JP5145305B2 - Electric deionized water production equipment - Google Patents

Electric deionized water production equipment Download PDF

Info

Publication number
JP5145305B2
JP5145305B2 JP2009216968A JP2009216968A JP5145305B2 JP 5145305 B2 JP5145305 B2 JP 5145305B2 JP 2009216968 A JP2009216968 A JP 2009216968A JP 2009216968 A JP2009216968 A JP 2009216968A JP 5145305 B2 JP5145305 B2 JP 5145305B2
Authority
JP
Japan
Prior art keywords
chamber
main
cation
anion
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009216968A
Other languages
Japanese (ja)
Other versions
JP2011062662A (en
Inventor
慶介 佐々木
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2009216968A priority Critical patent/JP5145305B2/en
Publication of JP2011062662A publication Critical patent/JP2011062662A/en
Application granted granted Critical
Publication of JP5145305B2 publication Critical patent/JP5145305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、電気式脱イオン水製造装置に関し、特に脱塩室の構成に関する。   The present invention relates to an electric deionized water production apparatus, and more particularly to a configuration of a desalting chamber.

脱イオン水の製造装置として、イオン交換体に被処理水を通水して脱イオンを行う製造装置が知られている。この装置ではイオン交換体のイオン交換基が飽和して脱塩性能が劣化したときに、酸やアルカリといった薬剤によって再生を行う必要がある。すなわち、イオン交換基に吸着した陰イオンや陽イオンを、酸あるいはアルカリ由来のH+、OH-と置き換える処理が必要となる。近年、このような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置(以下、脱イオン水製造装置という場合がある。)が実用化されている。 As a deionized water production apparatus, a production apparatus that performs deionization by passing water to be treated through an ion exchanger is known. In this apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is deteriorated, it is necessary to regenerate with a chemical such as acid or alkali. That is, the anion and cation adsorbed on ion exchange groups, acid or alkali from the H +, OH - and replacing processing is required. In recent years, in order to eliminate such disadvantages in operation, an electric deionized water production apparatus (hereinafter sometimes referred to as a deionized water production apparatus) that does not require regeneration by a chemical agent has been put into practical use.

脱イオン水製造装置は、電気泳動と電気透析とを組み合わせた装置である。脱イオン水製造装置は、アニオン交換膜とカチオン交換膜との間にイオン交換体を充填し主脱塩室とし、アニオン交換膜及びカチオン交換膜の外側に各々濃縮室を設け、さらにその外側に陽極を備える陽極室と、陰極を備える陰極室と、を配置した装置である。   The deionized water production apparatus is an apparatus that combines electrophoresis and electrodialysis. In the deionized water production apparatus, an ion exchanger is filled between an anion exchange membrane and a cation exchange membrane to form a main desalting chamber, and a concentration chamber is provided outside the anion exchange membrane and the cation exchange membrane, respectively, and further outside the chamber. This is an apparatus in which an anode chamber having an anode and a cathode chamber having a cathode are arranged.

脱イオン水製造装置により脱イオン水を製造するには、電極に直流電圧を印加した状態で主脱塩室に被処理水を通水する。被処理水中のイオン成分は脱塩室内のイオン交換体で吸着され、脱イオン化(脱塩)処理が行われる。脱塩室ではまた、印加電圧によって脱塩室のアニオン交換体とカチオン交換体の界面で水分解が起こり、水素イオンと水酸化物イオンが発生する(2H2O→H++OH-)。イオン交換体に吸着されたイオン成分はこの水素イオン及び水酸化物イオンと交換されて、イオン交換体から遊離する。遊離したイオン成分はイオン交換膜まで電気泳動し、イオン交換膜で電気透析されて、濃縮室を流れる水に排出される。このように、脱イオン水製造装置では、水素イオン及び水酸化物イオンが、イオン交換体を再生する酸、アルカリの再生剤として連続的に作用する。このため、薬剤による再生は基本的に不要であり、薬剤によるイオン交換体の再生を行わずに連続運転ができる。 In order to produce deionized water by the deionized water production apparatus, water to be treated is passed through the main demineralization chamber with a DC voltage applied to the electrodes. The ionic component in the water to be treated is adsorbed by the ion exchanger in the demineralization chamber and subjected to deionization (demineralization) treatment. In the desalting chamber, the applied voltage causes water decomposition at the interface between the anion exchanger and the cation exchanger in the desalting chamber, and hydrogen ions and hydroxide ions are generated (2H 2 O → H + + OH ). The ion component adsorbed on the ion exchanger is exchanged with the hydrogen ions and hydroxide ions to be released from the ion exchanger. The liberated ion component is electrophoresed to the ion exchange membrane, electrodialyzed on the ion exchange membrane, and discharged into the water flowing through the concentration chamber. Thus, in the deionized water production apparatus, hydrogen ions and hydroxide ions continuously act as acid and alkali regenerators for regenerating the ion exchanger. For this reason, the regeneration by the medicine is basically unnecessary, and the continuous operation can be performed without the regeneration of the ion exchanger by the medicine.

脱イオン水製造装置の陽極室と陰極室では、水の電気分解反応が生じ、この反応よっても水素イオンと水酸化物イオンとが生成される(2H2O→O2+4H++4e-/2H2O+2e-→H2+2OH-)。そこで、陽極室で生成される水素イオンと陰極室で生成される水酸化物イオンもイオン交換体の再生に利用しようとする試みがなされている。陽極室及び陰極室では豊富な水素イオンと水酸化物イオンとが生成されるため、これらを有効利用することができれば、脱イオン水製造装置の陽極・陰極間の印加電圧を低減し、使用電力量の低減を図ることが可能となる。 The electrolysis reaction of water occurs in the anode chamber and the cathode chamber of the deionized water production apparatus, and this reaction also generates hydrogen ions and hydroxide ions (2H 2 O → O 2 + 4H + + 4e / 2H). 2 O + 2e → H 2 + 2OH ). Therefore, attempts have been made to use hydrogen ions generated in the anode chamber and hydroxide ions generated in the cathode chamber for the regeneration of the ion exchanger. Abundant hydrogen ions and hydroxide ions are generated in the anode and cathode chambers. If these can be used effectively, the applied voltage between the anode and cathode of the deionized water production system can be reduced and the power used. The amount can be reduced.

特許文献1には、陽極室及び陰極室を主脱塩室として利用する脱イオン水製造装置が開示されている。陽極室には陽イオン交換体が、陰極室には陰イオン交換体が充填されている。このため、陽極室で発生した水素イオンが陽イオン交換体を再生し、陰極室で発生した水素イオンが陰イオン交換体を再生することができる。   Patent Document 1 discloses a deionized water production apparatus that uses an anode chamber and a cathode chamber as main demineralization chambers. The anode chamber is filled with a cation exchanger, and the cathode chamber is filled with an anion exchanger. For this reason, the hydrogen ions generated in the anode chamber can regenerate the cation exchanger, and the hydrogen ions generated in the cathode chamber can regenerate the anion exchanger.

特許第3793229号公報Japanese Patent No. 3793229

陽極室及び陰極室には、水の電気分解により生じたガス成分や酸化性物質が含まれている。このため、特許文献1に記載のように陽極室及び陰極室を主脱塩室として用いると、脱イオンした被処理水にこれらの物質が含まれる可能性がある。このような現象が生じると、機能材の酸化劣化などが進行し純水製造などの目的で脱イオン水製造装置を用いる場合に所望の水質が得られない可能性がある。   The anode chamber and the cathode chamber contain gas components and oxidizing substances generated by water electrolysis. For this reason, when the anode chamber and the cathode chamber are used as the main desalting chamber as described in Patent Document 1, these substances may be contained in the deionized water to be treated. When such a phenomenon occurs, there is a possibility that the desired water quality cannot be obtained when the deionized water production apparatus is used for the purpose of producing pure water because oxidation deterioration of the functional material proceeds.

本発明は、被処理水の良好な水質を確保可能であるとともに、陽極室または陰極室で生成される水素イオンと水酸化物イオンの少なくともいずれか一方をイオン交換体の再生に利用することで消費電力の低減が可能な電気式脱イオン水製造装置を提供することを目的とする。   The present invention makes it possible to ensure good water quality of the water to be treated, and to utilize at least one of hydrogen ions and hydroxide ions generated in the anode chamber or the cathode chamber for regeneration of the ion exchanger. An object of the present invention is to provide an electric deionized water production apparatus capable of reducing power consumption.

本発明の電気式脱イオン水製造装置は、陽極室及び陰極室と、陽極室と陰極室との間に位置し、カチオン交換体及びアニオン交換体が充填される主脱塩室と、陽極室と陰極室との間に位置し、主脱塩室の陰極室側で、第1のカチオン交換膜を介して主脱塩室に隣接して位置する陰極側濃縮室と、陽極室と陰極室との間に位置し、主脱塩室の陽極室側で、第1のアニオン交換膜を介して主脱塩室に隣接して位置する陽極側濃縮室と、を有している。電気式脱イオン水製造装置はさらに、陰極室と陰極側濃縮室の間に位置し、第2のアニオン交換膜を介して陰極側濃縮室と隣接し、第3のアニオン交換膜を介して陰極室と隣接し、少なくともアニオン交換体が充填され、被処理水が主脱塩室と並列に流入し流出するようにされた副アニオン脱塩室、または陽極室と陽極側濃縮室の間に位置し、第2のカチオン交換膜を介して陽極側濃縮室と隣接し、第3のカチオン交換膜を介して陽極室と隣接し、少なくともカチオン交換体が充填され、被処理水が主脱塩室と並列に流入し流出するようにされた副カチオン脱塩室の少なくともいずれか一方を有している。   The electric deionized water production apparatus of the present invention includes an anode chamber and a cathode chamber, a main demineralization chamber which is located between the anode chamber and the cathode chamber and is filled with a cation exchanger and an anion exchanger, and an anode chamber. A cathode-side concentrating chamber located between the main desalting chamber and adjacent to the main desalting chamber via the first cation exchange membrane on the cathode chamber side of the main desalting chamber; And an anode-side concentrating chamber located adjacent to the main desalting chamber via the first anion exchange membrane on the anode chamber side of the main desalting chamber. The electric deionized water production apparatus is further positioned between the cathode chamber and the cathode side concentrating chamber, adjacent to the cathode side concentrating chamber via the second anion exchange membrane, and connected to the cathode via the third anion exchange membrane. A secondary anion desalination chamber, which is adjacent to the chamber and filled with at least an anion exchanger, and in which the water to be treated flows in and out in parallel with the main desalination chamber, or between the anode chamber and the anode side concentration chamber. And adjacent to the anode-side concentrating chamber via the second cation exchange membrane, adjacent to the anode chamber via the third cation exchange membrane, filled with at least a cation exchanger, and the water to be treated is the main desalting chamber At least one of the secondary cation desalting chambers that are allowed to flow in and out in parallel.

