JP5940387B2 - Electric deionized water production apparatus and deionized water production method - Google Patents

Electric deionized water production apparatus and deionized water production method Download PDF

Info

Publication number
JP5940387B2
JP5940387B2 JP2012137684A JP2012137684A JP5940387B2 JP 5940387 B2 JP5940387 B2 JP 5940387B2 JP 2012137684 A JP2012137684 A JP 2012137684A JP 2012137684 A JP2012137684 A JP 2012137684A JP 5940387 B2 JP5940387 B2 JP 5940387B2
Authority
JP
Japan
Prior art keywords
chamber
desalting chamber
small
exchange membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012137684A
Other languages
Japanese (ja)
Other versions
JP2014000524A (en
Inventor
慶介 佐々木
慶介 佐々木
菜穂 池田
菜穂 池田
友二 浅川
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2012137684A priority Critical patent/JP5940387B2/en
Publication of JP2014000524A publication Critical patent/JP2014000524A/en
Application granted granted Critical
Publication of JP5940387B2 publication Critical patent/JP5940387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、半導体製造分野、医薬品製造分野、原子力や火力等の発電分野、食品工業などの各種の産業、または研究施設で使用される、電気式脱イオン水製造装置および脱イオン水製造方法に関する。   The present invention relates to an electric deionized water production apparatus and a deionized water production method used in various fields such as semiconductor manufacturing field, pharmaceutical manufacturing field, power generation field such as nuclear power and thermal power, food industry, or research facilities. .

脱イオン水を製造する装置として、電気式脱イオン水製造装置(以下、EDIと略称する。)が知られている。一般的なEDIの構成は、脱塩室と、該脱塩室の両側に配置された一対の濃縮室と、一方の濃縮室の外側に配置された陽極室と、他方の濃縮室の外側に配置された陰極室とを有する。脱塩室は、対向配置されたアニオン交換膜およびカチオン交換膜と、それら交換膜の間に充填されたイオン交換体(アニオン交換体及び/又はカチオン交換体)とを有する。   As an apparatus for producing deionized water, an electric deionized water production apparatus (hereinafter abbreviated as EDI) is known. A general EDI configuration includes a desalting chamber, a pair of concentrating chambers disposed on both sides of the desalting chamber, an anode chamber disposed outside one concentrating chamber, and an outside of the other concentrating chamber. And a cathode chamber arranged. The desalting chamber has an anion exchange membrane and a cation exchange membrane arranged opposite to each other, and an ion exchanger (anion exchanger and / or cation exchanger) filled between the exchange membranes.

上記のように構成されるEDIによって脱イオン水(処理水)を製造するには、陽極室および陰極室にそれぞれ設けられている電極間に直流電圧を印加した状態で脱塩室に被処理水を通水する。被処理水中のイオン成分は脱塩室内のイオン交換体で吸着され、脱イオン化(脱塩)処理が行われる。具体的には、脱塩室ではアニオン交換体によりアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2等)が吸着され、あるいは、カチオン交換体によりカチオン成分(Na+、Ca2+、Mg2+等)が吸着される。脱塩室ではまた、印加電圧によって水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(H2O→H++OH-)。アニオン交換体に吸着されたアニオン成分はその水酸化物イオンと交換されてアニオン交換体から遊離し、カチオン交換体に吸着されたカチオン成分はその水素イオンと交換されてカチオン交換体から遊離する。遊離したアニオン成分(またはカチオン成分)はアニオン交換体(またはカチオン交換体)を伝ってアニオン交換膜(またはカチオン交換膜)まで電気泳動し、その膜で電気透析されて、濃縮室を流れる濃縮水に排出される。 In order to produce deionized water (treated water) by EDI configured as described above, water to be treated is introduced into the demineralized chamber with a DC voltage applied between the electrodes provided in the anode chamber and the cathode chamber, respectively. Pass water. The ionic component in the water to be treated is adsorbed by the ion exchanger in the demineralization chamber and subjected to deionization (demineralization) treatment. Specifically, anion components (Cl , CO 3 2− , HCO 3 , SiO 2, etc.) are adsorbed by the anion exchanger in the desalting chamber, or cation components (Na + , Ca 2 ) by the cation exchanger. + , Mg 2+, etc.) are adsorbed. In the desalting chamber, a dissociation reaction of water occurs due to the applied voltage, and hydrogen ions and hydroxide ions are generated (H 2 O → H + + OH ). The anion component adsorbed on the anion exchanger is exchanged with the hydroxide ion and released from the anion exchanger, and the cation component adsorbed on the cation exchanger is exchanged with the hydrogen ion and released from the cation exchanger. The released anion component (or cation component) travels through the anion exchanger (or cation exchanger) to the anion exchange membrane (or cation exchange membrane), is electrodialyzed on the membrane, and is concentrated water flowing through the concentration chamber. To be discharged.

以上のように、電気式脱イオン水製造装置では、水素イオンおよび水酸化物イオンが、イオン交換体を再生する再生剤(酸やアルカリ)として連続的に作用する。このため、薬剤による再生は基本的に不要であり、薬剤によるイオン交換体の再生を行わずに連続運転ができるという利点がある。   As described above, in the electric deionized water production apparatus, hydrogen ions and hydroxide ions continuously act as a regenerant (acid or alkali) for regenerating the ion exchanger. For this reason, regeneration with a chemical | medical agent is fundamentally unnecessary, and there exists an advantage that a continuous driving | operation can be performed, without performing reproduction | regeneration of the ion exchanger by a chemical | medical agent.

さらに、EDIにおいて、上記した脱塩室をイオン交換膜によって、陽極側の小脱塩室と陰極側の小脱塩室に2分割した構成(以下、脱塩室2室型のEDIと略称する。)が本出願人により提案されている(特許文献1参照)。この構成では、被処理水を一方の小脱塩室に流入させ、該小脱塩室の流出水を他方の小脱塩室に流入させると共に、各濃縮室に濃縮水を流して被処理水の不純物イオンを除去することにより、脱イオン水を得ることが可能になっている。脱塩室2室型のEDIの構成にすると、イオン交換体が充填された脱塩室1つ当たりの濃縮室の数を、上記したEDIの場合の約半分にすることができるため、電極間の電気抵抗を著しく低減できる利点がある。   Further, in the EDI, the above-described desalting chamber is divided into two parts by an ion exchange membrane into a small desalting chamber on the anode side and a small desalting chamber on the cathode side (hereinafter abbreviated as EDI of a two-salt chamber type). Is proposed by the present applicant (see Patent Document 1). In this configuration, the water to be treated is caused to flow into one small desalination chamber, the effluent water from the small desalting chamber is caused to flow into the other small desalination chamber, and the concentrated water is allowed to flow into each concentration chamber. By removing the impurity ions, deionized water can be obtained. In the case of the EDI configuration of the two-salt chamber type EDI, the number of concentration chambers per desalting chamber filled with the ion exchanger can be reduced to about half that in the case of the above-mentioned EDI. There is an advantage that the electrical resistance can be significantly reduced.

なお、上記した2つの小脱塩室の間を仕切るイオン交換膜は、その他のイオン交換膜と区別するために中間膜と呼ばれている。中間膜には、被処理水の水質や、脱イオン水に求める水質に応じて、アニオン交換膜又はカチオン交換膜の単一膜、あるいは、アニオン交換膜とカチオン交換膜を重ねて貼り合せたバイポーラ膜(以下、BP膜と略称する。)を使用することができる(特許文献2参照)。   The ion exchange membrane that partitions between the two small desalting chambers is called an intermediate membrane in order to distinguish it from other ion exchange membranes. Depending on the quality of the water to be treated and the water quality required for deionized water, the intermediate membrane is a single membrane of anion exchange membrane or cation exchange membrane, or a bipolar membrane in which an anion exchange membrane and a cation exchange membrane are laminated and bonded together A film (hereinafter abbreviated as BP film) can be used (see Patent Document 2).

