electrode water enters the electrode chamber, and it is considered that many ionic components move to the sub-desalting chamber near the entrance of the electrode chamber. According to this embodiment, the inflow directions of the water to be treated flowing into the sub-desalination chamber and the electrode water flowing into the electrode chamber adjacent to the sub-desalination chamber are the same. That is, when the secondary anion demineralization chamber is provided, the direction of the water to be treated flowing in the secondary anion demineralization chamber and the flow of the electrode water flowing in the cathode chamber adjacent thereto are the same. Similarly, when the secondary cation demineralization chamber is provided, the flow direction of the water to be treated flowing in the secondary cation demineralization chamber and the electrode water flowing in the anode chamber adjacent thereto are the same. Because of this configuration, most of the ionic components that move to the secondary desalting chamber flow into the vicinity of the inlet of the secondary desalting chamber. For this reason, ionic components are sufficiently removed in the secondary desalting chamber, and finally discharged through the concentration chamber to the outside of the system. In this way, the quality of the treated water is also prevented from deteriorating by aligning the flow directions of the sub-desalting chamber and the electrode chamber.

本発明によれば、被処理水の良好な水質を確保可能であるとともに、陽極室または陰極室で生成される水素イオンと水酸化物イオンの少なくともいずれか一方をイオン交換体の再生に利用することで消費電力の低減が可能な電気式脱イオン水製造装置を提供することができる。   According to the present invention, it is possible to ensure good water quality of the water to be treated, and at least one of hydrogen ions and hydroxide ions generated in the anode chamber or the cathode chamber is used for regeneration of the ion exchanger. Thus, an electric deionized water production apparatus capable of reducing power consumption can be provided.

本発明の一実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on one Embodiment of this invention. 電極水の流れ方向が副脱塩室の流れ方向と同一である構成と、異なる構成とを示す、脱イオン水製造装置の部分図である。It is a partial view of the deionized water manufacturing apparatus which shows the structure from which the flow direction of electrode water is the same as the flow direction of a subdemineralization chamber, and a different structure. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 比較例に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on a comparative example. 実施例及び比較例の脱イオン水製造装置の性能を示すグラフである。It is a graph which shows the performance of the deionized water manufacturing apparatus of an Example and a comparative example.

以下、図面を参照して、本発明の電気式脱イオン水製造装置のいくつかの実施形態について説明する。   Hereinafter, some embodiments of the electric deionized water production apparatus of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る脱イオン水製造装置の概略構成図である。脱イオン水製造装置1は、陽極4を備える陽極室E2と陰極5を備える陰極室E1とからなる一対の電極室E1,E2の間に、主脱塩室Dと、主脱塩室Dの両側に位置する一対の濃縮室C1,C2と、濃縮室C1と陰極室E1の間に位置する副アニオン脱塩室S2と、濃縮室C2と陽極室E2の間に位置する副カチオン脱塩室S1とが設けられ、これらの各室がイオン交換膜a1〜a3,c1〜c3で仕切られている。以下の説明では、陰極側で主脱塩室Dと隣接する濃縮室を陰極側濃縮室C1、陽極側で主脱塩室Dと隣接する濃縮室を陽極側濃縮室C2と呼ぶ。   FIG. 1 is a schematic configuration diagram of a deionized water production apparatus according to an embodiment of the present invention. The deionized water production apparatus 1 includes a main demineralization chamber D and a main demineralization chamber D between a pair of electrode chambers E1 and E2 including an anode chamber E2 having an anode 4 and a cathode chamber E1 having a cathode 5. A pair of concentrating chambers C1, C2 located on both sides, a secondary anion desalting chamber S2 positioned between the concentrating chamber C1 and the cathode chamber E1, and a secondary cation desalting chamber positioned between the concentrating chamber C2 and the anode chamber E2. S1 is provided, and these chambers are partitioned by ion exchange membranes a1 to a3 and c1 to c3. In the following description, the concentrating chamber adjacent to the main desalting chamber D on the cathode side is referred to as the cathode concentrating chamber C1, and the concentrating chamber adjacent to the main desalting chamber D on the anode side is referred to as the anode concentrating chamber C2.

陰極側濃縮室C1は第1のカチオン交換膜c1を介して主脱塩室Dに隣接し、陽極側濃縮室C2は第1のアニオン交換膜a1を介して主脱塩室Dに隣接している。副カチオン脱塩室S1は、第2のカチオン交換膜c2を介して陽極側濃縮室C2と隣接し、第3のカチオン交換膜c3を介して陽極室E2と隣接している。副アニオン脱塩室S2は、第2のアニオン交換膜a2を介して陰極側濃縮室C1と隣接し、第3のアニオン交換膜a3を介して陰極室E1と隣接している。   The cathode side concentrating chamber C1 is adjacent to the main desalting chamber D via the first cation exchange membrane c1, and the anode side concentrating chamber C2 is adjacent to the main desalting chamber D via the first anion exchange membrane a1. Yes. The secondary cation desalting chamber S1 is adjacent to the anode concentration chamber C2 via the second cation exchange membrane c2, and is adjacent to the anode chamber E2 via the third cation exchange membrane c3. The secondary anion demineralization chamber S2 is adjacent to the cathode-side concentration chamber C1 via the second anion exchange membrane a2, and is adjacent to the cathode chamber E1 via the third anion exchange membrane a3.

主脱塩室Dは、第1のカチオン交換膜c1と隣接する主カチオン脱塩室D1と、第1のアニオン交換膜a1と隣接する主アニオン脱塩室D2と、を有している。主カチオン脱塩室D1と主アニオン脱塩室D2は、中間イオン交換膜3を介して互いに隣接している。   The main desalting chamber D has a main cation desalting chamber D1 adjacent to the first cation exchange membrane c1, and a main anion desalting chamber D2 adjacent to the first anion exchange membrane a1. The main cation desalting chamber D1 and the main anion desalting chamber D2 are adjacent to each other through the intermediate ion exchange membrane 3.

主カチオン脱塩室D1には少なくともカチオン交換体が充填され、主に被処理水中のカチオン成分(Na+、Ca2+、Mg2+等)が除去される。カチオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。主カチオン脱塩室D1にはアニオン交換体がさらに充填されていてもよい。主カチオン脱塩室D1に充填するイオン交換体の充填形態としては、カチオン交換体の単床形態、カチオン交換体とアニオン交換体との混床形態または複床形態が挙げられる。 The main cation desalting chamber D1 is filled with at least a cation exchanger, and mainly cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are removed. Examples of the cation exchanger include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most versatile ion exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers. The main cation desalting chamber D1 may be further filled with an anion exchanger. Examples of the filling form of the ion exchanger filled in the main cation desalting chamber D1 include a single bed form of the cation exchanger, a mixed bed form of a cation exchanger and an anion exchanger, or a multiple bed form.

主アニオン脱塩室D2には少なくともアニオン交換体が充填され、主に被処理水中のアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする。)等)が除去される。アニオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。主アニオン脱塩室D2にはカチオン交換体がさらに充填されていてもよい。主アニオン脱塩室D2に充填するイオン交換体の充填形態としては、アニオン交換体の単床形態、アニオン交換体とカチオン交換体との混床形態または複床形態が挙げられる。 The main anion demineralization chamber D2 is filled with at least an anion exchanger and mainly contains anion components (Cl , CO 3 2− , HCO 3 , SiO 2 (silica can take a special form) in the water to be treated. Since there are many, it is set as a display different from a general ion.) Etc.) are removed. Examples of the anion exchanger include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most versatile ion exchange resins are preferably used. Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers. The main anion desalting chamber D2 may be further filled with a cation exchanger. Examples of the packed form of the ion exchanger filled in the main anion desalting chamber D2 include a single bed form of the anion exchanger, a mixed bed form of an anion exchanger and a cation exchanger, or a multiple bed form.

中間イオン交換膜3は、被処理水の水質、脱イオン水に求められる水質、主カチオン脱塩室D1または主アニオン脱塩室D2に充填するイオン交換体の種類等を勘案して選択することができる。中間イオン交換膜3は、アニオン交換膜もしくはカチオン交換膜の単一膜、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜のいずれであってもよい。   The intermediate ion exchange membrane 3 is selected in consideration of the quality of the water to be treated, the water quality required for the deionized water, the type of ion exchanger filled in the main cation demineralization chamber D1 or the main anion demineralization chamber D2, and the like. Can do. The intermediate ion exchange membrane 3 may be either an anion exchange membrane or a single membrane of a cation exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane.

このように主脱塩室Dが主カチオン脱塩室D1と主アニオン脱塩室D2の2つの小脱塩室に区画され、各々の外側に濃縮室が隣接する構成(主脱塩室2室構成)は、被処理水の多段処理が可能であり、脱イオン性能の向上に効果的である。しかも主カチオン脱塩室D1と主アニオン脱塩室D2との間に濃縮室を設ける必要がないため、陽極・陰極間の印加電圧が抑えられ、消費電力が下がり運転費の低減を図ることが可能である。   In this way, the main desalting chamber D is divided into two small desalting chambers, a main cation desalting chamber D1 and a main anion desalting chamber D2, and a concentrating chamber is adjacent to each outside (two main desalting chambers). Configuration) is capable of multi-stage treatment of water to be treated, and is effective in improving deionization performance. In addition, since it is not necessary to provide a concentration chamber between the main cation demineralization chamber D1 and the main anion demineralization chamber D2, the applied voltage between the anode and the cathode can be suppressed, the power consumption can be reduced, and the operation cost can be reduced. Is possible.

主脱塩室Dは、従来公知の主脱塩室1室構成であってもかまわない。主脱塩室1室構成では、主脱塩室にはカチオン交換体とアニオン交換体とが充填され、一つの脱塩室でカチオン除去とアニオン除去が行われる。カチオン交換体とアニオン交換体は混床形態または複床形態で充填されることが望ましい。主脱塩室1室構成は構造が単純であり、要求水質によってはこのような構成を採用することもできる。   The main desalting chamber D may be a conventionally known main desalting chamber. In the configuration of one main desalting chamber, the main desalting chamber is filled with a cation exchanger and an anion exchanger, and cation removal and anion removal are performed in one desalting chamber. The cation exchanger and the anion exchanger are desirably packed in a mixed bed form or a multi-bed form. The structure of one main desalination chamber is simple, and such a configuration can be adopted depending on the required water quality.