本発明によれば、陰極室と陰極側濃縮室の間に副アニオン脱塩室が設けられ、あるいは陽極室と陽極側濃縮室の間に副カチオン脱塩室が設けられ、あるいはこれらの両者が設けられている。陰極室で発生した水酸化物イオンは第3のアニオン交換膜を通って副アニオン脱塩室に移動する。副アニオン脱塩室では流入した被処理水のアニオン成分がアニオン交換体に吸着され、アニオン成分が吸着したアニオン交換体は、陰極室から移動してきた水酸化物イオンによって再生される。被処理水は主脱塩室にも並列に流入し、アニオン成分がアニオン交換体に吸着される。主脱塩室では、主脱塩室内での水分解反応により水が水素イオンと水酸化物イオンとに解離するため、アニオン成分が吸着したアニオン交換体は、主脱塩室内で生成された水酸化物イオンによって再生される。   According to the present invention, a secondary anion desalination chamber is provided between the cathode chamber and the cathode side enrichment chamber, or a secondary cation desalination chamber is provided between the anode chamber and the anode side enrichment chamber, or both of them are Is provided. The hydroxide ions generated in the cathode chamber move to the secondary anion desalting chamber through the third anion exchange membrane. In the secondary anion desalting chamber, the anion component of the treated water that has flowed in is adsorbed by the anion exchanger, and the anion exchanger that has adsorbed the anion component is regenerated by the hydroxide ions that have moved from the cathode chamber. The water to be treated flows into the main desalting chamber in parallel, and the anion component is adsorbed by the anion exchanger. In the main desalting chamber, water is dissociated into hydrogen ions and hydroxide ions by the water splitting reaction in the main desalting chamber, so that the anion exchanger with adsorbed anion components is the water produced in the main desalting chamber. Regenerated by oxide ions.

陽極室で発生した水素イオンは第3のカチオン交換膜を通って副カチオン脱塩室に移動する。副カチオン脱塩室では流入した被処理水のカチオン成分がカチオン交換体に吸着され、カチオン成分が吸着したカチオン交換体は、陽極室から移動してきた水素イオンによって再生される。主脱塩室では、カチオン成分が吸着したカチオン交換体は、主脱塩室内での水分解反応により生成された水素イオンによって再生される。   Hydrogen ions generated in the anode chamber move to the secondary cation desalting chamber through the third cation exchange membrane. In the secondary cation desalting chamber, the cation component of the treated water that has flowed in is adsorbed by the cation exchanger, and the cation exchanger that has adsorbed the cation component is regenerated by the hydrogen ions that have moved from the anode chamber. In the main desalting chamber, the cation exchanger on which the cation component is adsorbed is regenerated by hydrogen ions generated by the water splitting reaction in the main desalting chamber.

このようにして、主脱塩室内での水分解反応により生成される水素イオン及び水酸化物イオンに加えて、陰極室で発生した水酸化物イオンまたは陽極室で発生した水素イオンの少なくともいずれか一方をイオン交換体の再生に有効利用することが可能となる。しかも、陽極室及び陰極室は、被処理水が流入する副カチオン脱塩室あるいは副アニオン脱塩室と、第3のカチオン交換膜あるいは第3のアニオン交換膜によって仕切られているので、陽極室及び陰極室に含まれるガス成分や酸化性物質によって被処理水の水質が悪化することが防止される。   Thus, in addition to hydrogen ions and hydroxide ions generated by the water splitting reaction in the main desalting chamber, at least one of hydroxide ions generated in the cathode chamber or hydrogen ions generated in the anode chamber One of them can be effectively used for regeneration of the ion exchanger. In addition, since the anode chamber and the cathode chamber are separated from the secondary cation desalting chamber or the secondary anion desalting chamber into which the water to be treated flows, and the third cation exchange membrane or the third anion exchange membrane, the anode chamber In addition, the quality of the water to be treated is prevented from being deteriorated by the gas component and the oxidizing substance contained in the cathode chamber.

以上説明したように、本発明によれば、被処理水の良好な水質を確保可能であるとともに、陽極室または陰極室で生成される水素イオンと水酸化物イオンの少なくともいずれか一方をイオン交換体の再生に利用することで消費電力の低減が可能な電気式脱イオン水製造装置を提供することができる。   As described above, according to the present invention, it is possible to ensure good water quality of the water to be treated and ion exchange at least one of hydrogen ions and hydroxide ions generated in the anode chamber or the cathode chamber. An electric deionized water production apparatus capable of reducing power consumption by being used for body regeneration can be provided.

本発明の一実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on other embodiment of this invention. 比較例1に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on the comparative example 1. 比較例1に係る脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the deionized water manufacturing apparatus which concerns on the comparative example 1. 実施例及び比較例の脱イオン水製造装置の性能を示すグラフである。It is a graph which shows the performance of the deionized water manufacturing apparatus of an Example and a comparative example.

以下、図面を参照して、本発明の電気式脱イオン水製造装置のいくつかの実施形態について説明する。   Hereinafter, some embodiments of the electric deionized water production apparatus of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る脱イオン水製造装置の概略構成図である。脱イオン水製造装置1は、陽極4を備える陽極室E2と陰極5を備える陰極室E1との間に、主脱塩室Dと、主脱塩室Dの両側に位置する一対の濃縮室C1,C2と、濃縮室C1と陰極室E1の間に位置する副アニオン脱塩室S2と、濃縮室C2と陽極室E2の間に位置する副カチオン脱塩室S1とが設けられ、これらの各室がイオン交換膜a1〜a3,c1〜c3で仕切られている。以下の説明では、陰極側で主脱塩室Dと隣接する濃縮室を陰極側濃縮室C1、陽極側で主脱塩室Dと隣接する濃縮室を陽極側濃縮室C2と呼ぶ。   FIG. 1 is a schematic configuration diagram of a deionized water production apparatus according to an embodiment of the present invention. The deionized water production apparatus 1 includes a main desalting chamber D and a pair of concentrating chambers C1 located on both sides of the main desalting chamber D between an anode chamber E2 having an anode 4 and a cathode chamber E1 having a cathode 5. , C2, a secondary anion desalting chamber S2 located between the concentration chamber C1 and the cathode chamber E1, and a secondary cation desalting chamber S1 located between the concentration chamber C2 and the anode chamber E2, respectively. The chamber is partitioned by ion exchange membranes a1 to a3 and c1 to c3. In the following description, the concentrating chamber adjacent to the main desalting chamber D on the cathode side is referred to as the cathode concentrating chamber C1, and the concentrating chamber adjacent to the main desalting chamber D on the anode side is referred to as the anode concentrating chamber C2.

陰極側濃縮室C1は第1のカチオン交換膜c1を介して主脱塩室Dに隣接し、陽極側濃縮室C2は第1のアニオン交換膜a1を介して主脱塩室Dに隣接している。副カチオン脱塩室S1は、第2のカチオン交換膜c2を介して陽極側濃縮室C2と隣接し、第3のカチオン交換膜c3を介して陽極室E2と隣接している。副アニオン脱塩室S2は、第2のアニオン交換膜a2を介して陰極側濃縮室C1と隣接し、第3のアニオン交換膜a3を介して陰極室E1と隣接している。   The cathode side concentrating chamber C1 is adjacent to the main desalting chamber D via the first cation exchange membrane c1, and the anode side concentrating chamber C2 is adjacent to the main desalting chamber D via the first anion exchange membrane a1. Yes. The secondary cation desalting chamber S1 is adjacent to the anode concentration chamber C2 via the second cation exchange membrane c2, and is adjacent to the anode chamber E2 via the third cation exchange membrane c3. The secondary anion demineralization chamber S2 is adjacent to the cathode-side concentration chamber C1 via the second anion exchange membrane a2, and is adjacent to the cathode chamber E1 via the third anion exchange membrane a3.

主脱塩室Dは、第1のカチオン交換膜c1と隣接する主カチオン脱塩室D1と、第1のアニオン交換膜a1と隣接する主アニオン脱塩室D2と、を有している。主カチオン脱塩室D1と主アニオン脱塩室D2は、中間イオン交換膜3を介して互いに隣接している。   The main desalting chamber D has a main cation desalting chamber D1 adjacent to the first cation exchange membrane c1, and a main anion desalting chamber D2 adjacent to the first anion exchange membrane a1. The main cation desalting chamber D1 and the main anion desalting chamber D2 are adjacent to each other through the intermediate ion exchange membrane 3.

主カチオン脱塩室D1には少なくともカチオン交換体が充填され、主に被処理水中のカチオン成分(Na+、Ca2+、Mg2+等)が除去される。カチオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。主カチオン脱塩室D1にはアニオン交換体がさらに充填されていてもよい。主カチオン脱塩室D1に充填するイオン交換体の充填形態としては、カチオン交換体の単床形態、カチオン交換体とアニオン交換体との混床形態または複床形態が挙げられる。 The main cation desalting chamber D1 is filled with at least a cation exchanger, and mainly cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are removed. Examples of the cation exchanger include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most versatile ion exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers. The main cation desalting chamber D1 may be further filled with an anion exchanger. Examples of the filling form of the ion exchanger filled in the main cation desalting chamber D1 include a single bed form of the cation exchanger, a mixed bed form of a cation exchanger and an anion exchanger, or a multiple bed form.

主アニオン脱塩室D2には少なくともアニオン交換体が充填され、主に被処理水中のアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2(シリカは、特別な形態をとることが多いため、一般のイオンとは異なった表示とする。)等)が除去される。アニオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。主アニオン脱塩室D2にはカチオン交換体がさらに充填されていてもよい。主アニオン脱塩室D2に充填するイオン交換体の充填形態としては、アニオン交換体の単床形態、アニオン交換体とカチオン交換体との混床形態または複床形態が挙げられる。 The main anion demineralization chamber D2 is filled with at least an anion exchanger and mainly contains anion components (Cl , CO 3 2− , HCO 3 , SiO 2 (silica can take a special form) in the water to be treated. Since there are many, it is set as a display different from a general ion.) Etc.) are removed. Examples of the anion exchanger include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most versatile ion exchange resins are preferably used. Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers. The main anion desalting chamber D2 may be further filled with a cation exchanger. Examples of the packed form of the ion exchanger filled in the main anion desalting chamber D2 include a single bed form of the anion exchanger, a mixed bed form of an anion exchanger and a cation exchanger, or a multiple bed form.

