JP2013013830A - Electric deionized water production apparatus and deionized water production method - Google Patents

Electric deionized water production apparatus and deionized water production method Download PDF

Info

Publication number
JP2013013830A
JP2013013830A JP2011146124A JP2011146124A JP2013013830A JP 2013013830 A JP2013013830 A JP 2013013830A JP 2011146124 A JP2011146124 A JP 2011146124A JP 2011146124 A JP2011146124 A JP 2011146124A JP 2013013830 A JP2013013830 A JP 2013013830A
Authority
JP
Japan
Prior art keywords
chamber
cation
anion
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011146124A
Other languages
Japanese (ja)
Inventor
Kenta Aiba
健太 合庭
Keisuke Sasaki
慶介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2011146124A priority Critical patent/JP2013013830A/en
Publication of JP2013013830A publication Critical patent/JP2013013830A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric deionized water production apparatus and a deionized water production method which solve problems occurring when water to be treated is used as electrode water with saving cost.SOLUTION: The apparatus includes electrode chambers E1 and E2 which are composed of an anode chamber E1 and a cathode chamber E2, cation desalination chambers D1 and S1 which are adjacent with cation exchange films c1 and c2 on the side of the cathode chamber E2 and filled with at least a cation exchange body, and anion desalination chambers D2 and S2 which are adjacent with anion exchange films a1 and a2 on the side of the anode chamber E1 and filled with at least an anion exchange body. The cation desalination chambers D1 and S1, and the anion desalination chambers D2 and S2 are communicated with each other so that a part of intermediate treated water in which at least a cation component is removed, flowing out from the cation desalination chambers D1 and S1, flows into the anion desalination chambers D2 and S2. The cation desalination chambers D1 and S1 and the electrode chambers E1 and E2 are communicated with each other so the other part of the intermediate treated water flowing out from the cation desalination chambers D1 and S1 flows into the electrode chambers E1 and E2.

Description

本発明は、電気式脱イオン水製造装置および脱イオン水製造方法に関する。   The present invention relates to an electrical deionized water production apparatus and a deionized water production method.

脱イオン水の製造装置として、イオン交換体に被処理水を通水して脱イオンを行う製造装置が知られている。この装置ではイオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、酸やアルカリといった薬剤によって再生を行う必要がある。すなわち、イオン交換基に吸着した陰イオンや陽イオンを、酸あるいはアルカリ由来のH+、OH-と置き換える処理が必要となる。近年、このような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置が実用化されている。 As a deionized water production apparatus, a production apparatus that performs deionization by passing water to be treated through an ion exchanger is known. In this apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is lowered, it is necessary to regenerate with a chemical such as acid or alkali. That is, the anion and cation adsorbed on ion exchange groups, acid or alkali from the H +, OH - and replacing processing is required. In recent years, in order to eliminate such disadvantages in operation, an electric deionized water production apparatus that does not require regeneration by a drug has been put into practical use.

電気式脱イオン水製造装置は、電気泳動と電気透析とを組み合わせた装置である。電気式脱イオン水製造装置は、アニオン交換膜とカチオン交換膜との間にイオン交換体を充填し主脱塩室とし、アニオン交換膜およびカチオン交換膜の外側に各々濃縮室を設け、さらにその外側に陽極を備える陽極室と、陰極を備える陰極室と、を配置した装置である。   The electric deionized water production apparatus is an apparatus that combines electrophoresis and electrodialysis. The electric deionized water production apparatus is filled with an ion exchanger between an anion exchange membrane and a cation exchange membrane to form a main desalting chamber, and a concentration chamber is provided outside the anion exchange membrane and the cation exchange membrane. This is an apparatus in which an anode chamber having an anode on the outside and a cathode chamber having a cathode are arranged.

電気式脱イオン水製造装置により脱イオン水(処理水)を製造するには、電極に直流電圧を印加した状態で主脱塩室に被処理水を通水する。被処理水中のイオン成分は脱塩室内のイオン交換体で吸着され、脱イオン化(脱塩)処理が行われる。脱塩室ではまた、印加電圧によって異種イオン交換体の界面、すなわち、脱塩室のアニオン交換体とカチオン交換体の界面で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(H2O→H++OH-)。イオン交換体に吸着されたイオン成分はこの水素イオンおよび水酸化物イオンと交換されて、イオン交換体から遊離する。遊離したイオン成分はイオン交換膜まで電気泳動し、イオン交換膜で電気透析されて、濃縮室を流れる濃縮水に排出される。このように、電気式脱イオン水製造装置では、水素イオンおよび水酸化物イオンが、イオン交換体を再生する酸、アルカリの再生剤として連続的に作用する。このため、薬剤による再生は基本的に不要であり、薬剤によるイオン交換体の再生を行わずに連続運転ができる。 In order to produce deionized water (treated water) using an electrical deionized water production apparatus, water to be treated is passed through the main demineralization chamber with a DC voltage applied to the electrodes. The ionic component in the water to be treated is adsorbed by the ion exchanger in the demineralization chamber and subjected to deionization (demineralization) treatment. In the desalting chamber, a dissociation reaction of water occurs at the interface of the different ion exchanger, that is, the interface between the anion exchanger and the cation exchanger in the desalting chamber due to the applied voltage, and hydrogen ions and hydroxide ions are generated ( H 2 O → H + + OH ). The ionic component adsorbed on the ion exchanger is exchanged with the hydrogen ions and hydroxide ions, and is released from the ion exchanger. The liberated ion component is electrophoresed to the ion exchange membrane, electrodialyzed on the ion exchange membrane, and discharged into the concentrated water flowing through the concentration chamber. Thus, in the electric deionized water production apparatus, hydrogen ions and hydroxide ions continuously act as acid and alkali regenerators for regenerating the ion exchanger. For this reason, the regeneration by the medicine is basically unnecessary, and the continuous operation can be performed without the regeneration of the ion exchanger by the medicine.

ところで、上述の電気式脱イオン水製造装置の陽極室および陰極室では、水の電気分解(電極反応)が生じ、この反応によって、陽極室では酸素(2H2O→O2+4H++4e-)、陰極室では水素(2H2O+2e-→H2+2OH-)がそれぞれ発生する。これらのガス成分を外部に排出するために、電極室(陽極室および陰極室)には電極水が供給される。この電極水として、多くの場合、被処理水が用いられているが、そのことは、以下のような問題を発生させる要因となる。 By the way, electrolysis (electrode reaction) of water occurs in the anode chamber and the cathode chamber of the above-described electric deionized water production apparatus, and this reaction causes oxygen (2H 2 O → O 2 + 4H + + 4e ) in the anode chamber. In the cathode chamber, hydrogen (2H 2 O + 2e → H 2 + 2OH ) is generated. In order to discharge these gas components to the outside, electrode water is supplied to the electrode chambers (anode chamber and cathode chamber). In many cases, water to be treated is used as the electrode water, which causes the following problems.

陰極室では、上述の電極反応によって、水素と共に水酸化物イオンが生成される。そのため、陰極室(陰極表面)を流れる電極水の液性はアルカリ性に傾く。したがって、電極水として硬度成分を多く含む被処理水を用いた場合、陰極表面近傍では、陰極表面に引き寄せられた硬度成分と、電極反応によって生成した水酸化物イオンとにより、水酸化マグネシウムを主成分とするスケールが生成されることがある。スケールが生成されると、その部分での電気抵抗が上昇し、運転電圧が上昇することで、消費電力が増加することになる。   In the cathode chamber, hydroxide ions are generated together with hydrogen by the electrode reaction described above. Therefore, the liquidity of the electrode water flowing through the cathode chamber (cathode surface) tends to be alkaline. Therefore, when treated water containing a large amount of hardness component is used as electrode water, magnesium hydroxide is mainly used in the vicinity of the cathode surface due to the hardness component attracted to the cathode surface and hydroxide ions generated by the electrode reaction. A scale may be generated as a component. When the scale is generated, the electric resistance at that portion increases, and the operating voltage increases, thereby increasing the power consumption.

このような問題に対処する方法として、例えば特許文献1および2には、電極水として、脱塩室を流出して脱イオンされた処理水を用いる方法が開示されている。処理水は、カチオン成分、特に硬度成分をほとんど含んでいないため、陰極室でのスケール生成を抑制することが可能となる。   As a method for coping with such a problem, for example, Patent Documents 1 and 2 disclose a method of using treated water that has flowed out of a desalting chamber and deionized as electrode water. Since the treated water contains almost no cation component, particularly a hardness component, scale generation in the cathode chamber can be suppressed.

特許第3801821号公報Japanese Patent No. 3801621 特許第3788318号公報Japanese Patent No. 3788318

脱塩室を流出した処理水を電極室に供給するには、電極室による圧力損失を考慮して、電極室への処理水の供給圧、すなわち脱塩室出口の背圧を高くする必要がある。それには、電気式脱イオン水製造装置の前段に出力の大きなポンプを設置して、被処理水の供給圧を高くする必要がある。しかしながら、大型のポンプを使用することは、コストアップにつながるため好ましくない。   In order to supply the treated water that has flowed out of the desalting chamber to the electrode chamber, it is necessary to increase the supply pressure of the treated water to the electrode chamber, that is, the back pressure at the outlet of the desalting chamber, in consideration of pressure loss due to the electrode chamber. is there. For this purpose, it is necessary to install a pump with a large output at the front stage of the electric deionized water production apparatus to increase the supply pressure of the water to be treated. However, use of a large pump is not preferable because it leads to an increase in cost.

そこで、本発明は、コストアップを抑えながら、陰極室内のスケール生成など、電極水として被処理水を用いた場合に発生する問題を解消する電気式脱イオン水製造装置および脱イオン水製造方法を提供することを目的とする。   Therefore, the present invention provides an electrical deionized water production apparatus and a deionized water production method that eliminates problems that occur when treated water is used as electrode water, such as scale generation in the cathode chamber, while suppressing an increase in cost. The purpose is to provide.