特許第3385553号公報(JP)Japanese Patent No. 3385553 (JP) 特開2009−208946号公報(JP)JP 2009-208946 A (JP)

しかしながら、上記した従来の脱塩室2室型のEDIでは、二つの小脱塩室のうち最初に被処理水を通水する第1の小脱塩室(D1)の下流側部から、次に被処理水を通水する第2の小脱塩室(D2)へ中間膜を透過して移動してきた成分が、濃縮室に隣接するイオン交換膜に達する前に、該第2の小脱塩室(D2)の脱イオン水の出口から排出されてしまうことがあった。   However, in the conventional EDI of the above-described conventional two-salt desalination chamber, from the downstream side of the first small desalination chamber (D1) through which the treated water is first passed, The component that has permeated and moved through the intermediate membrane to the second small desalting chamber (D2) through which the water to be treated is passed before reaching the ion exchange membrane adjacent to the concentrating chamber. In some cases, it was discharged from the outlet of the deionized water in the salt chamber (D2).

たとえば図5は、2つの小脱塩室D1,D2に区画する中間膜1としてアニオン交換膜1を用い、第1の小脱塩室D1内にアニオン交換体とカチオン交換体の混床形態(混合イオン交換体2)を充填し、第2の小脱塩室D2内にアニオン交換体3を充填し、小脱塩室D1及びD2における被処理水の流れCを同じ方向(図面の上から下)にした例を示している。CEMはカチオン交換膜、AEMはアニオン交換膜の略である。図5では第2の小脱塩室D2の脱イオン水の出口4から、中間膜1(アニオン交換膜)を透過してきたアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2 -等)がリークする様子が矢印Pで示されている。特に、シリカは脱塩室を通過する過程でイオン化されることが多いため、第2の小脱塩室D2の脱イオン水の出口4から漏れ出しやすい。 For example, FIG. 5 uses an anion exchange membrane 1 as an intermediate membrane 1 partitioned into two small desalting chambers D1 and D2, and a mixed bed configuration of an anion exchanger and a cation exchanger in the first small desalting chamber D1 ( The mixed ion exchanger 2) is filled, the anion exchanger 3 is filled in the second small desalting chamber D2, and the flow C of water to be treated in the small desalting chambers D1 and D2 is in the same direction (from the top of the drawing). The example below is shown. CEM is an abbreviation for a cation exchange membrane, and AEM is an anion exchange membrane. In FIG. 5, the anion components (Cl , CO 3 2− , HCO 3 , SiO 2 ) that have permeated through the intermediate membrane 1 (anion exchange membrane) from the outlet 4 of deionized water in the second small desalting chamber D2. Etc.) is indicated by an arrow P. In particular, since silica is often ionized in the process of passing through the desalting chamber, it is likely to leak out from the deionized water outlet 4 of the second small desalting chamber D2.

さらに図6は、その中間膜1としてカチオン交換膜を用い、第1の小脱塩室D1内にアニオン交換体とカチオン交換体の混床形態(混合イオン交換体2)を充填し、第2の小脱塩室D2内に前記カチオン交換体8を充填し、小脱塩室D1及びD2における被処理水の流れCを同じ方向(図面の上から下)にした例を示している。図6では第2の小脱塩室D2の脱イオン水の出口4から、中間膜(カチオン交換膜)を透過してきたカチオン成分(Na+、Ca2+、Mg2+等)がリークする様子が矢印Pで示されている。 Furthermore, FIG. 6 uses a cation exchange membrane as the intermediate membrane 1 and fills the first small desalting chamber D1 with a mixed bed form of anion exchanger and cation exchanger (mixed ion exchanger 2). In this example, the cation exchanger 8 is filled in the small desalting chamber D2 and the flow C of the water to be treated in the small desalting chambers D1 and D2 is in the same direction (from the top to the bottom of the drawing). In FIG. 6, cation components (Na + , Ca 2+ , Mg 2+, etc.) that have permeated through the intermediate membrane (cation exchange membrane) leak from the outlet 4 of deionized water in the second small desalting chamber D2. Is indicated by an arrow P.

このように、電極側へ電気泳動中のイオンが被処理水の流れに逆らえずに脱塩室の最下流の脱イオン水出口から出てしまうことがあった。このため陽極と陰極の間の印加電流を上げてイオンのリークに対処することが検討されたが、印加電圧を上げて電極間を流れる電流を増やすと中間膜やイオン交換体が劣化するため、増やせる電流値には上限があり、十分にイオンのリークを抑制できない場合があった。   As described above, the ions being electrophoresed to the electrode side sometimes exit from the deionized water outlet at the most downstream side of the demineralization chamber without countering the flow of the water to be treated. For this reason, it was examined to increase the applied current between the anode and the cathode to deal with ion leakage. However, if the applied voltage is increased to increase the current flowing between the electrodes, the intermediate film and the ion exchanger deteriorate. There is an upper limit to the current value that can be increased, and ion leakage may not be sufficiently suppressed.

他方、BP膜はカチオン交換膜とアニオン交換膜を重ねて接合した膜であるため、カチオン成分もアニオン成分も透過させない。このため中間膜にBP膜を使用することにより、上記したイオンリークの問題を解消することは出来る。たとえば、図5の例に対しては、図7に示すように、中間膜1(アニオン交換膜)の小脱塩室D1側にそのアニオン交換膜が接するようにBP膜5を設置する方法により、小脱塩室D2の脱イオン水出口4からSiO2 -等のアニオン成分をリークさせないようにすることが出来る。またBP膜5はカチオン交換膜とアニオン交換膜の接合面において水の解離反応が非常に促進されるので、電極間の印加電圧を低く抑えることも出来る。 On the other hand, since the BP membrane is a membrane in which a cation exchange membrane and an anion exchange membrane are overlapped and joined, neither the cation component nor the anion component is allowed to permeate. For this reason, by using a BP film as the intermediate film, the above-described problem of ion leakage can be solved. For example, in the example of FIG. 5, as shown in FIG. 7, the BP membrane 5 is installed so that the anion exchange membrane is in contact with the small desalting chamber D1 side of the intermediate membrane 1 (anion exchange membrane). It is possible to prevent leakage of anion components such as SiO 2 from the deionized water outlet 4 of the small desalting chamber D2. In addition, since the BP membrane 5 has a very accelerated water dissociation reaction at the interface between the cation exchange membrane and the anion exchange membrane, the applied voltage between the electrodes can be kept low.

しかし、この図7から分かるように、BP膜5はイオンを透過させないために小脱塩室D1,D2それぞれで一方向へのイオン除去しか行われない。このため、中間膜にBP膜を用いた脱塩室2室型のEDIは、アニオン交換膜やカチオン交換膜などの単一膜を脱塩室2室型のEDIの中間膜に使用する場合よりも、得られる水質が劣ってしまうという別の課題が生じる。   However, as can be seen from FIG. 7, since the BP film 5 does not transmit ions, only the ion removal in one direction is performed in each of the small desalting chambers D1 and D2. For this reason, the EDI of the desalination chamber two-chamber type using a BP membrane as the intermediate membrane is more than the case where a single membrane such as an anion exchange membrane or a cation exchange membrane is used for the EDI intermediate membrane of the desalination chamber two-chamber type. However, another problem arises that the water quality obtained is inferior.

そこで、本発明は上述した課題に鑑み、従来の脱塩室2室型のEDIに対し、電極間の印加電圧を低く抑えながらも高い脱イオン性能を発揮して処理水質を改善できる技術を提供することを目的とする。   Therefore, in view of the above-mentioned problems, the present invention provides a technology that can improve the quality of treated water by exhibiting high deionization performance while keeping the applied voltage between the electrodes low with respect to the conventional EDI of the two-salt chamber. The purpose is to do.