陰極側濃縮室C1は、主カチオン脱塩室D1から排出されるカチオン成分及び副アニオン脱塩室S2から排出されるアニオン成分を取り込み、それらを系外に放出するために設けられている。陽極側濃縮室C2は、主アニオン脱塩室D2から排出されるアニオン成分及び副カチオン脱塩室S1から排出されるカチオン成分を取り込み、それらを系外に放出するために設けられている。濃縮室C1,C2には濃縮室供給水が流入し、濃縮室供給水はカチオン成分及びアニオン成分を含んだ濃縮水となって、濃縮室C1,C2から排出される。脱イオン水製造装置1の電気抵抗を抑えるために、濃縮室C1,C2にイオン交換体が充填されていてもよい。   The cathode concentration chamber C1 is provided to take in the cation component discharged from the main cation demineralization chamber D1 and the anion component discharged from the auxiliary anion demineralization chamber S2, and to release them out of the system. The anode side concentrating chamber C2 is provided to take in the anion component discharged from the main anion desalting chamber D2 and the cation component discharged from the auxiliary cation desalting chamber S1, and to release them out of the system. The concentration chamber supply water flows into the concentration chambers C1 and C2, and the concentration chamber supply water becomes concentrated water containing a cation component and an anion component and is discharged from the concentration chambers C1 and C2. In order to suppress the electrical resistance of the deionized water production apparatus 1, the concentration chambers C1 and C2 may be filled with an ion exchanger.

副カチオン脱塩室S1は主カチオン脱塩室D1と同様の構成を有しているが、カチオン交換体だけが単床充填されている。   The sub cation demineralization chamber S1 has the same configuration as the main cation demineralization chamber D1, but only the cation exchanger is filled with a single bed.

副アニオン脱塩室S2は主アニオン脱塩室D2と同様の構成を有しているが、アニオン交換体だけが単床充填されている。   The secondary anion desalting chamber S2 has the same configuration as the main anion desalting chamber D2, but only the anion exchanger is filled with a single bed.

陽極室E2は陽極4を収容している。陽極4は金属の網状体あるいは板状体からなっている。被処理水にCl-を含む場合、陽極4に塩素が発生する。このため、陽極4には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。 The anode chamber E2 accommodates the anode 4. The anode 4 is made of a metal net or plate. When the water to be treated contains Cl , chlorine is generated at the anode 4. For this reason, it is desirable to use a material having chlorine resistance for the anode 4, and examples thereof include a metal such as platinum, palladium, iridium, or a material obtained by coating titanium with these metals.

陰極室E1は陰極5を収容している。陰極5は、金属の網状体あるいは板状体からなっており、例えばステンレス製の網状体あるいは板状体を用いることができる。   The cathode chamber E1 accommodates the cathode 5. The cathode 5 is made of a metal net or plate, and for example, a stainless steel net or plate can be used.

陽極室E2及び陰極室E1には電極水が流入する。後述するように、これらの電極水は電極近傍での電気分解により、水素イオン及び水酸化物イオンを発生させる。脱イオン水製造装置1の電気抵抗を抑えるために、陽極室E2及び陰極室E1にはイオン交換体が充填されていることが好ましい。イオン交換体が充填されることで、後述する水素イオンの副カチオン脱塩室S1への移動及び水酸化物イオンの副アニオン脱塩室S2への移動が円滑に行われる。   Electrode water flows into the anode chamber E2 and the cathode chamber E1. As will be described later, these electrode waters generate hydrogen ions and hydroxide ions by electrolysis in the vicinity of the electrodes. In order to suppress the electrical resistance of the deionized water production apparatus 1, the anode chamber E2 and the cathode chamber E1 are preferably filled with an ion exchanger. By filling the ion exchanger, the movement of hydrogen ions to the secondary cation desalting chamber S1 and the movement of hydroxide ions to the secondary anion desalting chamber S2 described later are smoothly performed.

陽極室E2及び陰極室E1に充填するイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。陽極室E2には弱酸性カチオン交換体、強酸性カチオン交換体等のカチオン交換体が単床充填される。陰極室E1には、弱塩基性アニオン交換体、強塩基性アニオン交換体等のアニオン交換体が単床充填される。これによって、上述の通り、水素イオンの副カチオン脱塩室S1への移動及び水酸化物イオンの副アニオン脱塩室S2への移動が円滑に行われる。   Examples of the ion exchanger filled in the anode chamber E2 and the cathode chamber E1 include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most general-purpose ion exchange resins are preferably used. The anode chamber E2 is filled with a single bed of a cation exchanger such as a weak acid cation exchanger or a strong acid cation exchanger. The cathode chamber E1 is filled with a single bed of anion exchangers such as a weakly basic anion exchanger and a strongly basic anion exchanger. Accordingly, as described above, the movement of hydrogen ions to the secondary cation desalting chamber S1 and the movement of hydroxide ions to the secondary anion desalting chamber S2 are performed smoothly.

各電極室E1,E2、主カチオン脱塩室D1、主アニオン脱塩室D2、各濃縮室C1,C2、副カチオン脱塩室S1及び副アニオン脱塩室S2は各々、開口部を備えた板状部材である枠体2の内部に設けられている。図1では、枠体2は一体的に示されているが、実際には部屋毎に別々の枠体を備え、枠体同士が互いに密着して設けられている。枠体2は絶縁性を有し、被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m−PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。   Each electrode chamber E1, E2, main cation demineralization chamber D1, main anion demineralization chamber D2, each concentration chamber C1, C2, sub cation demineralization chamber S1, and sub anion demineralization chamber S2 each have a plate with an opening. It is provided in the inside of the frame 2 which is a shape member. In FIG. 1, the frame body 2 is shown integrally, but actually, a separate frame body is provided for each room, and the frame bodies are provided in close contact with each other. The frame 2 is not particularly limited as long as it has insulating properties and does not leak treated water. For example, resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether) Can be mentioned.

各部屋同士の連絡、あるいは被処理水や濃縮室供給水、電極水等の供給、排出用にいくつかの流路U1〜U5,L1〜L5が設けられている。   Several flow paths U1 to U5 and L1 to L5 are provided for communication between rooms, or for supply and discharge of treated water, concentration chamber supply water, electrode water, and the like.

脱イオン水製造装置1の下部に位置する流路L1は、一端が被処理水の供給側に接続され、他端側では途中で分岐して、主カチオン脱塩室D1と副カチオン脱塩室S1とに接続されている。脱イオン水製造装置1の上部に位置する流路U1は、主カチオン脱塩室D1と副カチオン脱塩室S1とに接続され、途中で合流し、渡り配管Yの一端に接続している。渡り配管Yの他端は脱イオン水製造装置1の下部に位置する流路L2に接続されており、流路L2は、途中で分岐して、主アニオン脱塩室D2と副アニオン脱塩室S2とに接続されている。脱イオン水製造装置1の上部に位置する流路U2は、主アニオン脱塩室D2と副アニオン脱塩室S2とに接続され、途中で合流し、被処理水の排出側に接続されている。   One end of the flow path L1 located in the lower part of the deionized water production apparatus 1 is connected to the supply side of the water to be treated, and the other end side branches in the middle, so that the main cation demineralization chamber D1 and the sub cation demineralization chamber Connected to S1. The flow path U1 located in the upper part of the deionized water production apparatus 1 is connected to the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, merges in the middle, and is connected to one end of the transition pipe Y. The other end of the crossover pipe Y is connected to a flow path L2 located at the lower part of the deionized water production apparatus 1, and the flow path L2 is branched in the middle so that the main anion demineralization chamber D2 and the secondary anion demineralization chamber Connected to S2. The flow path U2 located in the upper part of the deionized water production apparatus 1 is connected to the main anion demineralization chamber D2 and the subanion demineralization chamber S2, merges in the middle, and is connected to the discharge side of the treated water. .

脱イオン水製造装置1の上部に位置する流路U3は濃縮室供給水の供給側に接続され、他端側では途中で分岐して、陰極側濃縮室C1と陽極側濃縮室C2とに接続されている。脱イオン水製造装置1の下部に位置する流路L3は、陰極側濃縮室C1と陽極側濃縮室C2とに接続され、途中で合流し、濃縮水の排出側に接続されている。図1では、流路U1〜U3,L1〜L3は、図示の都合上枠体2の外側に位置しているが、これらの流路U1〜U3,L1〜L3は、枠体2に内蔵されているのが有利である。   The flow path U3 located in the upper part of the deionized water production apparatus 1 is connected to the supply side of the concentrating chamber supply water, and is branched halfway on the other end side to connect to the cathode side concentrating chamber C1 and the anode side concentrating chamber C2. Has been. The flow path L3 located in the lower part of the deionized water production apparatus 1 is connected to the cathode-side concentrating chamber C1 and the anode-side concentrating chamber C2, merges on the way, and is connected to the concentrated water discharge side. In FIG. 1, the flow paths U <b> 1 to U <b> 3, L <b> 1 to L <b> 3 are located outside the frame body 2 for convenience of illustration, but these flow paths U <b> 1 to U <b> 3, L <b> 1 to L <b> 3 are built in the frame body 2. It is advantageous.

陽極室E2には流路L4,U4が接続しており、電極水は陽極室E2の下部に接続された流路L4から陽極室E2に流入し、陽極室E2の上部に接続された流路U4を通って陽極室E2から排出される。陰極室E1には流路L5,U5が接続しており、電極水は陰極室E1の下部に接続された流路L5から陰極室E1に流入し、陰極室E1の上部に接続された流路U5を通って陰極室E1から排出される。すなわち、副脱塩室S1,S2に流入する被処理水と、副脱塩室S1,S2に隣接する電極室E2,E1に流入する電極水の流入方向は同じである。具体的には、副カチオン脱塩室S1に流入する被処理水と、副カチオン脱塩室S1に隣接する陽極室E2に流入する電極水の流入方向は同じであり、副アニオン脱塩室S2に流入する被処理水と、副アニオン脱塩室S2に隣接する陰極室E1に流入する電極水の流入方向は同じである。   Flow paths L4 and U4 are connected to the anode chamber E2, and electrode water flows into the anode chamber E2 from the flow path L4 connected to the lower portion of the anode chamber E2, and is connected to the upper portion of the anode chamber E2. It is discharged from the anode chamber E2 through U4. Channels L5 and U5 are connected to the cathode chamber E1, and electrode water flows into the cathode chamber E1 from the channel L5 connected to the lower part of the cathode chamber E1, and is connected to the upper part of the cathode chamber E1. It is discharged from the cathode chamber E1 through U5. That is, the inflow directions of the water to be treated flowing into the sub-desalting chambers S1, S2 and the electrode water flowing into the electrode chambers E2, E1 adjacent to the sub-desalting chambers S1, S2 are the same. Specifically, the inflow direction of the water to be treated flowing into the secondary cation desalting chamber S1 and the electrode water flowing into the anode chamber E2 adjacent to the secondary cation desalting chamber S1 are the same, and the secondary anion desalting chamber S2 The inflow directions of the water to be treated flowing into the cathode water and the electrode water flowing into the cathode chamber E1 adjacent to the secondary anion demineralization chamber S2 are the same.