上述した目的を達成するために、本発明の電気式脱イオン水製造装置は、被処理水を処理して脱イオン水を製造する電気式脱イオン水製造装置であって、陽極を備えた陽極室と陰極を備えた陰極室とからなる電極室と、陽極室と陰極室との間に位置し、カチオン交換膜と陰極室側で隣接し、少なくともカチオン交換体が充填されたカチオン脱塩室と、陽極室と陰極室との間に位置し、アニオン交換膜と陽極室側で隣接し、少なくともアニオン交換体が充填されたアニオン脱塩室と、を有し、カチオン脱塩室とアニオン脱塩室とは、被処理水がカチオン脱塩室に流入し、カチオン脱塩室を流出して少なくともカチオン成分が除去された中間処理水の一部がアニオン脱塩室に流入するように連通されており、カチオン脱塩室と電極室とは、カチオン脱塩室を流出した中間処理水の他の一部が電極室に流入するように連通されている。   In order to achieve the above-described object, an electric deionized water production apparatus of the present invention is an electric deionized water production apparatus for producing deionized water by treating water to be treated, and an anode provided with an anode. An electrode chamber comprising a chamber and a cathode chamber provided with a cathode; and a cation desalting chamber located between the anode chamber and the cathode chamber, adjacent to the cation exchange membrane on the cathode chamber side and filled with at least a cation exchanger And an anion exchange membrane and an anion deionization chamber which are adjacent to the anode chamber side and are filled with at least an anion exchanger. The salt chamber is communicated so that the water to be treated flows into the cation demineralization chamber and a part of the intermediate treated water from which at least the cation component has been removed through the cation demineralization chamber flows into the anion demineralization chamber. The cation desalination chamber and the electrode chamber Another part of the intermediate processing water flowing out of the desalting compartment is communicated to flow into the electrode chamber.

また、本発明の脱イオン水製造方法は、陽極を備えた陽極室と陰極を備えた陰極室とからなる電極室と、陽極室と陰極室との間に位置し、カチオン交換膜と陰極室側で隣接し、少なくともカチオン交換体が充填されたカチオン脱塩室と、陽極室と陰極室との間に位置し、アニオン交換膜と陽極室側で隣接し、少なくともアニオン交換体が充填されたアニオン脱塩室と、を有する電気式脱イオン水製造装置を用いて、被処理水を処理して脱イオン水を製造する脱イオン水製造方法であって、被処理水をカチオン脱塩室に流し、少なくともカチオン成分が除去された中間処理水を生成するステップと、カチオン脱塩室を流出した中間処理水の一部を、アニオン脱塩室に流すステップと、カチオン脱塩室を流出した中間処理水の他の一部を、電極室に流すステップと、を含んでいる。   The deionized water production method of the present invention includes an electrode chamber composed of an anode chamber having an anode and a cathode chamber having a cathode, and a cation exchange membrane and a cathode chamber, which are located between the anode chamber and the cathode chamber. A cation desalination chamber that is adjacent on the side and filled with at least a cation exchanger, and located between the anode and cathode chambers, adjacent to the anion exchange membrane and the anode chamber side, and at least filled with an anion exchanger A deionized water production method for producing deionized water by treating water to be treated using an electric deionized water production apparatus having an anion demineralization chamber, wherein the treated water is converted into a cation demineralization chamber. Flowing, generating intermediate treated water from which at least the cation component has been removed, flowing a portion of the intermediate treated water that has flowed out of the cation desalting chamber into the anion desalting chamber, and intermediate that has flowed out of the cation desalting chamber The other part of the treated water, the electrode chamber And includes a step of flowing, the.

このような電気式脱イオン水製造装置および脱イオン水製造方法では、カチオン脱塩室に流入した被処理水のカチオン成分はカチオン交換体に吸着し、カチオン脱塩室からは、カチオン成分、特に硬度成分が除去された中間処理水が流出する。中間処理水は、一部がアニオン脱塩室に流入するようにされているため、カチオン脱塩室の出口での中間処理水の水圧は、アニオン脱塩室の出口での処理水の水圧よりも必然的に高くなる。このような中間処理水の一部を電極室に流入させることは、配管の変更などで容易に可能であり、このことは、装置前段に出力の大きなポンプを設置する場合などに比べて、大きなコストアップにつながることはない。また、特に硬度成分が除去された中間処理水を電極水として用いているため、陰極室への硬度成分の流入を抑制することができる。これにより、電極水に処理水を用いた場合と同様に、陰極室内のスケールの生成を抑え、運転電圧の上昇と、それに伴う消費電力の増加とを抑制することが可能となる。   In such an electrical deionized water production apparatus and deionized water production method, the cation component of the water to be treated that has flowed into the cation demineralization chamber is adsorbed to the cation exchanger, and the cation component, particularly The intermediate treated water from which the hardness component has been removed flows out. Since the intermediate treated water partially flows into the anion desalting chamber, the water pressure of the intermediate treated water at the outlet of the cation desalting chamber is higher than the water pressure of the treated water at the outlet of the anion desalting chamber. Inevitably higher. It is possible to easily cause a part of such intermediate treated water to flow into the electrode chamber by changing the piping, etc., which is greater than when installing a pump with a large output in the front stage of the device. There is no cost increase. In addition, since the intermediate treated water from which the hardness component has been removed is used as the electrode water, the inflow of the hardness component into the cathode chamber can be suppressed. As a result, similarly to the case where treated water is used as the electrode water, it is possible to suppress the generation of scale in the cathode chamber and suppress the increase in operating voltage and the accompanying increase in power consumption.

以上説明したように、本発明によれば、コストアップを抑えながら、陰極室内のスケール生成など、電極水として被処理水を用いた場合に発生する問題を解消する電気式脱イオン水製造装置および脱イオン水製造方法を提供することができる。   As described above, according to the present invention, an electric deionized water production apparatus that eliminates problems that occur when treated water is used as electrode water, such as scale generation in the cathode chamber, while suppressing an increase in cost, and A method for producing deionized water can be provided.

本発明の一実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electric deionized water manufacturing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電気式脱イオン水製造装置の他の構成例を示す概略構成図である。It is a schematic block diagram which shows the other structural example of the electrical deionized water manufacturing apparatus which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る電気式脱イオン水製造装置の概略構成図である。電気式脱イオン水製造装置1は、陽極4を備える陽極室E1と陰極5を備える陰極室E2との間に、主脱塩室Dと、主脱塩室Dの両側に位置する一対の濃縮室C1,C2と、濃縮室C1と陽極室E1の間に位置する副カチオン脱塩室S1と、濃縮室C2と陰極室E2の間に位置する副アニオン脱塩室S2とが設けられ、これらの各室がイオン交換膜a1〜a3,c1〜c3で仕切られている。以下の説明では、陽極側で主脱塩室Dと隣接する濃縮室を陽極側濃縮室C1、陰極側で主脱塩室Dと隣接する濃縮室を陰極側濃縮室C2と呼ぶ。   FIG. 1 is a schematic configuration diagram of an electric deionized water production apparatus according to an embodiment of the present invention. The electric deionized water production apparatus 1 includes a main demineralization chamber D and a pair of concentrators located on both sides of the main demineralization chamber D between an anode chamber E1 having an anode 4 and a cathode chamber E2 having a cathode 5. Chambers C1 and C2, a secondary cation desalting chamber S1 located between the concentrating chamber C1 and the anode chamber E1, and a secondary anion desalting chamber S2 located between the concentrating chamber C2 and the cathode chamber E2, are provided. Are partitioned by ion exchange membranes a1 to a3 and c1 to c3. In the following description, the enrichment chamber adjacent to the main desalting chamber D on the anode side is referred to as the anode concentration chamber C1, and the enrichment chamber adjacent to the main desalination chamber D on the cathode side is referred to as the cathode concentration chamber C2.

陽極側濃縮室C1は第1のアニオン交換膜a1を介して主脱塩室Dに隣接し、陰極側濃縮室C2は第1のカチオン交換膜c1を介して主脱塩室Dに隣接している。副カチオン脱塩室S1は、第2のカチオン交換膜c2を介して陽極側濃縮室C1と隣接し、第3のカチオン交換膜c3を介して陽極室E1と隣接している。副アニオン脱塩室S2は、第2のアニオン交換膜a2を介して陰極側濃縮室C2と隣接し、第3のアニオン交換膜a3を介して陰極室E2と隣接している。   The anode side concentrating chamber C1 is adjacent to the main desalting chamber D via the first anion exchange membrane a1, and the cathode side concentrating chamber C2 is adjacent to the main desalting chamber D via the first cation exchange membrane c1. Yes. The secondary cation desalting chamber S1 is adjacent to the anode-side concentration chamber C1 via the second cation exchange membrane c2, and is adjacent to the anode chamber E1 via the third cation exchange membrane c3. The secondary anion demineralization chamber S2 is adjacent to the cathode-side concentration chamber C2 via the second anion exchange membrane a2, and is adjacent to the cathode chamber E2 via the third anion exchange membrane a3.

主脱塩室Dは、第1のカチオン交換膜c1と隣接する主カチオン脱塩室D1と、第1のアニオン交換膜a1と隣接する主アニオン脱塩室D2と、を有している。主カチオン脱塩室D1と主アニオン脱塩室D2とは、中間イオン交換膜3を介して互いに隣接している。   The main desalting chamber D has a main cation desalting chamber D1 adjacent to the first cation exchange membrane c1, and a main anion desalting chamber D2 adjacent to the first anion exchange membrane a1. The main cation desalting chamber D1 and the main anion desalting chamber D2 are adjacent to each other through the intermediate ion exchange membrane 3.

主カチオン脱塩室D1には少なくともカチオン交換体が充填され、主に被処理水中のカチオン成分(Na+、Ca2+、Mg2+等)が除去される。カチオン交換体としては、カチオン交換樹脂、カチオン交換繊維、モノリス状多孔質カチオン交換体等が挙げられ、最も汎用的なカチオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。主カチオン脱塩室D1に充填するイオン交換体の充填形態としては、カチオン交換体の単床形態が挙げられる。なお、被処理水中のカチオン成分(硬度成分)が十分除去できるだけのカチオン交換体が充填されていれば、アニオン交換体との混床形態または複床形態であってもよい。 The main cation desalting chamber D1 is filled with at least a cation exchanger, and mainly cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are removed. Examples of the cation exchanger include a cation exchange resin, a cation exchange fiber, and a monolithic porous cation exchanger, and the most versatile cation exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers. As a filling form of the ion exchanger filled in the main cation desalting chamber D1, a single bed form of the cation exchanger can be mentioned. In addition, as long as the cation exchanger that can sufficiently remove the cation component (hardness component) in the water to be treated is packed, the mixed bed form with the anion exchanger or the multiple bed form may be used.

主アニオン脱塩室D2には少なくともアニオン交換体が充填され、主に被処理水中のアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする)等)が除去される。アニオン交換体としては、アニオン交換樹脂、アニオン交換繊維、モノリス状多孔質アニオン交換体等が挙げられ、最も汎用的なアニオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。主アニオン脱塩室D2にはカチオン交換体がさらに充填されていてもよい。主アニオン脱塩室D2に充填するアニオン交換体の充填形態としては、アニオン交換体の単床形態、アニオン交換体とカチオン交換体との混床形態または複床形態が挙げられる。 The main anion demineralization chamber D2 is filled with at least an anion exchanger and mainly contains anion components (Cl , CO 3 2− , HCO 3 , SiO 2 (silica can take a special form) in the water to be treated. Therefore, the display is different from that of general ions). Examples of the anion exchanger include anion exchange resins, anion exchange fibers, and monolithic porous anion exchangers, and the most general anion exchange resin is preferably used. Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers. The main anion desalting chamber D2 may be further filled with a cation exchanger. Examples of the filling form of the anion exchanger filled in the main anion desalting chamber D2 include a single bed form of the anion exchanger, a mixed bed form of an anion exchanger and a cation exchanger, or a multiple bed form.