本発明は、脱塩室と、該脱塩室の両隣に設けられた一対の濃縮室と、該一対の濃縮室の一方に対して該脱塩室の側とは反対側に設けられた陽極と、該一対の濃縮室の他方に対して該脱塩室の側とは反対側に設けられた陰極とを備えた電気式脱イオン水製造装置において、該脱塩室が、イオン交換膜によって、該陽極と該陰極での通電方向に並ぶ第1および第2の小脱塩室の2室に区画され、第1および第2の小脱塩室は、被処理水が第1の小脱塩室を通過してから第2の小脱塩室を通過るように連通され、イオン交換膜が、脱塩室を陰極側の第1の小脱塩室と陽極側の第2の小脱塩室とを区画するアニオン交換膜であるか、または、脱塩室を陽極側の第1の小脱塩室と陰極側の第2の小脱塩室とに区画するカチオン交換膜である、装置に係る。 The present invention relates to a desalting chamber, a pair of concentrating chambers provided on both sides of the desalting chamber, and an anode provided on the side opposite to the desalting chamber side with respect to one of the pair of concentrating chambers And an electric deionized water production apparatus comprising a cathode provided on the opposite side of the demineralization chamber with respect to the other of the pair of concentration chambers, wherein the demineralization chamber is formed by an ion exchange membrane. , is bounded Subdivision into two chambers of the first and second small depletion chamber arranged in the flowing direction in the anode and the cathode, the first and second small depletion chamber, the treatment water is first small is communicated with so that to pass through the second small depletion chamber after passing through the depletion chamber, the ion exchange membrane, the desalting compartment of the first cathode side small depletion chamber and the anode-side second An anion exchange membrane that partitions the small desalting chamber, or a cation exchange membrane that partitions the desalting chamber into a first small desalting chamber on the anode side and a second small desalting chamber on the cathode side there, engaged in equipment .

上記課題を解決するために、本発明の一態様として、アニオン交換膜とカチオン交換膜を貼り合せてなるバイポーラ膜をさらに備え、該第1および第2の小脱塩室を区画している該イオン交換膜に該バイポーラ膜が重ねて設置されている。そして、該バイポーラ膜の、該脱塩室の最下流の出口付近を除いた領域に複数の孔が設けられている。また本発明の他の態様は、上記した一の態様による構成をとることにより処理水質を改善する方法である。 The in order to solve the above problems, an aspect of the present invention, further comprising a bipolar membrane formed by bonding an anion exchange membrane and a cation exchange membrane, which defines a said first and second small depletion chamber The bipolar membrane is placed on the ion exchange membrane. A plurality of holes are provided in a region of the bipolar membrane excluding the vicinity of the most downstream outlet of the desalting chamber. Another aspect of the present invention is a method for improving the quality of treated water by adopting the configuration according to the above-described aspect.

このような形態をとると、第1の小脱塩室に被処理水が通過する過程において、被処理水中のイオン成分は、該第1の小脱塩室の通水方向上流側ではBP膜の複数の孔、及び中間膜を通過して該第2の小脱塩室に浸入するが、該第1の小脱塩室の通水方向下流側ではBP膜の複数の孔が無い領域によって、該第2の小脱塩室へのイオン浸入が阻止される。この結果、脱塩室の最下流の出口であるところの該第2の小脱塩室の脱イオン水出口からは、中間膜を透過してきたイオン成分が漏れ難くなり、脱塩室通過後の脱イオン水の水質を従来技術より向上させることが出来る。また同時に、中間膜に隣接するBP膜において水の解離反応が非常に促進されるため、運転電圧も低く抑えることができる。 Taking such forms, in the process of the water to be treated passes through the first small depletion chamber, the ion component of the water to be treated, said first BP membrane in water flow upstream side of the small depletion chamber a plurality of holes, and through the intermediate layer is penetrating into the second small depletion chamber, said in the first water passage downstream side of the small depletion chamber by the region a plurality of holes is not a BP layer , ion penetration of the to the second sub-desalination chamber is prevented. Consequently, the desalination chamber of deionized water outlet of the most downstream of the second small depletion chamber where an exit, not easily ion component which has passed through the intermediate film leaks, after passing desalting compartment The water quality of deionized water can be improved over the prior art. At the same time, the water dissociation reaction is greatly accelerated in the BP film adjacent to the intermediate film, so that the operating voltage can be kept low.

本発明によれば、従来の脱塩室2室型のEDIに対し、電極間の印加電圧を低く抑えながらも高い脱イオン性能を発揮して処理水質を改善することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, with respect to the conventional demineralization room | chamber two-chamber type EDI, a high deionization performance can be exhibited, suppressing the applied voltage between electrodes low, and a treated water quality can be improved.

本発明の第一実施形態による脱塩室2室型のEDIの脱塩室の構成を示す断面図。Sectional drawing which shows the structure of the desalination room | chamber chamber type EDI demineralization chamber by 1st embodiment of this invention. 第一実施形態に使用されたBP膜の平面図。The top view of BP film | membrane used for 1st embodiment. 本発明の第二実施形態による脱塩室2室型のEDIの脱塩室の構成を示す断面図。Sectional drawing which shows the structure of the desalination chamber of EDI of the 2 type desalination chamber type EDI by 2nd embodiment of this invention. 本発明を適用する脱塩室2室型のEDIの構成例を示す断面図。Sectional drawing which shows the structural example of the desalination chamber 2 chamber type EDI to which this invention is applied. 従来技術に関する脱塩室2室型のEDIの脱塩室の構成を示す断面図。Sectional drawing which shows the structure of the desalination chamber of the desalination chamber 2 chamber type EDI regarding a prior art. 従来技術に関する脱塩室2室型のEDIの脱塩室の構成を示す断面図。Sectional drawing which shows the structure of the desalination chamber of the desalination chamber 2 chamber type EDI regarding a prior art. 従来技術に関する脱塩室2室型のEDIの脱塩室の構成を示す断面図。Sectional drawing which shows the structure of the desalination chamber of the desalination chamber 2 chamber type EDI regarding a prior art.

以下、本発明の実施の形態について図面を参照して説明する。ここでは、図5〜図7を用いて説明した従来構造と同じ構成要素には同じ符号を用いて説明を割愛し、従来構造と異なる要素について主に述べることとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the same reference numerals are used for the same components as those in the conventional structure described with reference to FIGS. 5 to 7, and descriptions thereof are mainly described.

[第一実施形態]
図1は本発明の第一実施形態による脱塩室2室型のEDIの脱塩室の構成を示す断面図である。脱塩室2室型のEDIでは脱塩室が印加電流方向に並ぶ2室(第1の小脱塩室D1と第2の小脱塩室D2)に区画されており、本実施形態は2室を仕切る中間膜1(イオン交換膜)にアニオン交換膜が設けられている例である。図中にはアニオン交換膜をAEM、カチオン交換膜をCEMと略記している。中間膜1(AEM)の陰極側の面にはBP膜5のアニオン交換膜面が接するようにBP膜が重ねて設置されている。他方、BP膜5のカチオン交換膜面は、第1の小脱塩室D1に充填されている混合イオン交換体(アニオン交換体とカチオン交換体の混床形態)2に接している。第1の小脱塩室D1にはカチオン交換樹脂の単体が充填されていてもよい。第2の小脱塩室D2にはアニオン交換体3が充填されていてもよい。
[First embodiment]
FIG. 1 is a cross-sectional view showing a configuration of an EDI desalination chamber of a two-salt chamber type EDI according to the first embodiment of the present invention. In the EDI of the desalination chamber two-chamber type, the desalination chamber is divided into two chambers (first small desalination chamber D1 and second small desalination chamber D2) arranged in the direction of applied current. This is an example in which an anion exchange membrane is provided on the intermediate membrane 1 (ion exchange membrane) that partitions the chamber. In the figure, the anion exchange membrane is abbreviated as AEM, and the cation exchange membrane is abbreviated as CEM. A BP membrane is placed so as to be in contact with the anion exchange membrane surface of the BP membrane 5 on the cathode side surface of the intermediate membrane 1 (AEM). On the other hand, the cation exchange membrane surface of the BP membrane 5 is in contact with the mixed ion exchanger (mixed bed form of anion exchanger and cation exchanger) 2 filled in the first small desalting chamber D1. The first small desalting chamber D1 may be filled with a simple substance of cation exchange resin. The second small desalting chamber D2 may be filled with the anion exchanger 3.

さらに、BP膜5の所定の領域には複数の孔6が設けられている。それらの孔6は中間膜1であるアニオン交換膜には形成されていない。図2には本実施形態のBP膜5の平面図を示した。BP膜5において複数の孔6が設けられていない領域7は脱塩室の最下流の出口4付近に位置する。すなわち、BP膜5において複数の孔6が無い領域7は、第2の小脱塩室D2の出口4側にあるBP膜5の一端部から、該一端部とは反対の側へ所定の範囲に亘って設けられている。   Further, a plurality of holes 6 are provided in a predetermined region of the BP film 5. These holes 6 are not formed in the anion exchange membrane which is the intermediate membrane 1. FIG. 2 shows a plan view of the BP film 5 of the present embodiment. A region 7 in the BP membrane 5 where the plurality of holes 6 are not provided is located in the vicinity of the outlet 4 on the most downstream side of the desalting chamber. That is, the region 7 having no plurality of holes 6 in the BP film 5 is a predetermined range from one end of the BP film 5 on the outlet 4 side of the second small desalting chamber D2 to the side opposite to the one end. Are provided.

このような形態をとると、第1の小脱塩室D1の入口より流入した被処理水が混合イオン交換体2を通る過程において、被処理水中のカチオン成分は負極側に電気泳動してカチオン交換膜を通過し、不図示の濃縮室に排出される。他方、第1の小脱塩室D1の被処理水中のアニオン成分は陽極側に電気泳動する。このとき、当該アニオン成分は、第1の小脱塩室D1の通水方向上流側ではBP膜5の複数の孔6、さらにはアニオン交換膜の中間膜1を通過して第2の小脱塩室D2に浸入するが、第1の小脱塩室D1の通水方向下流側ではBP膜6の複数の孔6が無い領域7によって、第2の小脱塩室D2へのイオン浸入が阻止される。この結果、第2の小脱塩室D2の出口4からは、アニオン交換膜の中間膜1を通過してきたアニオン成分(Cl-、CO3 2-、HCO3 -、SiO2 -等)が漏れ出さず、被処理水の水質を従来技術より向上させることが出来る。 In such a form, in the process in which the water to be treated flowing from the inlet of the first small desalting chamber D1 passes through the mixed ion exchanger 2, the cation component in the water to be treated is electrophoresed to the negative electrode side and becomes a cation. It passes through the exchange membrane and is discharged into a concentration chamber (not shown). On the other hand, the anion component in the for-treatment water in the first small desalting chamber D1 is electrophoresed to the anode side. At this time, the anion component passes through the plurality of holes 6 of the BP membrane 5 and further the intermediate membrane 1 of the anion exchange membrane on the upstream side in the water flow direction of the first small desalination chamber D1. Intrusion into the salt chamber D2 is performed in the second small desalination chamber D2 by the region 7 without the plurality of holes 6 in the BP membrane 6 on the downstream side in the water flow direction of the first small desalination chamber D1. Be blocked. As a result, the anion components (Cl , CO 3 2− , HCO 3 , SiO 2 −, etc.) that have passed through the intermediate membrane 1 of the anion exchange membrane leak from the outlet 4 of the second small desalting chamber D2. The quality of the water to be treated can be improved as compared with the prior art.

特に、被処理水に含まれるシリカは通常状態ではイオンになっておらず第1の小脱塩室D1を通過する過程でイオン化されるため、第1の小脱塩室D1の通水方向下流側で多く存在してしまうが、本実施形態によれば、第1の小脱塩室D1の出口付近のシリカイオンはBP膜5の存在により第2の小脱塩室D2へ浸入できないため、第2の小脱塩室D2の出口4からのシリカのリークを防ぐことが出来る。   In particular, since silica contained in the water to be treated is not ionized in a normal state and is ionized in the process of passing through the first small desalting chamber D1, it is downstream of the first small desalting chamber D1 in the water flow direction. However, according to this embodiment, silica ions near the outlet of the first small desalination chamber D1 cannot enter the second small desalination chamber D2 due to the presence of the BP membrane 5, Silica leakage from the outlet 4 of the second small desalting chamber D2 can be prevented.

[第二実施形態]
図3は本発明の第二実施形態によるD2EDIの脱塩室の構成を示す断面図である。この形態は、電圧印加方向に並ぶ2室(第1小脱塩室D1と第2小脱塩室D2)を仕切る中間膜1(イオン交換膜)にカチオン交換膜が設けられている例である。図中にはアニオン交換膜をAEM、カチオン交換膜をCEMと略記している。中間膜1(CEM)の陽極側の面にはBP膜5のカチオン交換膜面が接するようにBP膜5が重ねて設置されている。他方、BP膜5のアニオン交換膜面は、第1の小脱塩室D1に充填されている混合イオン交換体2に接している。本実施形態の第2の小脱塩室D1にはカチオン交換体8が充填されている。なお、第1の小脱塩室D1にはアニオン交換体3が充填されていてもよい。
[Second Embodiment]
FIG. 3 is a cross-sectional view showing a configuration of a D2EDI desalting chamber according to a second embodiment of the present invention. This form is an example in which a cation exchange membrane is provided in the intermediate membrane 1 (ion exchange membrane) that partitions two chambers (first small desalination chamber D1 and second small desalination chamber D2) arranged in the voltage application direction. . In the figure, the anion exchange membrane is abbreviated as AEM, and the cation exchange membrane is abbreviated as CEM. The BP membrane 5 is placed so as to be in contact with the cation exchange membrane surface of the BP membrane 5 on the anode side surface of the intermediate membrane 1 (CEM). On the other hand, the anion exchange membrane surface of the BP membrane 5 is in contact with the mixed ion exchanger 2 filled in the first small desalting chamber D1. A cation exchanger 8 is filled in the second small desalting chamber D1 of the present embodiment. The first small desalting chamber D1 may be filled with the anion exchanger 3.

さらに、BP膜5の所定の領域には複数の孔6が設けられている。それらの孔6は中間膜1であるカチオン交換膜には形成されていない。BP膜5において複数の孔6が設けられていない領域7は脱塩室の最下流の出口4付近に位置する。すなわち、BP膜5において複数の孔6が無い領域は、第2の小脱塩室D2の出口4側にあるBP膜5の一端部から、該一端部とは反対の側へ所定の範囲に亘って設けられている。複数の孔6の配置は図2と同様である。   Further, a plurality of holes 6 are provided in a predetermined region of the BP film 5. Those holes 6 are not formed in the cation exchange membrane which is the intermediate membrane 1. A region 7 in the BP membrane 5 where the plurality of holes 6 are not provided is located in the vicinity of the outlet 4 on the most downstream side of the desalting chamber. That is, the region without the plurality of holes 6 in the BP film 5 is within a predetermined range from one end of the BP film 5 on the outlet 4 side of the second small desalination chamber D2 to the side opposite to the one end. It is provided over. The arrangement of the plurality of holes 6 is the same as in FIG.

このような形態をとると、第1の小脱塩室D1の入口より流入した被処理水が混合イオン交換体2を通る過程において、被処理水中のアニオン成分は陽極側に電気泳動してアニオン交換膜を通過し、不図示の濃縮室に排出される。他方、第1の小脱塩室D1の被処理水中のカチオン成分は負極側に電気泳動する。このとき、当該カチオン成分は、第1の小脱塩室D1の通水方向上流側ではBP膜5の複数の孔6、さらにはカチオン交換膜の中間膜1を通過して第2の小脱塩室D2に浸入するが、第1の小脱塩室D1の通水方向下流側ではBP膜5の複数の孔6が無い領域7によって、第2の小脱塩室D2へのイオン浸入が阻止される。この結果、第2の小脱塩室D2の出口4からは、カチオン交換膜の中間膜1を通過してきたカチオン成分(Na+、Ca2+、Mg2+等)が漏れ出さず、被処理水の水質を従来技術より向上させることが出来る。 In such a form, in the process in which the water to be treated flowing from the inlet of the first small desalting chamber D1 passes through the mixed ion exchanger 2, the anion component in the water to be treated is electrophoresed to the anode side and becomes an anion. It passes through the exchange membrane and is discharged into a concentration chamber (not shown). On the other hand, the cation component in the for-treatment water in the first small desalting chamber D1 is electrophoresed on the negative electrode side. At this time, the cation component passes through the plurality of holes 6 of the BP membrane 5 and further the intermediate membrane 1 of the cation exchange membrane on the upstream side of the first small desalination chamber D1 in the water flow direction. Intrusion into the salt chamber D2 is caused by the region 7 without the plurality of holes 6 of the BP membrane 5 on the downstream side of the first small desalination chamber D1 in the water flow direction, so that ion intrusion into the second small desalination chamber D2 occurs. Be blocked. As a result, the cation components (Na + , Ca 2+ , Mg 2+, etc.) that have passed through the intermediate membrane 1 of the cation exchange membrane do not leak out from the outlet 4 of the second small desalting chamber D2, and the object to be processed The water quality can be improved over the prior art.

[その他の実施形態]
上記では、脱塩室2室型のEDIの中間膜1にアニオン交換膜を使用する第一の実施形態と、その中間膜1にカチオン交換膜を使用する第二の実施形態を説明した。これらの実施形態の中間膜1には一部に複数の孔6を有するBP膜5が重ねて配置されているが、そのBP膜5における孔6の無い領域は、第2の小脱塩室D2の出口4側にあるBP膜5の一端部から、該一端部とは反対の側へ所定の範囲に亘って設けられている。
[Other Embodiments]
In the above description, the first embodiment in which an anion exchange membrane is used for the EDI intermediate membrane 1 of the desalination chamber two-chamber type and the second embodiment in which a cation exchange membrane is used for the intermediate membrane 1 have been described. In the intermediate film 1 of these embodiments, a part of the BP film 5 having a plurality of holes 6 is overlapped, and the region without the holes 6 in the BP film 5 is the second small desalination chamber. It is provided over a predetermined range from one end of the BP film 5 on the outlet 4 side of D2 to the side opposite to the one end.

その孔6の無い領域の範囲が大きくなるほど、第2の小脱塩室D2の出口4からのイオンリークを防ぐことが出来るが、その反面、第1の小脱塩室D1から第2の小脱塩室D2へ透過させることが可能な領域が減って、被処理水に対する脱イオン処理の能率が低下する。このため、BP膜5における孔6の無い領域7の範囲は、被処理水に要求される水質に応じて決定する必要があり、第2の小脱塩室D2の出口4側にあるBP膜5の端部から最大でBP膜5の半分までであることが望ましい。   Ion leakage from the outlet 4 of the second small desalination chamber D2 can be prevented as the range of the region without the hole 6 becomes larger. The area | region which can be permeate | transmitted to the desalting chamber D2 decreases, and the efficiency of the deionization process with respect to to-be-processed water falls. For this reason, it is necessary to determine the range of the region 7 without the hole 6 in the BP membrane 5 according to the water quality required for the water to be treated, and the BP membrane on the outlet 4 side of the second small desalination chamber D2. It is desirable to extend from the end of 5 to half of the BP film 5 at the maximum.

また、上記した各実施形態では、小脱塩室D1,D2それぞれの被処理水の流れCを同じ方向(図面の上から下)にした例を示したが、本発明の技術思想はこのような被処理水の流し方でなくても適用できる。たとえば、第1の小脱塩室D1と第2の小脱塩室D2とで被処理水の通水方向が互いに逆向きであってもよい。この場合、第2の小脱塩室D2の被処理水入口と脱イオン水出口が、上記した各実施形態とは逆の位置になる。この事に伴い、BP膜5における孔6の有る領域と無い領域も反対にする必要がある。例えば図1の形態で言うと、第2の小脱塩室D2の被処理水入口は図面下側に位置し、第2の小脱塩室D2の脱イオン水出口は図面上側に位置し、この事に伴い、BP膜5における孔6の有る領域は図面下側に、その孔6の無い領域は図面上側になる。   Further, in each of the above-described embodiments, the example in which the flow C of the water to be treated in each of the small desalting chambers D1 and D2 is set in the same direction (from the top to the bottom of the drawing) is shown. Applicable even if the water to be treated is not flowing. For example, the flow directions of the water to be treated may be opposite to each other in the first small desalting chamber D1 and the second small desalting chamber D2. In this case, the to-be-treated water inlet and the deionized water outlet of the second small desalting chamber D2 are at positions opposite to those in the above-described embodiments. Along with this, it is necessary to reverse the region where the hole 6 exists in the BP film 5 and the region where the hole 6 does not exist. For example, in the form of FIG. 1, the treated water inlet of the second small desalting chamber D2 is located on the lower side of the drawing, and the deionized water outlet of the second small desalting chamber D2 is located on the upper side of the drawing, In connection with this, the area | region with the hole 6 in the BP film | membrane 5 becomes a drawing lower side, and the area | region without the hole 6 becomes a drawing upper side.

結局、小脱塩室D1,D2への被処理水の流し方を同じ向きから互いに逆向きに変更した場合においても、BP膜5に設ける複数の孔6を、第2の小脱塩室D2の出口4側にあるBP膜5の端部から所定の範囲には設けないようにすれば、本願の課題であるイオンリークを解消することが出来る。   Eventually, even when the flow of the water to be treated to the small desalting chambers D1 and D2 is changed from the same direction to the opposite directions, the plurality of holes 6 provided in the BP film 5 are provided in the second small desalting chamber D2. If it is not provided within a predetermined range from the end of the BP film 5 on the outlet 4 side, ion leakage, which is a problem of the present application, can be solved.

また各実施形態では、中間膜1に隣接配置したBP膜5の一部に開けた複数の孔6は、その一部(領域)に均等に配置されている。仮にBP膜5の一部に一つの大きな孔を開ける構成であると、電流は電気抵抗の相対的に小さい箇所に流れるので、陽極と陰極間の電流密度がバイポーラ膜が設置されている部分に偏り、不均一になりやすい。この電流密度の不均一は脱塩室での被処理水中のイオンに対する電気泳動や電気透析の効率を低下させる。これに比べて、BP膜5の一部に複数の孔6を均等に配置する本願の構成では、陽極と陰極間の印加電流が脱塩室に対しておおむね均等に流れるので、EDIの陽極と陰極間での電気泳動と電気透析を安定して行うことが出来る。   In each embodiment, the plurality of holes 6 opened in a part of the BP film 5 disposed adjacent to the intermediate film 1 are equally arranged in a part (region) thereof. If one large hole is formed in a part of the BP film 5, the current flows to a portion having a relatively small electric resistance, so that the current density between the anode and the cathode is in the portion where the bipolar film is installed. It tends to be biased and uneven. This non-uniform current density reduces the efficiency of electrophoresis and electrodialysis for ions in the water to be treated in the desalting chamber. In contrast, in the configuration of the present application in which a plurality of holes 6 are evenly arranged in a part of the BP film 5, the applied current between the anode and the cathode flows almost uniformly to the desalting chamber. Electrophoresis and electrodialysis between the cathodes can be performed stably.

また、上記した各実施形態では、中間膜1で2室に区画された脱塩室と該脱塩室の両隣に配置された一対の濃縮室とから構成される脱塩処理部を陰極と陽極の間に1つだけ備えた構成を示したが、この脱塩処理部が2つ以上用意されたEDIについても本願発明に含まれる。   Further, in each of the above-described embodiments, the desalination treatment unit configured by the desalination chamber partitioned into two chambers by the intermediate membrane 1 and the pair of concentration chambers arranged on both sides of the desalination chamber is used as a cathode and an anode. However, an EDI having two or more desalting units is also included in the present invention.

次に、本発明の効果について、実施例1といくつかの比較例とで比較して説明する。   Next, the effects of the present invention will be described in comparison with Example 1 and some comparative examples.

本実施例に係る脱塩室2室型のEDIは、図4に示すように、脱塩室Dと、該脱塩室Dの両隣に配置された一対の濃縮室C1,C2と、一方の濃縮室C1の外側に配置された陽極室E1と、他方の濃縮室C2の外側に配置された陰極室E2とを有し、該脱塩室Dが、中間膜(イオン交換膜)1によって、陽極と陰極の間の通電方向に並ぶ2つの小脱塩室D1,D2に区画されたものである。なお、図4中にはアニオン交換膜をAEM、カチオン交換膜をCEMと略記している。   As shown in FIG. 4, the EDI of the desalination chamber two-chamber type according to the present embodiment includes a desalination chamber D, a pair of concentration chambers C1, C2 arranged on both sides of the desalination chamber D, The anode chamber E1 disposed outside the concentrating chamber C1 and the cathode chamber E2 disposed outside the other concentrating chamber C2, and the desalting chamber D is formed by the intermediate membrane (ion exchange membrane) 1 It is divided into two small desalting chambers D1, D2 arranged in the energization direction between the anode and the cathode. In FIG. 4, the anion exchange membrane is abbreviated as AEM, and the cation exchange membrane is abbreviated as CEM.

ここで、図1に示した構造の脱塩室を備えた脱塩室2室型のEDIを実施例1として用意した。   Here, an EDI having a desalination chamber two-chamber type equipped with a desalination chamber having the structure shown in FIG.

実施例1は、脱塩室の中間膜がアニオン交換膜であって、一部に多数の孔を有するBP膜を該中間膜に重ねて配置した例である。   Example 1 is an example in which the intermediate membrane in the desalting chamber is an anion exchange membrane, and a BP membrane having a large number of pores in part is placed on the intermediate membrane.

さらに、実施例1と比較する比較例1、比較例2、および比較例3を用意した。   Furthermore, Comparative Example 1, Comparative Example 2, and Comparative Example 3 to be compared with Example 1 were prepared.

比較例1は、実施例1に対して、BP膜の全面に亘って多数の孔を設けた例(不図示)である。   Comparative Example 1 is an example (not shown) in which a large number of holes are provided over the entire surface of the BP film with respect to Example 1.

比較例2は、図5に示した構造の脱塩室を備えた脱塩室2室型のEDI、すなわち、実施例1に対してBP膜を備えていない例である。   Comparative Example 2 is an EDI having a desalination chamber two-chamber type including the desalination chamber having the structure shown in FIG. 5, that is, an example in which no BP membrane is provided for Example 1.

比較例3は、図7に示した構造の脱塩室を備えた脱塩室2室型のEDI、すなわち、実施例1に対してBP膜に孔を全く設けていない例である。   Comparative Example 3 is an EDI having a desalination chamber two-chamber type having a desalination chamber having the structure shown in FIG. 7, that is, an example in which no hole is provided in the BP membrane with respect to Example 1.

なお、これらの脱塩室に対する被処理水の流し方は同一であり、図1,図5,図7等に矢印で示すとおり、第1の小脱塩室D1と第2の小脱塩室D2とで被処理水の流れる方向が同じになるようにした。   The flow of water to be treated to these desalting chambers is the same, and the first small desalting chamber D1 and the second small desalting chamber are shown in FIG. 1, FIG. 5, FIG. The flow direction of the water to be treated was the same as D2.

このような実施例1、比較例1、比較例2、比較例3を用いて、本発明の効果を確認した。   Using such Example 1, Comparative Example 1, Comparative Example 2, and Comparative Example 3, the effect of the present invention was confirmed.

実施例1および比較例1〜3における脱塩室2室型のEDIの仕様、通水流量、供給水の仕様等は以下の通りである。なお、CERはカチオン交換体(カチオン交換樹脂)、AERはアニオン交換体(アニオン交換樹脂)、MBは混合イオン交換体(カチオン交換体とアニオン交換体の混床形態)の略である。
・陽極室:寸法200×250×5mm CER充填
・陰極室:寸法200×250×5mm AER充填
・第1の小脱塩室D1:寸法200×250×10mm MB充填(混合比率1:1)
・第2の小脱塩室D2:寸法200×250×10mm AER充填
・各濃縮室:200×250×5mm AER充填
・小脱塩室D1,D2における被処理水の流量:50L/h
・濃縮室における濃縮水の流量:20L/h
・陽極室及び陰極室における電極水の流量:10L/h
・小脱塩室への供給水(被処理水):一段RO透過水9〜10μS/cm
・濃縮室への供給水(濃縮水):一段RO透過水9〜10μS/cm
・電極室への供給水(電極水):脱塩室処理水
・小脱塩室への供給水(被処理水)中のシリカ濃度:1mg/L
・印加電流値:2.0A
以上の条件の下で実施例1および比較例1〜3の脱塩室2室型のEDIのそれぞれについて、200時間の連続運転を行い、その後の運転電圧、処理水質(脱塩室通過後の被処理水の比抵抗)、脱塩室通過後の被処理水中のシリカ濃度、を比較した。その結果を表1に示す。
The specifications of the EDI of the desalination chamber two-chamber type in Example 1 and Comparative Examples 1 to 3, the water flow rate, the specifications of the supply water, etc. are as follows. In addition, CER is an abbreviation for a cation exchanger (cation exchange resin), AER is an anion exchanger (anion exchange resin), and MB is a mixed ion exchanger (mixed bed form of a cation exchanger and an anion exchanger).
・ Anode chamber: dimension 200 × 250 × 5 mm CER filling ・ cathode chamber: dimension 200 × 250 × 5 mm AER filling ・ first small desalination chamber D1: dimension 200 × 250 × 10 mm MB filling (mixing ratio 1: 1)
・ Second small desalination chamber D2: dimension 200 × 250 × 10 mm AER filling ・ Each concentration chamber: 200 × 250 × 5 mm AER filling ・ Flow rate of treated water in small desalination chambers D1 and D2: 50 L / h
・ Flow rate of concentrated water in the concentration chamber: 20 L / h
-Flow rate of electrode water in the anode chamber and the cathode chamber: 10 L / h
・ Supply water to small desalination chamber (treated water): One-stage RO permeated water 9 to 10 μS / cm
・ Supply water to the concentrating chamber (concentrated water): single stage RO permeated water 9 to 10 μS / cm
・ Supply water to electrode chamber (electrode water): Desalination chamber treated water ・ Silica concentration in feed water (treated water) to small desalination chamber: 1 mg / L
-Applied current value: 2.0A
Under the above conditions, each of the EDIs in the demineralization chamber two-chamber type of Example 1 and Comparative Examples 1 to 3 is continuously operated for 200 hours, and the subsequent operation voltage, treated water quality (after passing the demineralization chamber) The specific resistance of the water to be treated) and the silica concentration in the water to be treated after passing through the desalting chamber were compared. The results are shown in Table 1.

Figure 0005940387
Figure 0005940387

表1に示すとおり、2室に区画する脱塩室の中間膜にBP膜を貼り合せた実施例1、比較例1、および比較例3は、該BP膜を持たない比較例2と比べて、運転電圧を低く抑えられた。また、実施例1と比較例1と比較例2では、脱塩室通過後の被処理水の比抵抗値が18MΩ・cm程度と高く、比較例3と比べて極めて高い水質が得られた。また、脱塩室通過後の被処理水中のシリカ濃度は比較例3では10μg/L未満と非常に低い値を示したのに対し、比較例1と比較例2では30μg/L以上と高い値を示した。   As shown in Table 1, Example 1, Comparative Example 1, and Comparative Example 3 in which a BP film was bonded to an intermediate film of a desalination chamber partitioned into two chambers were compared with Comparative Example 2 that did not have the BP film. The operating voltage was kept low. In Example 1, Comparative Example 1, and Comparative Example 2, the specific resistance value of the water to be treated after passing through the desalting chamber was as high as about 18 MΩ · cm, and extremely high water quality was obtained as compared with Comparative Example 3. In addition, the silica concentration in the water to be treated after passing through the desalting chamber showed a very low value of less than 10 μg / L in Comparative Example 3, whereas it was as high as 30 μg / L or more in Comparative Example 1 and Comparative Example 2. showed that.

これらのことから、実施例1のように脱塩室の中間膜にBP膜を貼り合せ、該BP膜の、第2の小脱塩室D2の出口側の端部から所定の範囲を除いた部分に複数の孔を開けることで、運転電圧を抑えながら、処理水質が向上し、イオンのリーク(本例ではシリカイオンのリーク)も減らせることが確認された。   For these reasons, as in Example 1, a BP membrane was bonded to the intermediate membrane of the desalting chamber, and the predetermined range was removed from the end of the BP membrane on the outlet side of the second small desalting chamber D2. It was confirmed that by forming a plurality of holes in the portion, the treated water quality was improved while suppressing the operating voltage, and ion leakage (silica ion leakage in this example) could be reduced.

なお、上記した本発明の効果の確認においては、脱塩室2室型のEDIの脱塩室の中間膜にアニオン交換膜を用いたものを例にとったが、該中間膜にカチオン交換膜を使用するもの(図3の構造)でも上記した効果と同じであると考えられる。   In the above confirmation of the effect of the present invention, an example in which an anion exchange membrane is used as an intermediate membrane in a desalination chamber of a two-salt chamber type EDI is taken as an example. It is considered that the same effect as described above can be obtained even in the case of using (the structure of FIG. 3).

1:中間膜 2:混合イオン交換体 3:アニオン交換体
4:脱塩室の最下流の出口(第2の小脱塩室D2の脱イオン水出口)
5:BP膜 6:孔 7:BP膜における複数の孔が無い領域
8:カチオン交換体
D:脱塩室 D1:第1の小脱塩室 D2:第2の小脱塩室
C1,C2:濃縮室 E1:陽極室 E2:陰極室
AEM:アニオン交換膜 CEM:カチオン交換膜
1: Intermediate membrane 2: Mixed ion exchanger 3: Anion exchanger 4: The most downstream outlet of the desalting chamber (deionized water outlet of the second small desalting chamber D2)
5: BP membrane 6: pore 7: region without a plurality of pores in the BP membrane 8: cation exchanger D: desalination chamber D1: first small desalination chamber D2: second small desalination chamber C1, C2: Concentration chamber E1: Anode chamber E2: Cathode chamber AEM: Anion exchange membrane CEM: Cation exchange membrane

Claims (10)

脱塩室と、該脱塩室の両隣に設けられた一対の濃縮室と、該一対の濃縮室の一方に対して前記脱塩室の側とは反対側に設けられた陽極と、該一対の濃縮室の他方に対して前記脱塩室の側とは反対側に設けられた陰極とを備え、前記脱塩室が、イオン交換膜によって、前記陽極と前記陰極の間の通電方向に並ぶ第1および第2の小脱塩室の2室に区画され、前記第1および第2の小脱塩室は、被処理水が前記第1の小脱塩室を通過してから前記第2の小脱塩室を通過るように連通され、前記イオン交換膜が、前記脱塩室を前記陰極側の前記第1の小脱塩室と前記陽極側の前記第2の小脱塩室とに区画するアニオン交換膜であるか、または、前記脱塩室を前記陽極側の前記第1の小脱塩室と前記陰極側の前記第2の小脱塩室とに区画するカチオン交換膜である、電気式脱イオン水製造装置において、
アニオン交換膜とカチオン交換膜を貼り合せてなるバイポーラ膜をさらに備え、
該バイポーラ膜が前記イオン交換膜に重ねて設置され、該バイポーラ膜の、前記脱塩室の最下流の出口付近を除いた領域に複数の孔が設けられていることを特徴とする電気式脱イオン水製造装置。
A desalting chamber; a pair of concentrating chambers provided on both sides of the desalting chamber; an anode provided on the opposite side of the desalting chamber with respect to one of the pair of concentrating chambers; A cathode provided on the side opposite to the desalting chamber side with respect to the other of the concentration chambers, and the desalting chamber is arranged in an energization direction between the anode and the cathode by an ion exchange membrane The first and second small desalting chambers are divided into two chambers, and the first and second small desalting chambers are configured such that the second treated water passes through the first small desalting chamber after the second treated water passes through the first small desalting chamber. of the communication in so that to pass through the small depletion chamber, the ion exchange membrane, the desalting compartment the second small depletion chamber of the anode side and the first small depletion chamber of the cathode-side Or an anion exchange membrane that is partitioned into two parts, or a partition that divides the desalting chamber into the first small desalting chamber on the anode side and the second small desalting chamber on the cathode side. Is exchange membrane, in electrodeionization water producing apparatus,
It further comprises a bipolar membrane formed by laminating an anion exchange membrane and a cation exchange membrane,
The bipolar membrane is placed over the ion exchange membrane, and a plurality of holes are provided in a region of the bipolar membrane excluding the vicinity of the most downstream outlet of the desalting chamber. Ionized water production equipment.
請求項1に記載の電気式脱イオン水製造装置であって
記イオン交換膜が前記アニオン交換膜であり、
該アニオン交換膜の前記陰極側の面に前記バイポーラ膜のアニオン交換膜が接するように前記バイポーラ膜が重ねて設置されており、
前記第2の小脱塩室に少なくともアニオン交換体が充填され、前記第1の小脱塩室に少なくともカチオン交換体が充填されていることを特徴とする電気式脱イオン水製造装置。
The electric deionized water production apparatus according to claim 1 ,
Before Symbol ion-exchange membrane is that the anion-exchange membrane,
The bipolar membrane is placed so that the anion exchange membrane of the bipolar membrane is in contact with the surface on the cathode side of the anion exchange membrane,
An electric deionized water producing apparatus, wherein the second small desalting chamber is filled with at least an anion exchanger, and the first small desalting chamber is filled with at least a cation exchanger.
請求項1に記載の電気式脱イオン水製造装置であって
記イオン交換膜が前記カチオン交換膜であり、
該カチオン交換膜の前記陽極側の面に前記バイポーラ膜のカチオン交換膜が接するように前記バイポーラ膜が重ねて設置されており、
前記第1の小脱塩室に少なくともアニオン交換体が充填され、前記第2の小脱塩室に少なくともカチオン交換体が充填されていることを特徴とする電気式脱イオン水製造装置。
The electric deionized water production apparatus according to claim 1 ,
Before Symbol ion-exchange membrane is said cation exchange membrane,
The bipolar membrane is placed so that the cation exchange membrane of the bipolar membrane is in contact with the anode side surface of the cation exchange membrane,
An electric deionized water production apparatus, wherein the first small desalting chamber is filled with at least an anion exchanger, and the second small desalting chamber is filled with at least a cation exchanger.
請求項1から3のいずれか1項に記載の電気式脱イオン水製造装置であって、
前記バイポーラ膜において前記複数の孔が設けられていない領域は、前記第2の小脱塩室の出口側にある前記バイポーラ膜の一端部から、該一端部とは反対の側へ所定の範囲に亘って設けられていることを特徴とする電気式脱イオン水製造装置。
The electric deionized water production apparatus according to any one of claims 1 to 3,
The region where the plurality of holes are not provided in the bipolar membrane is within a predetermined range from one end of the bipolar membrane on the outlet side of the second small desalination chamber to the side opposite to the one end. An electric deionized water production apparatus characterized by being provided over the entire area.
請求項1から4のいずれか1項に記載の電気式脱イオン水製造装置であって、
前記第1の小脱塩室と前記第2の小脱塩室とで前記被処理水の流れる方向が同じにされていることを特徴とする電気式脱イオン水製造装置。
The electric deionized water production apparatus according to any one of claims 1 to 4,
The electric deionized water production apparatus is characterized in that the flow direction of the water to be treated is the same in the first small desalting chamber and the second small desalting chamber.
請求項1から4のいずれか1項に記載の電気式脱イオン水製造装置であって、
前記第1の小脱塩室と前記第2の小脱塩室とで前記被処理水の流れる方向が互いに逆向きにされていることを特徴とする電気式脱イオン水製造装置。
The electric deionized water production apparatus according to any one of claims 1 to 4,
The electric deionized water production apparatus characterized in that the flow directions of the water to be treated in the first small desalting chamber and the second small desalting chamber are opposite to each other.
前記脱塩室に流入させる被処理水にはシリカが含まれていることを特徴とする請求項2に記載の電気式脱イオン水製造装置。   3. The electric deionized water production apparatus according to claim 2, wherein the water to be treated flowing into the demineralization chamber contains silica. 前記脱塩室に流入させる被処理水は1段RO膜透過水であることを特徴とする請求項1から6のいずれか1項に記載の電気式脱イオン水製造装置。   7. The electric deionized water production apparatus according to claim 1, wherein the water to be treated flowing into the demineralization chamber is one-stage RO membrane permeated water. 脱塩室と、該脱塩室の両隣に設けられた一対の濃縮室と、該一対の濃縮室の一方に対して前記脱塩室の側とは反対側に設けられた陽極と、該一対の濃縮室の他方に対して前記脱塩室の側とは反対側に設けられた陰極とを備え、前記脱塩室が、イオン交換膜によって、前記陽極と前記陰極の間の通電方向に並ぶ第1および第2の小脱塩室の2室に区画され、前記イオン交換膜が、前記脱塩室を前記陰極側の前記第1の小脱塩室と前記陽極側の前記第2の小脱塩室とに区画するアニオン交換膜であるか、または、前記脱塩室を前記陽極側の前記第1の小脱塩室と前記陰極側の前記第2の小脱塩室とに区画するカチオン交換膜である、電気式脱イオン水製造装置を用意し、被処理水を前記第1の小脱塩室に通過させてから前記第2の小脱塩室に通過させて脱イオン水を製造する脱イオン水製造方法において、
アニオン交換膜とカチオン交換膜を貼り合せてなるバイポーラ膜を前記イオン交換膜に重ねて設置し、該バイポーラ膜の、前記脱塩室の最下流の出口付近を除いた領域に複数の孔を設けておくことを特徴とする脱イオン水製造方法。
A desalting chamber; a pair of concentrating chambers provided on both sides of the desalting chamber; an anode provided on the opposite side of the desalting chamber with respect to one of the pair of concentrating chambers; A cathode provided on the side opposite to the desalting chamber side with respect to the other of the concentration chambers, and the desalting chamber is arranged in an energization direction between the anode and the cathode by an ion exchange membrane The ion exchange membrane is divided into two chambers, a first and a second small desalting chamber, and the ion exchange membrane separates the desalting chamber from the first small desalting chamber on the cathode side and the second small salt on the anode side. An anion exchange membrane that is partitioned into a desalting chamber, or the desalting chamber is partitioned into the first small desalting chamber on the anode side and the second small desalting chamber on the cathode side a cation exchange membrane, prepared electrodeionization water producing apparatus, passing the second small depletion chamber through by passing water to be treated to the first small depletion chamber In deionized water producing method for producing deionized water by,
A bipolar membrane formed by laminating an anion exchange membrane and a cation exchange membrane is placed on the ion exchange membrane, and a plurality of holes are provided in a region of the bipolar membrane excluding the vicinity of the most downstream outlet of the desalting chamber. A method for producing deionized water, characterized by comprising:
請求項9に記載の脱イオン水製造方法であって、
前記バイポーラ膜において前記複数の孔が設けられていない領域を、前記第2の小脱塩室の出口側にある前記バイポーラ膜の一端部から、該一端部とは反対の側へ所定の範囲に亘って設けておくことを特徴とする脱イオン水製造方法。
A method for producing deionized water according to claim 9,
A region where the plurality of holes are not provided in the bipolar membrane is within a predetermined range from one end portion of the bipolar membrane on the outlet side of the second small desalting chamber to the side opposite to the one end portion. A method for producing deionized water, characterized in that the deionized water is provided.
JP2012137684A 2012-06-19 2012-06-19 Electric deionized water production apparatus and deionized water production method Expired - Fee Related JP5940387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137684A JP5940387B2 (en) 2012-06-19 2012-06-19 Electric deionized water production apparatus and deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137684A JP5940387B2 (en) 2012-06-19 2012-06-19 Electric deionized water production apparatus and deionized water production method

Publications (2)

Publication Number Publication Date
JP2014000524A JP2014000524A (en) 2014-01-09
JP5940387B2 true JP5940387B2 (en) 2016-06-29

Family

ID=50034226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137684A Expired - Fee Related JP5940387B2 (en) 2012-06-19 2012-06-19 Electric deionized water production apparatus and deionized water production method

Country Status (1)

Country Link
JP (1) JP5940387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532554B1 (en) * 2018-01-19 2019-06-19 オルガノ株式会社 Electric deionized water production equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385553B2 (en) * 1999-03-25 2003-03-10 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5489867B2 (en) * 2010-06-03 2014-05-14 オルガノ株式会社 Electric deionized water production equipment
JP5385457B2 (en) * 2010-06-03 2014-01-08 オルガノ株式会社 Electric deionized water production equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump

Also Published As

Publication number Publication date
JP2014000524A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US8871073B2 (en) Electrodeionization apparatus for producing deionized water
JP5295927B2 (en) Electric deionized water production equipment
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP5695926B2 (en) Electric deionized water production equipment
JP5114307B2 (en) Electric deionized water production equipment
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP5385457B2 (en) Electric deionized water production equipment
JP5489867B2 (en) Electric deionized water production equipment
JP5379025B2 (en) Electric deionized water production equipment
WO2017056792A1 (en) Water treatment device and water treatment method
JP2014528824A (en) Desalination system and method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP4552273B2 (en) Electrodeionization equipment
JP5806038B2 (en) Electric deionized water production equipment
KR102436864B1 (en) Electric deionized water production device
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP5661930B2 (en) Electric deionized water production equipment
JP5355460B2 (en) Electric deionized water production equipment
JP4453972B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JP5719707B2 (en) Electric deionized water production equipment
JP5620229B2 (en) Electric deionized water production equipment
JP4660890B2 (en) Operation method of electrodeionization equipment
JP5689032B2 (en) Electric deionized water production equipment
JP2014200698A (en) Electric deionized water manufacturing apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160518

R150 Certificate of patent or registration of utility model

Ref document number: 5940387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees