WO2011152227A1 - Electric device for producing deionized water - Google Patents

Electric device for producing deionized water Download PDF

Info

Publication number
WO2011152227A1
WO2011152227A1 PCT/JP2011/061629 JP2011061629W WO2011152227A1 WO 2011152227 A1 WO2011152227 A1 WO 2011152227A1 JP 2011061629 W JP2011061629 W JP 2011061629W WO 2011152227 A1 WO2011152227 A1 WO 2011152227A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
exchanger
anion
water
concentration
Prior art date
Application number
PCT/JP2011/061629
Other languages
French (fr)
Japanese (ja)
Inventor
一哉 長谷川
友二 浅川
慶介 佐々木
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to JP2012518328A priority Critical patent/JP5385457B2/en
Publication of WO2011152227A1 publication Critical patent/WO2011152227A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to an electric deionized water production apparatus, and particularly relates to the structure of a desalting chamber.
  • a deionized water production apparatus that performs deionization by passing water to be treated through an ion exchanger.
  • a chemical acid or alkali
  • an electric deionized water production apparatus that does not require regeneration with a drug has been developed and put into practical use.
  • the electric deionized water production apparatus is a combination of electrophoresis and electrodialysis.
  • the basic configuration of a general electric deionized water production apparatus is as follows. That is, the electric deionized water production apparatus includes a demineralization chamber, a pair of concentration chambers disposed on both sides of the demineralization chamber, an anode chamber disposed outside one of the concentration chambers, and the other concentration chamber. And a cathode chamber disposed on the outside.
  • the desalting chamber has an anion exchange membrane and a cation exchange membrane arranged opposite to each other, and an ion exchanger (anion exchanger or / and cation exchanger) filled between the exchange membranes.
  • the electric deionized water production apparatus may be abbreviated as “deionized water production apparatus”.
  • water to be treated is supplied to the demineralization chamber with a DC voltage applied between the electrodes provided in the anode chamber and the cathode chamber, respectively. Allow water to pass.
  • anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2 , etc.) are captured by the anion exchanger, and cation components (Na + , Ca 2+ , Mg 2+, etc.) are captured by the cation exchanger.
  • a water dissociation reaction occurs at the interface between the anion exchanger and the cation exchanger in the desalting chamber, and hydrogen ions and hydroxide ions are generated (2H 2 O ⁇ H + + OH ⁇ ).
  • the ion component captured by the ion exchanger is exchanged with the hydrogen ions and hydroxide ions to be released from the ion exchanger.
  • the liberated ion component travels through the ion exchanger to the ion exchange membrane (anion exchange membrane or cation exchange membrane), is electrodialyzed on the ion exchange membrane, and moves to the concentration chamber.
  • the ion component that has moved to the concentration chamber is discharged by the water flowing through the concentration chamber.
  • the deionized water production apparatus when the deionized water production apparatus is continuously operated, hardness components in the water to be treated are deposited, and scales such as calcium carbonate and magnesium hydroxide are generated.
  • the scale is generated on the concentration chamber side surface of the anion exchange membrane separating the cathode chamber and the concentration chamber (see FIG. 8).
  • scale is generated on the surface of the anion exchange membrane in the concentration chamber sandwiched between two desalting chambers (see 9). The reason is as follows. The hydroxide ion generated by electrolysis in the cathode chamber and the hydroxide ion generated by the water dissociation reaction in the desalting chamber pass, so that the anion exchange membrane surface in the concentration chamber becomes alkaline.
  • Patent Document 1 discloses a deionized water production apparatus in which an anion exchanger having a specific structure is disposed on the anion exchange membrane side of a concentration chamber. According to this deionized water production apparatus, diffusion dilution of OH ⁇ into concentrated water is promoted on the surface of the porous anion exchanger, and the OH ⁇ concentration on the surface can be rapidly reduced. On the other hand, hardness component ions are less likely to enter the interior of the porous anion exchanger. As a result, the opportunity for OH ⁇ and hardness component ions to come into contact and react with each other is reduced, and the precipitation and accumulation of scale is suppressed.
  • Patent Document 2 two or more ion exchanger layers having different water permeability are provided in the concentration chamber, and an ion exchanger layer having a low water permeability is disposed on the anion exchange membrane side.
  • An apparatus for producing deionized water in which an anion exchange group is provided on at least the surface of the layer is disclosed. According to this deionized water production apparatus, when concentrated water containing a large amount of hardness component that has moved through a layer with high water permeability reaches a layer with low water permeability, the moving force of the concentrated water is reduced. As a result, concentrated water containing a large amount of hardness components is prevented from flowing into the concentration chamber side surface of the anion exchange membrane, and scale deposition and accumulation are suppressed.
  • a weak acid anion component typified by carbonic acid and silica contained in the concentrated water passes through the ion exchange membrane partitioning the concentration chamber and the desalting chamber and diffuses into the treated water, thereby reducing the purity of the treated water.
  • Such a decrease in the purity of the treated water appears more conspicuously when the concentration chamber is filled with an anion exchanger.
  • carbon dioxide and silica will be specifically described as examples.
  • a cation exchange membrane is an ion exchange membrane that selectively permeates only cations.
  • the principle is that the membrane itself has a-(minus) charge, and a repulsive force is exerted on the anion having the -charge to block permeation.
  • carbonic acid (carbon dioxide) and silica take the form of each ionic species in an aqueous solution, and they are in an equilibrium state.
  • the proportion of each ionic species in the entire equilibrium state as described above varies greatly depending on the pH. In the region where the pH is low, most of carbonic acid and silica are not ionized, that is, exist as CO 2 and SiO 2 in a state having no charge.
  • a concentration chamber C2 is disposed on the cathode side of the desalting chamber D via a cation exchange membrane, and a concentration chamber C1 is disposed on the anode side via an anion exchange membrane.
  • the desalting chamber D is filled with a cation exchanger and an anion exchanger, and the concentration chambers C1 and C2 are filled with an anion exchanger.
  • the treated water passes through the desalting chamber D and is discharged out of the system.
  • carbonic acid and silica contained in the concentrated water are captured as ions by the anion exchangers in the concentration chambers C1 and C2, and the anion exchanger It travels to the surface of the cation exchange membrane.
  • the concentration of carbonic acid and silica is high, and the pH is low.
  • carbonic acid and silica that are not ionized under low pH conditions lose their charge after being released from the anion exchanger, and permeate through the cation exchange membrane and diffuse into the water to be treated.
  • the deionized water production apparatus shown in FIG. 9 is provided with two demineralization chambers (D1, D2).
  • D1, D2 demineralization chambers
  • a plurality of desalting chambers are provided in this way, in addition to carbonic acid and silica originally contained in the concentrated water, carbonic acid and silica contained in the water to be treated are transferred from the desalting chamber to the concentrating chamber. Come on. Therefore, the concentration of carbonic acid and silica in the concentration chamber increases, and the purity reduction of the treated water due to the mixing of carbonic acid and silica into the desalting chamber becomes more noticeable. The same).
  • the present invention has been made in view of the above problems, and an object thereof is to make it possible to produce high-purity deionized water while suppressing the generation of scale.
  • the electric deionized water production apparatus of the present invention is an electric deionized water production apparatus in which at least one demineralization treatment unit is provided between an opposing cathode and an anode, and the demineralization treatment unit includes: A desalting chamber is provided on both sides of the desalting chamber and a pair of concentration chambers filled with an anion exchanger. The desalting chamber is partitioned by an ion exchange membrane into a first small desalting chamber adjacent to one of the pair of concentrating chambers and a second small desalting chamber adjacent to the other of the pair of concentrating chambers. Yes.
  • first small desalting chamber is filled with an anion exchanger
  • second small desalting chamber is filled with anions in the order in which the ion exchanger through which the water to be treated passes last becomes an anion exchanger.
  • the exchanger and cation exchanger are filled.
  • the desalination chamber is divided into two chambers, the behavior of ions is basically the same as the case where the desalination chamber is one chamber without partition.
  • an electric deionized water production apparatus capable of producing high-purity deionized water while suppressing the generation of scale is realized.
  • FIG. 1 It is a schematic block diagram which shows an example of embodiment of the electrical deionized water manufacturing apparatus of this invention. It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention.
  • (A)-(d) is a schematic diagram which shows the structure of the ion exchanger in the 2nd small desalination chamber of Examples 1, 2 and Comparative Examples 1, 2.
  • FIG. It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. It is a figure which shows the result of the comparative test 2. It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention.
  • (A)-(d) is a schematic diagram showing the presence / absence and arrangement of bipolar membranes in the second small desalting chambers of Example 3 and Comparative Examples 3-5. It is a figure which shows the principle which the carbonic acid component in concentrated water diffuses in to-be-processed water. It is a schematic diagram which shows the principle that the carbonic acid component in treated water re-diffuses in treated water.
  • FIG. 1 is a schematic configuration diagram of a deionized water production apparatus according to this embodiment.
  • a demineralization processing unit is provided between a cathode chamber E1 having a cathode and an anode chamber E2 having an anode.
  • the desalting section is composed of a desalting chamber D and a pair of concentration chambers C1 and C2 disposed on both sides of the desalting chamber D.
  • first concentration chamber C1 the concentration chamber C1 adjacent to the anode chamber E2
  • concentration chamber C2 adjacent to the cathode chamber E1 is referred to as “first”.
  • concentration chamber C2 concentration chamber C2 adjacent to the cathode chamber E1
  • the desalting chamber D is divided into two small desalting chambers.
  • the desalination chamber D includes a first small desalination chamber D-1 adjacent to the first concentration chamber C1 and a second small desalination chamber adjacent to the second concentration chamber C2. It is partitioned with D-2.
  • Each chamber described so far is formed by dividing the inside of the frame 1 into a plurality of spaces by a plurality of ion exchange membranes, and is adjacent to each other through the ion exchange membranes.
  • the arrangement of the chambers will be described in order from the cathode chamber E1 side as follows. That is, the cathode chamber E1 is adjacent to the second concentration chamber C2 via the first anion exchange membrane a1, and the second concentration chamber C2 is connected to the second small desalination via the first cation exchange membrane c1. Adjacent to chamber D-2.
  • the second small desalting chamber D-2 is adjacent to the first small desalting chamber D-1 via the second anion exchange membrane a2, and the first small desalting chamber D-1 is the third anion exchange. It is adjacent to the first concentration chamber C1 through the membrane a3.
  • the first concentration chamber C1 is adjacent to the anode chamber E2 through the second cation exchange membrane c2.
  • an anion exchange membrane that divides the desalting chamber D into a first small desalting chamber D-1 and a second desalting chamber D-2 is referred to as “intermediate ion exchange”. It may be called a “membrane” to be distinguished from other ion exchange membranes. However, such a distinction is merely a distinction for convenience of explanation.
  • the cathode chamber E1 contains a cathode.
  • the cathode is a metal net or plate, for example, a stainless steel net or plate.
  • An anode is accommodated in the anode chamber E2.
  • the anode is a metal net or plate.
  • the water to be treated Cl - if it contains chlorine is generated in the anode.
  • a material having chlorine resistance for the anode and examples thereof include metals such as platinum, palladium and iridium, or materials obtained by coating titanium with these metals.
  • Electrode water is supplied to each of the cathode chamber E1 and the anode chamber E2. These electrode waters generate hydrogen ions and hydroxide ions by electrolysis near the electrodes.
  • the cathode chamber E1 and the anode chamber E2 are preferably filled with an ion exchanger.
  • the cathode chamber E1 is more preferably filled with an anion exchanger such as a weakly basic anion exchanger or a strongly basic anion exchanger.
  • the anode chamber E2 is more preferably filled with a cation exchanger such as a weak acid cation exchanger or a strong acid cation exchanger.
  • the first concentration chamber C1 and the second concentration chamber C2 are provided for taking in the anion component or cation component discharged from the desalting chamber D and releasing them out of the system.
  • Each of the concentrating chambers C1 and C2 is filled with an anion exchanger in a single bed form to suppress the generation of scale.
  • the first small desalination chamber D-1 is filled with an anion exchanger in a single bed form.
  • the second small desalting chamber D-2 is filled with an anion exchanger and a cation exchanger in a double bed form.
  • the layer of the cation exchanger and the layer of the anion exchanger are laminated along the direction of water flow of the water to be treated. More specifically, the cation exchanger layer is disposed at the front stage in the water passage direction, and the anion exchanger layer is disposed at the rear stage in the water passage direction. That is, the water to be treated that has flowed into the second small desalting chamber D-2 passes through the cation exchanger layer and the anion exchanger layer in this order.
  • the anion exchanger layer and the cation exchanger layer are laminated in the order in which the ion exchanger layer through which the water to be treated finally passes becomes an anion exchanger layer.
  • the frame body 1 is shown integrally, but actually, a separate frame body is provided for each room, and the frame bodies are provided in close contact with each other.
  • the material of the frame 1 is not particularly limited as long as it has insulating properties and does not leak treated water.
  • polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether), etc. Can be mentioned.
  • the main flow of the treated water and concentrated water in the deionized water production apparatus shown in FIG. 1 will be outlined in advance.
  • the water to be treated is supplied to the first small desalting chamber D-1 and passes through the small desalting chamber D-1.
  • the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2, and is discharged outside the system after passing through the small desalting chamber D-2.
  • the concentrated water is supplied in parallel to the first concentration chamber C1 and the second concentration chamber C2, respectively, passes through these concentration chambers, and is discharged out of the system.
  • the flow path U1 shown above the deionized water production apparatus in FIG. 1 has one end connected to the treated water supply side and the other end connected to the first small desalting chamber D-1.
  • the flow path L1 shown below the deionized water production apparatus has one end connected to the first small desalting chamber D-1 and the other end connected to the second small desalting chamber D-2.
  • the flow path U2 shown above the deionized water production apparatus has one end connected to the second small desalting chamber D-2 and the other end connected to the discharge side of the water to be treated.
  • the flow path U3 shown above the deionized water production apparatus in FIG. 1 has one end connected to the concentrated water supply side and the other end branched in the middle to provide the first concentration chamber C1, the first The two concentrating chambers C2 are connected to each other.
  • One end of the flow path L2 shown below the deionized water production apparatus is connected to the first concentration chamber C1 and the second concentration chamber C2, respectively. Has been.
  • the cathode chamber E1 and the anode chamber E2 are connected to a channel for supplying electrode water and a channel for discharging the supplied electrode water, respectively.
  • the first concentration chamber C1 and the second concentration chamber C2 are supplied with concentrated water from the flow path U3 and discharged from the flow path L2. Electrode water is supplied to the cathode chamber E1 and the anode chamber E2 from a flow path (not shown), and the supplied electrode water is discharged from the flow path (not shown). Further, a predetermined DC voltage is applied between the anode and the cathode.
  • the water to be treated is supplied from the flow path U1 to the first small desalting chamber D-1.
  • Anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) in the supplied treated water are captured in the process of passing the treated water through the first small desalting chamber D-1.
  • the anion component trapped in the first small desalting chamber D-1 moves to the adjacent first concentration chamber C1 via the first small desalting chamber D-1 and the third anion exchange membrane a3. It is discharged out of the system together with the concentrated water passing through the first concentration chamber C1.
  • the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2 through the flow path L1.
  • a cation exchanger layer and an anion exchanger layer are laminated in this order in the second small desalting chamber D-2. Therefore, the water to be treated supplied to the second small desalting chamber D-2 first passes through the cation exchanger layer and then passes through the anion exchanger layer. At that time, cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are captured in the process of the water to be treated passing through the cation exchanger layer.
  • the cation component captured by the cation exchanger in the second small desalting chamber D-2 is adjacent to the second small desalting chamber D-2 via the first cation exchange membrane c1. It moves to the 2nd concentration chamber C2, and is discharged
  • the water to be treated that has passed through the cation exchanger layer in the second small desalting chamber D-2 passes through the next-stage anion exchanger layer.
  • anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) in the water to be treated are captured again.
  • the anion component captured by the anion exchanger in the second small desalting chamber D-2 is adjacent to the first small desalting chamber D-2 adjacent to the second small desalting chamber D-2 via the intermediate ion exchange membrane a2.
  • Salt chamber D-1 Move to salt chamber D-1.
  • the anion component that has moved to the first small desalting chamber D-1 moves to the adjacent first concentration chamber C1 via the first small desalting chamber D-1 and the third anion exchange membrane a3. It is discharged out of the system together with concentrated water passing through one concentration chamber C1.
  • the above is the flow of deionization processing in the deionized water production apparatus according to this embodiment.
  • a part of the anion component (carbonic acid or silica) contained in the concentrated water supplied to the second concentration chamber C2 passes through the first cation exchange membrane c1, and the second small Move to desalination chamber D-2.
  • the principle of carbonic acid or silica passing through the cation exchange membrane is as described above.
  • the carbonic acid and silica moved from the second concentration chamber C2 to the second small desalting chamber D-2 are uniformly diffused on the anode side surface of the first cation exchange membrane c1.
  • carbonic acid and silica diffuse not only in the region in contact with the anion exchanger layer in the second small desalting chamber D-2 but also in the region in contact with the cation exchanger layer. Since carbonic acid and silica are not trapped by the cation exchanger, the carbonic acid and silica diffused in the region in contact with the cation exchanger layer on the anode side surface of the first cation exchange membrane c1 are cation together with the water to be treated. It passes through the exchanger layer. However, a cation exchanger layer and an anion exchanger layer are stacked in the second small desalting chamber D-2 along the direction of water flow.
  • the carbonic acid and silica that have passed through the cation exchanger layer are ionized and captured again in the next-stage anion exchanger layer, and move to the first small desalting chamber D-1.
  • the carbonic acid and silica moved to the first small desalting chamber D-1 pass through the third anion exchange membrane a3, move to the first concentration chamber C1, and pass through the first concentration chamber C1. It is discharged out of the system together with concentrated water. Therefore, carbonic acid and silica contained in the concentrated water are not diffused into the water to be treated, and the purity of the treated water is not lowered.
  • the above effect can be obtained if the final stage of the stack of ion exchangers provided in the second small desalting chamber D-2 is an anion exchanger layer.
  • the ion exchanger through which the water to be treated that passes through the second small desalting chamber D-2 finally passes is an anion exchanger, the above-described effect can be obtained.
  • the type, stacking order, and number of stacks of the ion exchanger layer before the final anion exchanger layer are not particularly limited. For example, four or more cation exchanger layers and anion exchanger layers may be stacked in the order in which the final stage is an anion exchanger layer.
  • the first small demineralization chamber D-1 to which the water to be treated is first supplied is filled with the anion exchanger, and the water to be treated is supplied next.
  • the second small desalting chamber D-2 a cation exchanger and an anion exchanger are laminated in this order.
  • the water to be treated first passes through the anion exchanger.
  • an anionic component is removed from to-be-processed water, and pH of to-be-processed water rises.
  • the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2 in which the cation exchanger and the anion exchanger are laminated in this order. That is, the water to be treated that has passed through the anion exchanger in the first small desalting chamber D-1 then passes through the cation exchanger, and then passes again through the anion exchanger.
  • the water to be treated passes through the anion exchanger and the cation exchanger alternately.
  • the anion component capturing ability of the anion exchanger increases when the pH of the water to be treated is low, and the capturing ability of the cation exchanger of the cation exchanger increases when the pH of the water to be treated is high. Therefore, according to the configuration of this embodiment, the water to be treated first passes through the anion exchanger, and then passes through the cation exchanger and the anion exchanger alternately. The water to be treated whose components have been removed and whose pH has been raised continues to pass through the cation exchanger. Therefore, the cation removal reaction by the cation exchanger is promoted more than usual.
  • the cation component is removed by passing through the cation exchanger, and the water to be treated whose pH has been lowered continues to pass through the anion exchanger. Therefore, the anion removal reaction by the anion exchanger is promoted more than usual. Therefore, not only the removal ability of the anion component containing carbonic acid and silica is further improved, but also the removal ability of the cation component is improved, thereby further improving the purity of the treated water.
  • the deionized water production apparatus As described above, according to the deionized water production apparatus according to the present embodiment, it is possible to prevent a part of carbonic acid and silica contained in the concentrated water from passing through the ion exchange membrane and diffusing into the water to be treated. In addition to the effect of improving the purity of the treated water, the ability to remove anionic components such as carbonic acid and silica contained in the treated water is improved, and further, the cation component contained in the treated water is improved. The removal ability is also improved.
  • a configuration in which the concentration chamber also serves as the electrode chamber is also included in the present invention.
  • a cathode may be provided in the second concentration chamber C2 shown in FIG. 1 and the cathode chamber E1 may be omitted.
  • the desalination processing unit including the desalting chamber and the pair of concentration chambers is disposed between the cathode and the anode.
  • the deionized water production apparatus is the same as the deionized water production apparatus according to the first embodiment, except that a plurality of demineralization treatment units are provided between the cathode chamber and the anode chamber.
  • a plurality of demineralization treatment units are provided between the cathode chamber and the anode chamber.
  • FIG. 2 is a schematic configuration diagram of the deionized water production apparatus according to the present embodiment.
  • two demineralization processing units are provided between the cathode chamber E1 and the anode chamber E2.
  • the first desalting treatment unit relatively located on the cathode side includes a desalting chamber D1 and a pair of concentration chambers C1 and C2 disposed on both sides of the desalting chamber D1. It is configured.
  • the 2nd desalination process part relatively located in an anode side is comprised from a pair of concentration chambers C1 and C3 arrange
  • the desalting chamber D1 constituting the first desalting treatment section is referred to as “cathode side desalting chamber D1”, and the desalting chamber D2 constituting the second desalting treatment section is referred to as “anode”. This is called “side desalting chamber D2”.
  • the concentration chamber C1 is referred to as “first concentration chamber C1”
  • the concentration chamber C2 is referred to as “second concentration chamber C2”
  • the concentration chamber C3 is referred to as “third concentration chamber C3”.
  • such a distinction is merely a distinction for convenience of explanation.
  • cathode-side desalting chamber D1 and the anode-side desalting chamber D2 are each divided into two small desalting chambers.
  • the small desalting chamber adjacent to the first concentration chamber C1 is referred to as “cathode side first small desalting chamber”.
  • D1-1 ”and the small desalting chamber adjacent to the second concentration chamber C2 are referred to as“ cathode side second small desalting chamber D1-2 ”.
  • anode-side first small desalting chamber D2-1 The small desalting chamber adjacent to the first concentration chamber C1 is referred to as “anode-side second small desalting chamber D2-2”.
  • anode-side second small desalting chamber D2-2 the small desalting chamber adjacent to the first concentration chamber C1 is referred to as “anode-side second small desalting chamber D2-2”.
  • the cathode chamber E1 is adjacent to the second concentration chamber C2 via the first anion exchange membrane a1, and the second concentration chamber C2 is connected to the second small side on the cathode side via the first cation exchange membrane c1. Adjacent to the desalination chamber D1-2.
  • the cathode side second small desalination chamber D1-2 is adjacent to the cathode side first small desalination chamber D1-1 via the second anion exchange membrane a2, and the cathode side first small desalination chamber D1-1 is , Adjacent to the first concentration chamber C1 through the third anion exchange membrane a3.
  • the first concentrating chamber C1 is adjacent to the anode-side second small desalting chamber D2-2 via the second cation exchange membrane c2, and the anode-side second small desalting chamber D2-2 is a fourth anion. It is adjacent to the anode side first small desalting chamber D2-1 through the exchange membrane a4.
  • the anode side first small desalting chamber D2-1 is adjacent to the third concentration chamber C3 via the fifth anion exchange membrane a5, and the third concentration chamber C3 is interposed via the third cation exchange membrane c3. Adjacent to the anode chamber E2.
  • the first to third concentrating chambers C1 to C3 are provided to take in the anion component or cation component discharged from the cathode-side desalting chamber D1 or the anode-side desalting chamber D2 and discharge them out of the system. Yes.
  • Each of the concentrating chambers C1 to C3 is filled with an anion exchanger in a single bed form to suppress the generation of scale.
  • the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 are each filled with an anion exchanger in a single-bed form.
  • the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2 are each filled with an anion exchanger and a cation exchanger in the form of a multiple bed.
  • the specific filling form of the anion exchanger and the cation exchanger in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 is as described in the first embodiment.
  • the water to be treated is supplied in parallel to the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1, respectively, and passes through these small desalination chambers.
  • the treated water that has passed through the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 is once merged outside these small desalting chambers, and then divided into the cathode-side second small desalting chamber D2-1.
  • the concentrated water is supplied in parallel to each of the first to third concentration chambers C1 to C3, passes through these concentration chambers, and is discharged out of the system.
  • the flow path U1 shown above the deionized water production apparatus in FIG. 2 has one end connected to the supply side of the water to be treated and the other end branched in the middle to provide the first small desalting on the cathode side.
  • the chamber D1-1 and the anode side first small desalination chamber D2-1 are connected to each other.
  • the flow path L1 shown below the deionized water production apparatus is connected to the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1, respectively, and merges in the middle.
  • the flow path U2 shown above the deionized water production apparatus is connected to the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2, and joins in the middle. Connected to the discharge side of the treated water.
  • the flow path U3 shown above the deionized water production apparatus in FIG. 2 has one end connected to the concentrated water supply side and the other end branched in the middle to obtain the first concentration chamber C1, the first The second concentrating chamber C2 and the third concentrating chamber C3 are connected to each other.
  • the flow path L2 shown below the deionized water production apparatus is connected to the first concentration chamber C1, the second concentration chamber C2, and the third concentration chamber C3, respectively, and after having joined in the middle, the concentrated water. Connected to the discharge side.
  • the first to third concentration chambers C1 to C3 are supplied with concentrated water from the flow path U3 and discharged from the flow path L2. Electrode water is supplied to the cathode chamber E1 and the anode chamber E2 from a flow path (not shown), and the supplied electrode water is discharged from the flow path (not shown). Further, a predetermined DC voltage is applied between the anode and the cathode.
  • the water to be treated is supplied in parallel from the flow path U1 to the cathode-side first small desalination chamber D1-1 and the anode-side first small desalination chamber D2-1.
  • Anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) in the supplied water to be treated are processed in a process in which the water to be treated passes through the first small desalting chambers D1-1 and D2-1. Be captured.
  • the anion component captured in the cathode-side first small desalination chamber D1-1 is adjacent to the cathode-side first small desalination chamber D1-1 via the third anion exchange membrane a3.
  • the anion component trapped in the anode-side first small desalting chamber D2-1 is adjacent to the anode-side first small desalting chamber D2-1 through the fifth anion exchange membrane a5 in the third concentration chamber. It moves to C3 and is discharged out of the system together with the concentrated water passing through the third concentration chamber C3.
  • the water to be treated that has passed through the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 passes through the flow path L1 to form the cathode-side second small desalting chamber D1-1. 2 and the anode side second small desalting chamber D2-2.
  • the cation exchanger layer and the anion exchanger layer are laminated in this order in the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2. As described above.
  • the water to be treated supplied to the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 first passes through the cation exchanger layer and then the anion exchanger layer. Pass through. At that time, cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are captured in the process of the water to be treated passing through the cation exchanger layer. Specifically, the cation component captured by the cation exchanger in the cathode side second small desalting chamber D1-2 passes through the cathode side second small desalting chamber D1-2 and the first cation exchange membrane c1.
  • the cation component captured by the cation exchanger in the anode side second small desalting chamber D2-2 is adjacent to the anode side second small desalting chamber D2-2 via the second cation exchange membrane c2. It moves to the 1st concentration chamber C1, and is discharged
  • anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3) in the water to be treated that have passed through the cation exchanger layer in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2. ⁇ , SiO 2, etc.) are again trapped in the process of the water to be treated passing through the next-stage anion exchanger layer.
  • the anion component captured by the anion exchanger in the cathode side second small desalting chamber D1-2 is adjacent to the cathode side second small desalting chamber D1-2 via the intermediate ion exchange membrane a2. It moves to the cathode side first small desalination chamber D1-1.
  • the anion component moved to the cathode-side first small desalting chamber D1-1 moves to the adjacent first concentration chamber C1 via the cathode-side first small desalting chamber D1-1 and the third anion exchange membrane a3. Then, it is discharged out of the system together with the concentrated water passing through the first concentration chamber C1.
  • the anion component trapped by the anion exchanger in the anode side second small desalting chamber D2-2 is adjacent to the anode side second small desalting chamber D2-2 via the intermediate ion exchange membrane a4. Move to 1 small desalination chamber D2-1.
  • the anion component moved to the anode side first small desalting chamber D2-1 moves to the adjacent third concentration chamber C3 via the anode side first small desalting chamber D2-1 and the fifth anion exchange membrane a5. Then, it is discharged out of the system together with the concentrated water passing through the third concentration chamber C3.
  • the concentration of carbonic acid and silica in a specific concentration chamber is higher than that in other concentration chambers.
  • the first concentration chamber C1 adjacent to the demineralization chamber D1 shown in FIG. 2 is included in the concentrated water supplied to the concentration chamber C1.
  • carbonic acid and silica move from the cathode-side desalting chamber D1.
  • the anode-side desalination chamber Carbonic acid and silica move from D2.
  • the principle that carbonic acid and silica move from the adjacent desalting chamber to the concentration chamber is as described in the first embodiment. Therefore, in the 1st concentration chamber C1 and the 3rd concentration chamber C3, the density
  • the concentrating chamber C1 is adjacent to the anode-side desalting chamber D2, and movement of carbonic acid or silica to the anode-side desalting chamber D2 (diffusion into the water to be treated) becomes a problem.
  • the carbonic acid and silica moved from the first concentration chamber C1 to the anode-side second small desalting chamber D2-2 are filled in the desalting chamber D2-2. It is captured by the anion exchanger, moves to the third concentration chamber C3 via the anode side first small desalination chamber D2-1, and is discharged out of the system. Therefore, the carbonic acid and silica moved from the first concentration chamber C1 to the anode side second small desalting chamber D2-2 do not diffuse into the water to be treated.
  • the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1 to which the water to be treated is first supplied are filled with an anion exchanger.
  • the cathode side second small desalination chamber D1-2 and the anode side first desalination chamber D1-1 and the anode side first small desalination chamber D2-1 to which the water to be treated that has passed through is supplied.
  • a cation exchanger and an anion exchanger are stacked in this order. That is, the water to be treated first passes through the anion exchanger, then passes through the cation exchanger, and then passes through the anion exchanger again. Therefore, the purity of water to be treated is further improved by the same principle as described in the first embodiment.
  • the anode chamber E2 may be omitted by providing an anode in the third concentration chamber C3 shown in FIG. 2, or the cathode chamber E1 may be omitted by providing a cathode in the second concentration chamber C2.
  • Comparative test 1 In order to confirm the effect of the present invention, the following comparative test was conducted. In other words, four deionized water production apparatuses differing only in the configuration of the ion exchanger in the second small desalting chamber D-2 shown in FIG.
  • FIGS. 3A to 3D schematically show the configuration of the ion exchanger in the second small desalting chamber D-2 in each deionized water production apparatus.
  • Example 1 As shown in FIG. 3 (a), in the second small desalting chamber D-2 of the deionized water production apparatus (Example 1), a cation exchanger is provided upstream in the direction of water flow of the water to be treated.
  • the layer (C) and the anion exchanger layer (A) are laminated on the subsequent stage. That is, Example 1 is provided with the same desalination chamber as the desalination chamber shown in Embodiment 1 above.
  • Example 2 includes a desalination chamber that is essentially the same as the desalination chamber shown in Embodiment 1 above.
  • an anion exchanger is preceded in the flow direction of to-be-processed water.
  • the layer (A) and the cation exchanger layer (C) are laminated on the subsequent stage.
  • the second small desalting chamber D-2 of the deionized water production apparatus has a mixture of cation exchanger and anion exchanger (mixing ratio 1: 1). Is filled. That is, the cation exchanger and the anion exchanger are packed in a so-called mixed bed form. Unless otherwise specified, the anion exchanger and the cation exchanger in each example and each comparative example are each filled in a predetermined chamber in a single bed form. In addition, the dashed-dotted arrows in FIGS. 3A to 3D indicate the direction of water to be treated.
  • CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
  • the theoretical specific resistance of water containing no impurities is 18.2 M ⁇ ⁇ cm at 25 ° C.
  • the measurement results are shown in Table 1.
  • the final treatment layer of the desalting chamber is made into a single-bed anion exchanger, which captures the anion component that diffuses from the concentrating chamber to the desalting chamber and produces high-purity deionized water. It was confirmed that it was possible.
  • Example 2 can produce higher-purity deionized water.
  • the configuration of the first small desalination chamber D-1 in Example 1 and Example 2 is common, but the configuration of the second small desalination chamber D-2 is different.
  • the cation exchanger layer (C) and the anion exchanger layer (A) are laminated one by one, whereas in Example 2, In the second small desalting chamber D-2, two layers of cation exchanger layers (C) and anion exchanger layers (A) are alternately stacked.
  • the water to be treated that has passed through the first small desalting chamber D-1 of Example 1 passes through the cation exchanger and the anion exchanger alternately one after another.
  • the water to be treated passes through the anion exchanger twice and the cation exchanger once.
  • the water to be treated that has passed through the first small desalting chamber D-1 of Example 2 passes through the cation exchanger and the anion exchanger alternately twice thereafter.
  • the water to be treated passes through the anion exchanger three times and the cation exchanger twice.
  • Example 3 As described above, in Example 2, the ion exchange reaction is more efficiently performed than usual, and as a result, the purity of the treated water is further improved. From these results, it can be seen that the higher the number of repetitions of the anion exchanger layer and the cation exchanger layer in the second small desalting chamber D-2, the more purified deionized water can be produced.
  • Embodiment 3 Next, another example of the embodiment of the deionized water production apparatus of the present invention will be described with reference to FIG. However, the basic configuration of the deionized water production apparatus according to the present embodiment is the same as that of the deionized water production apparatus according to the second embodiment. Therefore, only differences from the deionized water production apparatus according to Embodiment 2 will be described below, and descriptions of common points will be omitted.
  • a sub-demineralization chamber S1 is provided between the cathode chamber E1 and the second concentration chamber C2.
  • the sub-desalting chamber S1 is adjacent to the cathode chamber E1 via the sixth anion exchange membrane a6, is adjacent to the second concentration chamber C2 via the first anion exchange membrane c1, and the chamber is anion exchanger. Is filled in a single bed form.
  • water to be treated is supplied from the flow path U1 to the cathode side first small desalination chamber D1-1, the anode side first small desalination chamber D2-1, and the sub desalination chamber S1. Supplied in parallel.
  • Anion components (Cl ⁇ , CO 3 2 ⁇ , HCO 3 ⁇ , SiO 2, etc.) in the for-treatment water supplied to the sub-desalination chamber S1 are captured during the process of passing the for-treatment water through the sub-desalination chamber S1. Is done.
  • the trapped anion component moves to the adjacent second concentration chamber C2 via the secondary desalting chamber S1 and the first anion exchange membrane a1, and the system together with the concentrated water passing through the second concentration chamber C2. Discharged outside.
  • the water to be treated that has passed through the sub-desalination chamber S1 merges with the water to be treated that has passed through the cathode-side first small desalination chamber D1-1 and the anode-side first small desalination chamber D2-1, Is supplied to the second side small desalting chamber D1-2 or the second anode side small desalting chamber D2-2. Since the flow of water to be treated and the movement of ions after this are as described in the first and second embodiments, description thereof will be omitted.
  • hardness components such as magnesium ions and calcium ions contained in the water to be treated move from the demineralization chamber to the concentration chamber.
  • These hardness components react with ions such as CO 3 2 ⁇ and OH 2 ⁇ on the surface of the ion exchange membrane, and calcium carbonate, magnesium hydroxide and the like are deposited as scales.
  • Such scale precipitation is likely to occur at a high pH portion, and in a deionized water production apparatus, the scale is often observed at a locally high pH portion such as a cathode surface or an anion exchange membrane surface in the cathode chamber. It is done.
  • the first concentration chamber C1 is mainly fed from the cathode side desalting chamber D1
  • the third concentration chamber C3 is mainly fed from the anode side desalting chamber D2.
  • Ingredients are supplied. Therefore, generation of scale on the membrane surfaces of the third anion exchange membrane a3 and the fifth anion exchange membrane a5 is suppressed.
  • the supply amount of the anion component to the second concentration chamber C2 located closest to the cathode chamber side is smaller than the supply amount to the first concentration chamber C1 and the third concentration chamber C3. That is, scale is more likely to occur on the membrane surface of the first anion exchange membrane a1 than on the membrane surfaces of the third anion exchange membrane a3 and the fifth anion exchange membrane a5.
  • the sub-demineralization chamber S1 filled with the anion exchanger is provided between the cathode chamber E1 and the second concentration chamber C2, the sub-demineralization chamber S1.
  • the second concentration chamber C2 Therefore, a local increase in pH on the membrane surface of the first anion exchange membrane a1 is suppressed, and scale generation is also suppressed.
  • the anion exchanger filled in the sub-desalting chamber S1 is regenerated by OH ⁇ generated in the cathode chamber E1. Therefore, in the deionized water production apparatus according to the present embodiment, OH ⁇ generated in the cathode chamber E1 and discarded without being conventionally used is effectively used for regeneration of the ion exchanger.
  • the sub-desalting chamber S1 is added as a new desalting chamber, but it is not necessary to add a new concentrating chamber accordingly. That is, the number of concentration chambers can be relatively reduced. This not only reduces the size and cost of the device, but also reduces the applied voltage and operating costs.
  • the number of the desalination process part may be one or three or more.
  • a sub-desalting chamber having the above-described configuration can be provided between the cathode chamber E1 and the second concentration chamber C2 shown in FIG.
  • anode chamber E2 may be omitted by providing an anode in the concentration chamber C3 shown in FIG. (Comparative test 2)
  • the deionized water production apparatus according to this embodiment and the deionized water production apparatus according to Embodiment 2 were continuously operated for 1000 hours, and the quality of the treated water was measured every 100 hours. Moreover, the apparatus was disassembled after the operation was completed, and the presence or absence of scale generation was visually observed.
  • CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
  • Cathode chamber dimension 100 ⁇ 300 ⁇ 4 mm AER filling
  • Anode chamber dimension 100 ⁇ 300 ⁇ 4 mm CER filling
  • Cathode side first small desalination chamber and anode side first small desalination chamber dimension 100 ⁇ 300 ⁇ 8 mm
  • AER Filling / Cathode-side second small desalting chamber and anode-side second small desalting chamber dimensions 100 ⁇ 300 ⁇ 8 mm AER / CER filling (lamination)
  • Sub-desalination chamber Dimension 100 ⁇ 300 ⁇ 8 mm AER filling
  • Concentration chamber Dimension 100 ⁇ 300 ⁇ 4 mm AER filling ⁇ Desalination chamber flow rate: 20 L / h ⁇ Concentration chamber
  • the deionized water production apparatus is different from the deionized water production apparatus according to the first embodiment only in that a bipolar membrane is disposed in the second small demineralization chamber D-2 shown in FIG. Others have a common configuration. Therefore, only the above differences will be described below, and description of common points will be omitted.
  • a bipolar membrane is an ion exchange membrane in which an anion exchange membrane and a cation exchange membrane are bonded and integrated. It has the feature that.
  • FIG. 6 is a schematic cross-sectional view showing a demineralization chamber D included in the deionized water production apparatus according to this embodiment.
  • a first bipolar film 4a and a second bipolar film 4b are respectively arranged in the second small desalting chamber D-2.
  • the first bipolar membrane 4a is disposed on the cathode side of the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2, and the cation exchanger (cation exchanger).
  • the second bipolar film 4b is disposed on the anode side of the layer.
  • the first bipolar membrane 4a is disposed so that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer), and the second bipolar membrane 4b is configured such that the cation exchange membrane 3 is a cation exchanger. It arrange
  • the first bipolar membrane 4a is disposed between the anion exchanger and the first cation exchange membrane c1
  • the anion exchange membrane 2 is disposed between the anion exchanger and the first cation exchange membrane c1. It arrange
  • a second bipolar membrane 4b is arranged between the cation exchanger and the second anion exchange membrane (intermediate ion exchange membrane) a2 so that the cation exchange membrane 3 faces the cation exchanger. .
  • water dissociated by electricity functions as a regenerant of the ion exchanger, but the water dissociation reaction is performed at the interface between the ion exchanger and the ion exchange membrane. Promoted in Therefore, the water dissociation reaction is greatly affected by the combination of the ion exchanger and the ion exchange membrane. Therefore, as in the second small desalting chamber D-2 shown in FIG. 1, when ion exchangers with different signs (anion exchanger and cation exchanger) are stacked, the overvoltage necessary for water dissociation is increased in each layer. It is different. As a result, it is conceivable that a current drift occurs and a desired current distribution cannot be obtained.
  • the first bipolar membrane 4a is disposed on the cathode side of the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2. It is arranged like this. As a result, the anion exchanger comes into contact with the anion exchange membrane of the first bipolar membrane 4a instead of the first cation exchange membrane c1, and the drift is eliminated.
  • the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2 A bipolar film may be disposed only on the cathode side.
  • bipolar membranes are arranged on both the cathode side of the anion exchanger (anion exchanger layer) and the anode side of the cation exchanger (cation exchanger layer), respectively, and stable at a high current density. Driving reliability is further improved.
  • the first and second bipolar films may be disposed in each of the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2 shown in FIG. (Comparative test 3)
  • the following comparative test was conducted. That is, four deionized water production apparatuses having different bipolar membrane presence or location in the second small desalting chamber D-2 shown in FIG. 1 were prepared.
  • the 1st bipolar membrane 4a and the 2nd bipolar membrane 4b are each arrange
  • the first bipolar membrane 4a is disposed so that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer), and the second bipolar membrane 4b is configured such that the cation exchange membrane 3 is a cation exchanger. It arrange
  • the first bipolar membrane 4a is disposed in the second small desalting chamber of the deionized water production apparatus (Comparative Example 4).
  • the first bipolar membrane 4a is arranged so that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer).
  • the second bipolar membrane 4b is disposed in the second small desalting chamber of the deionized water production apparatus (Comparative Example 5).
  • the second bipolar membrane 4b is disposed so that the cation exchange membrane 3 faces the cation exchanger (cation exchanger layer).
  • CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
  • Cathode chamber dimension 100 ⁇ 300 ⁇ 4 mm AER filling ⁇
  • Anode chamber dimension 100 ⁇ 300 ⁇ 4 mm CER filling ⁇
  • Cathode side first small desalination chamber and anode side first small desalination chamber dimension 100 ⁇ 300 ⁇ 8 mm AER Filling / Cathode-side second small desalting chamber and anode-side second small desalting chamber: dimensions 100 ⁇ 300 ⁇ 8 mm AER / CER filling (lamination)
  • Concentration chamber Dimensions 100 ⁇ 300 ⁇ 4 mm AER filling ⁇ Desalination chamber flow rate: 20 L / h ⁇ Concentration chamber flow rate: 2L / h -Electrode chamber flow rate: 10L / h ⁇ Desalination chamber, concentration chamber supply water: One-stage RO permeate 10 ⁇ 1 ⁇ S / cm -Electrode chamber supply water: Desalination chamber treated water-Applied current value: 3A Under the above
  • both the operating voltage and the treated water specific resistance were not significantly different between the example and the comparative example at the start of operation.
  • the operation voltage and the specific resistance of the treated water changed greatly.
  • the operating voltage after 200 hours of operation was 16.2 V
  • the operating voltage increased to about 50 to 120 V.
  • the specific resistance of the treated water after 200 hours of operation was 18.1 M ⁇ ⁇ cm in Example 3, whereas it was 1 to 4 M ⁇ ⁇ cm in Comparative Examples 3 to 5.
  • the bipolar membrane is installed at all the sites where water dissociation occurs, preventing current drift, thereby preventing increase in operating voltage and deterioration of treated water purity, and high-purity deionization. It was confirmed that water could be produced.
  • the configuration in which the bipolar membrane is installed on the ion exchange membrane has been described.
  • it is also possible to replace a part of the ion exchange membrane with a bipolar membrane and the same effect as described above can be obtained by such replacement.
  • the upper half of the first cation exchange membrane c1 shown in FIG. 6 (the portion in contact with the anion exchanger in the cathode-side second small desalting chamber D-2) may be replaced with a bipolar membrane.
  • the lower half of the second anion exchange membrane (intermediate ion exchange membrane) a2 shown in FIG. 6 is replaced with a bipolar membrane. May be.
  • Examples of the anion exchanger used in the deionized water production apparatus of the present invention include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most versatile ion exchange resins are preferably used.
  • Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers.
  • Examples of the cation exchanger include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most general-purpose ion exchange resin is preferably used.
  • Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Disclosed is an electronic device—which is for producing deionized water and which is provided with a desalinization processing unit configured from a desalinization chamber (D) and a pair of concentration chambers (C1, C2) that are provided to both sides of the desalinization chamber (D) and that are filled with an anion exchange body—wherein: an auxiliary desalinization chamber that is filled with an anion exchange body is provided between a negative electrode chamber (E1) and the concentration chamber that is adjacent to said negative electrode chamber (E1); the desalinization chamber (D) is, by means of an ion exchange membrane, partitioned into a first desalinization subchamber (D-1) that neighbors concentration chamber C1, and a second desalinization subchamber (D-2) that neighbors concentration chamber C2; the first desalinization subchamber (D-1) is filled with an anion exchange body; and the second desalinization subchamber (D-2) is filled with an anion exchange body and a cation exchange body in the order such that the ion exchange body that the water to be processed passes through last is the anion exchange body.