中間イオン交換膜3は、被処理水の水質、脱イオン水に求められる水質、主カチオン脱塩室D1または主アニオン脱塩室D2に充填するイオン交換体の種類等を勘案して選択することができる。中間イオン交換膜3は、アニオン交換膜もしくはカチオン交換膜の単一膜、または、アニオン交換膜とカチオン交換膜の両方を備えた複合膜のいずれであってもよい。   The intermediate ion exchange membrane 3 is selected in consideration of the quality of the water to be treated, the water quality required for the deionized water, the type of ion exchanger filled in the main cation demineralization chamber D1 or the main anion demineralization chamber D2, and the like. Can do. The intermediate ion exchange membrane 3 may be either an anion exchange membrane or a single membrane of a cation exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane.

このように主脱塩室Dが主カチオン脱塩室D1と主アニオン脱塩室D2の2つの小脱塩室に区画され、各々の外側に濃縮室が隣接する構成(主脱塩室2室構成)は、被処理水の多段処理が可能であり、脱イオン性能の向上に効果的である。しかも主カチオン脱塩室D1と主アニオン脱塩室D2との間に濃縮室を設ける必要がないため、陽極・陰極間の印加電圧が抑えられ、消費電力が下がり運転費の低減を図ることが可能である。   In this way, the main desalting chamber D is divided into two small desalting chambers, a main cation desalting chamber D1 and a main anion desalting chamber D2, and a concentrating chamber is adjacent to each outside (two main desalting chambers). Configuration) is capable of multi-stage treatment of water to be treated, and is effective in improving deionization performance. In addition, since it is not necessary to provide a concentration chamber between the main cation demineralization chamber D1 and the main anion demineralization chamber D2, the applied voltage between the anode and the cathode can be suppressed, the power consumption can be reduced, and the operation cost can be reduced. Is possible.

主脱塩室Dは、従来公知の主脱塩室1室構成であってもかまわない。主脱塩室1室構成では、主脱塩室にはカチオン交換体とアニオン交換体とが充填され、一つの脱塩室でカチオン除去とアニオン除去が行われる。カチオン交換体とアニオン交換体は混床形態または複床形態で充填されることが望ましい。主脱塩室1室構成は構造が単純であり、要求水質によってはこのような構成を採用することもできる。   The main desalting chamber D may be a conventionally known main desalting chamber. In the configuration of one main desalting chamber, the main desalting chamber is filled with a cation exchanger and an anion exchanger, and cation removal and anion removal are performed in one desalting chamber. The cation exchanger and the anion exchanger are desirably packed in a mixed bed form or a multi-bed form. The structure of one main desalination chamber is simple, and such a configuration can be adopted depending on the required water quality.

濃縮室C1は、主カチオン脱塩室D1から排出されるカチオン成分及び副アニオン脱塩室S2から排出されるアニオン成分を取り込み、それらを系外に放出するために設けられている。濃縮室C2は、主アニオン脱塩室D2から排出されるアニオン成分及び副カチオン脱塩室S1から排出されるカチオン成分を取り込み、それらを系外に放出するために設けられている。濃縮室C1,C2には原水が流入し、原水はカチオン成分及びアニオン成分を含んだ濃縮水となって、濃縮室C1,C2から排出される。脱イオン水製造装置1の電気抵抗を抑えるために、濃縮室C1,C2にイオン交換体が充填されていてもよい。   The concentration chamber C1 is provided to take in the cation component discharged from the main cation demineralization chamber D1 and the anion component discharged from the auxiliary anion demineralization chamber S2 and to release them out of the system. The concentration chamber C2 is provided to take in the anion component discharged from the main anion demineralization chamber D2 and the cation component discharged from the sub-cation demineralization chamber S1, and to release them out of the system. The raw water flows into the concentration chambers C1 and C2, and the raw water becomes concentrated water containing a cation component and an anion component and is discharged from the concentration chambers C1 and C2. In order to suppress the electrical resistance of the deionized water production apparatus 1, the concentration chambers C1 and C2 may be filled with an ion exchanger.

副カチオン脱塩室S1は主カチオン脱塩室D1と同様の構成を有しているが、カチオン交換体だけが単床充填されている。   The sub cation demineralization chamber S1 has the same configuration as the main cation demineralization chamber D1, but only the cation exchanger is filled with a single bed.

副アニオン脱塩室S2は主アニオン脱塩室D2と同様の構成を有しているが、アニオン交換体だけが単床充填されている。   The secondary anion desalting chamber S2 has the same configuration as the main anion desalting chamber D2, but only the anion exchanger is filled with a single bed.

陽極室E2は陽極4を収容している。陽極4は金属の網状体あるいは板状体からなっている。被処理水にCl-を含む場合、陽極4に塩素が発生する。このため、陽極4には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。 The anode chamber E2 accommodates the anode 4. The anode 4 is made of a metal net or plate. When the water to be treated contains Cl , chlorine is generated at the anode 4. For this reason, it is desirable to use a material having chlorine resistance for the anode 4, and examples thereof include a metal such as platinum, palladium, iridium, or a material obtained by coating titanium with these metals.

陰極室E1は陰極5を収容している。陰極5は、金属の網状体あるいは板状体からなっており、例えばステンレス製の網状体あるいは板状体を用いることができる。   The cathode chamber E1 accommodates the cathode 5. The cathode 5 is made of a metal net or plate, and for example, a stainless steel net or plate can be used.

陽極室E2及び陰極室E1には電極水が流入する。後述するように、これらの電極水は電極近傍での電気分解により、水素イオン及び水酸化物イオンを発生させる。脱イオン水製造装置1の電気抵抗を抑えるために、陽極室E2及び陰極室E1にはイオン交換体が充填されていることが好ましい。イオン交換体が充填されることで、後述する水素イオンの副カチオン脱塩室S1への移動及び水酸化物イオンの副アニオン脱塩室S2への移動が円滑に行われる。   Electrode water flows into the anode chamber E2 and the cathode chamber E1. As will be described later, these electrode waters generate hydrogen ions and hydroxide ions by electrolysis in the vicinity of the electrodes. In order to suppress the electrical resistance of the deionized water production apparatus 1, the anode chamber E2 and the cathode chamber E1 are preferably filled with an ion exchanger. By filling the ion exchanger, the movement of hydrogen ions to the secondary cation desalting chamber S1 and the movement of hydroxide ions to the secondary anion desalting chamber S2 described later are smoothly performed.

陽極室E2及び陰極室E1に充填するイオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。陽極室E2には弱酸性カチオン交換体、強酸性カチオン交換体等のカチオン交換体が単床充填される。陰極室E1には、弱塩基性アニオン交換体、強塩基性アニオン交換体等のアニオン交換体が単床充填される。これによって、上述の通り、水素イオンの副カチオン脱塩室S1への移動及び水酸化物イオンの副アニオン脱塩室S2への移動が円滑に行われる。   Examples of the ion exchanger filled in the anode chamber E2 and the cathode chamber E1 include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most general-purpose ion exchange resins are preferably used. The anode chamber E2 is filled with a single bed of a cation exchanger such as a weak acid cation exchanger or a strong acid cation exchanger. The cathode chamber E1 is filled with a single bed of anion exchangers such as a weakly basic anion exchanger and a strongly basic anion exchanger. Accordingly, as described above, the movement of hydrogen ions to the secondary cation desalting chamber S1 and the movement of hydroxide ions to the secondary anion desalting chamber S2 are performed smoothly.

各電極室E1,E2、主カチオン脱塩室D1、主アニオン脱塩室D2、各濃縮室C1,C2、副カチオン脱塩室S1及び副アニオン脱塩室S2は各々、開口部を備えた板状部材である枠体2の内部に設けられている。図1では、枠体2は一体的に示されているが、実際には部屋毎に別々の枠体を備え、枠体同士が互いに密着して設けられている。枠体2は絶縁性を有し、被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m−PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。   Each electrode chamber E1, E2, main cation demineralization chamber D1, main anion demineralization chamber D2, each concentration chamber C1, C2, sub cation demineralization chamber S1, and sub anion demineralization chamber S2 each have a plate with an opening. It is provided in the inside of the frame 2 which is a shape member. In FIG. 1, the frame body 2 is shown integrally, but actually, a separate frame body is provided for each room, and the frame bodies are provided in close contact with each other. The frame 2 is not particularly limited as long as it has insulating properties and does not leak treated water. For example, resin such as polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether) Can be mentioned.

各部屋同士の連絡、あるいは被処理水や電極水等の供給、排出用にいくつかの流路U1〜U3,L1〜L3が設けられている。脱イオン水製造装置1の上部に位置する流路U1は、一端が被処理水の供給側に接続され、他端側では途中で分岐して、主カチオン脱塩室D1と副カチオン脱塩室S1とに接続されている。脱イオン水製造装置1の下部に位置する流路L1は、主カチオン脱塩室D1と副カチオン脱塩室S1とに接続され、途中で合流し、渡り配管Yの一端に接続している。渡り配管Yの他端は脱イオン水製造装置1の上部に位置する流路U2に接続されており、流路U2は、途中で分岐して、主アニオン脱塩室D2と副アニオン脱塩室S2とに接続されている。脱イオン水製造装置1の下部に位置する流路L2は、主アニオン脱塩室D2と副アニオン脱塩室S2とに接続され、途中で合流し、被処理水の排出側に接続されている。脱イオン水製造装置1の上部に位置する流路U3は原水の供給側に接続され、他端側では途中で分岐して、陰極側濃縮室C1と陽極側濃縮室C2とに接続されている。脱イオン水製造装置1の下部に位置する流路L3は、陰極側濃縮室C1と陽極側濃縮室C2とに接続され、途中で合流し、濃縮水の排出側に接続されている。図1では、以下に述べる流路U1〜U3,L1〜L3は、図示の都合上枠体2の外側に位置しているが、これらの流路U1〜U3,L1〜L3は、枠体2に内蔵されているのが有利である。   Several flow paths U1 to U3 and L1 to L3 are provided for communication between rooms, or for supply and discharge of water to be treated and electrode water. One end of the flow path U1 located in the upper part of the deionized water production apparatus 1 is connected to the supply side of the water to be treated, and the other end side branches in the middle, so that the main cation demineralization chamber D1 and the sub cation demineralization chamber Connected to S1. The flow path L1 located in the lower part of the deionized water production apparatus 1 is connected to the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, merges in the middle, and is connected to one end of the transition pipe Y. The other end of the transition pipe Y is connected to a flow path U2 located in the upper part of the deionized water production apparatus 1, and the flow path U2 is branched in the middle to form a main anion demineralization chamber D2 and a secondary anion demineralization chamber. Connected to S2. The flow path L2 located in the lower part of the deionized water production apparatus 1 is connected to the main anion demineralization chamber D2 and the subanion demineralization chamber S2, merges in the middle, and is connected to the discharge side of the water to be treated. . The flow path U3 located in the upper part of the deionized water production apparatus 1 is connected to the raw water supply side, and is branched halfway on the other end side, and is connected to the cathode side enrichment chamber C1 and the anode side enrichment chamber C2. . The flow path L3 located in the lower part of the deionized water production apparatus 1 is connected to the cathode-side concentrating chamber C1 and the anode-side concentrating chamber C2, merges on the way, and is connected to the concentrated water discharge side. In FIG. 1, the flow paths U1 to U3 and L1 to L3 described below are located outside the frame body 2 for the sake of illustration, but the flow paths U1 to U3 and L1 to L3 are the frame body 2. It is advantageous that it is built in.