次に、引き続き図1を参照して、被処理水の流れと脱イオンの原理について説明する。   Next, the flow of water to be treated and the principle of deionization will be described with reference to FIG.

あらかじめ、濃縮室C1,C2に、流路U3から濃縮室供給水を供給し、流路L3から排出するようにしておく。電極室E1には、流路L5から電極水を供給し、流路U5から排出させておく。同様に、電極室E2には、流路L4から電極水を供給し、流路U4から排出させておく。陽極4、陰極5間には所定の電圧を印加しておく。この状態で、被処理水を流路L1から、主カチオン脱塩室D1及び副カチオン脱塩室S1に並列に流入させる。被処理水は、主カチオン脱塩室D1及び副カチオン脱塩室S1で、カチオン成分が除去される。   In advance, the concentration chamber supply water is supplied from the flow path U3 to the concentration chambers C1 and C2, and is discharged from the flow path L3. Electrode water is supplied to the electrode chamber E1 from the flow path L5 and discharged from the flow path U5. Similarly, electrode water is supplied to the electrode chamber E2 from the flow path L4 and discharged from the flow path U4. A predetermined voltage is applied between the anode 4 and the cathode 5. In this state, water to be treated is caused to flow in parallel from the flow path L1 into the main cation desalting chamber D1 and the sub cation desalting chamber S1. The cation component is removed from the water to be treated in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1.

具体的には、Na+等のカチオン成分は、主カチオン脱塩室D1で、主カチオン脱塩室D1に充填されたカチオン交換体に吸着される。主カチオン脱塩室D1では、水分解反応によって水が水素イオン(以下、H+という。)と水酸化物イオン(以下、OH-という。)とに解離する反応が、連続的に進行している。H+はカチオン交換樹脂に吸着したNa+等のカチオン成分と交換され、主カチオン脱塩室D1に充填されたカチオン交換体が再生される。除去されたNa+等のカチオンは陽極4、陰極5間の電位によって陰極5側に引き寄せられ、第1のカチオン交換膜c1を通過して陰極側濃縮室C1に流入し、系外に放出される。 Specifically, a cation component such as Na + is adsorbed on the cation exchanger filled in the main cation demineralization chamber D1 in the main cation demineralization chamber D1. In the main cation desalting chamber D1, a reaction in which water is dissociated into hydrogen ions (hereinafter referred to as H + ) and hydroxide ions (hereinafter referred to as OH ) by water splitting reaction proceeds continuously. Yes. H + is exchanged with a cation component such as Na + adsorbed on the cation exchange resin, and the cation exchanger filled in the main cation desalting chamber D1 is regenerated. The removed cations such as Na + are attracted to the cathode 5 side by the potential between the anode 4 and the cathode 5, pass through the first cation exchange membrane c 1, flow into the cathode side concentrating chamber C 1, and discharged outside the system. The

副カチオン脱塩室S1では、Na+等のカチオン成分は、副カチオン脱塩室S1に充填されたカチオン交換体に吸着される。陽極室E2では、電気分解反応(2H2O→O2+4H++4e-)によって水から酸素ガスとH+とが生成される反応が、連続的に進行している。酸素ガスは陽極室E2内を上昇し、電極水とともに脱イオン水製造装置1の外へ排出される。H+は第3のカチオン交換膜c3を通って副カチオン脱塩室S1に流入する。副カチオン脱塩室S1に流入したH+は、カチオン交換体に吸着したカチオン成分と交換され、カチオン交換体が再生される。除去されたNa+等のカチオン成分は陽極4、陰極5間の電位によって陰極5側に引き寄せられ、第2のカチオン交換膜c2を通過して陽極側濃縮室C2に流入し、系外に放出される。 In the secondary cation desalting chamber S1, cation components such as Na + are adsorbed on the cation exchanger filled in the secondary cation desalting chamber S1. In the anode chamber E2, a reaction in which oxygen gas and H + are generated from water by an electrolysis reaction (2H 2 O → O 2 + 4H + + 4e ) proceeds continuously. Oxygen gas rises in the anode chamber E2 and is discharged out of the deionized water production apparatus 1 together with the electrode water. H + flows into the secondary cation desalting chamber S1 through the third cation exchange membrane c3. H + flowing into the secondary cation desalting chamber S1 is exchanged with the cation component adsorbed on the cation exchanger, and the cation exchanger is regenerated. The removed cation component such as Na + is attracted to the cathode 5 side by the potential between the anode 4 and the cathode 5, passes through the second cation exchange membrane c2, flows into the anode side concentrating chamber C2, and is discharged outside the system. Is done.

このようにしてNa+等のカチオン成分が除去された被処理水は流路U1で合流し、渡り配管Yを通って流路L2に流入する。流路L2に流入した被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2に並列に流入する。被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2で、アニオン成分が除去される。 Thus, the water to be treated from which the cation component such as Na + has been removed merges in the flow path U1 and flows into the flow path L2 through the transition pipe Y. The treated water that has flowed into the flow path L2 flows in parallel into the main anion demineralization chamber D2 and the subanion demineralization chamber S2. The anion component is removed from the water to be treated in the main anion demineralization chamber D2 and the subanion demineralization chamber S2.

具体的には、Cl-等のアニオン成分は、主アニオン脱塩室D2で、主アニオン脱塩室D2に充填されたアニオン交換体に吸着される。主アニオン脱塩室D2では、主カチオン脱塩室D1で生じているのと同様の水分解反応によってOH-が連続的に発生している。OH-はアニオン交換樹脂に吸着したCl-等のアニオン成分と交換され、アニオン交換体が再生される。除去されたCl-等のアニオン成分は陽極4、陰極5間の電位によって陽極4側に引き寄せられ、第1のアニオン交換膜a1を通過して陽極側濃縮室C2に流入し、系外に放出される。 Specifically, an anion component such as Cl 2 is adsorbed to the anion exchanger filled in the main anion desalting chamber D2 in the main anion desalting chamber D2. In the main anion demineralization chamber D2, OH is continuously generated by the same water splitting reaction as occurs in the main cation demineralization chamber D1. OH is exchanged with an anion component such as Cl 2 adsorbed on the anion exchange resin to regenerate the anion exchanger. The removed anion component such as Cl is attracted to the anode 4 side by the potential between the anode 4 and the cathode 5, passes through the first anion exchange membrane a 1, flows into the anode side concentration chamber C 2, and is discharged outside the system. Is done.

副アニオン脱塩室S2では、Cl-等のアニオン成分は、副アニオン脱塩室S2に充填されたアニオン交換体に吸着される。陰極室E1では、電気分解反応(2H2O+2e-→H2+2OH-)によって水から水素ガスとOH-とが生成される反応が、連続的に進行している。水素ガスは陰極室E1内を上昇し、電極水とともに脱イオン水製造装置1の外へ排出される。OH-は第3のアニオン交換膜a3を通って副アニオン脱塩室S2に流入し、アニオン交換体に吸着したアニオン成分と交換され、アニオン交換体が再生される。除去されたCl-等のアニオン成分は陽極4、陰極5間の電位によって陽極4側に引き寄せられ、第2のアニオン交換膜a2を通過して陰極側濃縮室C1に流入する。主アニオン脱塩室D2及び副アニオン脱塩室S2でアニオン成分が除去された被処理水は流路U2で合流し、脱イオン水となって脱イオン水製造装置1の外へ排出される。 In sub anion depletion chamber S2, Cl - anion components, etc., are adsorbed to the anion exchanger filled in the sub anion depletion chamber S2. In the cathode chamber E1, a reaction in which hydrogen gas and OH are generated from water by an electrolysis reaction (2H 2 O + 2e → H 2 + 2OH ) proceeds continuously. Hydrogen gas rises in the cathode chamber E1, and is discharged out of the deionized water production apparatus 1 together with the electrode water. OH flows into the secondary anion desalting chamber S2 through the third anion exchange membrane a3 and is exchanged with the anion component adsorbed on the anion exchanger, thereby regenerating the anion exchanger. Removed Cl - anion components such as the anode 4, are attracted to the anode 4 side by the potential between the cathode 5 passes through the second anion exchange membrane a2 flowing into the cathode side concentrating compartment C1. The treated water from which the anion components have been removed in the main anion demineralization chamber D2 and the subanion demineralization chamber S2 joins in the flow path U2, and is deionized water and discharged out of the deionized water production apparatus 1.

流路U3を通って陰極側濃縮室C1及び陽極側濃縮室C2に供給される濃縮室供給水は、主カチオン脱塩室D1、主アニオン脱塩室D2、副カチオン脱塩室S1及び副アニオン脱塩室S2から排出されるカチオン成分及びアニオン成分を取り込み、脱イオン水製造装置1の下部に位置する流路L3を通って脱イオン水製造装置1の外へ排出される。   Concentration chamber supply water supplied to the cathode-side enrichment chamber C1 and the anode-side enrichment chamber C2 through the flow path U3 is a main cation demineralization chamber D1, a main anion demineralization chamber D2, a sub-cation demineralization chamber S1, and a sub-anion. The cation component and the anion component discharged from the demineralization chamber S2 are taken in and discharged to the outside of the deionized water production apparatus 1 through the flow path L3 located at the lower part of the deionized water production apparatus 1.

このようにして、被処理水は、主カチオン脱塩室D1及び副カチオン脱塩室S1でカチオン成分を除去され、主カチオン脱塩室D1のカチオン交換体は主カチオン脱塩室D1で生成されたH+により再生され、副カチオン脱塩室S1のカチオン交換体は陽極室E2で生成されたH+により再生される。同様にして、被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2でアニオン成分を除去され、主アニオン脱塩室D2のアニオン交換体は主アニオン脱塩室D2で生成されたOH-により再生され、副アニオン脱塩室S2のアニオン交換体は陰極室E1で生成されたOH-により再生される。従って、電極室(陰極室E1及び陽極室E2)で発生し、従来は利用されることなく捨てられていたH+及びOH-をイオン交換体の再生に有効利用することができる。 In this way, the cation component is removed from the water to be treated in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and the cation exchanger in the main cation demineralization chamber D1 is generated in the main cation demineralization chamber D1. reproduced by H + was a cation exchanger of the secondary cation depletion chamber S1 is reproduced by the H + generated in the anode chamber E2. Similarly, the anion component was removed from the water to be treated in the main anion desalting chamber D2 and the secondary anion desalting chamber S2, and the anion exchanger in the main anion desalting chamber D2 was generated in the main anion desalting chamber D2. Regenerated by OH −, the anion exchanger in the secondary anion desalting chamber S2 is regenerated by OH generated in the cathode chamber E1. Therefore, H + and OH generated in the electrode chambers (cathode chamber E1 and anode chamber E2) and discarded without being used in the past can be effectively used for regeneration of the ion exchanger.