Description

電気式脱イオン水製造装置Electric deionized water production equipment
 本発明は、電気式脱イオン水製造装置に関するものであり、特に脱塩室の構造に関するものである。 The present invention relates to an electric deionized water production apparatus, and particularly relates to the structure of a desalting chamber.
 従来、イオン交換体に被処理水を通水させて脱イオンを行う脱イオン水製造装置が知られている。このような製造装置では、イオン交換体のイオン交換基が飽和して脱塩性能が低下したときに、薬剤(酸やアルカリ)によってイオン交換基の再生を行う必要がある。具体的には、イオン交換基に吸着した陰イオンや陽イオンを酸またはアルカリ由来のHやOHで置換する必要がある。近年、上記のような運転上の不利な点を解消するため、薬剤による再生が不要な電気式脱イオン水製造装置が開発され、実用化されている。 Conventionally, a deionized water production apparatus that performs deionization by passing water to be treated through an ion exchanger is known. In such a production apparatus, when the ion exchange group of the ion exchanger is saturated and the desalting performance is lowered, it is necessary to regenerate the ion exchange group with a chemical (acid or alkali). Specifically, it is necessary to replace the anion or cation adsorbed on the ion exchange group with H + or OH derived from acid or alkali. In recent years, in order to eliminate the disadvantages in operation as described above, an electric deionized water production apparatus that does not require regeneration with a drug has been developed and put into practical use.
 電気式脱イオン水製造装置は、電気泳動と電気透析を組み合わせた装置である。一般的な電気式脱イオン水製造装置の基本構成は次のとおりである。すなわち、電気式脱イオン水製造装置は、脱塩室と、該脱塩室の両側に配置された一対の濃縮室と、一方の濃縮室の外側に配置された陽極室と、他方の濃縮室の外側に配置された陰極室とを有する。脱塩室は、対向配置されたアニオン交換膜およびカチオン交換膜と、それら交換膜の間に充填されたイオン交換体(アニオン交換体又は/及びカチオン交換体)とを有する。以下、電気式脱イオン水製造装置を「脱イオン水製造装置」と略称する場合もある。 The electric deionized water production apparatus is a combination of electrophoresis and electrodialysis. The basic configuration of a general electric deionized water production apparatus is as follows. That is, the electric deionized water production apparatus includes a demineralization chamber, a pair of concentration chambers disposed on both sides of the demineralization chamber, an anode chamber disposed outside one of the concentration chambers, and the other concentration chamber. And a cathode chamber disposed on the outside. The desalting chamber has an anion exchange membrane and a cation exchange membrane arranged opposite to each other, and an ion exchanger (anion exchanger or / and cation exchanger) filled between the exchange membranes. Hereinafter, the electric deionized water production apparatus may be abbreviated as “deionized water production apparatus”.
 上記のような構成を有する脱イオン水製造装置によって脱イオン水を製造するには、陽極室および陰極室にそれぞれ設けられている電極間に直流電圧を印加した状態で脱塩室に被処理水を通水させる。脱塩室では、アニオン交換体によってアニオン成分(Cl、CO 2-、HCO 、SiO等)が、カチオン交換体によってカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。同時に、脱塩室内のアニオン交換体とカチオン交換体の界面で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(2HO→H+OH)。イオン交換体に捕捉されたイオン成分は、この水素イオン及び水酸化物イオンと交換されてイオン交換体から遊離する。遊離したイオン成分はイオン交換体を伝ってイオン交換膜(アニオン交換膜またはカチオン交換膜)まで電気泳動し、イオン交換膜で電気透析されて濃縮室へ移動する。濃縮室に移動したイオン成分は、濃縮室を流れる水によって排出される。 In order to produce deionized water by the deionized water production apparatus having the above-described configuration, water to be treated is supplied to the demineralization chamber with a DC voltage applied between the electrodes provided in the anode chamber and the cathode chamber, respectively. Allow water to pass. In the desalting chamber, anion components (Cl , CO 3 2− , HCO 3 , SiO 2 , etc.) are captured by the anion exchanger, and cation components (Na + , Ca 2+ , Mg 2+, etc.) are captured by the cation exchanger. The At the same time, a water dissociation reaction occurs at the interface between the anion exchanger and the cation exchanger in the desalting chamber, and hydrogen ions and hydroxide ions are generated (2H 2 O → H + + OH ). The ion component captured by the ion exchanger is exchanged with the hydrogen ions and hydroxide ions to be released from the ion exchanger. The liberated ion component travels through the ion exchanger to the ion exchange membrane (anion exchange membrane or cation exchange membrane), is electrodialyzed on the ion exchange membrane, and moves to the concentration chamber. The ion component that has moved to the concentration chamber is discharged by the water flowing through the concentration chamber.
 以上のように、電気式脱イオン水製造装置では、水素イオンと水酸化物イオンがイオン交換体を再生する再生剤(酸やアルカリ)として連続的に作用する。このため、上述のような薬剤によるイオン交換体の再生が基本的には不要であり、連続運転が可能である。 As described above, in the electric deionized water production apparatus, hydrogen ions and hydroxide ions continuously act as a regenerant (acid or alkali) for regenerating the ion exchanger. For this reason, it is basically unnecessary to regenerate the ion exchanger with the drug as described above, and continuous operation is possible.
 しかし、脱イオン水製造装置を連続運転すると、被処理水中の硬度成分が析出し、炭酸カルシウムや水酸化マグネシウム等のスケールが発生する。スケールは特に、陰極室と濃縮室を隔てるアニオン交換膜の濃縮室側表面で発生する(図8参照)。また、脱塩室が複数設けられている場合には、2つの脱塩室に挟まれた濃縮室のアニオン交換膜表面でスケールが発生する(9参照)。その理由は次のとおりである。陰極室内における電気分解によって生成された水酸化イオン、脱塩室内における水解離反応によって生成された水酸化イオンが通過することによって、濃縮室のアニオン交換膜表面はアルカリ性になっている。すると、脱塩室からカチオン交換膜を通過してきた硬度成分(マグネシウムイオンやカルシウムイオン)がアルカリ性になっているアニオン交換膜表面において反応し、水酸化マグネシウムや水酸化カルシウムが生成される。濃縮水に炭酸イオンが含まれている場合には、さらに炭酸カルシウムや炭酸マグネシウムが生成される。スケールが発生すると、スケール発生部分における電気抵抗が上昇し、電流が流れにくくなる。すなわち、スケールの発生が無い場合と同一の電流値を得るためには電圧を上昇させる必要があり、消費電力の増加を招く。また、濃縮室内における電流密度が不均一になる場合もある。スケールの量がさらに増加すると、通水差圧の上昇が生じるとともに、電気抵抗がさらに上昇する。この場合、イオン除去に必要な量の電流が流せなくなり、処理水質の低下を招く。加えて、成長したスケールがイオン交換膜の内部にまで侵入し、イオン交換膜を損傷させることもある。 However, when the deionized water production apparatus is continuously operated, hardness components in the water to be treated are deposited, and scales such as calcium carbonate and magnesium hydroxide are generated. In particular, the scale is generated on the concentration chamber side surface of the anion exchange membrane separating the cathode chamber and the concentration chamber (see FIG. 8). Further, when a plurality of desalting chambers are provided, scale is generated on the surface of the anion exchange membrane in the concentration chamber sandwiched between two desalting chambers (see 9). The reason is as follows. The hydroxide ion generated by electrolysis in the cathode chamber and the hydroxide ion generated by the water dissociation reaction in the desalting chamber pass, so that the anion exchange membrane surface in the concentration chamber becomes alkaline. Then, hardness components (magnesium ions and calcium ions) that have passed through the cation exchange membrane from the desalting chamber react with each other on the surface of the anion exchange membrane, and magnesium hydroxide and calcium hydroxide are generated. When carbonated ions are contained in the concentrated water, calcium carbonate and magnesium carbonate are further generated. When the scale is generated, the electric resistance in the scale generating portion is increased, and it becomes difficult for the current to flow. That is, in order to obtain the same current value as when no scale is generated, it is necessary to increase the voltage, leading to an increase in power consumption. In addition, the current density in the concentration chamber may be non-uniform. As the amount of scale further increases, the water flow differential pressure increases and the electrical resistance further increases. In this case, an amount of current necessary for ion removal cannot flow, and the quality of the treated water is deteriorated. In addition, the grown scale may penetrate into the ion exchange membrane and damage the ion exchange membrane.
 そこで、上記のようなスケールの生成を抑制する方法の一つとして、濃縮室内にアニオン交換体を充填することが提案されている。例えば、特許文献1には、濃縮室のアニオン交換膜側に特定構造のアニオン交換体が配置された脱イオン水製造装置が開示されている。この脱イオン水製造装置によれば、OHの濃縮水への拡散希釈が、多孔性アニオン交換体表面において促進され、該表面におけるOH濃度の速やかな低減が図られる。他方、硬度成分イオンは、多孔性アニオン交換体の内部に侵入し難くなる。この結果、OHと硬度成分イオンとが接触し反応する機会が低減し、スケールの析出や蓄積が抑制される。 Therefore, as one method for suppressing the generation of scale as described above, it has been proposed to fill the concentration chamber with an anion exchanger. For example, Patent Document 1 discloses a deionized water production apparatus in which an anion exchanger having a specific structure is disposed on the anion exchange membrane side of a concentration chamber. According to this deionized water production apparatus, diffusion dilution of OH into concentrated water is promoted on the surface of the porous anion exchanger, and the OH concentration on the surface can be rapidly reduced. On the other hand, hardness component ions are less likely to enter the interior of the porous anion exchanger. As a result, the opportunity for OH and hardness component ions to come into contact and react with each other is reduced, and the precipitation and accumulation of scale is suppressed.
 また、特許文献2には、水透過性の異なるイオン交換体の層が濃縮室内に二層以上設けられ、かつ、水透過性の小さいイオン交換体の層がアニオン交換膜側に配置され、その層の少なくとも表面にアニオン交換基が与えられた脱イオン水製造装置が開示されている。この脱イオン水製造装置によれば、水透過性の大きな層を移動してきた、硬度成分を多く含む濃縮水が水透過性の小さい層に到達すると、該濃縮水の移動力が低減する。この結果、硬度成分を多く含む濃縮水が陰イオン交換膜の濃縮室側表面に流れ込むことが防止され、スケールの析出や蓄積が抑制される。 Further, in Patent Document 2, two or more ion exchanger layers having different water permeability are provided in the concentration chamber, and an ion exchanger layer having a low water permeability is disposed on the anion exchange membrane side. An apparatus for producing deionized water in which an anion exchange group is provided on at least the surface of the layer is disclosed. According to this deionized water production apparatus, when concentrated water containing a large amount of hardness component that has moved through a layer with high water permeability reaches a layer with low water permeability, the moving force of the concentrated water is reduced. As a result, concentrated water containing a large amount of hardness components is prevented from flowing into the concentration chamber side surface of the anion exchange membrane, and scale deposition and accumulation are suppressed.
特開2001-225078号公報Japanese Patent Laid-Open No. 2001-225078 特開2002―1345号公報Japanese Patent Laid-Open No. 2002-1345
 しかし、脱イオン水製造装置では、濃縮室にアニオン交換体を充填することでスケールの生成を回避できたとしても、スケールの生成とは別の次のような問題が発生する。濃縮水に含まれる炭酸やシリカに代表される弱酸アニオン成分が濃縮室と脱塩室とを仕切るイオン交換膜を通過して処理水中に拡散し、処理水の純度を低下させる。かかる処理水の純度低下は、濃縮室にアニオン交換体が充填されている場合により顕著に現れてしまう。以下、炭酸とシリカを例として、具体的に説明する。 However, in the deionized water production apparatus, even if the generation of scale can be avoided by filling the concentration chamber with an anion exchanger, the following problems other than the generation of scale occur. A weak acid anion component typified by carbonic acid and silica contained in the concentrated water passes through the ion exchange membrane partitioning the concentration chamber and the desalting chamber and diffuses into the treated water, thereby reducing the purity of the treated water. Such a decrease in the purity of the treated water appears more conspicuously when the concentration chamber is filled with an anion exchanger. Hereinafter, carbon dioxide and silica will be specifically described as examples.
 一般的に、カチオン交換膜はカチオンのみ選択的に透過させるイオン交換膜である。その原理は、膜自体に-(マイナス)電荷を持たせ、-電荷を有するアニオンに対して反発力を働かせて透過を阻止するものである。一方、炭酸(二酸化炭素)やシリカは水溶液中で各イオン種の形態を取り、それらは平衡状態にある。
CO⇔HCO ⇔CO 2-
SiO⇔Si(OH)⇔Si(OH)
 上記のような平衡状態において各イオン種が全体に占める割合は、pHによって大きく変化する。pHが低い領域では炭酸やシリカの大部分はイオン化していない、つまり電荷を持たない状態でCO、SiOとして存在している。
Generally, a cation exchange membrane is an ion exchange membrane that selectively permeates only cations. The principle is that the membrane itself has a-(minus) charge, and a repulsive force is exerted on the anion having the -charge to block permeation. On the other hand, carbonic acid (carbon dioxide) and silica take the form of each ionic species in an aqueous solution, and they are in an equilibrium state.
CO 2 ⇔HCO 3 - ⇔CO 3 2-
SiO 2 ⇔Si (OH) 4 ⇔Si (OH) 3 O
The proportion of each ionic species in the entire equilibrium state as described above varies greatly depending on the pH. In the region where the pH is low, most of carbonic acid and silica are not ionized, that is, exist as CO 2 and SiO 2 in a state having no charge.
 このため、pHが低い領域でカチオン交換膜を用いて炭酸やシリカの移動を阻止しようとしても、-電荷による反発力が有効に働かないために、これらの分子は容易にカチオン交換膜を通過してしまう。 For this reason, even if an attempt is made to prevent the movement of carbonic acid and silica using a cation exchange membrane in a low pH region, the repulsive force due to the charge does not work effectively, so these molecules easily pass through the cation exchange membrane. End up.
 図8を参照して具体的に説明する。脱塩室Dの陰極側にはカチオン交換膜を介して濃縮室C2が配置され、陽極側にはアニオン交換膜を介して濃縮室C1が配置されている。ここで、脱塩室Dにはカチオン交換体およびアニオン交換体が充填され、濃縮室C1、C2にはアニオン交換体が充填されている。処理水は脱塩室Dを通過して系外に排出される。 Specific description will be given with reference to FIG. A concentration chamber C2 is disposed on the cathode side of the desalting chamber D via a cation exchange membrane, and a concentration chamber C1 is disposed on the anode side via an anion exchange membrane. Here, the desalting chamber D is filled with a cation exchanger and an anion exchanger, and the concentration chambers C1 and C2 are filled with an anion exchanger. The treated water passes through the desalting chamber D and is discharged out of the system.
 脱塩室Dから濃縮室C2に向かって、被処理水中のカチオン成分と共に水解離反応により生じる多量の水素イオン(H)がカチオン交換体を伝って移動してくる。濃縮室C2にはアニオン交換体が充填されているので、カチオン交換膜を通過した水素イオン(H)は、カチオン交換膜の濃縮室側表面で一斉に放出される。すなわち、カチオン交換膜の濃縮室側表面は、水素イオン(H)が多い状態(=pHが低い状態)になる。一方、濃縮水に含まれる炭酸やシリカ(図中には炭酸が示されているが、シリカについても同じ)は、濃縮室C1及びC2内のアニオン交換体によりイオンとして捕捉され、アニオン交換体を伝ってカチオン交換膜表面まで移動する。濃縮室C2のカチオン交換膜表面では炭酸やシリカの濃度が高くなる上に、pHが低くなっている。結果としてpHが低い条件下でイオン化しない炭酸やシリカは、アニオン交換体から遊離した後に電荷を失い、カチオン交換膜を透過して被処理水中に拡散してしまう。 A large amount of hydrogen ions (H + ) generated by the water dissociation reaction together with the cation components in the water to be treated move from the desalting chamber D toward the concentration chamber C2 through the cation exchanger. Since the concentration chamber C2 is filled with an anion exchanger, the hydrogen ions (H + ) that have passed through the cation exchange membrane are released simultaneously on the concentration chamber side surface of the cation exchange membrane. That is, the concentration chamber side surface of the cation exchange membrane is in a state where there are many hydrogen ions (H + ) (= a state where pH is low). On the other hand, carbonic acid and silica contained in the concentrated water (carbonic acid is shown in the figure, but the same applies to silica) are captured as ions by the anion exchangers in the concentration chambers C1 and C2, and the anion exchanger It travels to the surface of the cation exchange membrane. On the surface of the cation exchange membrane in the concentration chamber C2, the concentration of carbonic acid and silica is high, and the pH is low. As a result, carbonic acid and silica that are not ionized under low pH conditions lose their charge after being released from the anion exchanger, and permeate through the cation exchange membrane and diffuse into the water to be treated.
 図9に示す脱イオン水製造装置には2つの脱塩室(D1、D2)が設けられている。このように複数の脱塩室が設けられている場合には、濃縮水にもともと含まれている炭酸やシリカに加え、被処理水に含まれている炭酸やシリカが脱塩室から濃縮室へ移動してくる。従って、濃縮室内における炭酸やシリカの濃度が上昇し、炭酸やシリカの脱塩室への混入による処理水の純度低下はより顕著となる(図中には炭酸が示されているが、シリカについても同じ)。 The deionized water production apparatus shown in FIG. 9 is provided with two demineralization chambers (D1, D2). When a plurality of desalting chambers are provided in this way, in addition to carbonic acid and silica originally contained in the concentrated water, carbonic acid and silica contained in the water to be treated are transferred from the desalting chamber to the concentrating chamber. Come on. Therefore, the concentration of carbonic acid and silica in the concentration chamber increases, and the purity reduction of the treated water due to the mixing of carbonic acid and silica into the desalting chamber becomes more noticeable. The same).
 本発明は上記課題に鑑みてなされたものであり、その目的は、スケールの発生を抑制しつつ、高純度の脱イオン水を製造可能とすることである。 The present invention has been made in view of the above problems, and an object thereof is to make it possible to produce high-purity deionized water while suppressing the generation of scale.
 本発明の電気式脱イオン水製造装置は、対向する陰極と陽極との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であって、前記脱塩処理部は、脱塩室と、該脱塩室の両隣に設けられるとともに、アニオン交換体が充填された一対の濃縮室とから構成されている。前記脱塩室は、イオン交換膜によって、前記一対の濃縮室の一方に隣接する第1小脱塩室と、前記一対の濃縮室の他方に隣接する第2小脱塩室とに仕切られている。さらに、前記第1小脱塩室には、アニオン交換体が充填され、前記第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体とカチオン交換体とが充填されている。 The electric deionized water production apparatus of the present invention is an electric deionized water production apparatus in which at least one demineralization treatment unit is provided between an opposing cathode and an anode, and the demineralization treatment unit includes: A desalting chamber is provided on both sides of the desalting chamber and a pair of concentration chambers filled with an anion exchanger. The desalting chamber is partitioned by an ion exchange membrane into a first small desalting chamber adjacent to one of the pair of concentrating chambers and a second small desalting chamber adjacent to the other of the pair of concentrating chambers. Yes. Further, the first small desalting chamber is filled with an anion exchanger, and the second small desalting chamber is filled with anions in the order in which the ion exchanger through which the water to be treated passes last becomes an anion exchanger. The exchanger and cation exchanger are filled.
 ここで脱塩室は2室に仕切られてはいるが、イオンの挙動は、脱塩室が仕切りのない1室の場合と基本的に同じである。 Here, although the desalination chamber is divided into two chambers, the behavior of ions is basically the same as the case where the desalination chamber is one chamber without partition.
 上記構成をとることで、陰極側の濃縮室に存在する炭酸やシリカなどのアニオン成分の一部がイオン交換膜を通過して第2小脱塩室へ移動した場合、そのアニオン成分は第2小脱塩室内のアニオン交換体によって捕捉され、第1小脱塩室を介して陽極側の濃縮室へ移動する。よって、濃縮室に存在する炭酸やシリカなどが処理水中に拡散することがない。 By adopting the above configuration, when a part of anion components such as carbonic acid and silica existing in the concentration chamber on the cathode side passes through the ion exchange membrane and moves to the second small desalting chamber, the anion component is second. It is trapped by the anion exchanger in the small desalting chamber and moves to the concentration chamber on the anode side through the first small desalting chamber. Therefore, carbonic acid or silica existing in the concentration chamber does not diffuse into the treated water.
 本発明によれば、スケールの発生を抑制しつつ、高純度の脱イオン水を製造可能な電気式脱イオン水製造装置が実現される。 According to the present invention, an electric deionized water production apparatus capable of producing high-purity deionized water while suppressing the generation of scale is realized.
本発明の電気式脱イオン水製造装置の実施形態の一例を示す概略構成図である。It is a schematic block diagram which shows an example of embodiment of the electrical deionized water manufacturing apparatus of this invention. 本発明の電気式脱イオン水製造装置の実施形態の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. (a)~(d)は、実施例1、2および比較例1、2の第2小脱塩室におけるイオン交換体の構成を示す模式図である。(A)-(d) is a schematic diagram which shows the structure of the ion exchanger in the 2nd small desalination chamber of Examples 1, 2 and Comparative Examples 1, 2. FIG. 本発明の電気式脱イオン水製造装置の実施形態の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. 比較試験2の結果を示す図である。It is a figure which shows the result of the comparative test 2. 本発明の電気式脱イオン水製造装置の実施形態の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of embodiment of the electrical deionized water manufacturing apparatus of this invention. (a)~(d)は、実施例3および比較例3~5の第2小脱塩室におけるバイポーラ膜の有無および配置状態を示す模式図である。(A)-(d) is a schematic diagram showing the presence / absence and arrangement of bipolar membranes in the second small desalting chambers of Example 3 and Comparative Examples 3-5. 濃縮水中の炭酸成分が被処理水中に拡散する原理を示す図である。It is a figure which shows the principle which the carbonic acid component in concentrated water diffuses in to-be-processed water. 処理水中の炭酸成分が被処理水中に再拡散する原理を示す模式図である。It is a schematic diagram which shows the principle that the carbonic acid component in treated water re-diffuses in treated water.
(実施形態1)
 以下、図面を参照して、本発明の電気式脱イオン水製造装置の実施形態の一例について説明する。
(Embodiment 1)