中間イオン交換膜3は、被処理水の水質、脱イオン水に求められる水質、主カチオン脱塩室D1または主アニオン脱塩室D2に充填するイオン交換体の種類等を勘案して選択することができる。中間イオン交換膜3は、アニオン交換膜もしくはカチオン交換膜の単一膜、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜のいずれであってもよい。   The intermediate ion exchange membrane 3 is selected in consideration of the quality of the water to be treated, the water quality required for the deionized water, the type of ion exchanger filled in the main cation demineralization chamber D1 or the main anion demineralization chamber D2, and the like. Can do. The intermediate ion exchange membrane 3 may be either an anion exchange membrane or a single membrane of a cation exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane.

このように、主脱塩室Dが主カチオン脱塩室D1と主アニオン脱塩室D2の2つの小脱塩室に区画され、各小脱塩室D1,D2の外側に濃縮室が隣接する構成(主脱塩室2室構成)は、被処理水の多段処理が可能であり、脱イオン性能の向上に効果的である。しかも、主カチオン脱塩室D1と主アニオン脱塩室D2との間に濃縮室を設ける必要がないため、陽極・陰極間の印加電圧が抑えられ、消費電力が下がり運転費の低減を図ることが可能である。   Thus, the main desalting chamber D is divided into two small desalting chambers, a main cation desalting chamber D1 and a main anion desalting chamber D2, and a concentration chamber is adjacent to the outside of each of the small desalting chambers D1 and D2. The configuration (two main demineralization chamber configurations) enables multi-stage treatment of water to be treated, and is effective in improving deionization performance. Moreover, since it is not necessary to provide a concentrating chamber between the main cation desalting chamber D1 and the main anion desalting chamber D2, the applied voltage between the anode and the cathode can be suppressed, the power consumption is reduced, and the operating cost is reduced. Is possible.

陽極側濃縮室C1は、主アニオン脱塩室D2から排出されるアニオン成分および副カチオン脱塩室S1から排出されるカチオン成分を取り込み、それらを系外に放出するために設けられている。陰極側濃縮室C2は、主カチオン脱塩室D1から排出されるカチオン成分および副アニオン脱塩室S2から排出されるアニオン成分を取り込み、それらを系外に放出するために設けられている。各濃縮室C1,C2には、濃縮室供給水が流入し、濃縮室供給水はカチオン成分およびアニオン成分を含んだ濃縮水となって、各濃縮室C1,C2から排出される。濃縮室供給水としては、本実施形態では被処理水の一部が利用されているが、別個の濃縮室供給水の供給ラインによって供給することもできる。電気式脱イオン水製造装置1の電気抵抗を抑えるために、各濃縮室C1,C2にイオン交換体が充填されていてもよい。   The anode side concentrating chamber C1 is provided to take in the anion component discharged from the main anion demineralization chamber D2 and the cation component discharged from the sub-cation demineralization chamber S1, and to release them out of the system. The cathode concentration chamber C2 is provided to take in the cation component discharged from the main cation demineralization chamber D1 and the anion component discharged from the secondary anion demineralization chamber S2, and to release them out of the system. Concentration chamber supply water flows into each of the concentration chambers C1 and C2, and the concentration chamber supply water becomes concentrated water containing a cation component and an anion component and is discharged from each of the concentration chambers C1 and C2. As the concentrating chamber supply water, a part of the water to be treated is used in this embodiment, but it can also be supplied by a separate concentrating chamber supply water supply line. In order to suppress the electric resistance of the electric deionized water production apparatus 1, the concentration chambers C1 and C2 may be filled with an ion exchanger.

副カチオン脱塩室S1は主カチオン脱塩室D1と同様の構成を有しているが、カチオン交換体だけが単床充填されている。   The sub cation demineralization chamber S1 has the same configuration as the main cation demineralization chamber D1, but only the cation exchanger is filled with a single bed.

副アニオン脱塩室S2は主アニオン脱塩室D2と同様の構成を有しているが、アニオン交換体だけが単床充填されている。   The secondary anion desalting chamber S2 has the same configuration as the main anion desalting chamber D2, but only the anion exchanger is filled with a single bed.

電極室(陽極室および陰極室)E1,E2には、後で詳述するように、主カチオン脱塩室D1および副カチオン脱塩室S1でカチオン成分が除去された脱カチオン水(中間処理水)の一部が電極水として流入する。これらの電極水は、上述したように、電極近傍での電気分解により、水素イオンおよび水酸化物イオンを発生させる。そのため、電気式脱イオン水製造装置1の電気抵抗を抑えるために、陽極室E1および陰極室E2にはイオン交換体が充填されていることが好ましい。これにより、後述する水素イオンの副カチオン脱塩室S1への移動および水酸化物イオンの副アニオン脱塩室S2への移動が円滑に行われる。   In the electrode chambers (anode chamber and cathode chamber) E1 and E2, decationized water (intermediate treated water) from which the cation component has been removed in the main cation demineralization chamber D1 and the auxiliary cation demineralization chamber S1, as described later in detail. ) Flows in as electrode water. As described above, these electrode waters generate hydrogen ions and hydroxide ions by electrolysis near the electrodes. Therefore, in order to suppress the electrical resistance of the electrical deionized water production apparatus 1, it is preferable that the anode chamber E1 and the cathode chamber E2 are filled with an ion exchanger. Thereby, the movement of hydrogen ions to the secondary cation desalting chamber S1 and the movement of hydroxide ions to the secondary anion desalting chamber S2 described later are smoothly performed.

陽極室E1および陰極室E2に充填するイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。陽極室E1の場合、充填されるカチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられ、その充填形態としては、単床充填が挙げられる。陰極室E2の場合、充填されるアニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられ、その充填形態としては、単床充填が挙げられる。   Examples of the ion exchanger filled in the anode chamber E1 and the cathode chamber E2 include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most general-purpose ion exchange resins are preferably used. In the case of the anode chamber E1, as a kind of cation exchanger with which it fills, a weak acidic cation exchanger, a strong acidic cation exchanger, etc. are mentioned, As the filling form, single bed filling is mentioned. In the case of the cathode chamber E2, the types of anion exchangers to be filled include weakly basic anion exchangers, strong basic anion exchangers, and the like, and the packing form includes single bed filling.

陽極室E1は陽極4を収容している。陽極4は金属の網状体あるいは板状体からなっている。流入する電極水にCl-が含まれると、陽極4に塩素が発生する。このため、陽極4には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。 The anode chamber E1 accommodates the anode 4. The anode 4 is made of a metal net or plate. If Cl is contained in the flowing electrode water, chlorine is generated at the anode 4. For this reason, it is desirable to use a material having chlorine resistance for the anode 4, and examples thereof include a metal such as platinum, palladium, iridium, or a material obtained by coating titanium with these metals.

陰極室E2は陰極5を収容している。陰極5は、金属の網状体あるいは板状体からなっており、例えばステンレス製の網状体あるいは板状体を用いることができる。   The cathode chamber E2 accommodates the cathode 5. The cathode 5 is made of a metal net or plate, and for example, a stainless steel net or plate can be used.

各電極室E1,E2、主カチオン脱塩室D1、主アニオン脱塩室D2、各濃縮室C1,C2、副カチオン脱塩室S1、および副アニオン脱塩室S2は各々、開口部を備えた板状部材である枠体2の内部に設けられている。図1では、枠体2は一体的に示されているが、実際には部屋毎に別々の枠体を備え、枠体同士が互いに密着して設けられている。枠体2は絶縁性を有し、流入する被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m−PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。   Each electrode chamber E1, E2, main cation demineralization chamber D1, main anion demineralization chamber D2, each concentration chamber C1, C2, sub cation demineralization chamber S1, and sub anion demineralization chamber S2 each have an opening. It is provided inside the frame 2 that is a plate-like member. In FIG. 1, the frame body 2 is shown integrally, but actually, a separate frame body is provided for each room, and the frame bodies are provided in close contact with each other. The frame body 2 is not particularly limited as long as it has an insulating property and does not leak in water to be treated. For example, polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether), etc. Can be mentioned.

各部屋同士の連絡、あるいは被処理水や電極水等の供給、排出用にいくつかの流路U1〜U4,L1〜L5が設けられている。   Several flow paths U1 to U4 and L1 to L5 are provided for communication between rooms, supply and discharge of water to be treated, electrode water, and the like.

電気式脱イオン水製造装置1の上部に位置する流路U1は、一端が被処理水の供給側に接続され、他端側では途中でいくつかに分岐して、主カチオン脱塩室D1と副カチオン脱塩室S1と各濃縮室C1,C2とに接続されている。電気式脱イオン水製造装置1の下部に位置する流路L1は、主カチオン脱塩室D1と副カチオン脱塩室S1とに接続され、途中で合流し、渡り配管Y1の一端に接続している。渡り配管Y1の他端は電気式脱イオン水製造装置1の上部に位置する流路U2に接続されており、流路U2は、途中で分岐して、主アニオン脱塩室D2と副アニオン脱塩室S2とに接続されている。電気式脱イオン水製造装置1の下部に位置する流路L2は、主アニオン脱塩室D2と副アニオン脱塩室S2とに接続され、途中で合流し、処理水の流出側に接続されている。電気式脱イオン水製造装置1の下部に位置する流路L5は、各濃縮室C1,C2に接続され、途中で合流し、濃縮水の流出側に接続されている。   One end of the flow path U1 located in the upper part of the electrical deionized water production apparatus 1 is connected to the supply side of the water to be treated, and the other end side branches into some parts along the main cation demineralization chamber D1. The secondary cation desalting chamber S1 is connected to each of the concentration chambers C1 and C2. The flow path L1 located in the lower part of the electric deionized water production apparatus 1 is connected to the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and merges in the middle and is connected to one end of the transition pipe Y1. Yes. The other end of the transition pipe Y1 is connected to a flow path U2 located in the upper part of the electric deionized water production apparatus 1, and the flow path U2 branches in the middle to decouple the main anion demineralization chamber D2 and the secondary anion deionization. It is connected to the salt chamber S2. The flow path L2 located in the lower part of the electric deionized water production apparatus 1 is connected to the main anion demineralization chamber D2 and the subanion demineralization chamber S2, and merges in the middle and is connected to the outflow side of the treated water. Yes. The flow path L5 located in the lower part of the electric deionized water production apparatus 1 is connected to each of the concentrating chambers C1 and C2, joins in the middle, and is connected to the concentrated water outflow side.

電気式脱イオン水製造装置1の下部に位置する流路L3は、一端側では渡り配管Y1に接続され、他端側では陰極室E2に接続されている。すなわち、主カチオン脱塩室D1および副カチオン脱塩室S1を流出した脱カチオン水は、一部が主アニオン脱塩室D2および副アニオン脱塩室S2に流入するようにされ、他の一部が陰極室E2に流入するようにされている。電気式脱イオン水製造装置1の上部に位置する流路U3は、一端側では陰極室E2に接続され、他端側では渡り配管Y2に接続されている。渡り配管Y2の他端は電気式脱イオン水製造装置1の下部に位置する流路L4に接続されており、流路L4は、陽極室E1に接続されている。陽極室E1の上部には流路U4が接続されており、したがって、陰極室E2に流入した電極水(脱カチオン水)は、流路U3と渡り配管Y2と流路L4とを通って陽極室E1に流入し、流路U4を通って陽極室E1から排出される。   The flow path L3 located in the lower part of the electric deionized water production apparatus 1 is connected to the crossover pipe Y1 on one end side and to the cathode chamber E2 on the other end side. That is, a part of the decationized water that has flowed out of the main cation demineralization chamber D1 and the subcation demineralization chamber S1 is allowed to flow into the main anion demineralization chamber D2 and the subanion demineralization chamber S2. Is allowed to flow into the cathode chamber E2. The flow path U3 located in the upper part of the electric deionized water production apparatus 1 is connected to the cathode chamber E2 on one end side and to the crossover pipe Y2 on the other end side. The other end of the transition pipe Y2 is connected to a flow path L4 located at the lower part of the electric deionized water production apparatus 1, and the flow path L4 is connected to the anode chamber E1. A flow path U4 is connected to the upper part of the anode chamber E1, so that the electrode water (decationized water) flowing into the cathode chamber E2 passes through the flow path U3, the crossover pipe Y2, and the flow path L4. It flows into E1 and is discharged from the anode chamber E1 through the flow path U4.

図1では、流路U1〜U3,L1〜L5は、図示の都合上枠体2の外側に位置しているが、これらの流路U1〜U4,L1〜L5は、枠体2に内蔵されているのが有利である。   In FIG. 1, the flow paths U <b> 1 to U <b> 3, L <b> 1 to L <b> 5 are positioned outside the frame body 2 for convenience of illustration, but these flow paths U <b> 1 to U <b> 4, L <b> 1 to L <b> 5 are built in the frame body 2. It is advantageous.

次に、引き続き図1を参照して、被処理水の流れと脱イオンの原理について説明する。   Next, the flow of water to be treated and the principle of deionization will be described with reference to FIG.

あらかじめ、各濃縮室C1,C2には、濃縮室供給水として、流路U1から被処理水の一部を供給し、流路L5から排出するようにしておく。電極室E1,E2には、流路L3から電極水(この時点では主カチオン脱塩室D1および副カチオン脱塩室S1を通過しただけの被処理水)を供給し、流路U4から排出させておく。陽極4、陰極5間には所定の電圧を印加しておく。この状態で、被処理水を流路U1から、主カチオン脱塩室D1および副カチオン脱塩室S1に並列に流入させる。被処理水は、主カチオン脱塩室D1および副カチオン脱塩室S1で、カチオン成分が除去される。   In advance, a part of the water to be treated is supplied from the flow path U1 to the concentration chambers C1 and C2 as the supply water for the concentration chamber and discharged from the flow path L5. Electrode water (currently treated water that has just passed through the main cation demineralization chamber D1 and the sub cation demineralization chamber S1) is supplied to the electrode chambers E1 and E2 from the flow path L3 and discharged from the flow path U4. Keep it. A predetermined voltage is applied between the anode 4 and the cathode 5. In this state, the water to be treated is caused to flow in parallel from the flow path U1 into the main cation desalting chamber D1 and the sub cation desalting chamber S1. The cation component is removed from the water to be treated in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1.

具体的には、Mg2+等のカチオン成分は、主カチオン脱塩室D1で、主カチオン脱塩室D1に充填されたカチオン交換体に吸着される。主脱塩室Dでは、水が水素イオン(以下、「H+」という)と水酸化物イオン(以下、「OH-」という)とに解離する反応(水解離反応)が、連続的に進行している。H+はカチオン交換体に吸着したMg2+等のカチオン成分と交換され、主カチオン脱塩室D1に充填されたカチオン交換体が再生される。除去されたMg2+等のカチオン成分は陽極4、陰極5間の電位差によって陰極5側に引き寄せられ、第1のカチオン交換膜c1を通過して陰極側濃縮室C2に流入する。 Specifically, a cation component such as Mg 2+ is adsorbed on the cation exchanger filled in the main cation demineralization chamber D1 in the main cation demineralization chamber D1. In the main desalting chamber D, a reaction (water dissociation reaction) in which water dissociates into hydrogen ions (hereinafter referred to as “H + ”) and hydroxide ions (hereinafter referred to as “OH ”) continuously proceeds. doing. H + is exchanged with a cation component such as Mg 2+ adsorbed on the cation exchanger, and the cation exchanger filled in the main cation desalting chamber D1 is regenerated. The removed cation component such as Mg 2+ is attracted to the cathode 5 side by the potential difference between the anode 4 and the cathode 5, passes through the first cation exchange membrane c 1, and flows into the cathode side concentration chamber C 2.

副カチオン脱塩室S1では、Mg2+等のカチオン成分は、副カチオン脱塩室S1に充填されたカチオン交換体に吸着される。陽極室E1では、電極反応(2H2O→O2+4H++4e-)によって水から酸素ガスとH+とが生成される反応が、連続的に進行している。酸素ガスは陽極室E1内を上昇し、電極水とともに電気式脱イオン水製造装置1の外へ排出される。H+は第3のカチオン交換膜c3を通って副カチオン脱塩室S1に流入する。副カチオン脱塩室S1に流入したH+は、カチオン交換体に吸着したカチオン成分と交換され、カチオン交換体が再生される。除去されたMg2+等のカチオン成分は陽極4、陰極5間の電位によって陰極5側に引き寄せられ、第2のカチオン交換膜c2を通過して陽極側濃縮室C1に流入する。 In the secondary cation desalting chamber S1, cation components such as Mg 2+ are adsorbed by the cation exchanger filled in the secondary cation desalting chamber S1. In the anode chamber E1, a reaction in which oxygen gas and H + are generated from water by an electrode reaction (2H 2 O → O 2 + 4H + + 4e ) proceeds continuously. The oxygen gas rises in the anode chamber E1 and is discharged out of the electric deionized water production apparatus 1 together with the electrode water. H + flows into the secondary cation desalting chamber S1 through the third cation exchange membrane c3. H + flowing into the secondary cation desalting chamber S1 is exchanged with the cation component adsorbed on the cation exchanger, and the cation exchanger is regenerated. The removed cation component such as Mg 2+ is attracted to the cathode 5 side by the potential between the anode 4 and the cathode 5, passes through the second cation exchange membrane c2, and flows into the anode side concentrating chamber C1.

このようにしてMg2+等のカチオン成分が除去された水(脱カチオン水)は流路L1で合流し、その一部が、渡り配管Y1を通って流路U2に流入し、他の一部が、渡り配管Y1から流路L3に流入する。 The water from which the cation component such as Mg 2+ has been removed in this way (decationized water) is merged in the flow path L1, and a part thereof flows into the flow path U2 through the transition pipe Y1, and the other one. Part flows into the flow path L3 from the crossover pipe Y1.

流路U2に流入した脱カチオン水は、主アニオン脱塩室D2および副アニオン脱塩室S2に並列に流入し、主アニオン脱塩室D2および副アニオン脱塩室S2で、アニオン成分が除去される。   The decationized water flowing into the flow path U2 flows in parallel into the main anion demineralization chamber D2 and the subanion demineralization chamber S2, and the anion component is removed in the main anion demineralization chamber D2 and the subanion demineralization chamber S2. The

具体的には、Cl-等のアニオン成分は、主アニオン脱塩室D2で、主アニオン脱塩室D2に充填されたアニオン交換体に吸着される。主脱塩室Dでは、上述のように、水解離反応によってOH-が連続的に発生している。OH-はアニオン交換樹脂に吸着したCl-等のアニオン成分と交換され、アニオン交換体が再生される。除去されたCl-等のアニオン成分は陽極4、陰極5間の電位差によって陽極4側に引き寄せられ、第1のアニオン交換膜a1を通過して陽極側濃縮室C1に流入する。 Specifically, an anion component such as Cl 2 is adsorbed to the anion exchanger filled in the main anion desalting chamber D2 in the main anion desalting chamber D2. In the main desalting chamber D, as described above, OH is continuously generated by the water dissociation reaction. OH is exchanged with an anion component such as Cl 2 adsorbed on the anion exchange resin to regenerate the anion exchanger. Cl has been removed - anionic components such as the anode 4, are attracted to the anode 4 side by the potential difference between the cathode 5 passes through the first anion exchange membrane a1 flows into the anode side concentrating compartment C1.

副アニオン脱塩室S2では、Cl-等のアニオン成分は、副アニオン脱塩室S2に充填されたアニオン交換体に吸着される。陰極室E2では、電極反応(2H2O+2e-→H2+2OH-)によって水から水素ガスとOH-とが生成される反応が、連続的に進行している。水素ガスは陰極室E2内を上昇し、電極水とともに脱イオン水製造装置1の外へ排出される。OH-は第3のアニオン交換膜a3を通って副アニオン脱塩室S2に流入し、アニオン交換体に吸着したアニオン成分と交換され、アニオン交換体が再生される。除去されたCl-等のアニオン成分は陽極4、陰極5間の電位によって陽極4側に引き寄せられ、第2のアニオン交換膜a2を通過して陰極側濃縮室C2に流入する。主アニオン脱塩室D2および副アニオン脱塩室S2でアニオン成分が除去された処理水は流路L2で合流し、電気式脱イオン水製造装置1の外へ排出される。 In sub anion depletion chamber S2, Cl - anion components, etc., are adsorbed to the anion exchanger filled in the sub anion depletion chamber S2. In the cathode chamber E2, the reaction of generating hydrogen gas and OH from water by the electrode reaction (2H 2 O + 2e → H 2 + 2OH ) proceeds continuously. The hydrogen gas rises in the cathode chamber E2 and is discharged out of the deionized water production apparatus 1 together with the electrode water. OH flows into the secondary anion desalting chamber S2 through the third anion exchange membrane a3 and is exchanged with the anion component adsorbed on the anion exchanger, thereby regenerating the anion exchanger. The removed anion component such as Cl is attracted to the anode 4 side by the potential between the anode 4 and the cathode 5, passes through the second anion exchange membrane a 2, and flows into the cathode side concentration chamber C 2. The treated water from which the anion component has been removed in the main anion demineralization chamber D2 and the subanion demineralization chamber S2 joins in the flow path L2 and is discharged out of the electric deionized water production apparatus 1.

一方、流路L3に流入した脱カチオン水は、電極水として、陰極室E2に供給される。陰極室E2から流出した電極水は、流路U3と渡り配管Y2と流路L4とを通って陽極室E1に流入し、電気式脱イオン水製造装置1の上部に位置する流路U4を通って電気式脱イオン水製造装置1の外へ排出される。   On the other hand, the decationized water that has flowed into the flow path L3 is supplied to the cathode chamber E2 as electrode water. The electrode water flowing out from the cathode chamber E2 flows into the anode chamber E1 through the flow path U3, the crossover pipe Y2, and the flow path L4, and passes through the flow path U4 located at the upper part of the electric deionized water production apparatus 1. And discharged to the outside of the electric deionized water production apparatus 1.

流路U1を通って濃縮室C1,C2に供給される濃縮室供給水(被処理水)は、主カチオン脱塩室D1、副カチオン脱塩室S1、主アニオン脱塩室D2、および副アニオン脱塩室S2からそれぞれ排出されるカチオン成分およびアニオン成分を取り込み、電気式脱イオン水製造装置1の下部に位置する流路L5を通って電気式脱イオン水製造装置1の外へ排出される。   Concentration chamber supply water (treated water) supplied to the concentration chambers C1 and C2 through the flow path U1 is a main cation demineralization chamber D1, a sub cation demineralization chamber S1, a main anion demineralization chamber D2, and a sub anion. The cation component and the anion component respectively discharged from the demineralization chamber S2 are taken in and discharged to the outside of the electric deionized water production apparatus 1 through the flow path L5 located at the lower part of the electric deionized water production apparatus 1. .

このようにして、被処理水は、主カチオン脱塩室D1および副カチオン脱塩室S1でカチオン成分が除去されて脱カチオン水となり、主カチオン脱塩室D1のカチオン交換体は水解離反応によって生成されたH+により再生され、副カチオン脱塩室S1のカチオン交換体は陽極室E1で生成されたH+により再生される。同様にして、脱カチオン水は、主アニオン脱塩室D2および副アニオン脱塩室S2でアニオン成分が除去されて脱イオン水となり、主アニオン脱塩室D2のアニオン交換体は水解離反応によって生成されたOH-により再生され、副アニオン脱塩室S2のアニオン交換体は陰極室E2で生成されたOH-により再生される。 In this way, the water to be treated becomes decation water by removing the cation component in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and the cation exchanger in the main cation demineralization chamber D1 is subjected to water dissociation reaction. Regenerated by the generated H +, the cation exchanger in the secondary cation desalting chamber S1 is regenerated by the H + generated in the anode chamber E1. Similarly, deionized water is deionized water by removing anion components in the main anion demineralization chamber D2 and the secondary anion demineralization chamber S2, and the anion exchanger in the main anion demineralization chamber D2 is generated by a water dissociation reaction. been OH - reproduced by an anion exchanger of the auxiliary anion depletion chamber S2, OH generated in the cathode chamber E2 - it is played by.

本実施形態のように、カチオン脱塩室D1,S1を流出した脱カチオン水がアニオン脱塩室D2,S2に流入するようにされている構成では、カチオン脱塩室D1,S1の出口の背圧が、アニオン脱塩室D2,S2の出口の背圧よりも、アニオン脱塩室D2,S2による圧力損失の分だけ高くなっている。すなわち、カチオン脱塩室D1,S1を流出した脱カチオン水の水圧は、アニオン脱塩室D2,S2を流出した処理水の水圧よりも、必然的に高くなっている。したがって、このような脱カチオン水は、配管の変更のみで、あるいは、電気式脱イオン水製造装置の前段に非常に小型の補助ポンプを設置するだけで、その一部を電極室E1,E2に流入させることが可能となる。このことは、電極水として処理水を用いた場合、すなわち、電気式脱イオン水製造装置の前段に出力の大きなポンプを設置して、被処理水の供給圧を高くすることで、処理水の水圧を高くする場合と比べても、大きなコストアップにつながることはない。   In the configuration in which the decationized water that has flowed out of the cation demineralization chambers D1 and S1 flows into the anion demineralization chambers D2 and S2 as in this embodiment, the back of the outlet of the cation demineralization chambers D1 and S1. The pressure is higher than the back pressure at the outlet of the anion desalting chambers D2 and S2 by the pressure loss due to the anion desalting chambers D2 and S2. That is, the water pressure of the decationized water that has flowed out of the cation desalting chambers D1 and S1 is inevitably higher than the water pressure of the treated water that has flowed out of the anion desalting chambers D2 and S2. Therefore, such decationized water can be partly placed in the electrode chambers E1 and E2 only by changing the piping or by installing a very small auxiliary pump in front of the electric deionized water production apparatus. It becomes possible to make it flow. This means that when treated water is used as the electrode water, that is, by installing a pump with a large output at the front stage of the electric deionized water production apparatus and increasing the supply pressure of the treated water, Compared to the case where the water pressure is increased, there is no significant increase in cost.

また、脱カチオン水は、主カチオン脱塩室D1および副カチオン脱塩室S1によって、カチオン成分、特に硬度成分が除去されている。これに加えて、脱カチオン水は、主カチオン脱塩室D1および副カチオン脱塩室S1でカチオン成分が除去される代わりに、H+を多く取り込んでいるため、そのpH値は低くなっている。このような脱カチオン水を電極水として電極室E1,E2に流入させることで、陰極室E2への硬度成分の供給と、電極水の、特に陰極E2の表面におけるpH値の上昇とを抑えることができる。これにより、電極水に処理水を用いた場合と同様に、陰極室E2内のスケールの生成を抑え、運転電圧の上昇と、それに伴う消費電力の増加とを抑制することが可能となる。 In the decationized water, the cation component, particularly the hardness component, is removed by the main cation demineralization chamber D1 and the sub cation demineralization chamber S1. In addition to this, the decationized water takes in a large amount of H + instead of removing the cation component in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and therefore its pH value is low. . By flowing such decationized water into the electrode chambers E1 and E2 as electrode water, it is possible to suppress the supply of hardness components to the cathode chamber E2 and the increase in pH value of the electrode water, particularly on the surface of the cathode E2. Can do. As a result, similarly to the case where treated water is used for the electrode water, it is possible to suppress the generation of scale in the cathode chamber E2, and to suppress the increase in operating voltage and the accompanying increase in power consumption.

スケール生成は、陰極室E2に流入する脱カチオン水のpH値をより低くすることで、より一層抑制される。そのために、主カチオン脱塩室D1および副カチオン脱塩室S1には、カチオン交換体が単床形態で充填されていることが最も好ましい。   Scale generation is further suppressed by lowering the pH value of the decationized water flowing into the cathode chamber E2. Therefore, it is most preferable that the main cation desalting chamber D1 and the secondary cation desalting chamber S1 are filled with a cation exchanger in a single bed form.

上述した電気式脱イオン水製造装置1では、陽極室E1で発生した水素イオンおよび陰極室E2で発生した水酸化物イオンが、副カチオン脱塩室S1および副アニオン脱塩室S2のイオン交換体の再生に有効利用されている。その結果、陽極・陰極間の印加電圧を低減し、使用電力量を低減することが可能となる。このような構成では、電極水として被処理水を用いた場合、特に陽極室E1では、水素イオンだけでなく、電極水に含まれるカチオン成分も、副カチオン脱塩室S1へと移動することになる。そのため、副カチオン脱塩室S1を流れる被処理水は、そこでカチオン成分が除去されるにもかかわらず、陽極室E1から移動してきたカチオン成分によって再び汚染される可能性がある。したがって、本来は脱カチオン水として副カチオン脱塩室S1を流出すべきところ、カチオン成分を含んだ水が副カチオン脱塩室S1を流出してしまう虞がある。   In the electric deionized water production apparatus 1 described above, hydrogen ions generated in the anode chamber E1 and hydroxide ions generated in the cathode chamber E2 are converted into ion exchangers in the secondary cation demineralization chamber S1 and the secondary anion demineralization chamber S2. It is effectively used for playback. As a result, the applied voltage between the anode and the cathode can be reduced, and the amount of power used can be reduced. In such a configuration, when water to be treated is used as electrode water, particularly in the anode chamber E1, not only hydrogen ions but also cation components contained in the electrode water move to the sub-cation demineralization chamber S1. Become. Therefore, the water to be treated flowing in the sub cation demineralization chamber S1 may be contaminated again by the cation component that has moved from the anode chamber E1 even though the cation component is removed there. Therefore, water that contains the cation component may flow out of the sub-cation demineralization chamber S1 where it should originally flow out of the sub-cation demineralization chamber S1 as decation water.

本実施形態では、電極水として脱カチオン水を用いることで、このような問題にも対処することができる。すなわち、電極室E1,E2に供給される脱カチオン水は、カチオン成分をほとんど含んでいないため、上述の陽極室E1から副カチオン脱塩室S1へのカチオン成分のリークを抑制することができる。これにより、副カチオン脱塩室S1を流出する水(脱カチオン水)にカチオン成分が含まれてしまうのを抑制することで、脱カチオン水の水質を良好に維持することが可能となる。   In this embodiment, such a problem can be dealt with by using decationized water as electrode water. That is, since the decationized water supplied to the electrode chambers E1 and E2 contains almost no cation component, leakage of the cation component from the anode chamber E1 to the secondary cation demineralization chamber S1 can be suppressed. Thereby, it becomes possible to maintain the quality of decationized water satisfactorily by suppressing the cation component from being contained in the water (decationized water) flowing out of the secondary cation desalting chamber S1.

電極水として脱カチオン水を用いた場合、電極室E1,E2に流入する電極水には、依然としてアニオン成分は含まれている。したがって、本実施形態のように、陰極室E2がアニオン交換膜a3を介して副アニオン脱塩室S2と隣接する装置では、電極反応によって生成した水酸化物イオンと共に、電極水(脱カチオン水)に含まれるアニオン成分も、陰極室E2から副アニオン脱塩室S2へと移動することになる。そのため、このアニオン成分は、副アニオン脱塩室S2で除去しきれずに処理水中に流入して、処理水を汚染させてしまう可能性がある。これを抑制するために、陰極室E2に電極水を供給する流路L3上に、アニオン交換体カートリッジを設けることもできる。これにより、陰極室E2に供給される電極水中のアニオン成分を減少または除去することができ、上述の陰極室E2から副アニオン脱塩室S2へのアニオン成分のリークを抑制することができる。   When decationized water is used as the electrode water, the anion component is still contained in the electrode water flowing into the electrode chambers E1 and E2. Therefore, as in this embodiment, in the apparatus in which the cathode chamber E2 is adjacent to the secondary anion demineralization chamber S2 via the anion exchange membrane a3, the electrode water (decationized water) is combined with the hydroxide ions generated by the electrode reaction. The anion component contained in is also moved from the cathode chamber E2 to the secondary anion desalting chamber S2. Therefore, this anion component may not be removed in the secondary anion demineralization chamber S2 and may flow into the treated water and contaminate the treated water. In order to suppress this, an anion exchanger cartridge can be provided on the flow path L3 for supplying the electrode water to the cathode chamber E2. Thereby, the anion component in the electrode water supplied to the cathode chamber E2 can be reduced or removed, and leakage of the anion component from the cathode chamber E2 to the secondary anion demineralization chamber S2 can be suppressed.

また、流路L3上には、一定量の電極水を確保するため定流量弁を設置することが好ましく、電極室E1,E2の圧力損失が大きい場合には、流路L3上に、さらに補助的なポンプが設けられていてもよい。   In addition, it is preferable to install a constant flow valve on the flow path L3 in order to secure a certain amount of electrode water. When the pressure loss in the electrode chambers E1 and E2 is large, a further auxiliary is provided on the flow path L3. A typical pump may be provided.

さらに、脱カチオン水は、上述のように、液性が酸性となっているため、その一部を電極室にだけでなく、濃縮室に流入させることも有効となる。これは、アニオン交換膜近傍での濃縮水のpH値の上昇を抑え、特に硬度成分の高い被処理水を処理した場合に濃縮室(のアニオン交換膜近傍)で発生しうる、炭酸カルシウムを主成分とするスケールの生成を抑制することができるためである。   Furthermore, since decationized water is acidic in liquidity as described above, it is effective to allow a part of the decationized water to flow not only into the electrode chamber but also into the concentration chamber. This suppresses the increase in the pH value of the concentrated water in the vicinity of the anion exchange membrane, and is mainly composed of calcium carbonate that can be generated in the concentration chamber (in the vicinity of the anion exchange membrane) when treated water having a high hardness component is treated. This is because the generation of scale as a component can be suppressed.

本実施形態では、陽極室E1および陰極室E2は、直列に接続され、陰極室E2から流出した電極水が陽極室E1に流入するようになっているが、その逆であってもよい。すなわち、陽極室E1と陰極室E2とには、上述した、陰極室E2内のスケール生成と、陽極室E1から副カチオン脱塩室S1へのカチオン成分のリークとを抑制するために、カチオン成分が除去された脱カチオン水が電極水として流入するようになっていればよい。したがって、例えば、脱カチオン水は、陽極室E1および陰極室E2にそれぞれ独立(例えば並列)に流入するようになっていてもよい。   In the present embodiment, the anode chamber E1 and the cathode chamber E2 are connected in series so that the electrode water flowing out from the cathode chamber E2 flows into the anode chamber E1, but the opposite may be possible. That is, in the anode chamber E1 and the cathode chamber E2, in order to suppress the above-described scale generation in the cathode chamber E2 and leakage of the cation component from the anode chamber E1 to the secondary cation desalting chamber S1, It is sufficient that the decationized water from which water is removed flows as electrode water. Therefore, for example, the decationized water may flow independently (for example, in parallel) into the anode chamber E1 and the cathode chamber E2.

本発明は、カチオン脱塩室D1,S1を流出した脱カチオン水の一部を電極室E1,E2に流入することに大きな特徴がある。したがって、本発明は、脱塩室や濃縮室の配置パターンによらず、既存のさまざまな電気式脱イオン水製造装置に適用可能である。図2に、そのような電気式脱イオン水製造装置の構成例を示している。図2では、各室の符号は、図1における各室の符号に対応し、図中の符号Xは、符号Xで示した流路の端部同士が接続されていることを意味する。   The present invention is greatly characterized in that a part of the decationized water that has flowed out of the cation desalting chambers D1 and S1 flows into the electrode chambers E1 and E2. Therefore, the present invention can be applied to various existing electric deionized water production apparatuses regardless of the arrangement pattern of the desalting chamber and the concentration chamber. FIG. 2 shows a configuration example of such an electrical deionized water production apparatus. In FIG. 2, the reference numerals of the respective chambers correspond to the reference numerals of the respective chambers in FIG. 1, and the reference sign X in the drawing means that the ends of the flow paths indicated by the reference sign X are connected to each other.

図1に示す実施形態では、本発明の電気式脱イオン水製造装置について、主脱塩室が1つだけ設けられている場合を例に挙げて説明したが、例えば被処理水量の増大などに対応するために、主脱塩室が2つ以上設けられていてもよい。その場合、主脱塩室と濃縮室とは、陽極側のアニオン交換膜と陰極側のカチオン交換膜とを挟んで交互に設けられ、最も陽極側に位置する濃縮室がカチオン交換膜を介して副カチオン脱塩室と隣接し、最も陰極側に位置する濃縮室がアニオン交換膜を介して副アニオン脱塩室と隣接することになる。また、主脱塩室は必ずしも設けられている必要はなく、副脱塩室だけが設けられていてもよい。すなわち、図2(a)に示すように、第3のカチオン交換膜c3を介して陽極室E1に隣接するカチオン脱塩室D1と、第3のアニオン交換膜a3を介して陰極室E2に隣接するアニオン脱塩室D2との1組だけが設けられていてもよい。その場合、濃縮室Cは、カチオン脱塩室D1とアニオン脱塩室D2との間に1室だけ設けられ、カチオン脱塩室D1の陰極5側で第2のカチオン交換膜c2と隣接し、アニオン脱塩室D2の陽極4側で第2のアニオン交換膜a2と隣接している。   In the embodiment shown in FIG. 1, the electric deionized water production apparatus of the present invention has been described by taking an example in which only one main demineralization chamber is provided. In order to respond, two or more main desalting chambers may be provided. In that case, the main desalting chamber and the concentrating chamber are alternately provided with the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side sandwiched, and the concentrating chamber located on the most anode side is interposed via the cation exchange membrane. The concentrating chamber located adjacent to the secondary cation desalting chamber and closest to the cathode side is adjacent to the secondary anion desalting chamber via the anion exchange membrane. Further, the main desalting chamber is not necessarily provided, and only the sub-desalting chamber may be provided. That is, as shown in FIG. 2A, the cation desalting chamber D1 adjacent to the anode chamber E1 through the third cation exchange membrane c3 and the cathode chamber E2 through the third anion exchange membrane a3. Only one set with the anion desalting chamber D2 may be provided. In that case, the concentration chamber C is provided only between the cation desalting chamber D1 and the anion desalting chamber D2, and is adjacent to the second cation exchange membrane c2 on the cathode 5 side of the cation desalting chamber D1. It is adjacent to the second anion exchange membrane a2 on the anode 4 side of the anion desalting chamber D2.

また、主脱塩室が1つ以上設けられている場合、副カチオン脱塩室および副アニオン脱塩室は、いずれか一方のみが設けられていればよい。したがって、副カチオン脱塩室が設けられていない場合、最も陽極側に位置する濃縮室が、カチオン交換膜を介して陽極室と隣接し、副アニオン脱塩室が設けられていない場合、最も陰極側に位置する濃縮室が、アニオン交換膜を介して陰極室と隣接することになる。あるいは、図2(b)に示すように、副カチオン脱塩室および副アニオン脱塩室の両方を省略することも可能である。図2(b)には、主脱塩室Dが2つ設けられている場合が示されている。この場合、最も陽極4側に位置する濃縮室C1が、カチオン交換膜またはアニオン交換膜のいずれであるイオン交換膜mを介して陽極室E1と隣接し、最も陰極5側に位置する濃縮室C3が、イオン交換膜mを介して陰極室E2と隣接している。なお、主脱塩室Dと濃縮室C1〜C3とは、上述したように、陽極4側のアニオン交換膜a1と陰極5側のカチオン交換膜c1とを挟んで互いに隣接している。   Further, when one or more main desalting chambers are provided, only one of the secondary cation desalting chamber and the secondary anion desalting chamber needs to be provided. Therefore, when the secondary cation desalting chamber is not provided, the most concentrated anode chamber is adjacent to the anode chamber through the cation exchange membrane, and when the secondary anion desalting chamber is not provided, the cathode is most The concentration chamber located on the side is adjacent to the cathode chamber through the anion exchange membrane. Alternatively, as shown in FIG. 2B, both the secondary cation desalting chamber and the secondary anion desalting chamber can be omitted. FIG. 2B shows a case where two main desalting chambers D are provided. In this case, the enrichment chamber C1 located closest to the anode 4 is adjacent to the anode chamber E1 via the ion exchange membrane m, which is either a cation exchange membrane or an anion exchange membrane, and is located closest to the cathode 5 side. Is adjacent to the cathode chamber E2 through the ion exchange membrane m. The main desalting chamber D and the concentrating chambers C1 to C3 are adjacent to each other with the anion exchange membrane a1 on the anode 4 side and the cation exchange membrane c1 on the cathode 5 side interposed therebetween, as described above.

さらに、主脱塩室が1つ設けられている図1に示す実施形態から、副カチオン脱塩室S1と副アニオン脱塩室S2と一対の濃縮室C1,C2とを取り除き、陽極室E1と主アニオン脱塩室D1とを第1のカチオン交換膜a1を介して隣接させ、陰極室E2と主アニオン脱塩室D2とを第2のアニオン交換膜a2を介して隣接させた構成も可能である。図2(c)に示すこのような構成では、陽極室E1および陰極室E2が濃縮室を兼ねることになり、すなわち、主脱塩室Dで除去された被処理水中のイオン成分が、電極室E1,E2に流入して電極水によって外部に排出されるようになる。なお、このような構成は、主脱塩室が2つ以上設けられている場合にも適用可能である。すなわち、例えば図2(b)に示す実施形態において、電極室E1,E2に隣接した濃縮室C1,C2を取り除き、陽極室E1が濃縮室C1を兼ね、陰極室E2が濃縮室C3を兼ねる構成を採用してもよい。   Further, from the embodiment shown in FIG. 1 in which one main desalting chamber is provided, the secondary cation desalting chamber S1, the secondary anion desalting chamber S2, and the pair of concentrating chambers C1, C2 are removed, and the anode chamber E1. A configuration in which the main anion desalting chamber D1 is adjacent to each other via the first cation exchange membrane a1, and the cathode chamber E2 and the main anion desalting chamber D2 are adjacent to each other via the second anion exchange membrane a2 is also possible. is there. In such a configuration shown in FIG. 2 (c), the anode chamber E1 and the cathode chamber E2 also serve as a concentration chamber, that is, the ionic components in the water to be treated removed in the main desalting chamber D are converted into the electrode chamber. It flows into E1 and E2 and is discharged outside by electrode water. Such a configuration can also be applied when two or more main desalting chambers are provided. That is, for example, in the embodiment shown in FIG. 2B, the concentration chambers C1 and C2 adjacent to the electrode chambers E1 and E2 are removed, the anode chamber E1 also serves as the concentration chamber C1, and the cathode chamber E2 serves as the concentration chamber C3. May be adopted.

(実施例)
図1に示す構成の電気式脱イオン水製造装置(実施例)と、図1に示す実施例と各室の構成は同じであるが流路構成が異なる電気式脱イオン水製造装置(比較例1,2)を用いて、本発明の効果を確認した。比較例1は、図1に示す実施例と、電極室供給水がカチオン脱塩室およびアニオン脱塩室を流通した処理水である点で異なっており、比較例2は、電極室供給水がカチオン脱塩室に流入させる前の被処理水、すなわち原水である点で異なっている。電極室供給水の流量と、得られる処理水の流量とは、実施例および比較例1,2で共に同量であるが、カチオン脱塩室を流出した脱カチオン水を電極室に流す実施例では、カチオン脱塩室入口での被処理水の流量が、比較例2と比べて、電極室に流す分だけ大きくなっている。同様に、アニオン脱塩室を流出した処理水を電極室に流す比較例1では、カチオン脱塩室入口での被処理水の流量が、比較例2と比べて、電極室に流す分だけ大きくなっている。また、中間イオン交換膜としてはアニオン交換膜を用いている。
(Example)
An electric deionized water production apparatus (Example) having the configuration shown in FIG. 1 and an electric deionized water production apparatus (Comparative Example) having the same configuration in each chamber as the embodiment shown in FIG. 1, 2) was used to confirm the effect of the present invention. Comparative Example 1 is different from the example shown in FIG. 1 in that the electrode chamber supply water is treated water that has circulated through the cation demineralization chamber and the anion desalination chamber. It is different in that it is treated water before flowing into the cation desalting chamber, that is, raw water. The flow rate of the electrode chamber supply water and the flow rate of the treated water obtained are the same in both the example and the comparative examples 1 and 2, but the example in which the decationized water that has flowed out of the cation demineralization chamber flows into the electrode chamber Then, compared with the comparative example 2, the flow volume of the to-be-processed water in a cation desalination chamber entrance is large only by the amount which flows into an electrode chamber. Similarly, in Comparative Example 1 in which the treated water that has flowed out of the anion desalting chamber flows into the electrode chamber, the flow rate of the water to be treated at the cation desalting chamber inlet is larger than that in Comparative Example 2 by the amount that flows into the electrode chamber. It has become. An anion exchange membrane is used as the intermediate ion exchange membrane.

なお、実際には、実施例および比較例1,2ともに、主脱塩室が2室設けられた電気式脱イオン水製造装置を用いて検証を行った。   Actually, both the examples and comparative examples 1 and 2 were verified using an electric deionized water production apparatus provided with two main demineralization chambers.

実施例および比較例1,2における電気式脱イオン水製造装置の仕様、通水流量、供給水の仕様等は以下の通りである。なお、CERはカチオン交換樹脂、AERはアニオン交換樹脂の略である。
・陽極室E1:寸法300×80×4mm CER充填
・陰極室E2:寸法300×80×4mm AER充填
・カチオン脱塩室:寸法300×80×8mm(3室とも) CER充填
・アニオン脱塩室:寸法300×80×8mm(3室とも) AER充填
・濃縮室:300×80×5mm(3室とも) AER充填
・処理水流量:150L/h
・濃縮水流量:30L/h
・電極水流量:10L/h
・カチオン脱塩室供給水(被処理水):一段RO透過水11±1μS/cm
・カチオン脱塩室供給水硬度(CaCO3含有量):1±0.1mg/L
・濃縮室供給水:一段RO透過水11±1μS/cm
・電極室供給水(実施例):カチオン脱塩室処理水(脱カチオン水)
(比較例1):アニオン脱塩室処理水(処理水)
(比較例2):カチオン脱塩室供給水(被処理水)
・印加電流値:1.4A
・印加電流密度:0.58A/dm2
The specifications of the electrical deionized water production apparatus, the water flow rate, the specifications of the feed water, etc. in the examples and comparative examples 1 and 2 are as follows. CER is an abbreviation for cation exchange resin, and AER is an anion exchange resin.
・ Anode chamber E1: dimension 300 × 80 × 4 mm CER filling ・ cathode chamber E2: dimension 300 × 80 × 4 mm AER filling ・ cation desalination chamber: dimension 300 × 80 × 8 mm (all three chambers) CER filling ・ anion desalination chamber : Dimensions 300 x 80 x 8 mm (both 3 chambers) AER filling / concentration chamber: 300 x 80 x 5 mm (both 3 chambers) AER filling / treated water flow rate: 150 L / h
・ Concentrated water flow: 30 L / h
-Electrode water flow rate: 10L / h
・ Cation desalination chamber supply water (treated water): One-stage RO permeated water 11 ± 1 μS / cm
・ Cation desalination chamber water hardness (CaCO 3 content): 1 ± 0.1 mg / L
・ Concentration chamber supply water: 1 stage RO permeate 11 ± 1 μS / cm
-Electrode chamber supply water (Example): Cation demineralization chamber treated water (decation water)
(Comparative Example 1): Anion desalination chamber treated water (treated water)
(Comparative example 2): Cation demineralization chamber feed water (treated water)
-Applied current value: 1.4A
Applied current density: 0.58 A / dm 2

実施例および比較例1の装置について、2000時間の運転を行い、各脱塩室入口および出口での圧力を比較した。結果を表1に示す。   About the apparatus of the Example and the comparative example 1, operation | movement for 2000 hours was performed and the pressure in each desalination chamber inlet and outlet was compared. The results are shown in Table 1.

Figure 2013013830
Figure 2013013830

実施例では、比較例1と比べて、全体の圧力が低く抑えられ、処理水がアニオン脱塩室を流出する最低限の水圧で、カチオン脱塩室を流出した脱カチオン水を電極室に供給できることが確認された。一方、比較例1での圧力の増大は、アニオン脱塩室を流出した処理水を電極室に流すために、アニオン脱塩室出口での圧力を高くしなければならないことを意味している。つまり、カチオン脱塩室入口での圧力(被処理水の供給圧)を上げるために、コストアップにつながる追加の手段が必要になることを意味している。   In the example, compared with Comparative Example 1, the total pressure is kept low, and the decationized water that has flowed out of the cation demineralization chamber is supplied to the electrode chamber at the minimum water pressure at which the treated water flows out of the anion demineralization chamber. It was confirmed that it was possible. On the other hand, the increase in pressure in Comparative Example 1 means that the pressure at the outlet of the anion desalting chamber must be increased in order to allow the treated water flowing out of the anion desalting chamber to flow into the electrode chamber. That is, in order to increase the pressure at the inlet of the cation desalting chamber (supply pressure of water to be treated), it means that an additional means that leads to an increase in cost is required.

また、同様に比較例2についても、2000時間の運転を行い、処理水質(処理水比抵抗)および運転電圧の経時変化を実施例と比較した。結果を表2に示す。   Similarly, Comparative Example 2 was also operated for 2000 hours, and the changes over time in the quality of treated water (treated water specific resistance) and operating voltage were compared with those of the Examples. The results are shown in Table 2.

Figure 2013013830
Figure 2013013830

表2に示すように、実施例では、比較例2と比べて、運転電圧が低く抑えられることが確認された。これは、カチオン脱塩室を流出して硬度成分が除去された脱カチオン水を電極室に供給したことで、陰極でのスケールの生成が抑制された効果であると考えられる。実際、約2000時間の運転後、それぞれの装置を解体したところ、比較例2の装置では、陰極にスケールが生成されていることが確認されたが、実施例の装置では、スケールの生成は確認できなかった。   As shown in Table 2, it was confirmed that in the example, the operating voltage was suppressed lower than that in Comparative Example 2. This is considered to be an effect that scale generation at the cathode is suppressed by supplying decationized water from which the hardness component has been removed by flowing out from the cation desalting chamber to the electrode chamber. In fact, after about 2000 hours of operation, each device was disassembled, and it was confirmed that scale was generated at the cathode in the device of Comparative Example 2, but scale generation was confirmed in the device of the example. could not.

また同様に、実施例では、比較例2と比べて、良好な処理水質が得られていることが確認された。これは、カチオン成分が副カチオン脱塩室に移動して、副カチオン脱塩室を流出する脱カチオン水を汚染することが抑制された効果であると考えられる。   Similarly, in the examples, it was confirmed that better treated water quality was obtained as compared with Comparative Example 2. This is considered to be an effect that the cationic component moves to the secondary cation demineralization chamber and contaminates decationized water flowing out of the secondary cation demineralization chamber.

1 電気式脱イオン水製造装置
2 枠体
3 中間イオン交換膜
4 陽極
5 陰極
D 主脱塩室
D1 主カチオン脱塩室
D2 主アニオン脱塩室
S1 副カチオン脱塩室
S2 副アニオン脱塩室
C,C1〜C3 濃縮室
C1 陰極側濃縮室
C2 陽極側濃縮室
E1 陽極室
E2 陰極室
a1〜a3 アニオン交換膜
c1〜c3 カチオン交換膜
DESCRIPTION OF SYMBOLS 1 Electric deionized water production apparatus 2 Frame 3 Intermediate ion exchange membrane 4 Anode 5 Cathode D Main demineralization chamber D1 Main cation demineralization chamber D2 Main anion demineralization chamber S1 Subcation demineralization chamber S2 Subanion demineralization chamber C , C1 to C3 Concentrating chamber C1 Cathode side concentrating chamber C2 Anode side concentrating chamber E1 Anode chamber E2 Cathode chamber a1 to a3 Anion exchange membrane c1 to c3 Cation exchange membrane

Claims (10)

被処理水を処理して脱イオン水を製造する電気式脱イオン水製造装置であって、
陽極を備えた陽極室と陰極を備えた陰極室とからなる電極室と、
前記陽極室と前記陰極室との間に位置し、カチオン交換膜と前記陰極室側で隣接し、少なくともカチオン交換体が充填されたカチオン脱塩室と、
前記陽極室と前記陰極室との間に位置し、アニオン交換膜と前記陽極室側で隣接し、少なくともアニオン交換体が充填されたアニオン脱塩室と、を有し、
前記カチオン脱塩室と前記アニオン脱塩室とは、被処理水が前記カチオン脱塩室に流入し、該カチオン脱塩室を流出して少なくともカチオン成分が除去された中間処理水の一部が前記アニオン脱塩室に流入するように連通されており、
前記カチオン脱塩室と前記電極室とは、前記カチオン脱塩室を流出した前記中間処理水の他の一部が前記電極室に流入するように連通されている、
電気式脱イオン水製造装置。
An electrical deionized water production apparatus for producing deionized water by treating water to be treated,
An electrode chamber comprising an anode chamber with an anode and a cathode chamber with a cathode;
A cation desalting chamber located between the anode chamber and the cathode chamber, adjacent to the cation exchange membrane on the cathode chamber side, and filled with at least a cation exchanger;
An anion exchange membrane located between the anode chamber and the cathode chamber, adjacent to the anion exchange membrane on the anode chamber side, and having an anion exchanger filled with at least an anion exchanger;
The cation demineralization chamber and the anion demineralization chamber are a portion of intermediate treated water in which treated water flows into the cation demineralization chamber and flows out of the cation demineralization chamber to remove at least the cation component. Communicated to flow into the anion desalination chamber,
The cation desalting chamber and the electrode chamber are communicated so that another part of the intermediate treated water that has flowed out of the cation desalting chamber flows into the electrode chamber.
Electric deionized water production equipment.
前記陽極室と前記陰極室との間に位置し、前記カチオン脱塩室の前記陰極室側で、カチオン交換膜を介して前記カチオン脱塩室と隣接し、前記アニオン脱塩室の前記陽極室側で、アニオン交換膜を介して前記カチオン脱塩室と隣接する濃縮室を有する、請求項1に記載の電気式脱イオン水製造装置。   Located between the anode chamber and the cathode chamber, on the cathode chamber side of the cation desalting chamber, adjacent to the cation desalting chamber via a cation exchange membrane, and the anode chamber of the anion desalting chamber The apparatus for producing electric deionized water according to claim 1, further comprising a concentration chamber adjacent to the cation demineralization chamber via an anion exchange membrane. 前記アニオン脱塩室が主アニオン脱塩室を有し、前記カチオン脱塩室が主カチオン脱塩室を有し、
前記主アニオン脱塩室の前記陽極室側で、第1のアニオン交換膜を介して前記主アニオン脱塩室に隣接して位置する陽極側濃縮室と、前記主カチオン脱塩室の前記陰極側で、第1のカチオン交換膜を介して前記主カチオン脱塩室に隣接して位置する陰極側濃縮室と、を有し、
前記主アニオン脱塩室が、前記主カチオン脱塩室の前記陽極室側で、中間イオン交換膜を介して前記主カチオン脱塩室と隣接する、請求項1に記載の電気式脱イオン水製造装置。
The anion desalting chamber has a main anion desalting chamber, the cation desalting chamber has a main cation desalting chamber;
On the anode chamber side of the main anion demineralization chamber, an anode side concentration chamber located adjacent to the main anion demineralization chamber via a first anion exchange membrane, and the cathode side of the main cation demineralization chamber A cathode-side enrichment chamber located adjacent to the main cation desalting chamber via a first cation exchange membrane,
The electric deionized water production according to claim 1, wherein the main anion demineralization chamber is adjacent to the main cation demineralization chamber via an intermediate ion exchange membrane on the anode chamber side of the main cation demineralization chamber. apparatus.
前記カチオン脱塩室が、前記陽極室と前記陽極側濃縮室の間に位置し、第2のカチオン交換膜を介して前記陽極側濃縮室と隣接し、第3のカチオン交換膜を介して前記陽極室と隣接し、前記主カチオン脱塩室と並列流路を形成する副カチオン脱塩室を有する、請求項3に記載の電気式脱イオン水製造装置。   The cation desalination chamber is located between the anode chamber and the anode side enrichment chamber, is adjacent to the anode side enrichment chamber via a second cation exchange membrane, and is disposed via a third cation exchange membrane. The electric deionized water production apparatus according to claim 3, further comprising a secondary cation demineralization chamber adjacent to the anode chamber and forming a parallel flow path with the main cation demineralization chamber. 前記アニオン脱塩室が、前記陰極室と前記陰極側濃縮室の間に位置し、第2のアニオン交換膜を介して前記陰極側濃縮室と隣接し、第3のアニオン交換膜を介して前記陰極室と隣接し、前記主アニオン脱塩室と並列流路を形成する副アニオン脱塩室を有する、請求項3に記載の電気式脱イオン水製造装置。   The anion desalination chamber is located between the cathode chamber and the cathode side enrichment chamber, is adjacent to the cathode side enrichment chamber via a second anion exchange membrane, and is disposed via the third anion exchange membrane. The electric deionized water production apparatus according to claim 3, further comprising a secondary anion demineralization chamber adjacent to the cathode chamber and forming a parallel flow path with the main anion demineralization chamber. 前記カチオン脱塩室と前記陰極室とが、カチオン交換膜を介して互いに隣接し、前記アニオン脱塩室と前記陽極室とが、アニオン交換膜を介して互いに隣接し、前記アニオン脱塩室が、前記カチオン脱塩室の前記陽極室側で、中間イオン交換膜を介して前記カチオン脱塩室と隣接する、請求項1に記載の電気式脱イオン水製造装置。   The cation desalting chamber and the cathode chamber are adjacent to each other via a cation exchange membrane, the anion desalting chamber and the anode chamber are adjacent to each other via an anion exchange membrane, and the anion desalting chamber is The electric deionized water production apparatus according to claim 1, which is adjacent to the cation demineralization chamber via an intermediate ion exchange membrane on the anode chamber side of the cation demineralization chamber. 前記カチオン脱塩室には、前記カチオン交換体が単床形態で充填されている、請求項1から6のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 1 to 6, wherein the cation demineralization chamber is filled with the cation exchanger in a single-bed form. 前記陽極室と前記陰極室とは、前記中間処理水の前記他の一部が前記陽極室と前記陰極室とを直列に流通するように連通されている、請求項1から7のいずれか1項に記載の電気式脱イオン水製造装置。   The anode chamber and the cathode chamber are in communication with each other so that the other part of the intermediate treated water flows in series between the anode chamber and the cathode chamber. The electrical deionized water production apparatus according to the item. 前記陽極室と前記陰極室とは、前記中間処理水の前記他の一部が前記陽極室と前記陰極室とを並列に流通するように連通されている、請求項1から7のいずれか1項に記載の電気式脱イオン水製造装置。   The anode chamber and the cathode chamber are in communication with each other so that the other part of the intermediate treated water flows in parallel between the anode chamber and the cathode chamber. The electrical deionized water production apparatus according to the item. 陽極を備えた陽極室と陰極を備えた陰極室とからなる電極室と、
前記陽極室と前記陰極室との間に位置し、カチオン交換膜と前記陰極室側で隣接し、少なくともカチオン交換体が充填されたカチオン脱塩室と、
前記陽極室と前記陰極室との間に位置し、アニオン交換膜と前記陽極室側で隣接し、少なくともアニオン交換体が充填されたアニオン脱塩室と、
を有する電気式脱イオン水製造装置を用いて、被処理水を処理して脱イオン水を製造する脱イオン水製造方法であって、
被処理水を前記カチオン脱塩室に流し、少なくともカチオン成分が除去された中間処理水を生成するステップと、
前記カチオン脱塩室を流出した前記中間処理水の一部を、前記アニオン脱塩室に流すステップと、
前記カチオン脱塩室を流出した前記中間処理水の他の一部を、前記電極室に流すステップと、
を含む、脱イオン水製造方法。
An electrode chamber comprising an anode chamber with an anode and a cathode chamber with a cathode;
A cation desalting chamber located between the anode chamber and the cathode chamber, adjacent to the cation exchange membrane on the cathode chamber side, and filled with at least a cation exchanger;
An anion desalination chamber located between the anode chamber and the cathode chamber, adjacent to the anion exchange membrane on the anode chamber side and filled with at least an anion exchanger;
A deionized water production method for producing deionized water by treating water to be treated using an electrical deionized water production apparatus having:
Flowing the water to be treated into the cation desalting chamber to produce intermediate treated water from which at least the cation component has been removed;
Flowing a portion of the intermediate treated water that has flowed out of the cation desalting chamber into the anion desalting chamber;
Flowing another part of the intermediate treated water that has flowed out of the cation desalting chamber to the electrode chamber;
A method for producing deionized water.
JP2011146124A 2011-06-30 2011-06-30 Electric deionized water production apparatus and deionized water production method Withdrawn JP2013013830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011146124A JP2013013830A (en) 2011-06-30 2011-06-30 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011146124A JP2013013830A (en) 2011-06-30 2011-06-30 Electric deionized water production apparatus and deionized water production method

Publications (1)

Publication Number Publication Date
JP2013013830A true JP2013013830A (en) 2013-01-24

Family

ID=47687053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146124A Withdrawn JP2013013830A (en) 2011-06-30 2011-06-30 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP2013013830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140548A (en) * 2016-02-08 2017-08-17 栗田工業株式会社 Method of operating electrodeionization apparatus

Similar Documents

Publication Publication Date Title
EP2208523B1 (en) Electrodeionization device with hydrodynamic flow splitting
JP5295927B2 (en) Electric deionized water production equipment
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP5145305B2 (en) Electric deionized water production equipment
WO2012070287A1 (en) Electrolyzed water producing apparatus
JP2012239965A (en) Electric deionized water producing apparatus
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
JP5695926B2 (en) Electric deionized water production equipment
JP5379025B2 (en) Electric deionized water production equipment
JP5114307B2 (en) Electric deionized water production equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP2011121027A (en) Electric type deionized water producing apparatus
JP5489867B2 (en) Electric deionized water production equipment
JP2001293477A (en) Deionized water making device
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JPWO2011152227A1 (en) Electric deionized water production equipment
JP2005219011A (en) Regeneration method for ion-exchange resin
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP2013039510A (en) Electric deionized water production apparatus
JP5661930B2 (en) Electric deionized water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2013013831A (en) Electric deionized water production apparatus and deionized water production method
JP5719707B2 (en) Electric deionized water production equipment
JP5866163B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902