陽極室E2及び陰極室E1におけるH+及びOH-の生成効率は高いため、電位が低くても十分な量のH+及びOH-が副カチオン脱塩室S1及び副アニオン脱塩室S2に移動する。このため、電極間の印加電圧を抑え、脱イオン水製造装置1の運転費用を低減することができる。 Since the generation efficiency of H + and OH in the anode chamber E2 and the cathode chamber E1 is high, a sufficient amount of H + and OH moves to the secondary cation desalting chamber S1 and the secondary anion desalting chamber S2 even if the potential is low. To do. For this reason, the applied voltage between electrodes can be suppressed and the operating cost of the deionized water manufacturing apparatus 1 can be reduced.

また、本実施形態では、副カチオン脱塩室S1及び副アニオン脱塩室S2が新たな脱塩室として設けられているが、それに伴い新たな濃縮室を追加する必要がない。つまり、陽極側濃縮室C2と陽極室E2の間に単に副カチオン脱塩室S1を設け、陰極側濃縮室C1と陰極室E1の間に単に副アニオン脱塩室S2を設けるだけでよいので、相対的に濃縮室の数を減らすことができる。これは装置サイズ及び装置コストを抑えるだけでなく、印加電圧及び運転費用の低減にもつながる。   In the present embodiment, the secondary cation desalting chamber S1 and the secondary anion desalting chamber S2 are provided as new desalting chambers, but it is not necessary to add a new concentration chamber accordingly. That is, the secondary cation demineralization chamber S1 is simply provided between the anode side enrichment chamber C2 and the anode chamber E2, and the secondary anion desalination chamber S2 is simply provided between the cathode side concentration chamber C1 and the cathode chamber E1. The number of concentration chambers can be relatively reduced. This not only reduces the size and cost of the device, but also reduces the applied voltage and operating costs.

本実施形態では被処理水を主カチオン脱塩室D1及び副カチオン脱塩室S1に並列に流入させ流出させており、同様に被処理水を主アニオン脱塩室D2及び副アニオン脱塩室S2に並列に流入させ流出させている。この構成は、特に装置の処理容量が大きい場合に有利である。以下、主カチオン脱塩室D1を例として説明すると、処理容量を増やすためには、後述の実施形態のように主カチオン脱塩室D1を複数個設け、これらを並列に接続する形式が一般的である。しかし、並列接続された主カチオン脱塩室D1と副カチオン脱塩室S1とを直列に接続する場合、複数の主カチオン脱塩室D1を通る被処理水の総流量と副カチオン脱塩室S1を通る被処理水の流量とを一致させる必要がある。副カチオン脱塩室S1は陽極室E2に隣接している必要があり、原理的に1個しか設けることができないためである。このため、主カチオン脱塩室D1の総流量が増えた場合、主カチオン脱塩室D1の総流量と同じだけの流量を1つの副カチオン脱塩室S1で処理する必要がある。副カチオン脱塩室S1のサイズを変えずに通水流量を増やすと、通水差圧、すなわち副カチオン脱塩室S1で生じる圧力損失が通水流量に比例して増加する。従って、装置の処理容量を増やそうとしても、副カチオン脱塩室S1の通水差圧の観点から大きな制約が生じる。   In this embodiment, the water to be treated is caused to flow in and out of the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, and similarly, the water to be treated is discharged into the main anion demineralization chamber D2 and the sub anion demineralization chamber S2. Inflow and outflow in parallel. This configuration is advantageous particularly when the processing capacity of the apparatus is large. Hereinafter, the main cation demineralization chamber D1 will be described as an example. In order to increase the processing capacity, it is common to provide a plurality of main cation demineralization chambers D1 and connect them in parallel as in the embodiment described later. It is. However, when the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 connected in parallel are connected in series, the total flow rate of water to be treated passing through the plurality of main cation demineralization chambers D1 and the sub cation demineralization chamber S1. It is necessary to match the flow rate of the water to be treated passing through. This is because the secondary cation desalting chamber S1 needs to be adjacent to the anode chamber E2, and in principle, only one can be provided. For this reason, when the total flow rate of the main cation demineralization chamber D1 increases, it is necessary to process the same flow rate as the total flow rate of the main cation demineralization chamber D1 in one sub-cation demineralization chamber S1. When the water flow rate is increased without changing the size of the secondary cation demineralization chamber S1, the water flow differential pressure, that is, the pressure loss generated in the secondary cation demineralization chamber S1 increases in proportion to the water flow rate. Therefore, even if it is going to increase the processing capacity of an apparatus, a big restriction | limiting arises from a viewpoint of the water flow differential pressure | voltage of sub-cation desalination chamber S1.

以上より、副カチオン脱塩室S1の通水流量を増やすためには、電圧印加方向における副カチオン脱塩室S1の幅を広げる以外に現実的な方法がない。しかし、並列接続された主カチオン脱塩室D1と副カチオン脱塩室S1とを直列に接続する場合、主カチオン脱塩室の総幅と副カチオン脱塩室S1の幅がともに増えるため、装置の幅は処理容量の増加比率を上回る比率で増える。この結果、陰極と陽極の離隔距離が増加し、装置サイズの増加だけでなく、陽極・陰極間の印加電位の増加を招き、運転費用への影響が避けられない。   From the above, in order to increase the water flow rate of the secondary cation desalting chamber S1, there is no practical method other than increasing the width of the secondary cation desalting chamber S1 in the voltage application direction. However, when the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 connected in parallel are connected in series, the total width of the main cation demineralization chamber and the width of the sub cation demineralization chamber S1 both increase. The width increases at a rate that exceeds the rate of increase in processing capacity. As a result, the separation distance between the cathode and the anode is increased, and not only the apparatus size is increased, but also the applied potential between the anode and the cathode is increased, and the influence on the operating cost is inevitable.

本実施形態では、主カチオン脱塩室D1と副カチオン脱塩室S1に被処理水を並列に流入させ流出させているため、副カチオン脱塩室S1の通水流量は主カチオン脱塩室D1の通水流量に依存しない。換言すれば、被処理水は副カチオン脱塩室S1と主カチオン脱塩室D1とに分配されるので、副カチオン脱塩室S1の通水差圧の増加を容易に回避することができる。また、主カチオン脱塩室D1と副カチオン脱塩室S1とを並列接続することで、これらを直列接続する場合と比べて、装置全体の通水差圧も抑制できる。しかも、被処理水の増加に応じて副カチオン脱塩室S1のサイズを大きくする必要もないため、陽極・陰極間の印加電圧も抑制できる。このことは、主脱塩室を多数個配置する脱イオン水製造装置において、特に大きなメリットとなる。以上については主アニオン脱塩室D2及び副アニオン脱塩室S2に関しても全く同様である。   In this embodiment, since the water to be treated is caused to flow in and out of the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, the water flow rate in the sub cation demineralization chamber S1 is the main cation demineralization chamber D1. It does not depend on the water flow rate. In other words, since the water to be treated is distributed to the sub cation demineralization chamber S1 and the main cation demineralization chamber D1, an increase in water flow differential pressure in the sub cation demineralization chamber S1 can be easily avoided. Further, by connecting the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, the water flow differential pressure of the entire apparatus can be suppressed as compared with the case of connecting them in series. In addition, since it is not necessary to increase the size of the secondary cation desalting chamber S1 in accordance with the increase in the water to be treated, the applied voltage between the anode and the cathode can be suppressed. This is a particularly significant advantage in a deionized water production apparatus in which a large number of main demineralization chambers are arranged. The same applies to the main anion desalting chamber D2 and the secondary anion desalting chamber S2.

また、本実施形態では前述の通り、副脱塩室S1,S2に流入する被処理水と、副脱塩室S1,S2に隣接する電極室E2,E1に流入する電極水の流入方向が同じである。この構成の効果について図2を参照して説明する。図2(a)は、比較例の脱イオン水製造装置の、陽極室E2から陽極側濃縮室C2までの部分を取り出して示す部分構成図であり、図2(b)は、同様の範囲を取り出して示す、本実施形態の部分構成図である。これらの図で、太い白抜き矢印は各室を通る電極水、被処理水等の流れる方向を示している。   Moreover, in this embodiment, as above-mentioned, the inflow direction of the to-be-processed water which flows into sub desalting chamber S1, S2 and the electrode water which flows into electrode chamber E2, E1 adjacent to sub desalting chamber S1, S2 is the same. It is. The effect of this configuration will be described with reference to FIG. FIG. 2A is a partial configuration diagram showing a part from the anode chamber E2 to the anode side concentrating chamber C2 of the deionized water production apparatus of the comparative example, and FIG. 2B shows a similar range. It is a partial block diagram of this embodiment taken out and shown. In these drawings, thick white arrows indicate the directions in which electrode water, water to be treated, and the like flow through the chambers.

図2(a)を参照すると、電極水には陽イオン成分(Na+を例として示す。)が含まれており、電極水が陽極室E2に流入すると、陽イオン成分は陽極4、陰極5間の電位によって陰極5側に引き寄せられ、第3のカチオン交換膜c3を通って副カチオン脱塩室S1に移動する。しかし、陽極室E2の電極水と副カチオン脱塩室S1の被処理水は互いに反対方向に流れており(向流)、このことは、陽極室E2における電極水の流入位置が、副カチオン脱塩室S1における被処理水の排出位置と隣接する位置関係にあることを意味する。このため、副カチオン脱塩室S1に移動した陽イオン成分は副カチオン脱塩室S1で除去されることなく、副カチオン脱塩室S1からそのまま排出される。この結果、電極水に含まれていた陽イオン成分が被処理水に混入し、被処理水の水質が劣化する。 Referring to FIG. 2A, the electrode water contains a cation component (Na + is shown as an example), and when the electrode water flows into the anode chamber E2, the cation component is the anode 4 and the cathode 5. Due to the potential between them, it is attracted to the cathode 5 side and moves to the secondary cation desalting chamber S1 through the third cation exchange membrane c3. However, the electrode water in the anode chamber E2 and the water to be treated in the secondary cation demineralization chamber S1 flow in opposite directions (counterflow). This indicates that the inflow position of the electrode water in the anode chamber E2 is the secondary cation desorption. It means that there is a positional relationship adjacent to the discharge position of the water to be treated in the salt chamber S1. For this reason, the cation component moved to the secondary cation demineralization chamber S1 is discharged from the secondary cation demineralization chamber S1 without being removed in the secondary cation demineralization chamber S1. As a result, the cation component contained in the electrode water is mixed into the water to be treated, and the quality of the water to be treated is deteriorated.

これに対して、図2(b)を参照すると、陽極室E2の電極水と副カチオン脱塩室S1の被処理水は同じ方向に流れているため、陽極室E2における電極水の流入位置は、副カチオン脱塩室S1における被処理水の流入位置と隣接している。このため、副カチオン脱塩室S1に移動した陽イオン成分は副カチオン脱塩室S1で被処理水に含まれている陽イオン成分とともに除去され、陽極側濃縮室に排出される。これによって、電極水に含まれる陽イオン成分による被処理水の水質の劣化が抑制される。以上は、Cl-等の陰イオン成分についても全く同様である。 On the other hand, referring to FIG. 2 (b), the electrode water in the anode chamber E2 and the water to be treated in the sub-cation demineralization chamber S1 flow in the same direction. , Adjacent to the inflow position of the water to be treated in the sub cation demineralization chamber S1. For this reason, the cation component moved to the secondary cation demineralization chamber S1 is removed together with the cation component contained in the water to be treated in the secondary cation demineralization chamber S1, and discharged to the anode side concentration chamber. Thereby, deterioration of the water quality of the to-be-processed water by the cation component contained in electrode water is suppressed. Above, Cl - is exactly the same applies to the anion components such.

このように、本実施形態では、副脱塩室と電極室とが隣接することによって生じる可能性のある被処理水の水質低下を、効果的に抑制することができる。   Thus, in this embodiment, the water quality fall of the to-be-processed water which may arise when an auxiliary | assistant desalination chamber and an electrode chamber adjoin can be suppressed effectively.

被処理水の水質の劣化は、電極水に含まれるイオン成分をあらかじめ調整しておくことによって一層抑制される。具体的には、電極室E1,E2に供給される電極水の比抵抗値(電極室E1,E2の入口における比抵抗値)を0.2MΩ・cm以上かつ18.2MΩ・cm以下となるように調整しておくことが好ましい。   Deterioration of the quality of the water to be treated is further suppressed by adjusting in advance the ion component contained in the electrode water. Specifically, the specific resistance value of the electrode water supplied to the electrode chambers E1 and E2 (specific resistance value at the entrance of the electrode chambers E1 and E2) is 0.2 MΩ · cm or more and 18.2 MΩ · cm or less. It is preferable to make adjustments.

図3A〜3Sには主脱塩室と副脱塩室の様々な配置パターンを示している。これらの図では濃縮室に接続されるラインの図示は省略している。各室の符号は上述の実施形態における符号に対応し、追加の濃縮室は符号C3で示している。「m」はイオン交換膜を示し、カチオン交換膜またはアニオン交換膜のいずれでもよい。図中の符号X,Y,Zは、符号Xで示したラインの端部同士、符号Yで示したラインの端部同士、及び符号Zで示したラインの端部同士がそれぞれ接続されていることを意味している。   3A to 3S show various arrangement patterns of the main desalting chamber and the sub-desalting chamber. In these figures, the lines connected to the concentration chamber are not shown. The code | symbol of each chamber respond | corresponds to the code | symbol in the above-mentioned embodiment, and the additional concentration chamber is shown by code | symbol C3. “M” represents an ion exchange membrane, and may be either a cation exchange membrane or an anion exchange membrane. Reference numerals X, Y, and Z in the figure are connected to the end portions of the line indicated by reference symbol X, the end portions of the line indicated by reference symbol Y, and the end portions of the line indicated by reference symbol Z, respectively. It means that.

図3Aは他の配置パターンとの対比のために図1に示す配置パターンを簡略化して示したものであり、説明は省略する。図3B以降の各実施形態における各室の構成や各室に充填されるイオン交換体は図1に示す実施形態と同様である。   FIG. 3A shows a simplified arrangement pattern shown in FIG. 1 for comparison with other arrangement patterns, and a description thereof will be omitted. The configuration of each chamber and the ion exchanger filled in each chamber in each embodiment after FIG. 3B are the same as those in the embodiment shown in FIG.

図3Bは、主アニオン脱塩室を流出した被処理水が主カチオン脱塩室に流入する実施形態を示している。各室の配置パターンは図3Aと同様であり、流路構成だけが異なっている。被処理水はまず主アニオン脱塩室D2及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される、その後被処理水は、主カチオン脱塩室D1及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。   FIG. 3B shows an embodiment in which treated water that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber. The arrangement pattern of each chamber is the same as in FIG. 3A, and only the flow path configuration is different. The treated water first flows in parallel to the main anion demineralization chamber D2 and the secondary anion demineralization chamber S2, and the anion component is removed. Thereafter, the treated water is divided into the main cation demineralization chamber D1 and the sub cation demineralization chamber S1. The cation component is removed in parallel.

図3Cは、図3Aに示す実施形態において副カチオン脱塩室を省略した実施形態を示している。被処理水は、全量が主カチオン脱塩室D1に流入し、カチオン成分が除去される。その後被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される。副カチオン脱塩室が設けられていないため、隣接する陽極室E2の電極水の向きはどちらでも構わない。従って、陽極室E2の電極水の向きは図示を省略している。   FIG. 3C shows an embodiment in which the secondary cation desalting chamber is omitted in the embodiment shown in FIG. 3A. The entire amount of water to be treated flows into the main cation desalting chamber D1, and the cation component is removed. Thereafter, the water to be treated flows in parallel into the main anion demineralization chamber D2 and the subanion demineralization chamber S2, and the anion component is removed. Since the secondary cation desalination chamber is not provided, the direction of the electrode water in the adjacent anode chamber E2 may be any. Accordingly, the direction of the electrode water in the anode chamber E2 is not shown.

図3Dは、図3Aに示す実施形態において副アニオン脱塩室を省略した実施形態を示している。被処理水はまず主カチオン脱塩室D1及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。その後被処理水は、全量が主アニオン脱塩室D2に流入し、アニオン成分が除去される。副アニオン脱塩室が設けられていないため、隣接する陰極室E1の電極水の向きはどちらでも構わない。従って、陰極室E1の電極水の向きは図示を省略している。   FIG. 3D shows an embodiment in which the secondary anion desalting chamber is omitted in the embodiment shown in FIG. 3A. First, the water to be treated flows into the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, and the cation component is removed. Thereafter, the entire amount of the water to be treated flows into the main anion demineralization chamber D2, and the anion component is removed. Since the secondary anion demineralization chamber is not provided, the direction of the electrode water in the adjacent cathode chamber E1 may be either. Accordingly, the direction of the electrode water in the cathode chamber E1 is not shown.

図3Eは、主脱塩室が2以上設けられ、かつ副カチオン脱塩室と副アニオン脱塩室がともに設けられた実施形態を示している。主脱塩室D,D’と濃縮室C1〜C3が交互に設けられており、主脱塩室Dの陰極側と陽極側に各々濃縮室C1,C2が、主脱塩室D’の陰極側と陽極側に各々濃縮室C2,C3が隣接している。主脱塩室Dにとっては、濃縮室C1が陰極側濃縮室であり、濃縮室C2が陽極側濃縮室となる。主脱塩室D’にとっては、濃縮室C2が陰極側濃縮室であり、濃縮室C3が陽極側濃縮室となる。   FIG. 3E shows an embodiment in which two or more main desalting chambers are provided, and both a secondary cation desalting chamber and a secondary anion desalting chamber are provided. The main desalting chambers D and D ′ and the concentrating chambers C1 to C3 are alternately provided, and the concentrating chambers C1 and C2 are provided on the cathode side and the anode side of the main desalting chamber D, respectively. Concentration chambers C2 and C3 are adjacent to the side and the anode side, respectively. For the main desalting chamber D, the concentration chamber C1 is a cathode-side concentration chamber, and the concentration chamber C2 is an anode-side concentration chamber. For the main desalting chamber D ', the concentration chamber C2 is a cathode-side concentration chamber, and the concentration chamber C3 is an anode-side concentration chamber.

主脱塩室Dは主カチオン脱塩室D1と主アニオン脱塩室D2とを有し、主カチオン脱塩室D1の陰極側に第1のカチオン交換膜c1が、主アニオン脱塩室D2の陽極側に第1のアニオン交換膜a1が位置している。同様に、主脱塩室D’は主カチオン脱塩室D1’と主アニオン脱塩室D2’とを有し、主カチオン脱塩室D1’の陰極側に第1のカチオン交換膜c1’が、主アニオン脱塩室D2’の陽極側に第1のアニオン交換膜a1’が位置している。   The main desalting chamber D has a main cation desalting chamber D1 and a main anion desalting chamber D2, and the first cation exchange membrane c1 is provided on the cathode side of the main cation desalting chamber D1, and The first anion exchange membrane a1 is located on the anode side. Similarly, the main desalting chamber D ′ has a main cation desalting chamber D1 ′ and a main anion desalting chamber D2 ′, and the first cation exchange membrane c1 ′ is located on the cathode side of the main cation desalting chamber D1 ′. The first anion exchange membrane a1 ′ is located on the anode side of the main anion desalting chamber D2 ′.

副アニオン脱塩室S2が第3のアニオン交換膜a3を介して陰極室E1に隣接しており、第2のアニオン交換膜a2を介して濃縮室C1に隣接している。副カチオン脱塩室S1が第3のカチオン交換膜c3を介して陽極室E2に隣接しており、第2のカチオン交換膜c2を介して濃縮室C3に隣接している。   The secondary anion desalting chamber S2 is adjacent to the cathode chamber E1 via the third anion exchange membrane a3, and is adjacent to the concentration chamber C1 via the second anion exchange membrane a2. The secondary cation desalting chamber S1 is adjacent to the anode chamber E2 via the third cation exchange membrane c3, and is adjacent to the concentration chamber C3 via the second cation exchange membrane c2.

被処理水は、各主脱塩室D,D’の主カチオン脱塩室D1,D1’と副カチオン脱塩室S1とに並列に流入する。これらの部屋でカチオン成分が除去された被処理水は同様にして、各主脱塩室D,D’の主アニオン脱塩室D2,D2’と副アニオン脱塩室S2とに並列に流入し、アニオン成分が除去される。各濃縮室C1〜C3には濃縮室供給水が並列に供給され、各濃縮室C1〜C3からは、カチオン成分とアニオン成分を含んだ濃縮水が並列に排出される。   The water to be treated flows in parallel into the main cation desalting chambers D1, D1 'and the sub cation desalting chamber S1 of each main desalting chamber D, D'. In the same manner, the water to be treated from which the cation component has been removed in these rooms flows in parallel into the main anion demineralization chambers D2, D2 ′ and the secondary anion demineralization chamber S2 of each main demineralization chamber D, D ′. , The anionic component is removed. Concentrated chamber supply water is supplied in parallel to each of the concentration chambers C1 to C3, and concentrated water containing a cation component and an anion component is discharged in parallel from each of the concentration chambers C1 to C3.

主脱塩室の数は本実施形態では2つであるが、必要に応じ所望の数の主脱塩室を設置し、装置の処理容量を増加させることができる。   Although the number of main desalting chambers is two in this embodiment, a desired number of main desalting chambers can be installed as necessary to increase the processing capacity of the apparatus.

図3Fは、図3Eに示す実施形態において、被処理水をまず主アニオン脱塩室D2,D2’と副アニオン脱塩室S2とに流入させ、その後主カチオン脱塩室D1,D1’と副カチオン脱塩室S1とに並列に流入させる実施形態を示している。   FIG. 3F shows that in the embodiment shown in FIG. 3E, the water to be treated is first flowed into the main anion demineralization chambers D2, D2 ′ and the secondary anion demineralization chamber S2, and then the main cation demineralization chambers D1, D1 ′ and Embodiment which flows in parallel with cation desalting chamber S1 is shown.

図3Gは、図3Eに示す実施形態において、副カチオン脱塩室を省略した実施形態を示している。被処理水は、全量が主脱塩室D,D’の各主カチオン脱塩室D1,D1’に流入し、カチオン成分が除去される。その後被処理水は、主脱塩室D,D’の各主アニオン脱塩室D2,D2’及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される。副カチオン脱塩室が設けられていないため、隣接する陽極室E2の電極水の向きはどちらでも構わない。従って、陽極室E2の電極水の向きは図示を省略している。   FIG. 3G shows an embodiment in which the secondary cation desalting chamber is omitted in the embodiment shown in FIG. 3E. The total amount of water to be treated flows into the main cation desalting chambers D1 and D1 'of the main desalting chambers D and D', and the cation component is removed. Thereafter, the water to be treated flows in parallel into the main anion demineralization chambers D2, D2 'and the secondary anion demineralization chamber S2 of the main demineralization chambers D, D', and the anion components are removed. Since the secondary cation desalination chamber is not provided, the direction of the electrode water in the adjacent anode chamber E2 may be any. Accordingly, the direction of the electrode water in the anode chamber E2 is not shown.

図3Hは、図3Gとは逆に、主アニオン脱塩室を流出した被処理水が主カチオン脱塩室に流入する実施形態を示している。具体的には、被処理水は、主脱塩室D,D’の各主アニオン脱塩室D2,D2’及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される。その後被処理水は、全量が主脱塩室D,D’の各主カチオン脱塩室D1,D1’に流入し、カチオン成分が除去される。   FIG. 3H shows an embodiment in which water to be treated that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber, contrary to FIG. 3G. Specifically, the water to be treated flows in parallel into the main anion demineralization chambers D2, D2 'and the secondary anion demineralization chamber S2 of the main demineralization chambers D, D', and the anion component is removed. Thereafter, the entire amount of water to be treated flows into the main cation desalting chambers D1 and D1 'of the main desalting chambers D and D', and the cation component is removed.

図3Iは、図3Eに示す実施形態において、副アニオン脱塩室を省略した実施形態を示している。被処理水は、主脱塩室D,D’の各主カチオン脱塩室D1,D1’及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。その後被処理水は、全量が主脱塩室D,D’の各主アニオン脱塩室D2,D2’に流入し、アニオン成分が除去される。副アニオン脱塩室が設けられていないため、隣接する陰極室E1の電極水の向きはどちらでも構わない。従って、陰極室E1の電極水の向きは図示を省略している。   FIG. 3I shows an embodiment in which the secondary anion desalting chamber is omitted in the embodiment shown in FIG. 3E. The water to be treated flows in parallel into the main cation desalting chambers D1, D1 'and the sub cation desalting chamber S1 of the main desalting chambers D, D', and the cation component is removed. Thereafter, the entire amount of water to be treated flows into the main anion desalination chambers D2 and D2 'of the main desalination chambers D and D', and the anion components are removed. Since the secondary anion demineralization chamber is not provided, the direction of the electrode water in the adjacent cathode chamber E1 may be either. Accordingly, the direction of the electrode water in the cathode chamber E1 is not shown.

図3Jは、図3Iとは逆に、主アニオン脱塩室を流出した被処理水が主カチオン脱塩室に流入する実施形態を示している。具体的には、被処理水は、全量が主脱塩室D,D’の各主アニオン脱塩室D2,D2’に流入し、アニオン成分が除去される。その後被処理水は、主脱塩室D,D’の各主カチオン脱塩室D1,D1’及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。   FIG. 3J shows an embodiment in which water to be treated that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber, contrary to FIG. 3I. Specifically, the entire amount of water to be treated flows into the main anion desalting chambers D2 and D2 'of the main desalting chambers D and D', and the anion components are removed. Thereafter, the water to be treated flows in parallel into the main cation demineralization chambers D1, D1 'and the sub cation demineralization chamber S1 of the main demineralization chambers D, D', and the cation component is removed.

図3Kは、図3Aに示す実施形態において、被処理水が副アニオン脱塩室S2、主カチオン脱塩室D1、主アニオン脱塩室D2、副カチオン脱塩室S1の順に直列に流通する実施形態を示している。図示は省略するが、被処理水が流入する順序はこれに限定されず、どのような順番で流通しても構わない。前述したように、このような実施形態は主脱塩室が多数設置される場合には不利となる面もあるが、主脱塩室の数が限られている場合には大きなデメリットとはならない。逆に、本実施形態では副カチオン脱塩室S1及び副アニオン脱塩室S2を主カチオン脱塩室D1、主アニオン脱塩室D2の前処理室または後処理室として利用できるので、被処理水の水質を一層向上させることが可能である。   FIG. 3K is an embodiment in which treated water flows in series in the order of a secondary anion demineralization chamber S2, a main cation demineralization chamber D1, a main anion demineralization chamber D2, and a sub cation demineralization chamber S1 in the embodiment shown in FIG. 3A. The form is shown. Although illustration is abbreviate | omitted, the order in which to-be-processed water flows in is not limited to this, You may distribute | circulate in what order. As described above, such an embodiment is disadvantageous when a large number of main desalination chambers are installed, but does not have a major disadvantage when the number of main desalination chambers is limited. . Conversely, in this embodiment, the secondary cation demineralization chamber S1 and the secondary anion demineralization chamber S2 can be used as the pre-treatment chamber or the post-treatment chamber of the main cation demineralization chamber D1 and main anion demineralization chamber D2. It is possible to further improve the water quality.

図3Lは、図3Aに示す実施形態において、主アニオン脱塩室D2及び副アニオン脱塩室S2から流出した被処理水を電極水として利用する実施形態を示している。具体的には、被処理水は主カチオン脱塩室D1及び副カチオン脱塩室S1に流入し、カチオン成分が除去される。その後被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2に流入し、アニオン成分が除去される。この結果、被処理水は、カチオン成分とアニオン成分とが効率的に除去された水質となっている。このような被処理水の一部を電極水として陽極室E2及び陰極室E1に流入させることで、陽極室E2から副カチオン脱塩室S1へのカチオン成分の移行、及び陰極室E1から副アニオン脱塩室S2へのアニオン成分の移行を一層抑制することができる。   FIG. 3L shows an embodiment in which treated water that has flowed out of the main anion desalting chamber D2 and the secondary anion desalting chamber S2 is used as electrode water in the embodiment shown in FIG. 3A. Specifically, the water to be treated flows into the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and the cation component is removed. Thereafter, the water to be treated flows into the main anion demineralization chamber D2 and the subanion demineralization chamber S2, and the anion component is removed. As a result, the water to be treated has a water quality from which the cation component and the anion component have been efficiently removed. By causing a part of such treated water to flow into the anode chamber E2 and the cathode chamber E1 as electrode water, the cation component is transferred from the anode chamber E2 to the secondary cation desalting chamber S1, and the secondary anion from the cathode chamber E1. The migration of the anion component to the desalting chamber S2 can be further suppressed.

さらに、図3Mに示すように、図3Lの実施形態において、電極水(被処理水)を陰極室E1と陽極室E2とに直列に流通させることもできる。図示の例では、主アニオン脱塩室D2及び副アニオン脱塩室S2から流出した被処理水の一部を電極水として陰極室E1に流入させ、陰極室E1から流出した電極水をさらに陽極室E2に流入させている。電極水(被処理水)は陽極室E2に先に流入させ、その後に陰極室E1に流入させてもよい。本実施形態は、電極水の回収効率を上げるために有効である。   Furthermore, as shown in FIG. 3M, in the embodiment of FIG. 3L, the electrode water (treated water) can be circulated in series in the cathode chamber E1 and the anode chamber E2. In the illustrated example, a part of the water to be treated that has flowed out from the main anion desalting chamber D2 and the secondary anion desalting chamber S2 flows into the cathode chamber E1 as electrode water, and the electrode water flowing out from the cathode chamber E1 further flows into the anode chamber. It flows into E2. The electrode water (treated water) may flow into the anode chamber E2 first, and then flow into the cathode chamber E1. This embodiment is effective for increasing the electrode water recovery efficiency.

図3L,3Mに示す実施形態は被処理水を電極水として利用する実施形態の一例として示したものであり、この他にも様々な変形形態が可能である。例えば、図3A〜3K、3N〜3Sに示す各実施形態は本実施形態と組み合わせて実施することができる。主アニオン脱塩室D2または副アニオン脱塩室S2のいずれか一方だけから取水し、電極水として利用することもできる。主カチオン脱塩室D1及び副カチオン脱塩室S1(または、いずれか一方)から流出した被処理水の一部または全量を陽極室E2に供給することもできる。   The embodiment shown in FIGS. 3L and 3M is shown as an example of an embodiment in which water to be treated is used as electrode water, and various other modifications are possible. For example, each embodiment shown in FIGS. 3A to 3K and 3N to 3S can be implemented in combination with this embodiment. Water can be taken from only one of the main anion demineralization chamber D2 or the subanion demineralization chamber S2 and used as electrode water. A part or all of the water to be treated flowing out from the main cation desalting chamber D1 and the sub cation desalting chamber S1 (or either one) can be supplied to the anode chamber E2.

さらに、主脱塩室内における被処理水の流通方向については、副脱塩室と異なり電極室の電極水の流通方向による制約を受けないため、主カチオン脱塩室への被処理水の流入方向と主アニオン脱塩室への被処理水の流入方向とを互いに反対向き(向流)とすることも可能である。図3C、3D,3G,3H、3I,3Jの各形態について、主カチオン脱塩室D1または主アニオン脱塩室D2における被処理水の流通方向をダウンフロー(下向き)にした変形形態を各々、図3N〜3Sに示す。これらの形態では、副カチオン脱塩室S1または副アニオン脱塩室S2のいずれか一方が設けられていない。副カチオン脱塩室S1が設けられていない場合は(図3N,3P,3Q)、主アニオン脱塩室D2への被処理水は上向きに流通するが、主カチオン脱塩室D1(図3P,3Qの形態ではさらに主カチオン脱塩室D1’)への被処理水は下向きに流通する。副アニオン脱塩室S2が設けられていない場合(図3O,3R,3S)は、主カチオン脱塩室D1への被処理水は上向きに流通するが、主アニオン脱塩室D2(図3R,3Sの形態ではさらに主アニオン脱塩室D2’)への被処理水は下向きに流通する。   In addition, the flow direction of the water to be treated in the main desalination chamber is not restricted by the flow direction of the electrode water in the electrode chamber, unlike the sub-desalination chamber. And the inflow direction of the water to be treated into the main anion demineralization chamber can be opposite to each other (counterflow). About each form of FIG. 3C, 3D, 3G, 3H, 3I, and 3J, the deformation | transformation form which made the flow direction of the to-be-processed water in the main cation demineralization chamber D1 or the main anion demineralization chamber D2 down flow (downward), 3N-3S. In these forms, either the secondary cation desalting chamber S1 or the secondary anion desalting chamber S2 is not provided. When the secondary cation desalting chamber S1 is not provided (FIGS. 3N, 3P, 3Q), the water to be treated to the main anion desalting chamber D2 flows upward, but the main cation desalting chamber D1 (FIG. 3P, In the 3Q mode, the water to be treated to the main cation desalting chamber D1 ′) flows downward. When the secondary anion desalting chamber S2 is not provided (FIGS. 3O, 3R, 3S), the water to be treated to the main cation desalting chamber D1 flows upward, but the main anion desalting chamber D2 (FIG. 3R, In the 3S form, the water to be treated to the main anion desalting chamber D2 ′) flows downward.

このように、主カチオン脱塩室D1における被処理水の流れ方向と主アニオン脱塩室D2における被処理水の流れ方向とが向流の関係になっていると、陽極・陰極間を流れる電流が均等化されやすいというメリットが生じる。すなわち、主カチオン脱塩室D1においても主アニオン脱塩室D2においても、イオン成分は脱塩室の入口側でより多く除去されるため、イオン成分が吸着した樹脂層部分は、脱塩室の入口側に形成されやすい。主カチオン脱塩室D1における被処理水の流れ方向と主アニオン脱塩室D2における被処理水の流れ方向とが同じ方向を向いていると、このイオン成分が吸着した樹脂層部分は脱塩室の同じ側(上向き流の場合は脱塩室の下側、下向き流の場合は脱塩室の上側)に集中する。イオン成分が吸着した樹脂層部分は電気抵抗が高く電流が流れにくいため、結果的に陽極・陰極間を流れる電流がイオン成分の吸着が少ない脱塩室の出口側に集中してしまい、局所的に電流密度が高まり、装置の性能が制約される。図3N〜3Sに示す実施形態では、イオン成分が吸着した樹脂層部分が主カチオン脱塩室D1と主アニオン脱塩室D2とで、互いに反対側の位置に形成されやすいため、電流が脱塩室の流路長に対してより均等に流れ(分配され)、装置の性能の向上につながる。   Thus, when the flow direction of the water to be treated in the main cation demineralization chamber D1 and the flow direction of the water to be treated in the main anion demineralization chamber D2 are in a countercurrent relationship, the current flowing between the anode and the cathode Has the merit of being easily equalized. That is, in the main cation demineralization chamber D1 and the main anion demineralization chamber D2, more ionic components are removed on the inlet side of the demineralization chamber. Easily formed on the inlet side. When the flow direction of the water to be treated in the main cation demineralization chamber D1 and the flow direction of the water to be treated in the main anion demineralization chamber D2 are in the same direction, the resin layer portion on which the ion component is adsorbed is On the same side (lower side of desalination chamber for upward flow, upper side of desalination chamber for downward flow). The resin layer part where the ionic component is adsorbed has high electrical resistance and it is difficult for the current to flow. As a result, the current flowing between the anode and the cathode is concentrated on the outlet side of the desalination chamber where the adsorption of the ionic component is small, resulting in local In addition, the current density increases, and the performance of the device is restricted. In the embodiment shown in FIGS. 3N to 3S, since the resin layer portion on which the ionic component is adsorbed is easily formed at positions opposite to each other in the main cation desalting chamber D1 and the main anion desalting chamber D2, the current is desalted. It flows (distributed) more evenly with respect to the flow path length of the chamber, leading to an improvement in the performance of the apparatus.

(実施例)
図1に示す構成の脱イオン水製造装置(実施例)と、図4(比較例)に示す脱イオン水製造装置を用いて、本発明の効果を確認した。図4の見方は図3A〜3Sと同様で、図中の符号Xは、符号Xで示したラインの端部同士が接続されていることを意味している。比較例は、各室の構成は図1に示す実施例と同じで、電極水の流れる方向が異なっている。比較例では、電極水は副カチオン脱塩室S1及び副アニオン脱塩室S2を流れる被処理水と逆方向(向流)に流れる。これに対して、実施例では前述の通り、電極水は副カチオン脱塩室S1及び副アニオン脱塩室S2を流れる被処理水と同じ方向に流れる。また、実施例では被処理水は各脱塩室を上向きに流れるのに対し、比較例では各脱塩室を下向きに流れる。
(Example)
The effect of this invention was confirmed using the deionized water manufacturing apparatus (Example) of the structure shown in FIG. 1 and the deionized water manufacturing apparatus shown in FIG. 4 (comparative example). 4 is the same as FIGS. 3A to 3S, and the symbol X in the drawing means that the ends of the line indicated by the symbol X are connected to each other. In the comparative example, the configuration of each chamber is the same as that of the embodiment shown in FIG. 1, and the flowing direction of the electrode water is different. In the comparative example, the electrode water flows in the opposite direction (counterflow) to the water to be treated flowing through the secondary cation desalting chamber S1 and the secondary anion desalting chamber S2. In contrast, in the embodiment, as described above, the electrode water flows in the same direction as the water to be treated that flows through the secondary cation desalting chamber S1 and the secondary anion desalting chamber S2. In addition, in the example, the water to be treated flows upward in each desalting chamber, whereas in the comparative example, it flows downward in each desalting chamber.

実施例及び比較例における脱イオン水製造装置の仕様、通水流量、供給水の仕様等は以下のとおりである。なお、CERはカチオン交換樹脂、AERはアニオン交換樹脂の略である。
・陰極室E1:寸法100×300×4mm AER充填
・陽極室E2:寸法100×300×4mm CER充填
・主カチオン脱塩室D1:寸法100×300×8mm CER単床
・主アニオン脱塩室D2:寸法100×300×8mm AER単床
・副カチオン脱塩室S1:寸法100×300×8mm CER単床
・副アニオン脱塩室S2:寸法100×300×8mm AER単床
・濃縮室:寸法100×300×4mm(2室とも) AER単床(2室とも)
・処理水流量:50L/h
・濃縮水流量:5L/h
・電極水流量:10L/h
・脱塩室供給水(被処理水):一段RO透過水6±1μS/cm
・濃縮室供給水:一段RO透過水6±1μS/cm
・電極室供給水:脱塩室処理水
・印加電流値:1A
実施例及び比較例の装置について、1000時間の運転を行い、処理水質の経時変化を比較した。結果を図5に示す。
The specifications of the deionized water production apparatus, the water flow rate, the specifications of the feed water, etc. in the examples and comparative examples are as follows. CER is an abbreviation for cation exchange resin, and AER is an anion exchange resin.
・ Cathode chamber E1: Dimension 100 × 300 × 4 mm AER filling ・ Anode chamber E2: Dimension 100 × 300 × 4 mm CER filling ・ Main cation desalination chamber D1: Dimension 100 × 300 × 8 mm CER single bed ・ Main anion desalination chamber D2 : Dimension 100 × 300 × 8 mm AER single bed / secondary cation desalination chamber S1: Dimension 100 × 300 × 8 mm CER single bed / secondary anion desalination chamber S2: Dimension 100 × 300 × 8 mm AER single bed / concentration chamber: Dimension 100 × 300 × 4mm (both rooms) AER single floor (both rooms)
・ Treatment water flow rate: 50L / h
・ Concentrated water flow: 5L / h
・ Electrode water flow rate: 10L / h
・ Desalination chamber supply water (treated water): One-stage RO permeated water 6 ± 1 μS / cm
・ Concentration chamber supply water: 1 stage RO permeated water 6 ± 1 μS / cm
-Electrode chamber supply water: Desalination chamber treated water-Applied current value: 1A
About the apparatus of an Example and a comparative example, the driving | running for 1000 hours was performed and the temporal change of the treated water quality was compared. The results are shown in FIG.

実施例では、良好な処理水質が得られ、運転時間によらず安定した特性を示すことが確認された。これは電極室から副脱塩室へのイオン成分の移動が抑制された効果であると考えられる。   In the Examples, it was confirmed that good treated water quality was obtained and stable characteristics were exhibited regardless of the operation time. This is considered to be the effect that the movement of the ionic component from the electrode chamber to the sub-desalting chamber is suppressed.