Hereinafter, an example of an embodiment of an electric deionized water production apparatus of the present invention will be described with reference to the drawings.
 図1は、本実施形態に係る脱イオン水製造装置の概略構成図である。図1に示す脱イオン水製造装置では、陰極を備えた陰極室E1と陽極を備えた陽極室E2との間に脱塩処理部が設けられている。この脱塩処理部は、脱塩室Dと、脱塩室Dの両隣に配置された一対の濃縮室C1、C2から構成されている。以下の説明では、一対の濃縮室C1、C2のうち、陽極室E2に隣接している濃縮室C1を「第1の濃縮室C1」、陰極室E1に隣接している濃縮室C2を「第2の濃縮室C2」と呼んで区別する。もっとも、かかる区別は説明の便宜上の区別に過ぎない。 FIG. 1 is a schematic configuration diagram of a deionized water production apparatus according to this embodiment. In the deionized water production apparatus shown in FIG. 1, a demineralization processing unit is provided between a cathode chamber E1 having a cathode and an anode chamber E2 having an anode. The desalting section is composed of a desalting chamber D and a pair of concentration chambers C1 and C2 disposed on both sides of the desalting chamber D. In the following description, among the pair of concentration chambers C1 and C2, the concentration chamber C1 adjacent to the anode chamber E2 is referred to as “first concentration chamber C1”, and the concentration chamber C2 adjacent to the cathode chamber E1 is referred to as “first”. This is called “concentration chamber C2”. However, such a distinction is merely a distinction for convenience of explanation.
 ここで、脱塩室Dは二つの小脱塩室に仕切られている。具体的には、脱塩室Dは、第1の濃縮室C1に隣接している第1小脱塩室D-1と、第2の濃縮室C2に隣接している第2小脱塩室D-2とに仕切られている。 Here, the desalting chamber D is divided into two small desalting chambers. Specifically, the desalination chamber D includes a first small desalination chamber D-1 adjacent to the first concentration chamber C1 and a second small desalination chamber adjacent to the second concentration chamber C2. It is partitioned with D-2.
 これまで説明した各室は、枠体1の内部を複数のイオン交換膜によって多数の空間に仕切ることによって形成されており、イオン交換膜を介して隣接している。各室の配列状況を陰極室E1の側から順に説明すると、次の通りである。すなわち、陰極室E1は、第1のアニオン交換膜a1を介して第2の濃縮室C2に隣接し、第2の濃縮室C2は、第1のカチオン交換膜c1を介して第2小脱塩室D-2と隣接している。第2小脱塩室D-2は、第2のアニオン交換膜a2を介して第1小脱塩室D-1と隣接し、第1小脱塩室D-1は、第3のアニオン交換膜a3を介して第1の濃縮室C1と隣接している。第1の濃縮室C1は、第2のカチオン交換膜c2を介して陽極室E2と隣接している。 Each chamber described so far is formed by dividing the inside of the frame 1 into a plurality of spaces by a plurality of ion exchange membranes, and is adjacent to each other through the ion exchange membranes. The arrangement of the chambers will be described in order from the cathode chamber E1 side as follows. That is, the cathode chamber E1 is adjacent to the second concentration chamber C2 via the first anion exchange membrane a1, and the second concentration chamber C2 is connected to the second small desalination via the first cation exchange membrane c1. Adjacent to chamber D-2. The second small desalting chamber D-2 is adjacent to the first small desalting chamber D-1 via the second anion exchange membrane a2, and the first small desalting chamber D-1 is the third anion exchange. It is adjacent to the first concentration chamber C1 through the membrane a3. The first concentration chamber C1 is adjacent to the anode chamber E2 through the second cation exchange membrane c2.
 以下の説明では、上記複数のイオン交換膜のうち、脱塩室Dを第1小脱塩室D-1と第2脱塩室D-2とに仕切っているアニオン交換膜を「中間イオン交換膜」と呼んで他のイオン交換膜と区別する場合がある。もっとも、かかる区別は説明の便宜上の区別に過ぎない。 In the following description, among the plurality of ion exchange membranes, an anion exchange membrane that divides the desalting chamber D into a first small desalting chamber D-1 and a second desalting chamber D-2 is referred to as “intermediate ion exchange”. It may be called a “membrane” to be distinguished from other ion exchange membranes. However, such a distinction is merely a distinction for convenience of explanation.
 陰極室E1には陰極が収容されている。陰極は金属の網状体あるいは板状体であり、例えばステンレス製の網状体あるいは板状体である。 The cathode chamber E1 contains a cathode. The cathode is a metal net or plate, for example, a stainless steel net or plate.
 陽極室E2には陽極が収容されている。陽極は金属の網状体あるいは板状体である。被処理水にClを含む場合、陽極に塩素が発生する。このため、陽極には耐塩素性能を有する材料を用いることが望ましく、一例として、白金、パラジウム、イリジウム等の金属、あるいはチタンをこれらの金属で被覆した材料が挙げられる。 An anode is accommodated in the anode chamber E2. The anode is a metal net or plate. The water to be treated Cl - if it contains chlorine is generated in the anode. For this reason, it is desirable to use a material having chlorine resistance for the anode, and examples thereof include metals such as platinum, palladium and iridium, or materials obtained by coating titanium with these metals.
 陰極室E1および陽極室E2には電極水がそれぞれ供給される。これらの電極水は電極近傍での電気分解により、水素イオン及び水酸化物イオンを発生させる。脱イオン水製造装置の電気抵抗を抑えるために、陰極室E1および陽極室E2にはイオン交換体が充填されていることが好ましい。さらに、陰極室E1には、弱塩基性アニオン交換体、強塩基性アニオン交換体等のアニオン交換体が充填されていることがより好ましい。また、陽極室E2には、弱酸性カチオン交換体、強酸性カチオン交換体等のカチオン交換体が充填されていることがより好ましい。 Electrode water is supplied to each of the cathode chamber E1 and the anode chamber E2. These electrode waters generate hydrogen ions and hydroxide ions by electrolysis near the electrodes. In order to suppress the electrical resistance of the deionized water production apparatus, the cathode chamber E1 and the anode chamber E2 are preferably filled with an ion exchanger. Furthermore, the cathode chamber E1 is more preferably filled with an anion exchanger such as a weakly basic anion exchanger or a strongly basic anion exchanger. The anode chamber E2 is more preferably filled with a cation exchanger such as a weak acid cation exchanger or a strong acid cation exchanger.
 第1の濃縮室C1および第2の濃縮室C2は、脱塩室Dから排出されるアニオン成分またはカチオン成分を取り込み、それらを系外に放出するために設けられている。各濃縮室C1、C2には、スケールの発生を抑制すべくアニオン交換体が単床形態で充填されている。 The first concentration chamber C1 and the second concentration chamber C2 are provided for taking in the anion component or cation component discharged from the desalting chamber D and releasing them out of the system. Each of the concentrating chambers C1 and C2 is filled with an anion exchanger in a single bed form to suppress the generation of scale.
 第1小脱塩室D-1には、アニオン交換体が単床形態で充填されている。また、第2小脱塩室D-2には、アニオン交換体およびカチオン交換体が複床形態で充填されている。具体的には、カチオン交換体の層とアニオン交換体の層とが被処理水の通水方向に沿って積層されている。より具体的には、通水方向前段にカチオン交換体層が配置され、通水方向後段にアニオン交換体層が配置されている。すなわち、第2小脱塩室D-2に流入した被処理水は、カチオン交換体層とアニオン交換体層をこの順で通過する。換言すれば、第2小脱塩室D-2において被処理水が最後に通過するイオン交換体の層がアニオン交換体層となる順序でアニオン交換体層とカチオン交換体層とが積層されている。 The first small desalination chamber D-1 is filled with an anion exchanger in a single bed form. The second small desalting chamber D-2 is filled with an anion exchanger and a cation exchanger in a double bed form. Specifically, the layer of the cation exchanger and the layer of the anion exchanger are laminated along the direction of water flow of the water to be treated. More specifically, the cation exchanger layer is disposed at the front stage in the water passage direction, and the anion exchanger layer is disposed at the rear stage in the water passage direction. That is, the water to be treated that has flowed into the second small desalting chamber D-2 passes through the cation exchanger layer and the anion exchanger layer in this order. In other words, in the second small desalination chamber D-2, the anion exchanger layer and the cation exchanger layer are laminated in the order in which the ion exchanger layer through which the water to be treated finally passes becomes an anion exchanger layer. Yes.
 図1では、枠体1が一体的に示されているが、実際には部屋毎に別々の枠体を備え、枠体同士が互いに密着して設けられている。枠体1の素材は絶縁性を有し、被処理水が漏洩しない素材であれば特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS、ポリカーボネート、m-PPE(変性ポリフェニレンエーテル)等の樹脂を挙げることができる。 In FIG. 1, the frame body 1 is shown integrally, but actually, a separate frame body is provided for each room, and the frame bodies are provided in close contact with each other. The material of the frame 1 is not particularly limited as long as it has insulating properties and does not leak treated water. For example, polyethylene, polypropylene, polyvinyl chloride, ABS, polycarbonate, m-PPE (modified polyphenylene ether), etc. Can be mentioned.
 ここで、本発明の理解を容易するために、図1に示す脱イオン水製造装置における被処理水および濃縮水の主な流れについて予め概説する。被処理水は、第1小脱塩室D-1に供給され、該小脱塩室D-1を通過する。第1小脱塩室D-1を通過した被処理水は、第2小脱塩室D-2に供給され、該小脱塩室D-2を通過した後に系外に排出される。一方、濃縮水は、第1の濃縮室C1および第2の濃縮室C2にそれぞれ並列的に供給され、これら濃縮室を通過して系外に排出される。 Here, in order to facilitate understanding of the present invention, the main flow of the treated water and concentrated water in the deionized water production apparatus shown in FIG. 1 will be outlined in advance. The water to be treated is supplied to the first small desalting chamber D-1 and passes through the small desalting chamber D-1. The water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2, and is discharged outside the system after passing through the small desalting chamber D-2. On the other hand, the concentrated water is supplied in parallel to the first concentration chamber C1 and the second concentration chamber C2, respectively, passes through these concentration chambers, and is discharged out of the system.
 上記のように被処理水および濃縮水を流すためにいくつかの流路U1~U3、L1~L2が設けられている。図1において脱イオン水製造装置の上方に示されている流路U1は、その一端が被処理水の供給側に接続され、他端が第1小脱塩室D-1に接続されている。脱イオン水製造装置の下方に示されている流路L1は、その一端が第1小脱塩室D-1に接続され、他端が第2小脱塩室D-2に接続されている。脱イオン水製造装置の上方に示されている流路U2は、その一端が第2小脱塩室D-2に接続され、他端が被処理水の排出側に接続されている。 As described above, several flow paths U1 to U3 and L1 to L2 are provided for flowing the water to be treated and the concentrated water. The flow path U1 shown above the deionized water production apparatus in FIG. 1 has one end connected to the treated water supply side and the other end connected to the first small desalting chamber D-1. . The flow path L1 shown below the deionized water production apparatus has one end connected to the first small desalting chamber D-1 and the other end connected to the second small desalting chamber D-2. . The flow path U2 shown above the deionized water production apparatus has one end connected to the second small desalting chamber D-2 and the other end connected to the discharge side of the water to be treated.
 図1において脱イオン水製造装置の上方に示されている流路U3は、その一端が濃縮水の供給側に接続され、他端側は途中で分岐されて、第1の濃縮室C1、第2の濃縮室C2にそれぞれ接続されている。脱イオン水製造装置の下方に示されている流路L2は、その一端が第1の濃縮室C1、第2の濃縮室C2にそれぞれ接続され、途中で合流した後に濃縮水の排出側に接続されている。 The flow path U3 shown above the deionized water production apparatus in FIG. 1 has one end connected to the concentrated water supply side and the other end branched in the middle to provide the first concentration chamber C1, the first The two concentrating chambers C2 are connected to each other. One end of the flow path L2 shown below the deionized water production apparatus is connected to the first concentration chamber C1 and the second concentration chamber C2, respectively. Has been.
 なお、図示は省略されているが、陰極室E1および陽極室E2には、電極水を供給するための流路と供給された電極水を排出するための流路がそれぞれ接続されている。 Although not shown, the cathode chamber E1 and the anode chamber E2 are connected to a channel for supplying electrode water and a channel for discharging the supplied electrode water, respectively.
 次に、上記構成を有する脱イオン水製造装置の動作および作用について説明する。第1の濃縮室C1、第2の濃縮室C2には、流路U3から濃縮水が供給され、流路L2から排出される。また、陰極室E1および陽極室E2には、図示しない流路から電極水が供給され、供給された電極水は図示しない流路から排出される。さらに、陽極、陰極の間には所定の直流電圧が印加される。 Next, the operation and action of the deionized water production apparatus having the above configuration will be described. The first concentration chamber C1 and the second concentration chamber C2 are supplied with concentrated water from the flow path U3 and discharged from the flow path L2. Electrode water is supplied to the cathode chamber E1 and the anode chamber E2 from a flow path (not shown), and the supplied electrode water is discharged from the flow path (not shown). Further, a predetermined DC voltage is applied between the anode and the cathode.
 以上の状態の下で、流路U1から第1小脱塩室D-1に被処理水が供給される。供給された被処理水中のアニオン成分(Cl、CO 2-、HCO 、SiO等)は、被処理水が第1小脱塩室D-1を通過する過程で捕捉される。第1小脱塩室D-1において捕捉されたアニオン成分は、第1小脱塩室D-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。 Under the above conditions, the water to be treated is supplied from the flow path U1 to the first small desalting chamber D-1. Anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) in the supplied treated water are captured in the process of passing the treated water through the first small desalting chamber D-1. The anion component trapped in the first small desalting chamber D-1 moves to the adjacent first concentration chamber C1 via the first small desalting chamber D-1 and the third anion exchange membrane a3. It is discharged out of the system together with the concentrated water passing through the first concentration chamber C1.
 次に、第1小脱塩室D-1を通過した被処理水は、流路L1を介して第2小脱塩室D-2に供給される。ここで、第2小脱塩室D-2には、カチオン交換体層とアニオン交換体層とがこの順で積層されていることは既述の通りである。よって、第2小脱塩室D-2に供給された被処理水は、まずカチオン交換体層を通過し、その後にアニオン交換体層を通過する。その際、被処理水がカチオン交換体層を通過する過程で、被処理水中のカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。具体的には、第2小脱塩室D-2内のカチオン交換体によって捕捉されたカチオン成分は、第2小脱塩室D-2と第1のカチオン交換膜c1を介して隣接する第2の濃縮室C2へ移動し、該第2の濃縮室C2を通水する濃縮水と共に系外に排出される。 Next, the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2 through the flow path L1. Here, as described above, a cation exchanger layer and an anion exchanger layer are laminated in this order in the second small desalting chamber D-2. Therefore, the water to be treated supplied to the second small desalting chamber D-2 first passes through the cation exchanger layer and then passes through the anion exchanger layer. At that time, cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are captured in the process of the water to be treated passing through the cation exchanger layer. Specifically, the cation component captured by the cation exchanger in the second small desalting chamber D-2 is adjacent to the second small desalting chamber D-2 via the first cation exchange membrane c1. It moves to the 2nd concentration chamber C2, and is discharged | emitted out of the system with the concentrated water which flows through this 2nd concentration chamber C2.
 さらに、第2小脱塩室D-2においてカチオン交換体層を通過した被処理水は、次段のアニオン交換体層を通過する。この際、被処理水中のアニオン成分(Cl、CO 2-、HCO 、SiO等)が再度捕捉される。具体的には、第2小脱塩室D-2のアニオン交換体によって捕捉されたアニオン成分は、第2小脱塩室D-2と中間イオン交換膜a2を介して隣接する第1小脱塩室D-1へ移動する。第1小脱塩室D-1へ移動したアニオン成分は、第1小脱塩室D-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。 Furthermore, the water to be treated that has passed through the cation exchanger layer in the second small desalting chamber D-2 passes through the next-stage anion exchanger layer. At this time, anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) in the water to be treated are captured again. Specifically, the anion component captured by the anion exchanger in the second small desalting chamber D-2 is adjacent to the first small desalting chamber D-2 adjacent to the second small desalting chamber D-2 via the intermediate ion exchange membrane a2. Move to salt chamber D-1. The anion component that has moved to the first small desalting chamber D-1 moves to the adjacent first concentration chamber C1 via the first small desalting chamber D-1 and the third anion exchange membrane a3. It is discharged out of the system together with concentrated water passing through one concentration chamber C1.
 以上が本実施形態に係る脱イオン水製造装置における脱イオン処理の流れである。しかし、上記処理の過程で、第2の濃縮室C2に供給される濃縮水に含まれているアニオン成分(炭酸やシリカ)の一部が第1のカチオン交換膜c1を通過し、第2小脱塩室D-2へ移動する。炭酸やシリカがカチオン交換膜を通過する原理については既に説明した通りである。ここで、第2の濃縮室C2から第2小脱塩室D-2へ移動した炭酸やシリカは、第1のカチオン交換膜c1の陽極側表面上に一様に拡散する。すなわち、炭酸やシリカは、第2小脱塩室D-2内のアニオン交換体層と接している領域のみでなく、カチオン交換体層と接している領域にも拡散する。そして、炭酸やシリカはカチオン交換体によっては捕捉されないので、第1のカチオン交換膜c1の陽極側表面のうち、カチオン交換体層と接している領域に拡散した炭酸やシリカは被処理水とともにカチオン交換体層を通過してしまう。しかし、第2小脱塩室D-2には、被処理水の通水方向に沿ってカチオン交換体層とアニオン交換体層とが積層されている。よって、カチオン交換体層を通過した炭酸やシリカは、次段のアニオン交換体層において再度イオン化されて捕捉され、第1小脱塩室D-1へ移動する。第1小脱塩室D-1に移動した炭酸やシリカは、第3のアニオン交換膜a3を通過して、第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。従って、濃縮水に含まれている炭酸およびシリカが被処理水中に拡散し、処理水の純度を低下させることはない。 The above is the flow of deionization processing in the deionized water production apparatus according to this embodiment. However, in the process, a part of the anion component (carbonic acid or silica) contained in the concentrated water supplied to the second concentration chamber C2 passes through the first cation exchange membrane c1, and the second small Move to desalination chamber D-2. The principle of carbonic acid or silica passing through the cation exchange membrane is as described above. Here, the carbonic acid and silica moved from the second concentration chamber C2 to the second small desalting chamber D-2 are uniformly diffused on the anode side surface of the first cation exchange membrane c1. That is, carbonic acid and silica diffuse not only in the region in contact with the anion exchanger layer in the second small desalting chamber D-2 but also in the region in contact with the cation exchanger layer. Since carbonic acid and silica are not trapped by the cation exchanger, the carbonic acid and silica diffused in the region in contact with the cation exchanger layer on the anode side surface of the first cation exchange membrane c1 are cation together with the water to be treated. It passes through the exchanger layer. However, a cation exchanger layer and an anion exchanger layer are stacked in the second small desalting chamber D-2 along the direction of water flow. Accordingly, the carbonic acid and silica that have passed through the cation exchanger layer are ionized and captured again in the next-stage anion exchanger layer, and move to the first small desalting chamber D-1. The carbonic acid and silica moved to the first small desalting chamber D-1 pass through the third anion exchange membrane a3, move to the first concentration chamber C1, and pass through the first concentration chamber C1. It is discharged out of the system together with concentrated water. Therefore, carbonic acid and silica contained in the concentrated water are not diffused into the water to be treated, and the purity of the treated water is not lowered.
 なお、第2小脱塩室D-2内のカチオン交換体層とアニオン交換体層の積層順序が逆の場合には、第1のカチオン交換膜c1の陽極側表面のうち、カチオン交換体層と接している領域に拡散した炭酸やシリカを捕捉することはできず、処理水の純度が低下することは自明である。 In the case where the stacking order of the cation exchanger layer and the anion exchanger layer in the second small desalting chamber D-2 is reversed, the cation exchanger layer on the anode side surface of the first cation exchange membrane c1 It is obvious that carbonic acid and silica diffused in the region in contact with the water cannot be captured, and the purity of the treated water is lowered.
 これまでの説明より、第2小脱塩室D-2内に設けられたイオン交換体の積層体の最終段がアニオン交換体層であれば上記効果が得られることが理解できるはずである。換言すれば、第2小脱塩室D-2を通過する被処理水が最後に通過するイオン交換体がアニオン交換体であれば上記効果が得られる。よって、最終段のアニオン交換体層よりも前段のイオン交換体層の種類、積層順序、積層数は特に限定されない。例えば、カチオン交換体層とアニオン交換体層を最終段がアニオン交換体層となる順序で4層以上積層してもよい。 From the description so far, it should be understood that the above effect can be obtained if the final stage of the stack of ion exchangers provided in the second small desalting chamber D-2 is an anion exchanger layer. In other words, if the ion exchanger through which the water to be treated that passes through the second small desalting chamber D-2 finally passes is an anion exchanger, the above-described effect can be obtained. Accordingly, the type, stacking order, and number of stacks of the ion exchanger layer before the final anion exchanger layer are not particularly limited. For example, four or more cation exchanger layers and anion exchanger layers may be stacked in the order in which the final stage is an anion exchanger layer.
 さらに、本実施形態に係る脱イオン水製造装置では、被処理水が最初に供給される第1小脱塩室D-1にアニオン交換体が充填され、被処理水が次に供給される第2小脱塩室D-2には、カチオン交換体とアニオン交換体がこの順で積層されている。よって、被処理水は、最初にアニオン交換体を通過する。これにより、被処理水からアニオン成分が除去され、被処理水のpHが上昇する。 Furthermore, in the deionized water production apparatus according to this embodiment, the first small demineralization chamber D-1 to which the water to be treated is first supplied is filled with the anion exchanger, and the water to be treated is supplied next. In the second small desalting chamber D-2, a cation exchanger and an anion exchanger are laminated in this order. Thus, the water to be treated first passes through the anion exchanger. Thereby, an anionic component is removed from to-be-processed water, and pH of to-be-processed water rises.
 さらに、第1小脱塩室D-1を通過した被処理水は、カチオン交換体とアニオン交換体がこの順で積層されている第2小脱塩室D-2に供給される。すなわち、第1小脱塩室D-1内のアニオン交換体を通過した被処理水は、次いでカチオン交換体を通過し、続いてアニオン交換体を再度通過する。要するに、本実施形態の構成よれば、被処理水は、アニオン交換体とカチオン交換体を交互に通過する。 Furthermore, the water to be treated that has passed through the first small desalting chamber D-1 is supplied to the second small desalting chamber D-2 in which the cation exchanger and the anion exchanger are laminated in this order. That is, the water to be treated that has passed through the anion exchanger in the first small desalting chamber D-1 then passes through the cation exchanger, and then passes again through the anion exchanger. In short, according to the configuration of the present embodiment, the water to be treated passes through the anion exchanger and the cation exchanger alternately.
 ここで、アニオン交換体のアニオン成分の捕捉能力は、被処理水のpHが低い場合に高まり、カチオン交換体のカチオン成分の捕捉能力は、被処理水のpHが高い場合に高まる。よって、被処理水が最初にアニオン交換体を通過し、その後にカチオン交換体とアニオン交換体を交互に通過することになる本実施形態の構成によれば、アニオン交換体を通過することによってアニオン成分が除去され、pHが上昇した被処理水が続けてカチオン交換体を通過する。よって、カチオン交換体によるカチオン除去反応が通常よりも促進される。さらに、カチオン交換体を通過することによってカチオン成分が除去され、pHが低下した被処理水が続けてアニオン交換体を通過する。よって、アニオン交換体によるアニオン除去反応が通常よりも促進される。よって、炭酸やシリカを含むアニオン成分の除去能力がさらに向上するのみでなく、カチオン成分の除去能力も向上し、よって処理水の純度がより一層向上する。 Here, the anion component capturing ability of the anion exchanger increases when the pH of the water to be treated is low, and the capturing ability of the cation exchanger of the cation exchanger increases when the pH of the water to be treated is high. Therefore, according to the configuration of this embodiment, the water to be treated first passes through the anion exchanger, and then passes through the cation exchanger and the anion exchanger alternately. The water to be treated whose components have been removed and whose pH has been raised continues to pass through the cation exchanger. Therefore, the cation removal reaction by the cation exchanger is promoted more than usual. Furthermore, the cation component is removed by passing through the cation exchanger, and the water to be treated whose pH has been lowered continues to pass through the anion exchanger. Therefore, the anion removal reaction by the anion exchanger is promoted more than usual. Therefore, not only the removal ability of the anion component containing carbonic acid and silica is further improved, but also the removal ability of the cation component is improved, thereby further improving the purity of the treated water.
 以上のように、本実施形態に係る脱イオン水製造装置によれば、濃縮水に含まれている炭酸やシリカの一部がイオン交換膜を通過して被処理水中に拡散することが防止されることによって処理水の純度が向上する効果に加えて、被処理水に含まれている炭酸やシリカ等のアニオン成分の除去能力が向上し、さらには被処理水に含まれているカチオン成分の除去能力も向上する。 As described above, according to the deionized water production apparatus according to the present embodiment, it is possible to prevent a part of carbonic acid and silica contained in the concentrated water from passing through the ion exchange membrane and diffusing into the water to be treated. In addition to the effect of improving the purity of the treated water, the ability to remove anionic components such as carbonic acid and silica contained in the treated water is improved, and further, the cation component contained in the treated water is improved. The removal ability is also improved.
 なお、濃縮室が電極室を兼ねている構成も本発明に含まれる。例えば、図1に示す第2の濃縮室C2に陰極を設けて陰極室E1を省略してもよい。この場合であっても、脱塩室および一対の濃縮室から構成される脱塩処理部は、陰極と陽極の間に配置される。
(実施形態2)
 以下、図面を参照して、本発明の電気式脱イオン水製造装置の実施形態の他例について説明する。もっとも、本実施形態に係る脱イオン水製造装置は、陰極室と陽極室との間に複数の脱塩処理部が設けられている点を除いて、実施形態1に係る脱イオン水製造装置と共通の構成を有する。そこで、実施形態1に係る脱イオン水製造装置と異なる構成についてのみ以下に説明し、共通する構成についての説明は適宜省略する。
A configuration in which the concentration chamber also serves as the electrode chamber is also included in the present invention. For example, a cathode may be provided in the second concentration chamber C2 shown in FIG. 1 and the cathode chamber E1 may be omitted. Even in this case, the desalination processing unit including the desalting chamber and the pair of concentration chambers is disposed between the cathode and the anode.
(Embodiment 2)
Hereinafter, other examples of the embodiment of the electric deionized water production apparatus of the present invention will be described with reference to the drawings. However, the deionized water production apparatus according to the present embodiment is the same as the deionized water production apparatus according to the first embodiment, except that a plurality of demineralization treatment units are provided between the cathode chamber and the anode chamber. Have a common configuration. Therefore, only the configuration different from the deionized water production apparatus according to Embodiment 1 will be described below, and the description of the common configuration will be omitted as appropriate.
 図2は、本実施形態に係る脱イオン水製造装置の概略構成図である。図2に示す脱イオン水製造装置では、陰極室E1と陽極室E2との間に2つの脱塩処理部が設けられている。2つの脱塩処理部のうち、相対的に陰極側に位置する第1の脱塩処理部は、脱塩室D1と、脱塩室D1の両隣に配置された一対の濃縮室C1、C2から構成されている。一方、相対的に陽極側に位置する第2の脱塩処理部は、脱塩室D2と、脱塩室D2の両隣に配置された一対の濃縮室C1、C3から構成されている。 FIG. 2 is a schematic configuration diagram of the deionized water production apparatus according to the present embodiment. In the deionized water production apparatus shown in FIG. 2, two demineralization processing units are provided between the cathode chamber E1 and the anode chamber E2. Of the two desalting treatment units, the first desalting treatment unit relatively located on the cathode side includes a desalting chamber D1 and a pair of concentration chambers C1 and C2 disposed on both sides of the desalting chamber D1. It is configured. On the other hand, the 2nd desalination process part relatively located in an anode side is comprised from a pair of concentration chambers C1 and C3 arrange | positioned on both sides of the desalination chamber D2 and the desalination chamber D2.
 以下の説明では、第1の脱塩処理部を構成している脱塩室D1を「陰極側脱塩室D1」、第2の脱塩処理部を構成している脱塩室D2を「陽極側脱塩室D2」と呼んで区別する。また、濃縮室C1を「第1の濃縮室C1」、濃縮室C2を「第2の濃縮室C2」、濃縮室C3を「第3の濃縮室C3」と呼んで区別する。もっとも、かかる区別は説明の便宜上の区別に過ぎない。 In the following description, the desalting chamber D1 constituting the first desalting treatment section is referred to as “cathode side desalting chamber D1”, and the desalting chamber D2 constituting the second desalting treatment section is referred to as “anode”. This is called “side desalting chamber D2”. Further, the concentration chamber C1 is referred to as “first concentration chamber C1”, the concentration chamber C2 is referred to as “second concentration chamber C2”, and the concentration chamber C3 is referred to as “third concentration chamber C3”. However, such a distinction is merely a distinction for convenience of explanation.
 さらに、陰極側脱塩室D1および陽極側脱塩室D2は、それぞれ二つの小脱塩室に仕切られている。以下の説明では、陰極側脱塩室D1を構成している二つの小脱塩室のうち、第1の濃縮室C1と隣接している小脱塩室を「陰極側第1小脱塩室D1-1」、第2の濃縮室C2と隣接している小脱塩室を「陰極側第2小脱塩室D1-2」と呼ぶ。また、陽極側脱塩室D2を構成している二つの小脱塩室のうち、第3の濃縮室C3と隣接している小脱塩室を「陽極側第1小脱塩室D2-1」、第1の濃縮室C1と隣接している小脱塩室を「陽極側第2小脱塩室D2-2」と呼ぶ。かかる区別も説明の便宜上の区別であることは勿論である。 Furthermore, the cathode-side desalting chamber D1 and the anode-side desalting chamber D2 are each divided into two small desalting chambers. In the following description, among the two small desalting chambers constituting the cathode side desalting chamber D1, the small desalting chamber adjacent to the first concentration chamber C1 is referred to as “cathode side first small desalting chamber”. D1-1 ”and the small desalting chamber adjacent to the second concentration chamber C2 are referred to as“ cathode side second small desalting chamber D1-2 ”. Of the two small desalting chambers constituting the anode-side desalting chamber D2, the small desalting chamber adjacent to the third concentrating chamber C3 is referred to as “anode-side first small desalting chamber D2-1”. The small desalting chamber adjacent to the first concentration chamber C1 is referred to as “anode-side second small desalting chamber D2-2”. Of course, this distinction is also made for convenience of explanation.
 各室の配列状況を陰極室E1の側から順に説明すると、次の通りである。すなわち、陰極室E1は、第1のアニオン交換膜a1を介して第2の濃縮室C2に隣接し、第2の濃縮室C2は、第1のカチオン交換膜c1を介して陰極側第2小脱塩室D1-2と隣接している。陰極側第2小脱塩室D1-2は、第2のアニオン交換膜a2を介して陰極側第1小脱塩室D1-1と隣接し、陰極側第1小脱塩室D1-1は、第3のアニオン交換膜a3を介して第1の濃縮室C1と隣接している。第1の濃縮室C1は、第2のカチオン交換膜c2を介して陽極側第2小脱塩室D2-2と隣接し、陽極側第2小脱塩室D2-2は、第4のアニオン交換膜a4を介して陽極側第1小脱塩室D2-1と隣接している。陽極側第1小脱塩室D2-1は、第5のアニオン交換膜a5を介して第3の濃縮室C3と隣接し、第3の濃縮室C3は、第3のカチオン交換膜c3を介して陽極室E2と隣接している。 The arrangement of the chambers will be described in order from the cathode chamber E1 side as follows. That is, the cathode chamber E1 is adjacent to the second concentration chamber C2 via the first anion exchange membrane a1, and the second concentration chamber C2 is connected to the second small side on the cathode side via the first cation exchange membrane c1. Adjacent to the desalination chamber D1-2. The cathode side second small desalination chamber D1-2 is adjacent to the cathode side first small desalination chamber D1-1 via the second anion exchange membrane a2, and the cathode side first small desalination chamber D1-1 is , Adjacent to the first concentration chamber C1 through the third anion exchange membrane a3. The first concentrating chamber C1 is adjacent to the anode-side second small desalting chamber D2-2 via the second cation exchange membrane c2, and the anode-side second small desalting chamber D2-2 is a fourth anion. It is adjacent to the anode side first small desalting chamber D2-1 through the exchange membrane a4. The anode side first small desalting chamber D2-1 is adjacent to the third concentration chamber C3 via the fifth anion exchange membrane a5, and the third concentration chamber C3 is interposed via the third cation exchange membrane c3. Adjacent to the anode chamber E2.
 第1~第3の濃縮室C1~C3は、陰極側脱塩室D1または陽極側脱塩室D2から排出されるアニオン成分またはカチオン成分を取り込み、それらを系外に放出するために設けられている。各濃縮室C1~C3には、スケールの発生を抑制すべくアニオン交換体が単床形態で充填されている。 The first to third concentrating chambers C1 to C3 are provided to take in the anion component or cation component discharged from the cathode-side desalting chamber D1 or the anode-side desalting chamber D2 and discharge them out of the system. Yes. Each of the concentrating chambers C1 to C3 is filled with an anion exchanger in a single bed form to suppress the generation of scale.
 陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1には、それぞれアニオン交換体が単床形態で充填されている。また、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2には、それぞれアニオン交換体およびカチオン交換体が複床形態で充填されている。なお、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2におけるアニオン交換体およびカチオン交換体の具体的な充填形態は実施形態1において説明した通りである。 The cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 are each filled with an anion exchanger in a single-bed form. The cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2 are each filled with an anion exchanger and a cation exchanger in the form of a multiple bed. The specific filling form of the anion exchanger and the cation exchanger in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 is as described in the first embodiment.
 次に、図2に示す脱イオン水製造装置における被処理水および濃縮水の主な流れについて概説する。被処理水は、陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1にそれぞれ並列的に供給され、これら小脱塩室を通過する。陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1を通過した被処理水は、これら小脱塩室外で一度合流した後に分流されて、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2にそれぞれ並列的に供給され、これら小脱塩室を通過した後に系外に排出される。一方、濃縮水は、第1~第3の濃縮室C1~C3にそれぞれ並列的に供給され、これら濃縮室を通過して系外に排出される。 Next, the main flow of treated water and concentrated water in the deionized water production apparatus shown in FIG. 2 will be outlined. The water to be treated is supplied in parallel to the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1, respectively, and passes through these small desalination chambers. The treated water that has passed through the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 is once merged outside these small desalting chambers, and then divided into the cathode-side second small desalting chamber D2-1. They are supplied in parallel to the desalting chamber D1-2 and the anode side second small desalting chamber D2-2, respectively, and after passing through these small desalting chambers, they are discharged out of the system. On the other hand, the concentrated water is supplied in parallel to each of the first to third concentration chambers C1 to C3, passes through these concentration chambers, and is discharged out of the system.
 上記のように被処理水および濃縮水を流すためにいくつかの流路U1~U3、L1~L2が設けられている。図2において脱イオン水製造装置の上方に示されている流路U1は、その一端が被処理水の供給側に接続され、他端側は途中で分岐されて、陰極側第1小脱塩室D1-1と陽極側第1小脱塩室D2-1とにそれぞれ接続されている。脱イオン水製造装置の下方に示されている流路L1は、陰極側第1小脱塩室D1-1と陽極側第1小脱塩室D2-1とにそれぞれ接続され、途中で合流した後に分岐されて、陰極側第2小脱塩室D1-2と陽極側第2小脱塩室D2-2とにそれぞれ接続されている。脱イオン水製造装置の上方に示されている流路U2は、陰極側第2小脱塩室D1-2と陽極側第2小脱塩室D2-2とにそれぞれ接続され、途中で合流して被処理水の排出側に接続されている。 As described above, several flow paths U1 to U3 and L1 to L2 are provided for flowing the water to be treated and the concentrated water. The flow path U1 shown above the deionized water production apparatus in FIG. 2 has one end connected to the supply side of the water to be treated and the other end branched in the middle to provide the first small desalting on the cathode side. The chamber D1-1 and the anode side first small desalination chamber D2-1 are connected to each other. The flow path L1 shown below the deionized water production apparatus is connected to the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1, respectively, and merges in the middle. It is branched later and connected to the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2, respectively. The flow path U2 shown above the deionized water production apparatus is connected to the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2, and joins in the middle. Connected to the discharge side of the treated water.
 図2において脱イオン水製造装置の上方に示されている流路U3は、その一端が濃縮水の供給側に接続され、他端側は途中で分岐されて、第1の濃縮室C1、第2の濃縮室C2および第3の濃縮室C3にそれぞれ接続されている。脱イオン水製造装置の下方に示されている流路L2は、第1の濃縮室C1、第2の濃縮室C2および第3の濃縮室C3にそれぞれ接続され、途中で合流した後に濃縮水の排出側に接続されている。 The flow path U3 shown above the deionized water production apparatus in FIG. 2 has one end connected to the concentrated water supply side and the other end branched in the middle to obtain the first concentration chamber C1, the first The second concentrating chamber C2 and the third concentrating chamber C3 are connected to each other. The flow path L2 shown below the deionized water production apparatus is connected to the first concentration chamber C1, the second concentration chamber C2, and the third concentration chamber C3, respectively, and after having joined in the middle, the concentrated water. Connected to the discharge side.
 次に、上記構成を有する脱イオン水製造装置の動作および作用について説明する。第1~第3の濃縮室C1~C3には、流路U3から濃縮水が供給され、流路L2から排出される。また、陰極室E1および陽極室E2には、図示しない流路から電極水が供給され、供給された電極水は図示しない流路から排出される。さらに、陽極、陰極の間には所定の直流電圧が印加される。 Next, the operation and action of the deionized water production apparatus having the above configuration will be described. The first to third concentration chambers C1 to C3 are supplied with concentrated water from the flow path U3 and discharged from the flow path L2. Electrode water is supplied to the cathode chamber E1 and the anode chamber E2 from a flow path (not shown), and the supplied electrode water is discharged from the flow path (not shown). Further, a predetermined DC voltage is applied between the anode and the cathode.
 以上の状態の下で、流路U1から陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1に被処理水が並列的に供給される。供給された被処理水中のアニオン成分(Cl、CO 2-、HCO 、SiO等)は、被処理水が第1小脱塩室D1-1、D2-1を通過する過程で捕捉される。そして、陰極側第1小脱塩室D1-1において捕捉されたアニオン成分は、陰極側第1小脱塩室D1-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。一方、陽極側第1小脱塩室D2-1において捕捉されたアニオン成分は、陽極側第1小脱塩室D2-1と第5のアニオン交換膜a5を介して隣接する第3の濃縮室C3へ移動し、該第3の濃縮室C3を通水する濃縮水と共に系外に排出される。 Under the above-described state, the water to be treated is supplied in parallel from the flow path U1 to the cathode-side first small desalination chamber D1-1 and the anode-side first small desalination chamber D2-1. Anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) in the supplied water to be treated are processed in a process in which the water to be treated passes through the first small desalting chambers D1-1 and D2-1. Be captured. The anion component captured in the cathode-side first small desalination chamber D1-1 is adjacent to the cathode-side first small desalination chamber D1-1 via the third anion exchange membrane a3. It moves to C1 and is discharged out of the system together with concentrated water passing through the first concentration chamber C1. On the other hand, the anion component trapped in the anode-side first small desalting chamber D2-1 is adjacent to the anode-side first small desalting chamber D2-1 through the fifth anion exchange membrane a5 in the third concentration chamber. It moves to C3 and is discharged out of the system together with the concentrated water passing through the third concentration chamber C3.
 次に、陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1を通過した被処理水は、流路L1を介して陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2に供給される。ここで、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2には、カチオン交換体層とアニオン交換体層とがこの順で積層されていることは既述の通りである。よって、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2にそれぞれ供給された被処理水は、まずカチオン交換体層を通過し、その後にアニオン交換体層を通過する。その際、被処理水がカチオン交換体層を通過する過程で、被処理水中のカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。具体的には、陰極側第2小脱塩室D1-2内のカチオン交換体によって捕捉されたカチオン成分は、陰極側第2小脱塩室D1-2と第1のカチオン交換膜c1を介して隣接する第2の濃縮室C2へ移動し、該第2の濃縮室C2を通水する濃縮水と共に系外に排出される。一方、陽極側第2小脱塩室D2-2内のカチオン交換体によって捕捉されたカチオン成分は、陽極側第2小脱塩室D2-2と第2のカチオン交換膜c2を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。 Next, the water to be treated that has passed through the cathode-side first small desalting chamber D1-1 and the anode-side first small desalting chamber D2-1 passes through the flow path L1 to form the cathode-side second small desalting chamber D1-1. 2 and the anode side second small desalting chamber D2-2. Here, it is known that the cation exchanger layer and the anion exchanger layer are laminated in this order in the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2. As described above. Therefore, the water to be treated supplied to the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2 first passes through the cation exchanger layer and then the anion exchanger layer. Pass through. At that time, cation components (Na + , Ca 2+ , Mg 2+, etc.) in the water to be treated are captured in the process of the water to be treated passing through the cation exchanger layer. Specifically, the cation component captured by the cation exchanger in the cathode side second small desalting chamber D1-2 passes through the cathode side second small desalting chamber D1-2 and the first cation exchange membrane c1. It moves to the adjacent second concentration chamber C2, and is discharged out of the system together with the concentrated water passing through the second concentration chamber C2. On the other hand, the cation component captured by the cation exchanger in the anode side second small desalting chamber D2-2 is adjacent to the anode side second small desalting chamber D2-2 via the second cation exchange membrane c2. It moves to the 1st concentration chamber C1, and is discharged | emitted out of the system with the concentrated water which flows through this 1st concentration chamber C1.
 さらに、陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2においてカチオン交換体層を通過した被処理水中のアニオン成分(Cl、CO 2-、HCO 、SiO等)は、被処理水が次段のアニオン交換体層を通過する過程で再度捕捉される。具体的には、陰極側第2小脱塩室D1-2のアニオン交換体によって捕捉されたアニオン成分は、陰極側第2小脱塩室D1-2と中間イオン交換膜a2を介して隣接する陰極側第1小脱塩室D1-1へ移動する。陰極側第1小脱塩室D1-1へ移動したアニオン成分は、陰極側第1小脱塩室D1-1と第3のアニオン交換膜a3を介して隣接する第1の濃縮室C1へ移動し、該第1の濃縮室C1を通水する濃縮水と共に系外に排出される。一方、陽極側第2小脱塩室D2-2のアニオン交換体によって捕捉されたアニオン成分は、陽極側第2小脱塩室D2-2と中間イオン交換膜a4を介して隣接する陽極側第1小脱塩室D2-1へ移動する。陽極側第1小脱塩室D2-1へ移動したアニオン成分は、陽極側第1小脱塩室D2-1と第5のアニオン交換膜a5を介して隣接する第3の濃縮室C3へ移動し、該第3の濃縮室C3を通水する濃縮水と共に系外に排出される。 Further, anion components (Cl , CO 3 2− , HCO 3) in the water to be treated that have passed through the cation exchanger layer in the cathode-side second small desalting chamber D1-2 and the anode-side second small desalting chamber D2-2. , SiO 2, etc.) are again trapped in the process of the water to be treated passing through the next-stage anion exchanger layer. Specifically, the anion component captured by the anion exchanger in the cathode side second small desalting chamber D1-2 is adjacent to the cathode side second small desalting chamber D1-2 via the intermediate ion exchange membrane a2. It moves to the cathode side first small desalination chamber D1-1. The anion component moved to the cathode-side first small desalting chamber D1-1 moves to the adjacent first concentration chamber C1 via the cathode-side first small desalting chamber D1-1 and the third anion exchange membrane a3. Then, it is discharged out of the system together with the concentrated water passing through the first concentration chamber C1. On the other hand, the anion component trapped by the anion exchanger in the anode side second small desalting chamber D2-2 is adjacent to the anode side second small desalting chamber D2-2 via the intermediate ion exchange membrane a4. Move to 1 small desalination chamber D2-1. The anion component moved to the anode side first small desalting chamber D2-1 moves to the adjacent third concentration chamber C3 via the anode side first small desalting chamber D2-1 and the fifth anion exchange membrane a5. Then, it is discharged out of the system together with the concentrated water passing through the third concentration chamber C3.
 以上が本実施形態に係る脱イオン水製造装置における脱イオン処理の流れである。しかし、本実施形態に係る脱イオン水製造装置のように、脱塩室が複数設けられている場合には、特定の濃縮室における炭酸やシリカの濃度が他の濃縮室におけるそれに比べて高くなる。例えば、本実施形態に係る脱イオン水製造装置においては、図2に示す脱塩室D1に隣接している第1の濃縮室C1には、該濃縮室C1に供給される濃縮水に含まれている炭酸やシリカに加え、陰極側脱塩室D1から炭酸やシリカが移動してくる。また、図2に示す脱塩室D2に隣接している第3の濃縮室C3には、該濃縮室C3に供給される濃縮水に含まれている炭酸やシリカに加え、陽極側脱塩室D2から炭酸やシリカが移動してくる。隣接する脱塩室から濃縮室へ炭酸やシリカが移動してくる原理は実施形態1において説明した通りである。よって、第1の濃縮室C1、第3の濃縮室C3では、他の濃縮室C2に比べて炭酸やシリカの濃度が高くなり、隣接するカチオン交換膜を通過する炭酸やシリカの量も増大する。特に、濃縮室C1は陽極側脱塩室D2と隣接しており、かかる炭酸やシリカの陽極側脱塩室D2への移動(被処理水への拡散)が問題となる。 The above is the flow of deionization processing in the deionized water production apparatus according to this embodiment. However, when a plurality of demineralization chambers are provided as in the deionized water production apparatus according to this embodiment, the concentration of carbonic acid and silica in a specific concentration chamber is higher than that in other concentration chambers. . For example, in the deionized water production apparatus according to this embodiment, the first concentration chamber C1 adjacent to the demineralization chamber D1 shown in FIG. 2 is included in the concentrated water supplied to the concentration chamber C1. In addition to carbonic acid and silica, carbonic acid and silica move from the cathode-side desalting chamber D1. Further, in the third concentration chamber C3 adjacent to the desalination chamber D2 shown in FIG. 2, in addition to carbonic acid and silica contained in the concentrated water supplied to the concentration chamber C3, the anode-side desalination chamber Carbonic acid and silica move from D2. The principle that carbonic acid and silica move from the adjacent desalting chamber to the concentration chamber is as described in the first embodiment. Therefore, in the 1st concentration chamber C1 and the 3rd concentration chamber C3, the density | concentration of carbonic acid and a silica becomes high compared with the other concentration chamber C2, and the quantity of the carbonic acid and silica which passes an adjacent cation exchange membrane also increases. . In particular, the concentrating chamber C1 is adjacent to the anode-side desalting chamber D2, and movement of carbonic acid or silica to the anode-side desalting chamber D2 (diffusion into the water to be treated) becomes a problem.
 しかし、本実施形態に係る構成によれば、第1の濃縮室C1から陽極側第2小脱塩室D2-2へ移動した炭酸やシリカは、該脱塩室D2-2に充填されているアニオン交換体によって捕捉され、陽極側第1小脱塩室D2-1を介して第3の濃縮室C3に移動し、系外に排出される。従って、第1の濃縮室C1から陽極側第2小脱塩室D2-2へ移動した炭酸やシリカが被処理水に拡散することはない。 However, according to the configuration according to the present embodiment, the carbonic acid and silica moved from the first concentration chamber C1 to the anode-side second small desalting chamber D2-2 are filled in the desalting chamber D2-2. It is captured by the anion exchanger, moves to the third concentration chamber C3 via the anode side first small desalination chamber D2-1, and is discharged out of the system. Therefore, the carbonic acid and silica moved from the first concentration chamber C1 to the anode side second small desalting chamber D2-2 do not diffuse into the water to be treated.
 なお、本実施形態においても、被処理水が最初に供給される陰極側第1小脱塩室D1-1及び陽極側第1小脱塩室D2-1にはアニオン交換体が充填されている。また、陰極側第1小脱塩室D1-1及び陽極側第1小脱塩室D2-1を通過した被処理水が供給される陰極側第2小脱塩室D1-2及び陽極側第2小脱塩室D2-2には、カチオン交換体とアニオン交換体とがこの順で積層されている。すなわち、被処理水は、最初にアニオン交換体を通過し、次いでカチオン交換体を通過し、その後にアニオン交換体を再度通過する。よって、実施形態1で説明したのと同様の原理により、被処理水の純度がより一層向上する。 In the present embodiment, the cathode side first small desalination chamber D1-1 and the anode side first small desalination chamber D2-1 to which the water to be treated is first supplied are filled with an anion exchanger. . Further, the cathode side second small desalination chamber D1-2 and the anode side first desalination chamber D1-1 and the anode side first small desalination chamber D2-1 to which the water to be treated that has passed through is supplied. In the two small desalting chamber D2-2, a cation exchanger and an anion exchanger are stacked in this order. That is, the water to be treated first passes through the anion exchanger, then passes through the cation exchanger, and then passes through the anion exchanger again. Therefore, the purity of water to be treated is further improved by the same principle as described in the first embodiment.
 なお、図2に示す第3の濃縮室C3に陽極を設けて陽極室E2を省略してもよく、第2の濃縮室C2に陰極を設けて陰極室E1を省略してもよい。
(比較試験1)
 本発明の効果を確認すべく、次のような比較試験を行った。すなわち、図1に示す第2小脱塩室D-2におけるイオン交換体の構成のみが異なる4つの脱イオン水製造装置を用意した。図3(a)~(d)に、各脱イオン水製造装置における第2小脱塩室D-2のイオン交換体の構成を模式的に示す。
The anode chamber E2 may be omitted by providing an anode in the third concentration chamber C3 shown in FIG. 2, or the cathode chamber E1 may be omitted by providing a cathode in the second concentration chamber C2.
(Comparative test 1)
In order to confirm the effect of the present invention, the following comparative test was conducted. In other words, four deionized water production apparatuses differing only in the configuration of the ion exchanger in the second small desalting chamber D-2 shown in FIG. FIGS. 3A to 3D schematically show the configuration of the ion exchanger in the second small desalting chamber D-2 in each deionized water production apparatus.
 図3(a)に示すように、当該脱イオン水製造装置(実施例1)の第2小脱塩室D-2には、被処理水の通水方向に沿って、前段にカチオン交換体層(C)、後段にアニオン交換体層(A)が積層されている。すなわち、実施例1は、上記実施形態1に示す脱塩室と同一の脱塩室を備えている。 As shown in FIG. 3 (a), in the second small desalting chamber D-2 of the deionized water production apparatus (Example 1), a cation exchanger is provided upstream in the direction of water flow of the water to be treated. The layer (C) and the anion exchanger layer (A) are laminated on the subsequent stage. That is, Example 1 is provided with the same desalination chamber as the desalination chamber shown in Embodiment 1 above.
 図3(b)に示すように、当該脱イオン水製造装置(実施例2)の第2小脱塩室D-2には、被処理水の通水方向に沿って、カチオン交換体層(C)とアニオン交換体層(A)がカチオン/アニオン/カチオン/アニオンの順で交互に積層されている(合計4層)。すなわち、実施例2は、上記実施形態1に示す脱塩室と本質的に同一の脱塩室を備えている。 As shown in FIG. 3 (b), in the second small demineralization chamber D-2 of the deionized water production apparatus (Example 2), a cation exchanger layer ( C) and anion exchanger layers (A) are alternately laminated in the order of cation / anion / cation / anion (4 layers in total). That is, Example 2 includes a desalination chamber that is essentially the same as the desalination chamber shown in Embodiment 1 above.
 図3(c)に示すように、当該脱イオン水製造装置(比較例1)の第2小脱塩室D-2には、被処理水の通水方向に沿って、前段にアニオン交換体層(A)、後段にカチオン交換体層(C)が積層されている。 As shown in FIG.3 (c), in the 2nd small demineralization chamber D-2 of the said deionized water manufacturing apparatus (comparative example 1), an anion exchanger is preceded in the flow direction of to-be-processed water. The layer (A) and the cation exchanger layer (C) are laminated on the subsequent stage.
 図3(d)に示すように、当該脱イオン水製造装置(比較例2)の第2小脱塩室D-2には、カチオン交換体とアニオン交換体の混合物(混合比率1:1)が充填されている。すなわち、カチオン交換体とアニオン交換体がいわゆる混床形態で充填されている。なお、特に断らない限り、各実施例および各比較例におけるアニオン交換体およびカチオン交換体はそれぞれ単床形態で所定の室に充填されている。また、図3(a)~(d)中の一点鎖線の矢印は、被処理水の通水方向を示している。 As shown in FIG. 3 (d), the second small desalting chamber D-2 of the deionized water production apparatus (Comparative Example 2) has a mixture of cation exchanger and anion exchanger (mixing ratio 1: 1). Is filled. That is, the cation exchanger and the anion exchanger are packed in a so-called mixed bed form. Unless otherwise specified, the anion exchanger and the cation exchanger in each example and each comparative example are each filled in a predetermined chamber in a single bed form. In addition, the dashed-dotted arrows in FIGS. 3A to 3D indicate the direction of water to be treated.
 今回の比較試験において、各実施例および各比較例に共通する仕様、通水流量、供給水等の条件は以下のとおりである。なお、CERはカチオン交換体(カチオン交換樹脂)、AERはアニオン交換体(アニオン交換樹脂)の略である。
・陰極室:寸法100×300×4mm AER充填
・陽極室:寸法100×300×4mm CER充填
・第1小脱塩室:寸法100×300×8mm AER充填
・濃縮室:寸法100×300×4mm AER充填
・脱塩室流量:20L/h
・濃縮室流量:2L/h
・電極室流量:10L/h
・脱塩室、濃縮室供給水:一段RO透過水10±1μS/cm
・電極室供給水:脱塩室処理水
・印加電流値:0.4A
・シリカ濃度1000ppb
 以上の条件の下で実施例1、2および比較例1、2に係る脱イオン水製造装置をそれぞれ200時間連続運転し、その後の運転電圧と処理水の比抵抗、処理水中のシリカ濃度を測定した。不純物を全く含まない水の理論的な比抵抗値は25℃において18.2MΩ・cmとなる。脱イオン水の水質は比抵抗値が18.2MΩ・cmに近づけば近づくほど、水質は清浄であると評価できる。さらに、比抵抗値が18.2MΩ・cmよりも高ければ高いほど、水質はより清浄であると評価できる。測定結果を表1に示す。
In this comparative test, the specifications, flow rate, supply water, and other conditions common to each example and each comparative example are as follows. CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
・ Cathode chamber: dimension 100 × 300 × 4 mm AER filling ・ Anode chamber: dimension 100 × 300 × 4 mm CER filling ・ First small desalination chamber: dimension 100 × 300 × 8 mm AER filling ・ Concentration chamber: dimension 100 × 300 × 4 mm AER filling / desalination chamber flow rate: 20L / h
・ Concentration chamber flow rate: 2L / h
-Electrode chamber flow rate: 10L / h
・ Desalination chamber, concentration chamber supply water: One-stage RO permeate 10 ± 1 μS / cm
・ Electrode chamber supply water: Desalination chamber treated water ・ Applied current value: 0.4 A
・ Silica concentration 1000ppb
Under the above conditions, each of the deionized water production apparatuses according to Examples 1 and 2 and Comparative Examples 1 and 2 was continuously operated for 200 hours, and the subsequent operating voltage, the specific resistance of the treated water, and the silica concentration in the treated water were measured. did. The theoretical specific resistance of water containing no impurities is 18.2 MΩ · cm at 25 ° C. The closer the deionized water quality is to 18.2 MΩ · cm, the better the water quality is. Furthermore, it can be evaluated that the higher the specific resistance value is than 18.2 MΩ · cm, the cleaner the water quality is. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例と比較例では運転電圧の差異は殆ど見られなかった。しかし、実施例1、実施例2では、比抵抗が18MΩ・cm程度の極めて清浄な処理水が得られた。一方、比較例1、比較例2において得られた処理水の比抵抗は10MΩ・cm~12MΩ・cmであった。処理水を成分分析した結果、処理水中の主な不純物は炭酸であった。また、実施例1、2において得られた処理水中のシリカ濃度はそれぞれ0.6、0.3ppbと非常に低い値であったのに対し、比較例1、2において得られた処理水中のシリカ濃度は1~2ppbと高い値であった。これらのことから、脱塩室の最終処理層を単床形態のアニオン交換体とすることで、濃縮室から脱塩室に拡散してくるアニオン成分を捕捉し、高純度の脱イオン水を製造可能であることが確認された。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, there was almost no difference in operating voltage between the example and the comparative example. However, in Examples 1 and 2, extremely clean treated water having a specific resistance of about 18 MΩ · cm was obtained. On the other hand, the specific resistance of the treated water obtained in Comparative Examples 1 and 2 was 10 MΩ · cm to 12 MΩ · cm. As a result of component analysis of the treated water, the main impurity in the treated water was carbonic acid. The silica concentrations in the treated water obtained in Examples 1 and 2 were very low values of 0.6 and 0.3 ppb, respectively, whereas the silica in the treated water obtained in Comparative Examples 1 and 2 were very low. The concentration was as high as 1 to 2 ppb. From these, the final treatment layer of the desalting chamber is made into a single-bed anion exchanger, which captures the anion component that diffuses from the concentrating chamber to the desalting chamber and produces high-purity deionized water. It was confirmed that it was possible.
 さらに、実施例1と実施例2を比較すると、実施例2の方がより高純度の脱イオン水を製造可能であることがわかる。ここで、実施例1および実施例2における第1小脱塩室D-1の構成は共通しているが、第2小脱塩室D-2の構成は相違している。具体的には、実施例1の第2小脱塩室D-2では、カチオン交換体層(C)とアニオン交換体層(A)が一層ずつ積層されているのに対し、実施例2の第2小脱塩室D-2では、カチオン交換体層(C)とアニオン交換体層(A)が交互に二層ずつ積層されている。 Furthermore, comparing Example 1 and Example 2, it can be seen that Example 2 can produce higher-purity deionized water. Here, the configuration of the first small desalination chamber D-1 in Example 1 and Example 2 is common, but the configuration of the second small desalination chamber D-2 is different. Specifically, in the second small desalting chamber D-2 of Example 1, the cation exchanger layer (C) and the anion exchanger layer (A) are laminated one by one, whereas in Example 2, In the second small desalting chamber D-2, two layers of cation exchanger layers (C) and anion exchanger layers (A) are alternately stacked.
 よって、実施例1の第1小脱塩室D-1を通過した(アニオン交換体を通過した)被処理水は、その後にカチオン交換体とアニオン交換体を交互に1回ずつ通過する。脱塩室全体で見た場合には、被処理水は、アニオン交換体を2回、カチオン交換体を1回通過する。 Therefore, the water to be treated that has passed through the first small desalting chamber D-1 of Example 1 (passed through the anion exchanger) passes through the cation exchanger and the anion exchanger alternately one after another. When viewed in the entire desalting chamber, the water to be treated passes through the anion exchanger twice and the cation exchanger once.
 一方、実施例2の第1小脱塩室D-1を通過した(アニオン交換体を通過した)被処理水は、その後にカチオン交換体とアニオン交換体を交互に2回ずつ通過する。脱塩室全体で見た場合には、被処理水は、アニオン交換体を3回、カチオン交換体を2回通過する。 On the other hand, the water to be treated that has passed through the first small desalting chamber D-1 of Example 2 (passed through the anion exchanger) passes through the cation exchanger and the anion exchanger alternately twice thereafter. When viewed in the entire desalting chamber, the water to be treated passes through the anion exchanger three times and the cation exchanger twice.
 以上より、実施例2では、通常よりもイオン交換反応が効率良くかつ数多く繰り返される結果、処理水の純度がより一層向上する。かかる結果より、第2小脱塩室D-2におけるアニオン交換体層とカチオン交換体層の繰り返し回数が多いほどより高純度の脱イオン水を製造可能であることがわかる。
(実施形態3)
 次に、図4を参照して本発明の脱イオン水製造装置の実施形態の他例について説明する。もっとも、本実施形態に係る脱イオン水製造装置の基本構成は、実施形態2に係る脱イオン水製造装置と共通である。そこで、実施形態2に係る脱イオン水製造装置との相違点についてのみ以下に説明し、共通点についての説明は省略する。
As described above, in Example 2, the ion exchange reaction is more efficiently performed than usual, and as a result, the purity of the treated water is further improved. From these results, it can be seen that the higher the number of repetitions of the anion exchanger layer and the cation exchanger layer in the second small desalting chamber D-2, the more purified deionized water can be produced.
(Embodiment 3)
Next, another example of the embodiment of the deionized water production apparatus of the present invention will be described with reference to FIG. However, the basic configuration of the deionized water production apparatus according to the present embodiment is the same as that of the deionized water production apparatus according to the second embodiment. Therefore, only differences from the deionized water production apparatus according to Embodiment 2 will be described below, and descriptions of common points will be omitted.
 図4に示すように、本実施形態に係る脱イオン水製造装置では、陰極室E1と第2の濃縮室C2との間に、副脱塩室S1が設けられている。副脱塩室S1は、第6のアニオン交換膜a6を介して陰極室E1と隣接し、第1のアニオン交換膜c1を介して第2の濃縮室C2と隣接し、室内にはアニオン交換体が単床形態で充填されている。 As shown in FIG. 4, in the deionized water production apparatus according to this embodiment, a sub-demineralization chamber S1 is provided between the cathode chamber E1 and the second concentration chamber C2. The sub-desalting chamber S1 is adjacent to the cathode chamber E1 via the sixth anion exchange membrane a6, is adjacent to the second concentration chamber C2 via the first anion exchange membrane c1, and the chamber is anion exchanger. Is filled in a single bed form.
 本実施形態に係る脱イオン水製造装置では、流路U1から陰極側第1小脱塩室D1-1、陽極側第1小脱塩室D2-1および副脱塩室S1に被処理水が並列的に供給される。副脱塩室S1に供給された被処理水中のアニオン成分(Cl、CO 2-、HCO 、SiO等)は、被処理水が副脱塩室S1を通過する過程でが捕捉される。捕捉されたアニオン成分は、副脱塩室S1と第1のアニオン交換膜a1を介して隣接する第2の濃縮室C2へ移動し、該第2の濃縮室C2を通水する濃縮水と共に系外に排出される。一方、副脱塩室S1を通過した被処理水は、陰極側第1小脱塩室D1-1および陽極側第1小脱塩室D2-1を通過した被処理水と合流した後に、陰極側第2小脱塩室D1-2または陽極側第2小脱塩室D2-2に供給される。これ以後の被処理水の流れやイオンの動きは実施形態1や実施形態2において説明した通りなので説明は省略する。 In the deionized water production apparatus according to the present embodiment, water to be treated is supplied from the flow path U1 to the cathode side first small desalination chamber D1-1, the anode side first small desalination chamber D2-1, and the sub desalination chamber S1. Supplied in parallel. Anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) in the for-treatment water supplied to the sub-desalination chamber S1 are captured during the process of passing the for-treatment water through the sub-desalination chamber S1. Is done. The trapped anion component moves to the adjacent second concentration chamber C2 via the secondary desalting chamber S1 and the first anion exchange membrane a1, and the system together with the concentrated water passing through the second concentration chamber C2. Discharged outside. On the other hand, the water to be treated that has passed through the sub-desalination chamber S1 merges with the water to be treated that has passed through the cathode-side first small desalination chamber D1-1 and the anode-side first small desalination chamber D2-1, Is supplied to the second side small desalting chamber D1-2 or the second anode side small desalting chamber D2-2. Since the flow of water to be treated and the movement of ions after this are as described in the first and second embodiments, description thereof will be omitted.
 ここで、脱イオン水製造装置においては、被処理水に含まれているマグネシウムイオンやカルシウムイオンなどの硬度成分が脱塩室から濃縮室へ移動する。これら硬度成分は、イオン交換膜の表面においてCO 2-やOHなどのイオンと反応し、炭酸カルシウム、水酸化マグネシウムなどがスケールとして析出する。このようなスケールの析出は、pHが高い部分で発生し易く、脱イオン水製造装置では、陰極室内の陰極表面やアニオン交換膜表面などの局所的にpHが高い部分でスケールの発生がしばしば見られる。こうした問題を解決するためには、スケール発生箇所のpHを下げることが有効であり、炭酸などのアニオン成分を供給できればpHを下げることができる。換言すれば、脱塩室から隣接する濃縮室へアニオン成分を供給すれば、スケールの発生を抑制することが可能である。 Here, in the deionized water production apparatus, hardness components such as magnesium ions and calcium ions contained in the water to be treated move from the demineralization chamber to the concentration chamber. These hardness components react with ions such as CO 3 2− and OH 2 − on the surface of the ion exchange membrane, and calcium carbonate, magnesium hydroxide and the like are deposited as scales. Such scale precipitation is likely to occur at a high pH portion, and in a deionized water production apparatus, the scale is often observed at a locally high pH portion such as a cathode surface or an anion exchange membrane surface in the cathode chamber. It is done. In order to solve such problems, it is effective to lower the pH at the scale generation site, and the pH can be lowered if an anionic component such as carbonic acid can be supplied. In other words, generation of scale can be suppressed by supplying an anionic component from the desalting chamber to the adjacent concentrating chamber.
 ここで図2を参照する。実施形態2に係る脱イオン水製造装置では、第1の濃縮室C1へは主に陰極側脱塩室D1から、第3の濃縮室C3へは主に陽極側脱塩室D2から、それぞれアニオン成分が供給される。よって、第3のアニオン交換膜a3や第5のアニオン交換膜a5の膜面上におけるスケールの発生は抑制される。しかし、最も陰極室側に位置している第2の濃縮室C2へのアニオン成分の供給量は、第1の濃縮室C1および第3の濃縮室C3への供給量に比べて少ない。すなわち、第3のアニオン交換膜a3や第5のアニオン交換膜a5の膜面上に比べて、第1のアニオン交換膜a1の膜面上はスケールが発生し易い状況にある。 Here, refer to FIG. In the deionized water production apparatus according to the second embodiment, the first concentration chamber C1 is mainly fed from the cathode side desalting chamber D1, and the third concentration chamber C3 is mainly fed from the anode side desalting chamber D2. Ingredients are supplied. Therefore, generation of scale on the membrane surfaces of the third anion exchange membrane a3 and the fifth anion exchange membrane a5 is suppressed. However, the supply amount of the anion component to the second concentration chamber C2 located closest to the cathode chamber side is smaller than the supply amount to the first concentration chamber C1 and the third concentration chamber C3. That is, scale is more likely to occur on the membrane surface of the first anion exchange membrane a1 than on the membrane surfaces of the third anion exchange membrane a3 and the fifth anion exchange membrane a5.
 一方、陰極室E1と第2の濃縮室C2との間に、アニオン交換体が充填された副脱塩室S1が設けられている本実施形態の脱イオン水製造装置では、副脱塩室S1から第2の濃縮室C2へアニオン成分が供給される。よって、第1のアニオン交換膜a1の膜面上における局所的なpHの上昇が抑制され、スケールの発生も抑制される。 On the other hand, in the deionized water production apparatus of the present embodiment in which the sub-demineralization chamber S1 filled with the anion exchanger is provided between the cathode chamber E1 and the second concentration chamber C2, the sub-demineralization chamber S1. To the second concentration chamber C2. Therefore, a local increase in pH on the membrane surface of the first anion exchange membrane a1 is suppressed, and scale generation is also suppressed.
 さらに、副脱塩室S1に充填されているアニオン交換体は陰極室E1で生成されたOHにより再生される。従って、本実施形態に係る脱イオン水製造装置では、陰極室E1で発生し、従来は利用されることなく捨てられていたOHがイオン交換体の再生に有効利用される。 Further, the anion exchanger filled in the sub-desalting chamber S1 is regenerated by OH generated in the cathode chamber E1. Therefore, in the deionized water production apparatus according to the present embodiment, OH generated in the cathode chamber E1 and discarded without being conventionally used is effectively used for regeneration of the ion exchanger.
 加えて、陰極室E1におけるOHの生成効率は高いため、電位が低くても十分な量のOHが副脱塩室S1に移動する。このため、電極間の印加電圧を抑え、脱イオン水製造装置の運転費用を低減することができる。また、本実施形態では、副脱塩室S1が新たな脱塩室として追加されているが、それに伴い新たな濃縮室を追加する必要がない。つまり、相対的に濃縮室の数を減らすことができる。これは装置サイズ及び装置コストを抑えるだけでなく、印加電圧及び運転費用の低減にもつながる。 In addition, since the generation efficiency of OH in the cathode chamber E1 is high, a sufficient amount of OH moves to the sub-desalting chamber S1 even if the potential is low. For this reason, the applied voltage between electrodes can be suppressed and the operating cost of a deionized water manufacturing apparatus can be reduced. In the present embodiment, the sub-desalting chamber S1 is added as a new desalting chamber, but it is not necessary to add a new concentrating chamber accordingly. That is, the number of concentration chambers can be relatively reduced. This not only reduces the size and cost of the device, but also reduces the applied voltage and operating costs.
 なお、本実施形態では、陰極室と陽極室との間に2つの脱塩処理部が設けられた例について説明したが、脱塩処理部は1つでも3つ以上であってもよい。例えば、図1に示す陰極室E1と第2の濃縮室C2との間に上記構成の副脱塩室を設けることもできる。 In addition, although this embodiment demonstrated the example in which the two desalination process parts were provided between the cathode chamber and the anode chamber, the number of the desalination process part may be one or three or more. For example, a sub-desalting chamber having the above-described configuration can be provided between the cathode chamber E1 and the second concentration chamber C2 shown in FIG.
 なお、図4に示す濃縮室C3に陽極を設けて陽極室E2を省略してもよい。
(比較試験2)
 本実施形態に係る脱イオン水製造装置と実施形態2に係る脱イオン水製造装置をそれぞれ連続して1000時間運転し、100時間毎に処理水の水質を測定した。また運転終了後に装置を解体し、スケール発生の有無を目視で観察した。
Note that the anode chamber E2 may be omitted by providing an anode in the concentration chamber C3 shown in FIG.
(Comparative test 2)
The deionized water production apparatus according to this embodiment and the deionized water production apparatus according to Embodiment 2 were continuously operated for 1000 hours, and the quality of the treated water was measured every 100 hours. Moreover, the apparatus was disassembled after the operation was completed, and the presence or absence of scale generation was visually observed.
 今回の比較試験における仕様、通水流量、供給水等の条件は以下のとおりである。なお、CERはカチオン交換体(カチオン交換樹脂)、AERはアニオン交換体(アニオン交換樹脂)の略である。
・陰極室:寸法100×300×4mm AER充填
・陽極室:寸法100×300×4mm CER充填
・陰極側第1小脱塩室および陽極側第1小脱塩室:寸法100×300×8mm AER充填
・陰極側第2小脱塩室および陽極側第2小脱塩室:寸法100×300×8mm AER/CER充填(積層)
・副脱塩室:寸法100×300×8mm AER充填
・濃縮室:寸法100×300×4mm AER充填
・脱塩室流量:20L/h
・濃縮室流量:2L/h
・電極室流量:10L/h
・脱塩室、濃縮室供給水:一段RO透過水10±1μS/cm
・電極室供給水:脱塩室処理水
・印加電流値:0.4A
 かかる比較試験により、図5のグラフに示すような結果が得られた。また、1000時間運転後、実施形態2の装置では最も陰極室側に位置している濃縮室にスケールが発生していることが目視で確認された。一方、本実施形態の装置では、全ての濃縮室においてスケールは全く確認されなかった。このことから、陰極室に隣接する副脱塩室を設置することで、最も陰極室側の濃縮室におけるスケール発生が抑制され、安定して高純度の脱イオン水が得られていることが明らかとなった。
(実施形態4)
 次に、本発明の脱イオン水製造装置の実施形態の他例について説明する。本実施形態に係る脱イオン水製造装置は、図1に示す第2小脱塩室D-2にバイポーラ膜が配置されている点においてのみ実施形態1に係る脱イオン水製造装置と相違し、その他においては共通の構成を備えている。そこで、上記相違点に関してのみ以下に説明し、共通点についての説明は省略する。なお、バイポーラ膜とは、アニオン交換膜とカチオン交換膜とが貼り合わされて一体化されたイオン交換膜であって、アニオン交換膜とカチオン交換膜の接合面において水の解離反応が非常に促進されるという特徴を有する。
The specifications, flow rate, supply water, etc. in this comparative test are as follows. CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
・ Cathode chamber: dimension 100 × 300 × 4 mm AER filling ・ Anode chamber: dimension 100 × 300 × 4 mm CER filling ・ Cathode side first small desalination chamber and anode side first small desalination chamber: dimension 100 × 300 × 8 mm AER Filling / Cathode-side second small desalting chamber and anode-side second small desalting chamber: dimensions 100 × 300 × 8 mm AER / CER filling (lamination)
・ Sub-desalination chamber: Dimension 100 × 300 × 8 mm AER filling ・ Concentration chamber: Dimension 100 × 300 × 4 mm AER filling ・ Desalination chamber flow rate: 20 L / h
・ Concentration chamber flow rate: 2L / h
-Electrode chamber flow rate: 10L / h
・ Desalination chamber, concentration chamber supply water: One-stage RO permeate 10 ± 1 μS / cm
・ Electrode chamber supply water: Desalination chamber treated water ・ Applied current value: 0.4 A
By such a comparative test, results as shown in the graph of FIG. 5 were obtained. In addition, after 1000 hours of operation, it was visually confirmed that scale was generated in the concentration chamber located closest to the cathode chamber in the apparatus of Embodiment 2. On the other hand, in the apparatus of this embodiment, no scale was confirmed in all the concentration chambers. From this, it is clear that the installation of a secondary demineralization chamber adjacent to the cathode chamber suppresses the generation of scale in the concentrating chamber on the most cathode chamber side, and stably obtains high-purity deionized water. It became.
(Embodiment 4)
Next, another example of the embodiment of the deionized water production apparatus of the present invention will be described. The deionized water production apparatus according to the present embodiment is different from the deionized water production apparatus according to the first embodiment only in that a bipolar membrane is disposed in the second small demineralization chamber D-2 shown in FIG. Others have a common configuration. Therefore, only the above differences will be described below, and description of common points will be omitted. A bipolar membrane is an ion exchange membrane in which an anion exchange membrane and a cation exchange membrane are bonded and integrated. It has the feature that.
 図6は、本実施形態に係る脱イオン水製造装置が有する脱塩室Dを示す模式的断面図である。図6に示すように、第2小脱塩室D-2には、第1のバイポーラ膜4aおよび第2のバイポーラ膜4bがそれぞれ配置されている。具体的には、第2小脱塩室D-2に充填されているアニオン交換体(アニオン交換体層)の陰極側には第1のバイポーラ膜4aが配置され、カチオン交換体(カチオン交換体層)の陽極側には第2のバイポーラ膜4bが配置されている。さらに、第1のバイポーラ膜4aは、そのアニオン交換膜2がアニオン交換体(アニオン交換体層)と対向するように配置され、第2のバイポーラ膜4bは、そのカチオン交換膜3がカチオン交換体(カチオン交換体層)と対向するように配置されている。換言すれば、第2小脱塩室D-2においては、アニオン交換体と第1のカチオン交換膜c1との間に、第1のバイポーラ膜4aが、そのアニオン交換膜2がアニオン交換体と対向するように配置されている。また、カチオン交換体と第2のアニオン交換膜(中間イオン交換膜)a2との間に、第2のバイポーラ膜4bが、そのカチオン交換膜3がカチオン交換体と対向するように配置されている。 FIG. 6 is a schematic cross-sectional view showing a demineralization chamber D included in the deionized water production apparatus according to this embodiment. As shown in FIG. 6, in the second small desalting chamber D-2, a first bipolar film 4a and a second bipolar film 4b are respectively arranged. Specifically, the first bipolar membrane 4a is disposed on the cathode side of the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2, and the cation exchanger (cation exchanger). The second bipolar film 4b is disposed on the anode side of the layer. Further, the first bipolar membrane 4a is disposed so that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer), and the second bipolar membrane 4b is configured such that the cation exchange membrane 3 is a cation exchanger. It arrange | positions so as to oppose (cation exchanger layer). In other words, in the second small desalting chamber D-2, the first bipolar membrane 4a is disposed between the anion exchanger and the first cation exchange membrane c1, and the anion exchange membrane 2 is disposed between the anion exchanger and the first cation exchange membrane c1. It arrange | positions so that it may oppose. In addition, a second bipolar membrane 4b is arranged between the cation exchanger and the second anion exchange membrane (intermediate ion exchange membrane) a2 so that the cation exchange membrane 3 faces the cation exchanger. .
 ここで、脱イオン水製造装置では、電気により解離した水がイオン交換体の再生剤として機能することは既述の通りであるが、水の解離反応はイオン交換体とイオン交換膜との界面において促進される。よって、水の解離反応は、イオン交換体とイオン交換膜との組み合わせにより大きな影響を受ける。このため、図1に示す第2小脱塩室D-2のように、異符号のイオン交換体(アニオン交換体とカチオン交換体)が積層されている場合、水解離に必要な過電圧が各層で異なる。この結果、電流の偏流が発生し、所望の電流分布が得られない事態が生ずることも考えられる。 Here, as described above, in the deionized water production apparatus, water dissociated by electricity functions as a regenerant of the ion exchanger, but the water dissociation reaction is performed at the interface between the ion exchanger and the ion exchange membrane. Promoted in Therefore, the water dissociation reaction is greatly affected by the combination of the ion exchanger and the ion exchange membrane. Therefore, as in the second small desalting chamber D-2 shown in FIG. 1, when ion exchangers with different signs (anion exchanger and cation exchanger) are stacked, the overvoltage necessary for water dissociation is increased in each layer. It is different. As a result, it is conceivable that a current drift occurs and a desired current distribution cannot be obtained.
 そこで、本実施形態に係る脱イオン水製造装置では、第2小脱塩室D-2に充填されているアニオン交換体(アニオン交換体層)の陰極側に、第1のバイポーラ膜4aが上記のように配置されている。これにより、アニオン交換体は第1のカチオン交換膜c1ではなく、第1のバイポーラ膜4aのアニオン交換膜と接することになり、上記偏流が解消される。なお、既述したイオン交換体とイオン交換膜の組み合わせによる水の解離反応への影響の観点からは、第2小脱塩室D-2に充填されているアニオン交換体(アニオン交換体層)の陰極側にのみバイポーラ膜を配置すればよい。すなわち、図6に示す第1のバイポーラ膜4aのみを配置し、第2のバイポーラ膜4bを省略することも可能である。しかし、この場合には、却ってアニオン交換体層とカチオン交換体層との間のバランスが崩れる場合もある。そこで、本実施形態では、アニオン交換体(アニオン交換体層)の陰極側と、カチオン交換体(カチオン交換体層)の陽極側の双方にバイポーラ膜をそれぞれ配置し、高電流密度での安定した運転の確実性をより一層向上させている。 Therefore, in the deionized water production apparatus according to the present embodiment, the first bipolar membrane 4a is disposed on the cathode side of the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2. It is arranged like this. As a result, the anion exchanger comes into contact with the anion exchange membrane of the first bipolar membrane 4a instead of the first cation exchange membrane c1, and the drift is eliminated. In addition, from the viewpoint of the influence on the dissociation reaction of water by the combination of the ion exchanger and the ion exchange membrane described above, the anion exchanger (anion exchanger layer) filled in the second small desalting chamber D-2 A bipolar film may be disposed only on the cathode side. That is, it is possible to dispose only the first bipolar film 4a shown in FIG. 6 and omit the second bipolar film 4b. However, in this case, the balance between the anion exchanger layer and the cation exchanger layer may be lost. Therefore, in this embodiment, bipolar membranes are arranged on both the cathode side of the anion exchanger (anion exchanger layer) and the anode side of the cation exchanger (cation exchanger layer), respectively, and stable at a high current density. Driving reliability is further improved.
 なお、本実施形態では、陰極室と陽極室との間に1つの脱塩処理部が設けられた例について説明したが、脱塩処理部は2つ以上であってもよい。例えば、図2に示す陰極側第2小脱塩室D1-2および陽極側第2小脱塩室D2-2のそれぞれに上記第1及び第2のバイポーラ膜を配置してもよい。
(比較試験3)
 本発明の効果を確認すべく、次のような比較試験を行った。すなわち、図1に示す第2小脱塩室D-2におけるバイポーラ膜の有無または配置個所が異なる4つの脱イオン水製造装置を用意した。
In the present embodiment, an example in which one desalination processing unit is provided between the cathode chamber and the anode chamber has been described. However, two or more desalting processing units may be provided. For example, the first and second bipolar films may be disposed in each of the cathode side second small desalting chamber D1-2 and the anode side second small desalting chamber D2-2 shown in FIG.
(Comparative test 3)
In order to confirm the effect of the present invention, the following comparative test was conducted. That is, four deionized water production apparatuses having different bipolar membrane presence or location in the second small desalting chamber D-2 shown in FIG. 1 were prepared.
 図7(a)に示すように、当該脱イオン水製造装置(実施例3)の第2小脱塩室には、第1のバイポーラ膜4aおよび第2のバイポーラ膜4bがそれぞれ配置されている。さらに、第1のバイポーラ膜4aは、そのアニオン交換膜2がアニオン交換体(アニオン交換体層)と対向するように配置され、第2のバイポーラ膜4bは、そのカチオン交換膜3がカチオン交換体(カチオン交換体層)と対向するように配置されている。すなわち、当該脱イオン水製造装置は、本実施形態に係る脱イオン水製造装置と同一の脱塩室を備えている。 As shown to Fig.7 (a), the 1st bipolar membrane 4a and the 2nd bipolar membrane 4b are each arrange | positioned in the 2nd small desalination chamber of the said deionized water manufacturing apparatus (Example 3). . Further, the first bipolar membrane 4a is disposed so that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer), and the second bipolar membrane 4b is configured such that the cation exchange membrane 3 is a cation exchanger. It arrange | positions so as to oppose (cation exchanger layer). That is, the deionized water production apparatus includes the same demineralization chamber as the deionized water production apparatus according to this embodiment.
 図7(b)に示すように、当該脱イオン水製造装置(比較例3)の第2小脱塩室には、バイポーラ膜は配置されていない。 As shown in FIG. 7B, no bipolar membrane is arranged in the second small desalting chamber of the deionized water production apparatus (Comparative Example 3).
 図7(c)に示すように、当該脱イオン水製造装置(比較例4)の第2小脱塩室には、第1のバイポーラ膜4aのみが配置されている。第1のバイポーラ膜4aは、そのアニオン交換膜2がアニオン交換体(アニオン交換体層)と対向するように配置されている。 As shown in FIG. 7C, only the first bipolar membrane 4a is disposed in the second small desalting chamber of the deionized water production apparatus (Comparative Example 4). The first bipolar membrane 4a is arranged so that the anion exchange membrane 2 faces the anion exchanger (anion exchanger layer).
 図7(d)に示すように、当該脱イオン水製造装置(比較例5)の第2小脱塩室には、第2のバイポーラ膜4bのみが配置されている。第2のバイポーラ膜4bは、そのカチオン交換膜3がカチオン交換体(カチオン交換体層)と対向するように配置されている。 As shown in FIG. 7 (d), only the second bipolar membrane 4b is disposed in the second small desalting chamber of the deionized water production apparatus (Comparative Example 5). The second bipolar membrane 4b is disposed so that the cation exchange membrane 3 faces the cation exchanger (cation exchanger layer).
 今回の比較試験において、各実施例および各比較例に共通する仕様、通水流量、供給水等の条件は以下のとおりである。なお、CERはカチオン交換体(カチオン交換樹脂)、AERはアニオン交換体(アニオン交換樹脂)の略である。
・陰極室:寸法100×300×4mm AER充填
・陽極室:寸法100×300×4mm CER充填
・陰極側第1小脱塩室および陽極側第1小脱塩室:寸法100×300×8mm AER充填
・陰極側第2小脱塩室および陽極側第2小脱塩室:寸法100×300×8mm AER/CER充填(積層)
・濃縮室:寸法100×300×4mm AER充填
・脱塩室流量:20L/h
・濃縮室流量:2L/h
・電極室流量:10L/h
・脱塩室、濃縮室供給水:一段RO透過水10±1μS/cm
・電極室供給水:脱塩室処理水
・印加電流値:3A
 以上の条件の下で実施例3および比較例3~5に係る脱イオン水製造装置をそれぞれ200時間連続運転し、運転開始時と運転開始から200時間後の運転電圧と処理水の水質を測定した。測定結果を表2に示す。
In this comparative test, the specifications, flow rate, supply water, and other conditions common to each example and each comparative example are as follows. CER is an abbreviation for a cation exchanger (cation exchange resin) and AER is an anion exchanger (anion exchange resin).
・ Cathode chamber: dimension 100 × 300 × 4 mm AER filling ・ Anode chamber: dimension 100 × 300 × 4 mm CER filling ・ Cathode side first small desalination chamber and anode side first small desalination chamber: dimension 100 × 300 × 8 mm AER Filling / Cathode-side second small desalting chamber and anode-side second small desalting chamber: dimensions 100 × 300 × 8 mm AER / CER filling (lamination)
・ Concentration chamber: Dimensions 100 × 300 × 4 mm AER filling ・ Desalination chamber flow rate: 20 L / h
・ Concentration chamber flow rate: 2L / h
-Electrode chamber flow rate: 10L / h
・ Desalination chamber, concentration chamber supply water: One-stage RO permeate 10 ± 1 μS / cm
-Electrode chamber supply water: Desalination chamber treated water-Applied current value: 3A
Under the above conditions, each of the deionized water production apparatuses according to Example 3 and Comparative Examples 3 to 5 was continuously operated for 200 hours, and the operation voltage and the quality of the treated water were measured at the start of operation and 200 hours after the operation started did. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、運転開始時には実施例と比較例の間において、運転電圧、処理水比抵抗はともに大きな差異は無かった。しかし、運転を200時間連続で行った後では運転電圧、処理水比抵抗はそれぞれ大きく変化した。具体的には、実施例3では200時間運転後の運転電圧が16.2Vであったのに対し、比較例3~5の運転電圧は50~120V程度に増大した。また、200時間運転後の処理水の比抵抗は、実施例3では18.1MΩ・cmであったのに対し、比較例3~5では1~4MΩ・cmであった。これらのことから、バイポーラ膜を水の解離反応が起こる部位の全てに設置することで電流の偏流が防止され、それにより運転電圧の増大や処理水純度の悪化を防止され、高純度の脱イオン水の製造が可能となることが確認された。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, both the operating voltage and the treated water specific resistance were not significantly different between the example and the comparative example at the start of operation. However, after the operation was continuously performed for 200 hours, the operation voltage and the specific resistance of the treated water changed greatly. Specifically, in Example 3, the operating voltage after 200 hours of operation was 16.2 V, while in Comparative Examples 3 to 5, the operating voltage increased to about 50 to 120 V. The specific resistance of the treated water after 200 hours of operation was 18.1 MΩ · cm in Example 3, whereas it was 1 to 4 MΩ · cm in Comparative Examples 3 to 5. For these reasons, the bipolar membrane is installed at all the sites where water dissociation occurs, preventing current drift, thereby preventing increase in operating voltage and deterioration of treated water purity, and high-purity deionization. It was confirmed that water could be produced.
 本実施形態では、イオン交換膜の上にバイポーラ膜を設置する構成について説明した。しかし、イオン交換膜の一部をバイポーラ膜で置換することも可能であり、かかる置換によっても上記と同様の作用効果が得られる。例えば、図6に示す第1のカチオン交換膜c1の上半分(陰極側第2小脱塩室D-2内のアニオン交換体と接している部分)をバイポーラ膜に置換してもよい。また、図6に示す第2のアニオン交換膜(中間イオン交換膜)a2の下半分(陰極側第2小脱塩室D-2内のカチオン交換体と接している部分)をバイポーラ膜に置換してもよい。 In the present embodiment, the configuration in which the bipolar membrane is installed on the ion exchange membrane has been described. However, it is also possible to replace a part of the ion exchange membrane with a bipolar membrane, and the same effect as described above can be obtained by such replacement. For example, the upper half of the first cation exchange membrane c1 shown in FIG. 6 (the portion in contact with the anion exchanger in the cathode-side second small desalting chamber D-2) may be replaced with a bipolar membrane. In addition, the lower half of the second anion exchange membrane (intermediate ion exchange membrane) a2 shown in FIG. 6 (the portion in contact with the cation exchanger in the cathode side second small desalting chamber D-2) is replaced with a bipolar membrane. May be.
 本発明の脱イオン水製造装置に用いられるアニオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。また、カチオン交換体としては、イオン交換樹脂、イオン交換繊維、モノリス状多孔質イオン交換体等が挙げられ、最も汎用的なイオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。 Examples of the anion exchanger used in the deionized water production apparatus of the present invention include ion exchange resins, ion exchange fibers, monolithic porous ion exchangers, etc., and the most versatile ion exchange resins are preferably used. Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers. Examples of the cation exchanger include ion exchange resins, ion exchange fibers, and monolithic porous ion exchangers, and the most general-purpose ion exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers.

Claims (4)

  1.  対向する陰極と陽極との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であって、
     前記脱塩処理部は、脱塩室と、該脱塩室の両隣に設けられるとともに、アニオン交換体が充填された一対の濃縮室とから構成され、
     前記陰極が設けられている室と該室に隣接している濃縮室との間に、アニオン交換体が充填された副脱塩室が設けられ、
     前記脱塩室は、イオン交換膜によって、前記一対の濃縮室の一方に隣接する第1小脱塩室と、前記一対の濃縮室の他方に隣接する第2小脱塩室とに仕切られ、
     前記第1小脱塩室には、アニオン交換体が充填され、
     前記第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体とカチオン交換体とが充填されていることを特徴とする電気式脱イオン水製造装置。
    An electrical deionized water production apparatus in which at least one demineralization section is provided between an opposing cathode and an anode,
    The desalting section is composed of a desalting chamber and a pair of concentration chambers provided on both sides of the desalting chamber and filled with an anion exchanger,
    A sub-desalting chamber filled with an anion exchanger is provided between the chamber in which the cathode is provided and the concentrating chamber adjacent to the chamber,
    The desalting chamber is partitioned by an ion exchange membrane into a first small desalting chamber adjacent to one of the pair of concentrating chambers and a second small desalting chamber adjacent to the other of the pair of concentrating chambers,
    The first small desalting chamber is filled with an anion exchanger,
    The second small desalting chamber is filled with an anion exchanger and a cation exchanger in the order in which the ion exchanger through which water to be treated passes last becomes an anion exchanger. Deionized water production equipment.
  2.  前記第1小脱塩室には、アニオン交換体の層が一層形成され、
     前記第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体の層とカチオン交換体の層とが少なくとも一層ずつ積層されていることを特徴とする請求項1に記載の電気式脱イオン水製造装置。
    In the first small desalting chamber, a layer of anion exchanger is formed,
    In the second small desalting chamber, an anion exchanger layer and a cation exchanger layer are laminated at least one layer in the order in which the ion exchanger through which the water to be treated finally passes becomes an anion exchanger. The electric deionized water production apparatus according to claim 1.
  3.  前記第2小脱塩室には、アニオン交換体の層とカチオン交換体の層とが交互に二層ずつ積層されていることを特徴とする請求項2に記載の電気式脱イオン水製造装置。 The electric deionized water production apparatus according to claim 2, wherein two layers of anion exchanger and cation exchanger are alternately stacked in the second small desalting chamber. .
  4.  前記第2小脱塩室への被処理水の流入方向と、前記濃縮室への濃縮水の流入方向とが逆向きとなるように流路が形成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の電気式脱イオン水製造装置。 The flow path is formed so that the inflow direction of the water to be treated into the second small desalination chamber is opposite to the inflow direction of the concentrated water into the concentration chamber. The electric deionized water production apparatus according to claim 3.
PCT/JP2011/061629 2010-06-03 2011-05-20 Electric device for producing deionized water WO2011152227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012518328A JP5385457B2 (en) 2010-06-03 2011-05-20 Electric deionized water production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-127759 2010-06-03
JP2010127759 2010-06-03

Publications (1)

Publication Number Publication Date
WO2011152227A1 true WO2011152227A1 (en) 2011-12-08

Family

ID=45066606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061629 WO2011152227A1 (en) 2010-06-03 2011-05-20 Electric device for producing deionized water

Country Status (3)

Country Link
JP (1) JP5385457B2 (en)
TW (1) TWI482658B (en)
WO (1) WO2011152227A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
WO2012108310A1 (en) * 2011-02-08 2012-08-16 オルガノ株式会社 Electric device for producing deionized water
WO2013018818A1 (en) * 2011-08-04 2013-02-07 オルガノ株式会社 Electric deionized water production device
JP2014000524A (en) * 2012-06-19 2014-01-09 Japan Organo Co Ltd Electric type deionized water production apparatus and deionized water production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (en) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd Electrodialysis tank
JP2001079358A (en) * 1999-09-17 2001-03-27 Japan Organo Co Ltd Electrically deionizing device
JP2008055388A (en) * 2006-09-04 2008-03-13 Japan Organo Co Ltd Electric deionized water making apparatus and its operation method
JP2010264360A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Deionization module and electric deionized-water producing apparatus
JP2011062662A (en) * 2009-09-18 2011-03-31 Japan Organo Co Ltd Electric deionized water making apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151911A (en) * 1987-12-10 1989-06-14 Tokuyama Soda Co Ltd Electrodialysis tank
JP2001079358A (en) * 1999-09-17 2001-03-27 Japan Organo Co Ltd Electrically deionizing device
JP2008055388A (en) * 2006-09-04 2008-03-13 Japan Organo Co Ltd Electric deionized water making apparatus and its operation method
JP2010264360A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Deionization module and electric deionized-water producing apparatus
JP2011062662A (en) * 2009-09-18 2011-03-31 Japan Organo Co Ltd Electric deionized water making apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251266A (en) * 2010-06-03 2011-12-15 Japan Organo Co Ltd Apparatus for electrically producing deionized water
WO2012108310A1 (en) * 2011-02-08 2012-08-16 オルガノ株式会社 Electric device for producing deionized water
JP2012161758A (en) * 2011-02-08 2012-08-30 Japan Organo Co Ltd Electric device for producing deionized water
WO2013018818A1 (en) * 2011-08-04 2013-02-07 オルガノ株式会社 Electric deionized water production device
US9896357B2 (en) 2011-08-04 2018-02-20 Organo Corporation Electrodeionization apparatus for producing deionized water
JP2014000524A (en) * 2012-06-19 2014-01-09 Japan Organo Co Ltd Electric type deionized water production apparatus and deionized water production method

Also Published As

Publication number Publication date
TW201213007A (en) 2012-04-01
JP5385457B2 (en) 2014-01-08
JPWO2011152227A1 (en) 2013-07-25
TWI482658B (en) 2015-05-01

Similar Documents

Publication Publication Date Title
JP5719842B2 (en) Electric deionized water production equipment
JP5695926B2 (en) Electric deionized water production equipment
JP5385457B2 (en) Electric deionized water production equipment
JP5489867B2 (en) Electric deionized water production equipment
JP5145305B2 (en) Electric deionized water production equipment
JP2012239965A (en) Electric deionized water producing apparatus
JP5114307B2 (en) Electric deionized water production equipment
JP5379025B2 (en) Electric deionized water production equipment
KR20180052765A (en) Water treatment device and water treatment method
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP5661930B2 (en) Electric deionized water production equipment
JP5689032B2 (en) Electric deionized water production equipment
JP5689031B2 (en) Electric deionized water production equipment
JP6181510B2 (en) Pure water production equipment
JP5693396B2 (en) Electric deionized water production equipment
JP5719707B2 (en) Electric deionized water production equipment
JP6034736B2 (en) Electric deionized water production equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518328

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789636

Country of ref document: EP

Kind code of ref document: A1