次に、引き続き図1を参照して、被処理水の流れと脱イオンの原理について説明する。   Next, the flow of water to be treated and the principle of deionization will be described with reference to FIG.

あらかじめ、濃縮室C1,C2に、流路U3から原水を供給し、流路L3から排出するようにしておく。電極室E1,E2は、図示しない電極水供給ラインから電極水が供給され、図示しない排出ラインから電極水が排出されるようにしておく。陽極4、陰極5間には所定の電圧を印加しておく。この状態で、被処理水を流路U1から、主カチオン脱塩室D1及び副カチオン脱塩室S1に並列に流入させる。被処理水は、主カチオン脱塩室D1及び副カチオン脱塩室S1で、カチオン成分が除去される。   In advance, the raw water is supplied from the flow path U3 to the concentrating chambers C1 and C2, and is discharged from the flow path L3. The electrode chambers E1 and E2 are configured such that electrode water is supplied from an electrode water supply line (not shown) and electrode water is discharged from a discharge line (not shown). A predetermined voltage is applied between the anode 4 and the cathode 5. In this state, the water to be treated is caused to flow in parallel from the flow path U1 to the main cation demineralization chamber D1 and the sub cation demineralization chamber S1. The cation component is removed from the water to be treated in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1.

具体的には、Na+等のカチオン成分は、主カチオン脱塩室D1で、主カチオン脱塩室D1に充填されたカチオン交換体に吸着される。主カチオン脱塩室D1では、水分解反応によって水が水素イオン(以下、H+という。)と水酸化物イオン(以下、OH-という。)とに解離する反応が、連続的に進行している。H+はカチオン交換樹脂に吸着したNa+等のカチオン成分と交換され、主カチオン脱塩室D1に充填されたカチオン交換体が再生される。除去されたNa+等のカチオンは陽極4、陰極5間の電位によって陰極5側に引き寄せられ、第1のカチオン交換膜c1を通過して陰極側濃縮室C1に流入し、系外に放出される。 Specifically, a cation component such as Na + is adsorbed on the cation exchanger filled in the main cation demineralization chamber D1 in the main cation demineralization chamber D1. In the main cation desalting chamber D1, a reaction in which water is dissociated into hydrogen ions (hereinafter referred to as H + ) and hydroxide ions (hereinafter referred to as OH ) by water splitting reaction proceeds continuously. Yes. H + is exchanged with a cation component such as Na + adsorbed on the cation exchange resin, and the cation exchanger filled in the main cation desalting chamber D1 is regenerated. The removed cations such as Na + are attracted to the cathode 5 side by the potential between the anode 4 and the cathode 5, pass through the first cation exchange membrane c 1, flow into the cathode side concentrating chamber C 1, and discharged outside the system. The

副カチオン脱塩室S1では、Na+等のカチオン成分は、副カチオン脱塩室S1に充填されたカチオン交換体に吸着される。陽極室E2では、電気分解反応(2H2O→O2+4H++4e-)によって水から酸素ガスとH+とが生成される反応が、連続的に進行している。酸素ガスは陽極室E2内を上昇し、電極水とともに脱イオン水製造装置1の外へ排出される。H+は第3のカチオン交換膜c3を通って副カチオン脱塩室S1に流入する。副カチオン脱塩室S1に流入したH+は、カチオン交換体に吸着したカチオン成分と交換され、カチオン交換体が再生される。除去されたNa+等のカチオン成分は陽極4、陰極5間の電位によって陰極5側に引き寄せられ、第2のカチオン交換膜c2を通過して陽極側濃縮室C2に流入し、系外に放出される。 In the secondary cation desalting chamber S1, cation components such as Na + are adsorbed on the cation exchanger filled in the secondary cation desalting chamber S1. In the anode chamber E2, a reaction in which oxygen gas and H + are generated from water by an electrolysis reaction (2H 2 O → O 2 + 4H + + 4e ) proceeds continuously. Oxygen gas rises in the anode chamber E2 and is discharged out of the deionized water production apparatus 1 together with the electrode water. H + flows into the secondary cation desalting chamber S1 through the third cation exchange membrane c3. H + flowing into the secondary cation desalting chamber S1 is exchanged with the cation component adsorbed on the cation exchanger, and the cation exchanger is regenerated. The removed cation component such as Na + is attracted to the cathode 5 side by the potential between the anode 4 and the cathode 5, passes through the second cation exchange membrane c2, flows into the anode side concentrating chamber C2, and is discharged outside the system. Is done.

このようにしてNa+等のカチオン成分が除去された被処理水は流路L1で合流し、渡り配管Yを通って流路U2に流入する。流路U2に流入した被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2に並列に流入する。被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2で、アニオン成分が除去される。 Thus, the water to be treated from which cation components such as Na + have been removed merges in the flow path L 1 and flows into the flow path U 2 through the transition pipe Y. The treated water that has flowed into the flow path U2 flows in parallel into the main anion demineralization chamber D2 and the subanion demineralization chamber S2. The anion component is removed from the water to be treated in the main anion demineralization chamber D2 and the subanion demineralization chamber S2.

具体的には、Cl-等のアニオン成分は、主アニオン脱塩室D2で、主アニオン脱塩室D2に充填されたアニオン交換体に吸着される。主アニオン脱塩室D2では、主カチオン脱塩室D1で生じているのと同様の水分解反応によってOH-が連続的に発生している。OH-はアニオン交換樹脂に吸着したCl-等のアニオン成分と交換され、アニオン交換体が再生される。除去されたCl-等のアニオン成分は陽極4、陰極5間の電位によって陽極4側に引き寄せられ、第1のアニオン交換膜a1を通過して陽極側濃縮室C2に流入し、系外に放出される。 Specifically, an anion component such as Cl 2 is adsorbed to the anion exchanger filled in the main anion desalting chamber D2 in the main anion desalting chamber D2. In the main anion demineralization chamber D2, OH is continuously generated by the same water splitting reaction as occurs in the main cation demineralization chamber D1. OH is exchanged with an anion component such as Cl 2 adsorbed on the anion exchange resin to regenerate the anion exchanger. The removed anion component such as Cl is attracted to the anode 4 side by the potential between the anode 4 and the cathode 5, passes through the first anion exchange membrane a 1, flows into the anode side concentration chamber C 2, and is discharged outside the system. Is done.

副アニオン脱塩室S2では、Cl-等のアニオン成分は、副アニオン脱塩室S2に充填されたアニオン交換体に吸着される。陰極室E1では、電気分解反応(2H2O+2e-→H2+2OH-)によって水から水素ガスとOH-とが生成される反応が、連続的に進行している。水素ガスは陰極室E1内を上昇し、電極水とともに脱イオン水製造装置1の外へ排出される。OH-は第3のアニオン交換膜a3を通って副アニオン脱塩室S2に流入し、アニオン交換体に吸着したアニオン成分と交換され、アニオン交換体が再生される。除去されたCl-等のアニオン成分は陽極4、陰極5間の電位によって陽極4側に引き寄せられ、第2のアニオン交換膜a2を通過して陰極側濃縮室C1に流入する。主アニオン脱塩室D2及び副アニオン脱塩室S2でアニオン成分が除去された被処理水は流路L2で合流し、脱イオン水となって脱イオン水製造装置1の外へ排出される。 In sub anion depletion chamber S2, Cl - anion components, etc., are adsorbed to the anion exchanger filled in the sub anion depletion chamber S2. In the cathode chamber E1, a reaction in which hydrogen gas and OH are generated from water by an electrolysis reaction (2H 2 O + 2e → H 2 + 2OH ) proceeds continuously. Hydrogen gas rises in the cathode chamber E1, and is discharged out of the deionized water production apparatus 1 together with the electrode water. OH flows into the secondary anion desalting chamber S2 through the third anion exchange membrane a3 and is exchanged with the anion component adsorbed on the anion exchanger, thereby regenerating the anion exchanger. Removed Cl - anion components such as the anode 4, are attracted to the anode 4 side by the potential between the cathode 5 passes through the second anion exchange membrane a2 flowing into the cathode side concentrating compartment C1. The water to be treated from which the anion components have been removed in the main anion demineralization chamber D2 and the subanion demineralization chamber S2 joins in the flow path L2, and is deionized water and discharged out of the deionized water production apparatus 1.

流路U3を通って陰極側濃縮室C1及び陽極側濃縮室C2に供給される原水は、主カチオン脱塩室D1、主アニオン脱塩室D2、副カチオン脱塩室S1及び副アニオン脱塩室S2から排出されるカチオン成分及びアニオン成分を取り込み、脱イオン水製造装置1の下部に位置する流路L3を通って脱イオン水製造装置1の外へ排出される。   The raw water supplied to the cathode side concentrating chamber C1 and the anode side concentrating chamber C2 through the flow path U3 is a main cation desalting chamber D1, a main anion desalting chamber D2, a sub cation desalting chamber S1, and a sub anion desalting chamber. The cation component and the anion component discharged from S2 are taken in and discharged to the outside of the deionized water production apparatus 1 through the flow path L3 located at the lower part of the deionized water production apparatus 1.

このようにして、被処理水は、主カチオン脱塩室D1及び副カチオン脱塩室S1でカチオン成分を除去され、主カチオン脱塩室D1のカチオン交換体は主カチオン脱塩室D1で生成されたH+により再生され、副カチオン脱塩室S1のカチオン交換体は陽極室E2で生成されたH+により再生される。同様にして、被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2でアニオン成分を除去され、主アニオン脱塩室D2のアニオン交換体は主アニオン脱塩室D2で生成されたOH-により再生され、副アニオン脱塩室S2のアニオン交換体は陰極室E1で生成されたOH-により再生される。従って、電極室(陰極室E1及び陽極室E2)で発生し、従来は利用されることなく捨てられていたH+及びOH-をイオン交換体の再生に有効利用することができる。 In this way, the cation component is removed from the water to be treated in the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and the cation exchanger in the main cation demineralization chamber D1 is generated in the main cation demineralization chamber D1. reproduced by H + was a cation exchanger of the secondary cation depletion chamber S1 is reproduced by the H + generated in the anode chamber E2. Similarly, the anion component was removed from the water to be treated in the main anion desalting chamber D2 and the secondary anion desalting chamber S2, and the anion exchanger in the main anion desalting chamber D2 was generated in the main anion desalting chamber D2. Regenerated by OH −, the anion exchanger in the secondary anion desalting chamber S2 is regenerated by OH generated in the cathode chamber E1. Therefore, H + and OH generated in the electrode chambers (cathode chamber E1 and anode chamber E2) and discarded without being used in the past can be effectively used for regeneration of the ion exchanger.

陽極室E2及び陰極室E1におけるH+及びOH-の生成効率は高いため、電位が低くても十分な量のH+及びOH-が副カチオン脱塩室S1及び副アニオン脱塩室S2に移動する。このため、電極間の印加電圧を抑え、脱イオン水製造装置1の運転費用を低減することができる。 Since the generation efficiency of H + and OH in the anode chamber E2 and the cathode chamber E1 is high, a sufficient amount of H + and OH moves to the secondary cation desalting chamber S1 and the secondary anion desalting chamber S2 even if the potential is low. To do. For this reason, the applied voltage between electrodes can be suppressed and the operating cost of the deionized water manufacturing apparatus 1 can be reduced.

また、本実施形態では、副カチオン脱塩室S1及び副アニオン脱塩室S2が新たな脱塩室として設けられているが、それに伴い新たな濃縮室を追加する必要がない。つまり、陽極側濃縮室C2と陽極室E2の間に単に副カチオン脱塩室S1を設け、陰極側濃縮室C1と陰極室E1の間に単に副アニオン脱塩室S2を設けるだけでよいので、相対的に濃縮室の数を減らすことができる。これは装置サイズ及び装置コストを抑えるだけでなく、印加電圧及び運転費用の低減にもつながる。   In the present embodiment, the secondary cation desalting chamber S1 and the secondary anion desalting chamber S2 are provided as new desalting chambers, but it is not necessary to add a new concentration chamber accordingly. That is, the secondary cation demineralization chamber S1 is simply provided between the anode side enrichment chamber C2 and the anode chamber E2, and the secondary anion desalination chamber S2 is simply provided between the cathode side concentration chamber C1 and the cathode chamber E1. The number of concentration chambers can be relatively reduced. This not only reduces the size and cost of the device, but also reduces the applied voltage and operating costs.

本実施形態では被処理水が主カチオン脱塩室D1及び副カチオン脱塩室S1に並列に流入し流出すること、及び被処理水が主アニオン脱塩室D2及び副アニオン脱塩室S2に並列に流入し流出することに留意すべきである。以下、主カチオン脱塩室D1及び副カチオン脱塩室S1を例として説明する。   In the present embodiment, the water to be treated flows in and out in parallel to the main cation demineralization chamber D1 and the sub cation demineralization chamber S1, and the water to be treated is parallel to the main anion demineralization chamber D2 and the sub anion demineralization chamber S2. It should be noted that inflow and outflow. Hereinafter, the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 will be described as examples.

主カチオン脱塩室D1と副カチオン脱塩室S1は、これらを直列に接続することも考えられる。例えば、被処理水のすべてを主カチオン脱塩室D1に流入させ、主カチオン脱塩室D1を流出した被処理水のすべてを副カチオン脱塩室S1に流入させることが可能である。しかし、このような接続形式を採用すると、特に装置の処理容量が大きい場合に以下の課題が生じる。   It is also conceivable that the main cation desalting chamber D1 and the sub cation desalting chamber S1 are connected in series. For example, it is possible to cause all of the water to be treated to flow into the main cation demineralization chamber D1, and all of the water to be treated that has flowed out of the main cation demineralization chamber D1 to flow into the sub cation demineralization chamber S1. However, when such a connection format is adopted, the following problems arise particularly when the processing capacity of the apparatus is large.

すなわち、処理容量を増やすためには、後述の実施形態のように主カチオン脱塩室を複数個設け、これらを並列に接続する形式が一般的である。しかし、並列接続された主カチオン脱塩室D1と副カチオン脱塩室S1とを直列に接続する場合、複数の主カチオン脱塩室D1を通る被処理水の総流量と副カチオン脱塩室S1を通る被処理水の流量とを一致させる必要がある。副カチオン脱塩室S1は陽極室E2に隣接している必要があり、原理的に1個しか設けることができないためである。このため、主カチオン脱塩室D1の総流量が増えた場合、主カチオン脱塩室D1の総流量と同じだけの流量を1つの副カチオン脱塩室S1で処理する必要がある。副カチオン脱塩室S1のサイズを変えずに通水流量を増やすと、通水差圧、すなわち副カチオン脱塩室S1で生じる圧力損失が通水流量に比例して増加する。従って、装置の処理容量を増やそうとしても、副カチオン脱塩室S1の通水差圧の観点から大きな制約が生じる。   That is, in order to increase the processing capacity, it is common to provide a plurality of main cation desalting chambers and connect them in parallel as in the embodiments described later. However, when the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 connected in parallel are connected in series, the total flow rate of water to be treated passing through the plurality of main cation demineralization chambers D1 and the sub cation demineralization chamber S1. It is necessary to match the flow rate of the water to be treated passing through. This is because the secondary cation desalting chamber S1 needs to be adjacent to the anode chamber E2, and in principle, only one can be provided. For this reason, when the total flow rate of the main cation demineralization chamber D1 increases, it is necessary to process the same flow rate as the total flow rate of the main cation demineralization chamber D1 in one sub-cation demineralization chamber S1. When the water flow rate is increased without changing the size of the secondary cation demineralization chamber S1, the water flow differential pressure, that is, the pressure loss generated in the secondary cation demineralization chamber S1 increases in proportion to the water flow rate. Therefore, even if it is going to increase the processing capacity of an apparatus, a big restriction | limiting arises from a viewpoint of the water flow differential pressure | voltage of sub-cation desalination chamber S1.

以上より、副カチオン脱塩室S1の通水流量を増やすためには、電圧印加方向における副カチオン脱塩室S1の幅を広げる以外に現実的な方法がない。しかし、並列接続された主カチオン脱塩室D1と副カチオン脱塩室S1とを直列に接続する場合、主カチオン脱塩室の総幅と副カチオン脱塩室S1の幅がともに増えるため、装置の幅は処理容量の増加比率を上回る比率で増える。この結果、陰極と陽極の離隔距離が増加し、装置サイズの増加だけでなく、陽極・陰極間の印加電位の増加を招き、運転費用への影響が避けられない。   From the above, in order to increase the water flow rate of the secondary cation desalting chamber S1, there is no practical method other than increasing the width of the secondary cation desalting chamber S1 in the voltage application direction. However, when the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 connected in parallel are connected in series, the total width of the main cation demineralization chamber and the width of the sub cation demineralization chamber S1 both increase. The width increases at a rate that exceeds the rate of increase in processing capacity. As a result, the separation distance between the cathode and the anode is increased, and not only the apparatus size is increased, but also the applied potential between the anode and the cathode is increased, and the influence on the operating cost is inevitable.

本実施形態では、主カチオン脱塩室D1と副カチオン脱塩室S1に被処理水を並列に流入させ流出させているため、副カチオン脱塩室S1の通水流量は主カチオン脱塩室D1の通水流量に依存しない。換言すれば、被処理水は副カチオン脱塩室S1と主カチオン脱塩室D1とに分配されるので、副カチオン脱塩室S1の通水差圧の増加を容易に回避することができる。また、主カチオン脱塩室D1と副カチオン脱塩室S1とを並列接続することで、これらを直列接続する場合と比べて、装置全体の通水差圧も抑制できる。しかも、被処理水の増加に応じて副カチオン脱塩室S1のサイズを大きくする必要もないため、陽極・陰極間の印加電圧も抑制できる。このことは、主脱塩室を多数個配置する脱イオン水製造装置において、特に大きなメリットとなる。以上については主アニオン脱塩室D2及び副アニオン脱塩室S2に関しても全く同様である。   In this embodiment, since the water to be treated is caused to flow in and out of the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, the water flow rate in the sub cation demineralization chamber S1 is the main cation demineralization chamber D1. It does not depend on the water flow rate. In other words, since the water to be treated is distributed to the sub cation demineralization chamber S1 and the main cation demineralization chamber D1, an increase in water flow differential pressure in the sub cation demineralization chamber S1 can be easily avoided. Further, by connecting the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, the water flow differential pressure of the entire apparatus can be suppressed as compared with the case of connecting them in series. In addition, since it is not necessary to increase the size of the secondary cation desalting chamber S1 in accordance with the increase in the water to be treated, the applied voltage between the anode and the cathode can be suppressed. This is a particularly significant advantage in a deionized water production apparatus in which a large number of main demineralization chambers are arranged. The same applies to the main anion desalting chamber D2 and the secondary anion desalting chamber S2.

図2A〜2Iには主脱塩室と副脱塩室の様々な配置パターンを示している。これらの図では濃縮室及び電極室に接続されるラインの図示は省略している。各室の符号は上述の実施形態における符号に対応し、追加の濃縮室は符号C3で示している。「m」はイオン交換膜を示し、カチオン交換膜またはアニオン交換膜のいずれでもよい。図中の符号Xは、符号Xで示したラインの端部同士が接続されていることを意味している。   2A to 2I show various arrangement patterns of the main desalting chamber and the sub-desalting chamber. In these drawings, the lines connected to the concentration chamber and the electrode chamber are not shown. The code | symbol of each chamber respond | corresponds to the code | symbol in the above-mentioned embodiment, and the additional concentration chamber is shown by code | symbol C3. “M” represents an ion exchange membrane, and may be either a cation exchange membrane or an anion exchange membrane. The symbol X in the figure means that the ends of the line indicated by the symbol X are connected to each other.

図2Aは他の配置パターンとの対比のために図1に示す配置パターンを簡略化して示したものであり、説明は省略する。図2B以降の各実施形態における各室の構成や各室に充填されるイオン交換体は図1に示す実施形態と同様である。   2A is a simplified illustration of the arrangement pattern shown in FIG. 1 for comparison with other arrangement patterns, and a description thereof will be omitted. The configuration of each chamber and the ion exchanger filled in each chamber in each embodiment after FIG. 2B are the same as those in the embodiment shown in FIG.

図2Bは、主アニオン脱塩室を流出した被処理水が主カチオン脱塩室に流入する実施形態を示している。各室の配置パターンは図2Aと同様であり、流路構成だけが異なっている。被処理水はまず主アニオン脱塩室D2及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される、その後被処理水は、主カチオン脱塩室D1及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。   FIG. 2B shows an embodiment in which treated water that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber. The arrangement pattern of each chamber is the same as in FIG. 2A, and only the flow path configuration is different. The treated water first flows in parallel to the main anion demineralization chamber D2 and the secondary anion demineralization chamber S2, and the anion component is removed. Thereafter, the treated water is divided into the main cation demineralization chamber D1 and the sub cation demineralization chamber S1. The cation component is removed in parallel.

図2Cは、図2Aに示す実施形態において副カチオン脱塩室を省略した実施形態を示している。被処理水は、全量が主カチオン脱塩室D1に流入し、カチオン成分が除去される。その後被処理水は、主アニオン脱塩室D2及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される。   FIG. 2C shows an embodiment in which the secondary cation desalting chamber is omitted from the embodiment shown in FIG. 2A. The entire amount of water to be treated flows into the main cation desalting chamber D1, and the cation component is removed. Thereafter, the water to be treated flows in parallel into the main anion demineralization chamber D2 and the subanion demineralization chamber S2, and the anion component is removed.

図2Dは、図2Aに示す実施形態において副アニオン脱塩室を省略した実施形態を示している。被処理水はまず主カチオン脱塩室D1及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。その後被処理水は、全量が主アニオン脱塩室D2に流入し、アニオン成分が除去される。   FIG. 2D shows an embodiment in which the secondary anion desalting chamber is omitted in the embodiment shown in FIG. 2A. First, the water to be treated flows into the main cation demineralization chamber D1 and the sub cation demineralization chamber S1 in parallel, and the cation component is removed. Thereafter, the entire amount of the water to be treated flows into the main anion demineralization chamber D2, and the anion component is removed.

図2Eは、主脱塩室が2以上設けられ、かつ副カチオン脱塩室と副アニオン脱塩室がともに設けられた実施形態を示している。主脱塩室D,D’と濃縮室C1〜C3が交互に設けられており、主脱塩室Dの陰極側と陽極側に各々濃縮室C1,C2が、主脱塩室D’の陰極側と陽極側に各々濃縮室C2,C3が隣接している。主脱塩室Dにとっては、濃縮室C1が陰極側濃縮室であり、濃縮室C2が陽極側濃縮室となる。主脱塩室D’にとっては、濃縮室C2が陰極側濃縮室であり、濃縮室C3が陽極側濃縮室となる。   FIG. 2E shows an embodiment in which two or more main desalting chambers are provided, and both a secondary cation desalting chamber and a secondary anion desalting chamber are provided. The main desalting chambers D and D ′ and the concentrating chambers C1 to C3 are alternately provided, and the concentrating chambers C1 and C2 are provided on the cathode side and the anode side of the main desalting chamber D, respectively. Concentration chambers C2 and C3 are adjacent to the side and the anode side, respectively. For the main desalting chamber D, the concentration chamber C1 is a cathode-side concentration chamber, and the concentration chamber C2 is an anode-side concentration chamber. For the main desalting chamber D ', the concentration chamber C2 is a cathode-side concentration chamber, and the concentration chamber C3 is an anode-side concentration chamber.

主脱塩室Dは主カチオン脱塩室D1と主アニオン脱塩室D2とを有し、主カチオン脱塩室D1の陰極側に第1のカチオン交換膜c1が、主アニオン脱塩室D2の陽極側に第1のアニオン交換膜a1が位置している。同様に、主脱塩室D’は主カチオン脱塩室D1’と主アニオン脱塩室D2’とを有し、主カチオン脱塩室D1’の陰極側に第1のカチオン交換膜c1’が、主アニオン脱塩室D2’の陽極側に第1のアニオン交換膜a1’が位置している。   The main desalting chamber D has a main cation desalting chamber D1 and a main anion desalting chamber D2, and the first cation exchange membrane c1 is provided on the cathode side of the main cation desalting chamber D1, and The first anion exchange membrane a1 is located on the anode side. Similarly, the main desalting chamber D ′ has a main cation desalting chamber D1 ′ and a main anion desalting chamber D2 ′, and the first cation exchange membrane c1 ′ is located on the cathode side of the main cation desalting chamber D1 ′. The first anion exchange membrane a1 ′ is located on the anode side of the main anion desalting chamber D2 ′.

副アニオン脱塩室S2が第3のアニオン交換膜a3を介して陰極室E1に隣接しており、第2のアニオン交換膜a2を介して濃縮室C1に隣接している。副カチオン脱塩室S1が第3のカチオン交換膜c3を介して陽極室E2に隣接しており、第2のカチオン交換膜c2を介して濃縮室C3に隣接している。   The secondary anion desalting chamber S2 is adjacent to the cathode chamber E1 via the third anion exchange membrane a3, and is adjacent to the concentration chamber C1 via the second anion exchange membrane a2. The secondary cation desalting chamber S1 is adjacent to the anode chamber E2 via the third cation exchange membrane c3, and is adjacent to the concentration chamber C3 via the second cation exchange membrane c2.

被処理水は、各主脱塩室D,D’の主カチオン脱塩室D1,D1’と副カチオン脱塩室S1とに並列に流入する。これらの部屋でカチオン成分が除去された被処理水は同様にして、各主脱塩室D,D’の主アニオン脱塩室D2,D2’と副アニオン脱塩室S2とに並列に流入し、アニオン成分が除去される。各濃縮室C1〜C3には原水が並列に供給され、各濃縮室C1〜C3からは、カチオン成分とアニオン成分を含んだ濃縮水が並列に排出される。   The water to be treated flows in parallel into the main cation desalting chambers D1, D1 'and the sub cation desalting chamber S1 of each main desalting chamber D, D'. In the same manner, the water to be treated from which the cation component has been removed in these rooms flows in parallel into the main anion demineralization chambers D2, D2 ′ and the secondary anion demineralization chamber S2 of each main demineralization chamber D, D ′. , The anionic component is removed. Raw water is supplied in parallel to each of the concentrating chambers C1 to C3, and concentrated water containing a cation component and an anion component is discharged in parallel from each of the concentrating chambers C1 to C3.

主脱塩室の数は本実施形態では2つであるが、必要に応じ所望の数の主脱塩室を設置し、装置の処理容量を増加させることができる。   Although the number of main desalting chambers is two in this embodiment, a desired number of main desalting chambers can be installed as necessary to increase the processing capacity of the apparatus.

図2Fは、図2Eに示す実施形態において、被処理水をまず主アニオン脱塩室D2,D2’と副アニオン脱塩室S2とに流入させ、その後主カチオン脱塩室D1,D1’と副カチオン脱塩室S1とに並列に流入させる実施形態を示している。   FIG. 2F shows that in the embodiment shown in FIG. 2E, the water to be treated is first flowed into the main anion demineralization chambers D2, D2 ′ and the secondary anion demineralization chamber S2, and then the main cation demineralization chambers D1, D1 ′ and the subanion. Embodiment which flows in parallel with cation desalting chamber S1 is shown.

図2Gは、図2Eに示す実施形態において、副カチオン脱塩室を省略した実施形態を示している。被処理水は、全量が主脱塩室D,D’の各主カチオン脱塩室D1,D1’に流入し、カチオン成分が除去される。その後被処理水は、主脱塩室D,D’の各主アニオン脱塩室D2,D2’及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される。   FIG. 2G shows an embodiment in which the secondary cation desalting chamber is omitted in the embodiment shown in FIG. 2E. The total amount of water to be treated flows into the main cation desalting chambers D1 and D1 'of the main desalting chambers D and D', and the cation component is removed. Thereafter, the water to be treated flows in parallel into the main anion demineralization chambers D2, D2 'and the secondary anion demineralization chamber S2 of the main demineralization chambers D, D', and the anion components are removed.

図2Hは、図2Gとは逆に、主アニオン脱塩室を流出した被処理水が主カチオン脱塩室に流入する実施形態を示している。具体的には、被処理水は、主脱塩室D,D’の各主アニオン脱塩室D2,D2’及び副アニオン脱塩室S2に並列で流入し、アニオン成分が除去される。その後被処理水は、全量が主脱塩室D,D’の各主カチオン脱塩室D1,D1’に流入し、カチオン成分が除去される。   FIG. 2H shows an embodiment in which water to be treated that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber, contrary to FIG. 2G. Specifically, the water to be treated flows in parallel into the main anion demineralization chambers D2, D2 'and the secondary anion demineralization chamber S2 of the main demineralization chambers D, D', and the anion component is removed. Thereafter, the entire amount of water to be treated flows into the main cation desalting chambers D1 and D1 'of the main desalting chambers D and D', and the cation component is removed.

図2Iは、図2Eに示す実施形態において、副アニオン脱塩室を省略した実施形態を示している。被処理水は、主脱塩室D,D’の各主カチオン脱塩室D1,D1’及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。その後被処理水は、全量が主脱塩室D,D’の各主アニオン脱塩室D2,D2’に流入し、アニオン成分が除去される。   FIG. 2I shows an embodiment in which the secondary anion desalting chamber is omitted in the embodiment shown in FIG. 2E. The water to be treated flows in parallel into the main cation desalting chambers D1, D1 'and the sub cation desalting chamber S1 of the main desalting chambers D, D', and the cation component is removed. Thereafter, the entire amount of water to be treated flows into the main anion desalination chambers D2 and D2 'of the main desalination chambers D and D', and the anion components are removed.

図2Jは、図2Iとは逆に、主アニオン脱塩室を流出した被処理水が主カチオン脱塩室に流入する実施形態を示している。具体的には、被処理水は、全量が主脱塩室D,D’の各主アニオン脱塩室D2,D2’に流入し、アニオン成分が除去される。その後被処理水は、主脱塩室D,D’の各主カチオン脱塩室D1,D1’及び副カチオン脱塩室S1に並列で流入し、カチオン成分が除去される。   FIG. 2J shows an embodiment in which water to be treated that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber, contrary to FIG. 2I. Specifically, the entire amount of water to be treated flows into the main anion desalting chambers D2 and D2 'of the main desalting chambers D and D', and the anion components are removed. Thereafter, the water to be treated flows in parallel into the main cation demineralization chambers D1, D1 'and the sub cation demineralization chamber S1 of the main demineralization chambers D, D', and the cation component is removed.

(実施例)
図1に示す構成の脱イオン水製造装置(実施例)と、図3A(比較例1)及び図3B(比較例2)に示す脱イオン水製造装置を用いて、本発明による効果を確認した。図の見方は図2A〜2Iと同様で、図中の符号X、Y,Zは、符号X、Y,Zで示したラインの端部同士が各々接続されていることを意味している。比較例1,2は、各室の構成は図1に示す実施例と同じで、被処理水のライン構成が異なっている。比較例1では、被処理水は副カチオン脱塩室S1、主アニオン脱塩室D2、主カチオン脱塩室D1、副アニオン脱塩室S2の順に直列に通水される。比較例2では、被処理水は副アニオン脱塩室S2、主カチオン脱塩室D1、主アニオン脱塩室D2、副カチオン脱塩室S1の順に直列に通水される。
(Example)
The effects of the present invention were confirmed using the deionized water production apparatus (Example) shown in FIG. 1 and the deionized water production apparatus shown in FIG. 3A (Comparative Example 1) and FIG. 3B (Comparative Example 2). . The view of the figure is the same as that of FIGS. 2A to 2I, and the symbols X, Y, and Z in the figure mean that the ends of the lines indicated by the symbols X, Y, and Z are connected to each other. In Comparative Examples 1 and 2, the configuration of each chamber is the same as the embodiment shown in FIG. 1, and the line configuration of the water to be treated is different. In Comparative Example 1, the water to be treated is passed in series in the order of the secondary cation desalting chamber S1, the main anion desalting chamber D2, the main cation desalting chamber D1, and the secondary anion desalting chamber S2. In Comparative Example 2, the water to be treated is passed in series in the order of the secondary anion demineralization chamber S2, the main cation demineralization chamber D1, the main anion demineralization chamber D2, and the sub cation demineralization chamber S1.

実施例及び比較例1,2における脱イオン水製造装置の仕様、通水流量、供給水の仕様等は以下のとおりである。なお、CERはカチオン交換樹脂、AERはアニオン交換樹脂の略である。
・陰極室E1:寸法100×300×4mm AER充填
・陽極室E2:寸法100×300×4mm CER充填
・主カチオン脱塩室D1:寸法100×300×8mm CER単床
・主アニオン脱塩室D2:寸法100×300×8mm AER単床
・副カチオン脱塩室S1:寸法100×300×8mm CER単床
・副アニオン脱塩室S2:寸法100×300×8mm AER単床
・濃縮室:寸法100×300×4mm(2室とも) AER単床(2室とも)
・処理水流量:50L/h
・濃縮水流量:5L/h
・電極水流量:10L/h
・脱塩室供給水(被処理水):一段RO透過水6±1μS/cm
・濃縮室供給水:一段RO透過水6±1μS/cm
・電極室供給水:脱塩室処理水
・印加電流値:1A
実施例及び比較例1,2の装置について、1000時間の運転を行い、処理水質、運転電圧(相対値)及び脱塩室通水差圧(相対値)の経時変化を比較した。結果を図4(a)〜(c)に各々示す。ここで、脱塩室通水差圧とは、脱イオン水製造装置の被処理水入口と被処理水出口の間で測定された差圧である。
The specifications of the deionized water production apparatus, the water flow rate, the specifications of the feed water, etc. in the examples and comparative examples 1 and 2 are as follows. CER is an abbreviation for cation exchange resin, and AER is an anion exchange resin.
・ Cathode chamber E1: Dimension 100 × 300 × 4 mm AER filling ・ Anode chamber E2: Dimension 100 × 300 × 4 mm CER filling ・ Main cation desalination chamber D1: Dimension 100 × 300 × 8 mm CER single bed ・ Main anion desalination chamber D2 : Dimension 100 × 300 × 8 mm AER single bed / secondary cation desalination chamber S1: Dimension 100 × 300 × 8 mm CER single bed / secondary anion desalination chamber S2: Dimension 100 × 300 × 8 mm AER single bed / concentration chamber: Dimension 100 × 300 × 4mm (both rooms) AER single floor (both rooms)
・ Treatment water flow rate: 50L / h
・ Concentrated water flow: 5L / h
・ Electrode water flow rate: 10L / h
・ Desalination chamber supply water (treated water): One-stage RO permeated water 6 ± 1 μS / cm
・ Concentration chamber supply water: 1 stage RO permeated water 6 ± 1 μS / cm
-Electrode chamber supply water: Desalination chamber treated water-Applied current value: 1A
About the apparatus of the Example and the comparative examples 1 and 2, the operation | movement of 1000 hours was performed and the temporal change of the treated water quality, the operating voltage (relative value), and the desalination chamber water flow differential pressure (relative value) was compared. The results are shown in FIGS. 4 (a) to (c). Here, the desalination chamber water flow differential pressure is a differential pressure measured between the treated water inlet and the treated water outlet of the deionized water production apparatus.

実施例では、副脱塩室と主脱塩室を並列通水としたため流路長が比較例の1/2になった。このため、図4(c)に示すように、通水差圧が大きく低減した。図4(a)に示すように、処理水質は良好であり、運転時間によらず安定した特性を示している。これは、副脱塩室と主脱塩室を並列通水としたため、各室の通水流量が比較例の1/2となり、樹脂との接触時間が増大したためと考えられる。図4(b)に示すように、運転電圧も低く抑えられている。   In the example, since the sub-desalination chamber and the main desalination chamber were used as parallel water flow, the flow path length was ½ that of the comparative example. For this reason, as shown in FIG.4 (c), the water flow differential pressure reduced significantly. As shown to Fig.4 (a), the quality of treated water is favorable and has shown the stable characteristic irrespective of the operation time. This is thought to be because the sub-desalination chamber and the main desalination chamber were in parallel water flow, and the water flow rate in each chamber was ½ that of the comparative example, and the contact time with the resin increased. As shown in FIG. 4B, the operating voltage is also kept low.

比較例1,2では、副脱塩室と主脱塩室を直列通水としたことで流路長が実施例の2倍になった。また、直列通水のため、各室の処理流量が実施例の2倍となり、図4(c)に示すように、通水差圧が上昇した。比較例1では図4(b)に示すように、時間の経過とともに運転電圧が上昇した。これは、後段の副アニオン脱塩室中には塩成分が少ないために、濃縮室に隣接したアニオン交換膜表面のpHがアルカリに傾き易く、スケールの生成が進行したためと考えられる。比較例2では、図4(a)に示すように、処理水質の低下が見られた。これは、後段の副カチオン脱塩室中には塩成分が少ないために、濃縮室に隣接したカチオン交換膜表面のpHが酸に傾き、濃縮室からの炭酸の逆拡散が進行したためと考えられる。   In Comparative Examples 1 and 2, the flow path length was double that of the example because the auxiliary desalting chamber and the main desalting chamber were connected in series. In addition, due to series water flow, the treatment flow rate in each chamber was double that of the example, and the water flow differential pressure increased as shown in FIG. In Comparative Example 1, as shown in FIG. 4B, the operating voltage increased with time. This is thought to be due to the fact that the pH of the anion exchange membrane surface adjacent to the concentration chamber tends to be inclined to alkali due to the small amount of salt components in the secondary anion demineralization chamber in the latter stage, and scale generation has progressed. In Comparative Example 2, as shown in FIG. 4A, the quality of the treated water was lowered. This is thought to be due to the fact that the pH of the cation exchange membrane surface adjacent to the concentrating chamber is inclined to acid and the reverse diffusion of carbonic acid from the concentrating chamber proceeds because there are few salt components in the secondary cation desalting chamber in the latter stage. .

実施例は、通水差圧が小さいだけでなく、処理水質及び運転電圧についても良好な結果が得られ、本発明の効果が確認された。   In the examples, not only the water flow differential pressure was small, but also good results were obtained for the treated water quality and the operating voltage, and the effects of the present invention were confirmed.

1 脱イオン水製造装置
2 枠体
3 中間イオン交換膜
4 陽極
5 陰極
D,D’ 主脱塩室
D1,D1’ 主カチオン脱塩室
D2,D2’ 主アニオン脱塩室
S1 副カチオン脱塩室
S2 副アニオン脱塩室
C1 陰極側濃縮室
C2 陽極側濃縮室
E1 陰極室
E2 陽極室
a1〜a3 第1〜第3のアニオン交換膜
c1〜c3 第1〜第3のカチオン交換膜
DESCRIPTION OF SYMBOLS 1 Deionized water production apparatus 2 Frame 3 Intermediate | middle ion exchange membrane 4 Anode 5 Cathode D, D 'Main demineralization chamber D1, D1' Main cation demineralization chamber D2, D2 'Main anion demineralization chamber S1 Sub cation demineralization chamber S2 Secondary anion desalination chamber C1 Cathode side enrichment chamber C2 Anode side enrichment chamber E1 Cathode chamber E2 Anode chamber a1 to a3 First to third anion exchange membranes c1 to c3 First to third cation exchange membranes

Claims (9)

陽極室及び陰極室と、
前記陽極室と前記陰極室との間に位置し、カチオン交換体及びアニオン交換体が充填される主脱塩室と、
前記陽極室と前記陰極室との間に位置し、前記主脱塩室の前記陰極室側で、第1のカチオン交換膜を介して前記主脱塩室に隣接して位置する陰極側濃縮室と、
前記陽極室と前記陰極室との間に位置し、前記主脱塩室の前記陽極室側で、第1のアニオン交換膜を介して前記主脱塩室に隣接して位置する陽極側濃縮室と、
前記陰極室と前記陰極側濃縮室の間に位置し、第2のアニオン交換膜を介して前記陰極側濃縮室と隣接し、第3のアニオン交換膜を介して前記陰極室と隣接し、少なくともアニオン交換体が充填され、被処理水が前記主脱塩室と並列に流入し流出するようにされた副アニオン脱塩室、または前記陽極室と前記陽極側濃縮室の間に位置し、第2のカチオン交換膜を介して前記陽極側濃縮室と隣接し、第3のカチオン交換膜を介して前記陽極室と隣接し、少なくともカチオン交換体が充填され、被処理水が前記主脱塩室と並列に流入し流出するようにされた副カチオン脱塩室の少なくともいずれか一方と、を有する、電気式脱イオン水製造装置。
An anode chamber and a cathode chamber;
A main desalting chamber located between the anode chamber and the cathode chamber and filled with a cation exchanger and an anion exchanger;
A cathode-side concentrating chamber located between the anode chamber and the cathode chamber and located adjacent to the main desalting chamber via a first cation exchange membrane on the cathode chamber side of the main desalting chamber When,
An anode side concentrating chamber located between the anode chamber and the cathode chamber and located adjacent to the main desalting chamber via a first anion exchange membrane on the anode chamber side of the main desalting chamber When,
Located between the cathode chamber and the cathode side enrichment chamber, adjacent to the cathode side enrichment chamber via a second anion exchange membrane, adjacent to the cathode chamber via a third anion exchange membrane, at least A secondary anion desalination chamber filled with an anion exchanger and configured to allow water to be treated to flow in and out in parallel with the main desalination chamber, or between the anode chamber and the anode side concentrating chamber; 2 adjacent to the anode-side concentrating chamber via a cation exchange membrane of 2, and adjacent to the anode chamber via a third cation exchange membrane, filled with at least a cation exchanger, and water to be treated is the main desalting chamber And an at least one of the secondary cation demineralization chambers configured to flow in and out in parallel with each other.
前記副アニオン脱塩室を備え、
前記主脱塩室は、前記第1のカチオン交換膜と隣接し少なくともカチオン交換体が充填される主カチオン脱塩室と、前記第1のアニオン交換膜と隣接し中間イオン交換膜を介して前記主カチオン脱塩室と隣接する、少なくともアニオン交換体が充填される主アニオン脱塩室と、を有し、
前記副アニオン脱塩室は、被処理水が前記主アニオン脱塩室と並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。
Comprising the secondary anion desalting chamber;
The main desalting chamber is adjacent to the first cation exchange membrane and filled with at least a cation exchanger, and is adjacent to the first anion exchange membrane via the intermediate ion exchange membrane. A main anion desalting chamber adjacent to the main cation desalting chamber and filled with at least an anion exchanger;
The electric deionized water production apparatus according to claim 1, wherein the secondary anion demineralization chamber is configured such that water to be treated flows in and out in parallel with the main anion demineralization chamber.
前記副カチオン脱塩室を備え、
前記主脱塩室は、前記第1のカチオン交換膜と隣接し少なくともカチオン交換体が充填される主カチオン脱塩室と、前記第1のアニオン交換膜と隣接し中間イオン交換膜を介して前記主カチオン脱塩室と隣接する、少なくともアニオン交換体が充填される主アニオン脱塩室と、を有し、
前記副カチオン脱塩室は、被処理水が前記主カチオン脱塩室と並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。
Comprising the secondary cation desalting chamber,
The main desalting chamber is adjacent to the first cation exchange membrane and filled with at least a cation exchanger, and is adjacent to the first anion exchange membrane via the intermediate ion exchange membrane. A main anion desalting chamber adjacent to the main cation desalting chamber and filled with at least an anion exchanger;
The electric deionized water production apparatus according to claim 1, wherein the secondary cation demineralization chamber is configured such that water to be treated flows in and out in parallel with the main cation demineralization chamber.
前記副アニオン脱塩室及び前記副カチオン脱塩室を備え、
前記主脱塩室は、前記第1のカチオン交換膜と隣接し少なくともカチオン交換体が充填される主カチオン脱塩室と、前記第1のアニオン交換膜と隣接し中間イオン交換膜を介して前記主カチオン脱塩室と隣接する、少なくともアニオン交換体が充填される主アニオン脱塩室と、を有し、
前記副アニオン脱塩室は、被処理水が前記主アニオン脱塩室と並列に流入し流出するようにされ、前記副カチオン脱塩室は、被処理水が前記主カチオン脱塩室と並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。
Comprising the secondary anion desalting chamber and the secondary cation desalting chamber;
The main desalting chamber is adjacent to the first cation exchange membrane and filled with at least a cation exchanger, and is adjacent to the first anion exchange membrane via the intermediate ion exchange membrane. A main anion desalting chamber adjacent to the main cation desalting chamber and filled with at least an anion exchanger;
The secondary anion demineralization chamber is configured such that water to be treated flows in and out in parallel with the main anion demineralization chamber, and the secondary cation demineralization chamber has a water to be treated in parallel with the main cation demineralization chamber. The electric deionized water production apparatus according to claim 1, wherein the apparatus is configured to flow in and out.
前記主カチオン脱塩室を流出した被処理水が前記主アニオン脱塩室に流入するようにされている、請求項2から4のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 2 to 4, wherein water to be treated that has flowed out of the main cation demineralization chamber flows into the main anion demineralization chamber. 前記主アニオン脱塩室を流出した被処理水が前記主カチオン脱塩室に流入するようにされている、請求項2から4のいずれか1項に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to any one of claims 2 to 4, wherein the water to be treated that has flowed out of the main anion demineralization chamber flows into the main cation demineralization chamber. 前記副アニオン脱塩室を備え、
前記主脱塩室は2以上設けられ、該主脱塩室と濃縮室とが、該濃縮室が両端に位置するように交互に位置しており、
前記副アニオン脱塩室は、前記第2のアニオン交換膜を介して最も陰極側の前記濃縮室と隣接し、被処理水が各主脱塩室と並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。
Comprising the secondary anion desalting chamber;
Two or more main desalting chambers are provided, and the main desalting chambers and the concentration chambers are alternately positioned so that the concentration chambers are located at both ends,
The secondary anion demineralization chamber is adjacent to the concentration chamber on the most cathode side through the second anion exchange membrane, and water to be treated flows in and out in parallel with each main desalination chamber. The electric deionized water production apparatus according to claim 1.
前記副カチオン脱塩室を備え、
前記主脱塩室は2以上設けられ、該主脱塩室と濃縮室とが、該濃縮室が両端に位置するように交互に位置しており、
前記副カチオン脱塩室は、前記第2のカチオン交換膜を介して最も陽極側の前記濃縮室と隣接し、被処理水が各主脱塩室と並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。
Comprising the secondary cation desalting chamber,
Two or more main desalting chambers are provided, and the main desalting chambers and the concentration chambers are alternately positioned so that the concentration chambers are located at both ends,
The secondary cation desalination chamber is adjacent to the concentration chamber on the most anode side through the second cation exchange membrane, and water to be treated flows in and out in parallel with each main desalination chamber. The electric deionized water production apparatus according to claim 1.
前記副アニオン脱塩室及び前記副カチオン脱塩室を備え、
前記主脱塩室は2以上設けられ、該主脱塩室と濃縮室とが、該濃縮室が両端に位置するように交互に位置しており、
前記副アニオン脱塩室は、前記第2のアニオン交換膜を介して最も陰極側の前記濃縮室と隣接し、被処理水が各主脱塩室と並列に流入し流出するようにされ、前記副カチオン脱塩室は、前記第2のカチオン交換膜を介して最も陽極側の前記濃縮室と隣接し、被処理水が各主脱塩室と並列に流入し流出するようにされている、請求項1に記載の電気式脱イオン水製造装置。
Comprising the secondary anion desalting chamber and the secondary cation desalting chamber;
Two or more main desalting chambers are provided, and the main desalting chambers and the concentration chambers are alternately positioned so that the concentration chambers are located at both ends,
The secondary anion demineralization chamber is adjacent to the concentration chamber on the most cathode side through the second anion exchange membrane, and water to be treated flows in and out in parallel with each main demineralization chamber, The secondary cation desalination chamber is adjacent to the concentration chamber on the most anode side through the second cation exchange membrane, and the water to be treated flows in and out in parallel with each main desalination chamber. The electric deionized water production apparatus according to claim 1.
JP2009216968A 2009-09-18 2009-09-18 Electric deionized water production equipment Active JP5145305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216968A JP5145305B2 (en) 2009-09-18 2009-09-18 Electric deionized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216968A JP5145305B2 (en) 2009-09-18 2009-09-18 Electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JP2011062662A JP2011062662A (en) 2011-03-31
JP5145305B2 true JP5145305B2 (en) 2013-02-13

Family

ID=43949505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216968A Active JP5145305B2 (en) 2009-09-18 2009-09-18 Electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP5145305B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152227A1 (en) * 2010-06-03 2011-12-08 オルガノ株式会社 Electric device for producing deionized water
JP5719842B2 (en) * 2010-06-03 2015-05-20 オルガノ株式会社 Electric deionized water production equipment
JP5770013B2 (en) * 2011-05-18 2015-08-26 オルガノ株式会社 Electric deionized water production equipment
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP5806038B2 (en) * 2011-08-12 2015-11-10 オルガノ株式会社 Electric deionized water production equipment
JP6105005B2 (en) * 2015-08-12 2017-03-29 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757308B2 (en) * 1987-12-10 1995-06-21 株式会社トクヤマ Electrodialysis tank
JP3385553B2 (en) * 1999-03-25 2003-03-10 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP4453972B2 (en) * 2004-12-22 2010-04-21 オルガノ株式会社 Electrodeionization apparatus and operation method of electrodeionization apparatus
JP4805244B2 (en) * 2007-12-10 2011-11-02 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method

Also Published As

Publication number Publication date
JP2011062662A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
EP2208523B1 (en) Electrodeionization device with hydrodynamic flow splitting
JP5295927B2 (en) Electric deionized water production equipment
EP2578543A1 (en) Electric device for production of deionized water
JP5145305B2 (en) Electric deionized water production equipment
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
JP6105005B2 (en) Electric deionized water production apparatus and deionized water production method
JP2012239965A (en) Electric deionized water producing apparatus
JP5695926B2 (en) Electric deionized water production equipment
JP5379025B2 (en) Electric deionized water production equipment
JP5114307B2 (en) Electric deionized water production equipment
JP5489867B2 (en) Electric deionized water production equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP5385457B2 (en) Electric deionized water production equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP5661930B2 (en) Electric deionized water production equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP5620229B2 (en) Electric deionized water production equipment
JP5719707B2 (en) Electric deionized water production equipment
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method
JP6034736B2 (en) Electric deionized water production equipment
JP6994351B2 (en) Electric deionized water production equipment
JP5866163B2 (en) Electric deionized water production equipment
JP5689031B2 (en) Electric deionized water production equipment
JP5770013B2 (en) Electric deionized water production equipment
JP2013013831A (en) Electric deionized water production apparatus and deionized water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5145305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250