1 脱イオン水製造装置
2 枠体
3 中間イオン交換膜
4 陽極
5 陰極
D,D’ 主脱塩室
D1,D1’ 主カチオン脱塩室
D2,D2’ 主アニオン脱塩室
S1 副カチオン脱塩室
S2 副アニオン脱塩室
C1 陰極側濃縮室
C2 陽極側濃縮室
E1 陰極室
E2 陽極室
a1〜a3 第1〜第3のアニオン交換膜
c1〜c3 第1〜第3のカチオン交換膜
DESCRIPTION OF SYMBOLS 1 Deionized water production apparatus 2 Frame 3 Intermediate ion exchange membrane 4 Anode 5 Cathode D, D 'Main demineralization chamber D1, D1' Main cation demineralization chamber D2, D2 'Main anion demineralization chamber S1 Sub cation demineralization chamber S2 Secondary anion desalination chamber C1 Cathode side enrichment chamber C2 Anode side enrichment chamber E1 Cathode chamber E2 Anode chamber a1 to a3 First to third anion exchange membranes c1 to c3 First to third cation exchange membranes

Claims (10)

陽極室と陰極室とからなり、各々を電極水が流通する一対の電極室と、
前記一対の電極室の間に位置し、カチオン交換体及びアニオン交換体が充填され、被処理水が流通する主脱塩室と、
前記一対の電極室の間に位置し、前記主脱塩室の前記陰極室側で、第1のカチオン交換膜を介して前記主脱塩室に隣接して位置する陰極側濃縮室と、
前記一対の電極室の間に位置し、前記主脱塩室の前記陽極室側で、第1のアニオン交換膜を介して前記主脱塩室に隣接して位置する陽極側濃縮室と、
前記陰極室と前記陰極側濃縮室の間に位置し、第2のアニオン交換膜を介して前記陰極側濃縮室と隣接し、第3のアニオン交換膜を介して前記陰極室と隣接し、少なくともアニオン交換体が充填され、被処理水が流通する副アニオン脱塩室、または前記陽極室と前記陽極側濃縮室の間に位置し、第2のカチオン交換膜を介して前記陽極側濃縮室と隣接し、第3のカチオン交換膜を介して前記陽極室と隣接し、少なくともカチオン交換体が充填され、被処理水が流通する副カチオン脱塩室の、少なくともいずれか一方の副脱塩室と、を有し、
前記副脱塩室に流入する被処理水と、前記副脱塩室に隣接する前記電極室に流入する電極水の流入方向が同じである、電気式脱イオン水製造装置。
A pair of electrode chambers, each consisting of an anode chamber and a cathode chamber, in which electrode water flows;
A main desalting chamber that is located between the pair of electrode chambers, filled with a cation exchanger and an anion exchanger, and in which treated water flows;
A cathode-side concentrating chamber located between the pair of electrode chambers, on the cathode chamber side of the main desalting chamber, and adjacent to the main desalting chamber via a first cation exchange membrane;
An anode-side concentrating chamber located between the pair of electrode chambers, on the anode chamber side of the main desalting chamber, and adjacent to the main desalting chamber via a first anion exchange membrane;
Located between the cathode chamber and the cathode side enrichment chamber, adjacent to the cathode side enrichment chamber via a second anion exchange membrane, adjacent to the cathode chamber via a third anion exchange membrane, at least A secondary anion desalting chamber filled with an anion exchanger and located between the anode chamber and the anode side concentrating chamber through which the water to be treated flows, and the anode side concentrating chamber via a second cation exchange membrane Adjacent and adjacent to the anode chamber via a third cation exchange membrane, at least one of the auxiliary cation demineralization chambers filled with at least the cation exchanger and through which the water to be treated flows, and Have
An electric deionized water production apparatus in which the inflow direction of the water to be treated flowing into the sub-desalting chamber and the electrode water flowing into the electrode chamber adjacent to the sub-desalting chamber are the same.
被処理水が、前記アニオン交換体が充填される前記主脱塩室と前記副アニオン脱塩室、または前記カチオン交換体が充填される前記主脱塩室と前記副カチオン脱塩室に並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。 Water to be treated is parallel to the main desalting chamber and the secondary anion desalting chamber filled with the anion exchanger , or the main desalting chamber and the secondary cation desalting chamber filled with the cation exchanger. The electric deionized water production apparatus according to claim 1, wherein the apparatus is configured to flow in and out. 前記電極水は、前記主脱塩室または前記副脱塩室の少なくともいずれか一方から流出した被処理水である、請求項1または2に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1 or 2, wherein the electrode water is treated water that has flowed out of at least one of the main demineralization chamber and the auxiliary demineralization chamber. 前記電極水は、前記陰極室と前記陽極室とを直列で流通するようにされている、請求項3に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 3, wherein the electrode water is configured to flow in series between the cathode chamber and the anode chamber. 前記電極水の前記電極室の入口における比抵抗値が0.2MΩ・cm以上かつ18.2MΩ・cm以下である、請求項1から4のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 4, wherein a specific resistance value at an entrance of the electrode chamber of the electrode water is 0.2 MΩ · cm or more and 18.2 MΩ · cm or less. . 前記主脱塩室は、前記第1のカチオン交換膜と隣接し少なくともカチオン交換体が充填される主カチオン脱塩室と、前記第1のアニオン交換膜と隣接し中間イオン交換膜を介して前記主カチオン脱塩室と隣接する、少なくともアニオン交換体が充填される主アニオン脱塩室と、を有している、請求項1から5のいずれか1項に記載の電気式脱イオン水製造装置。   The main desalting chamber is adjacent to the first cation exchange membrane and filled with at least a cation exchanger, and is adjacent to the first anion exchange membrane via the intermediate ion exchange membrane. The electric deionized water production apparatus according to claim 1, further comprising a main anion demineralization chamber adjacent to the main cation demineralization chamber and filled with at least an anion exchanger. . 前記副カチオン脱塩室または前記副アニオン脱塩室のいずれか一方が設けられておらず、前記主カチオン脱塩室への被処理水の流入方向と前記主アニオン脱塩室への前記被処理水の流入方向とが互いに反対向きである、請求項6に記載の電気式脱イオン水製造装置。   Either the secondary cation demineralization chamber or the secondary anion demineralization chamber is not provided, and the inflow direction of water to be treated into the main cation demineralization chamber and the treatment into the main anion demineralization chamber The electric deionized water production apparatus according to claim 6, wherein the inflow directions of water are opposite to each other. 前記副アニオン脱塩室を備え、
前記主脱塩室は2以上設けられ、該主脱塩室と濃縮室とが、該濃縮室が両端に位置するように交互に位置しており、
前記副アニオン脱塩室は、前記第2のアニオン交換膜を介して最も陰極側の前記濃縮室と隣接している、請求項1から7のいずれか1項に記載の電気式脱イオン水製造装置。
Comprising the secondary anion desalting chamber;
Two or more main desalting chambers are provided, and the main desalting chambers and the concentration chambers are alternately positioned so that the concentration chambers are located at both ends,
The electric deionized water production according to any one of claims 1 to 7, wherein the secondary anion demineralization chamber is adjacent to the concentration chamber on the most cathode side through the second anion exchange membrane. apparatus.
前記副カチオン脱塩室を備え、
前記主脱塩室は2以上設けられ、該主脱塩室と濃縮室とが、該濃縮室が両端に位置するように交互に位置しており、
前記副カチオン脱塩室は、前記第2のカチオン交換膜を介して最も陽極側の前記濃縮室と隣接している、請求項1から7のいずれか1項に記載の電気式脱イオン水製造装置。
Comprising the secondary cation desalting chamber,
Two or more main desalting chambers are provided, and the main desalting chambers and the concentration chambers are alternately positioned so that the concentration chambers are located at both ends,
The electric deionized water production according to any one of claims 1 to 7, wherein the secondary cation demineralization chamber is adjacent to the concentration chamber on the most anode side through the second cation exchange membrane. apparatus.
前記副アニオン脱塩室及び前記副カチオン脱塩室を備え、
前記主脱塩室は2以上設けられ、該主脱塩室と濃縮室とが、該濃縮室が両端に位置するように交互に位置しており、
前記副アニオン脱塩室は、前記第2のアニオン交換膜を介して最も陰極側の前記濃縮室と隣接し、前記副カチオン脱塩室は、前記第2のカチオン交換膜を介して最も陽極側の前記濃縮室と隣接している、請求項1から7のいずれか1項に記載の電気式脱イオン水製造装置。
Comprising the secondary anion desalting chamber and the secondary cation desalting chamber;
Two or more main desalting chambers are provided, and the main desalting chambers and the concentration chambers are alternately positioned so that the concentration chambers are located at both ends,
The secondary anion desalting chamber is adjacent to the concentration chamber on the most cathode side through the second anion exchange membrane, and the secondary cation desalting chamber is on the most anode side through the second cation exchange membrane. The electric deionized water production apparatus according to claim 1, which is adjacent to the concentration chamber.
JP2009244356A 2009-10-23 2009-10-23 Electric deionized water production equipment Expired - Fee Related JP5295927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244356A JP5295927B2 (en) 2009-10-23 2009-10-23 Electric deionized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244356A JP5295927B2 (en) 2009-10-23 2009-10-23 Electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JP2011088085A JP2011088085A (en) 2011-05-06
JP5295927B2 true JP5295927B2 (en) 2013-09-18

Family

ID=44106857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244356A Expired - Fee Related JP5295927B2 (en) 2009-10-23 2009-10-23 Electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP5295927B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379025B2 (en) * 2010-01-06 2013-12-25 オルガノ株式会社 Electric deionized water production equipment
JP5689031B2 (en) * 2011-06-21 2015-03-25 オルガノ株式会社 Electric deionized water production equipment
JP5689032B2 (en) * 2011-06-21 2015-03-25 オルガノ株式会社 Electric deionized water production equipment
JP5693396B2 (en) * 2011-06-21 2015-04-01 オルガノ株式会社 Electric deionized water production equipment
CN102992522B (en) * 2011-09-08 2014-10-15 通用电气公司 Desalination system and method
JP6571312B2 (en) * 2014-02-06 2019-09-04 三菱ケミカルアクア・ソリューションズ株式会社 Pure water production method
JP6627943B2 (en) * 2018-10-02 2020-01-08 三菱ケミカルアクア・ソリューションズ株式会社 Pure water production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001258A (en) * 2001-06-15 2003-01-07 Kurita Water Ind Ltd Electrolytic deionizing apparatus
JP2009136824A (en) * 2007-12-10 2009-06-25 Japan Organo Co Ltd Electric deionized water production device and deionized water production method

Also Published As

Publication number Publication date
JP2011088085A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5295927B2 (en) Electric deionized water production equipment
EP2578543B1 (en) Electric device for production of deionized water
JP5145305B2 (en) Electric deionized water production equipment
JP5695926B2 (en) Electric deionized water production equipment
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
JP5379025B2 (en) Electric deionized water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP5114307B2 (en) Electric deionized water production equipment
JP5489867B2 (en) Electric deionized water production equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP5385457B2 (en) Electric deionized water production equipment
JP2011121027A (en) Electric type deionized water producing apparatus
KR20180052765A (en) Water treatment device and water treatment method
JP3729347B2 (en) Electric regenerative desalination equipment
JP5620229B2 (en) Electric deionized water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP5719707B2 (en) Electric deionized water production equipment
JP6034736B2 (en) Electric deionized water production equipment
JP6994351B2 (en) Electric deionized water production equipment
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method
JPH11104652A (en) Electric deionized water-making apparatus
JP2001170646A (en) Water passing method of electric deionized water production device
JP5689032B2 (en) Electric deionized water production equipment
JP5689031B2 (en) Electric deionized water production equipment
JP5693396B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees