JP2003001258A - Electrolytic deionizing apparatus - Google Patents

Electrolytic deionizing apparatus

Info

Publication number
JP2003001258A
JP2003001258A JP2001182102A JP2001182102A JP2003001258A JP 2003001258 A JP2003001258 A JP 2003001258A JP 2001182102 A JP2001182102 A JP 2001182102A JP 2001182102 A JP2001182102 A JP 2001182102A JP 2003001258 A JP2003001258 A JP 2003001258A
Authority
JP
Japan
Prior art keywords
chamber
primary
water
desalination
demineralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001182102A
Other languages
Japanese (ja)
Inventor
Kiminobu Osawa
公伸 大澤
Osamu Kato
修 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001182102A priority Critical patent/JP2003001258A/en
Publication of JP2003001258A publication Critical patent/JP2003001258A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic deionizing apparatus capable of sufficiently removing even weak electrolytes such as silica and boron and capable of obtaining high quality treated water having a high specific resistance by a single apparatus. SOLUTION: Raw water is introduced from raw water supply piping 5 into primary desalting chambers 1 and treated water (primarily desalted water) in the chambers 1 is introduced from piping 6 into secondary desalting chambers 2. Treated water (secondarily desalted water) in the chambers 2 is drawn as treated water. Part of the primarily desalted water is drawn by piping 8 from the piping 6 and fed to concentration chambers 3, 4, a cathode chamber 18 and an anode chamber 17, and waste water from the concentration chambers 3, 4, the cathode chamber 18 and the anode chamber 17 is drawn as concentrated waste water through piping 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体、液晶、製
薬、食品、電力等の分野の各種産業、民生用又は研究設
備で利用される脱イオン水を製造する電気脱イオン装置
に係り、特に、シリカ、ホウ素などの弱電解質及び有機
物の除去率を飛躍的に向上させることができ、例えば比
抵抗値18.0MΩ・cm以上の高水質の脱イオン水を
製造することができる電気脱イオン装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric deionization apparatus for producing deionized water used in various industries in the fields of semiconductors, liquid crystals, pharmaceuticals, foods, electric power, etc., for consumer use or in research facilities, and in particular, TECHNICAL FIELD The present invention relates to an electric deionization device capable of dramatically improving the removal rates of weak electrolytes such as silica and boron and organic substances, and capable of producing high-quality deionized water having a specific resistance value of 18.0 MΩ · cm or more. .

【0002】[0002]

【従来の技術】従来、半導体製造工場、液晶工場、食品
工業、電力工業等の各種産業、民生用ないし研究施設等
において使用されている脱イオン水の製造には、第4図
に示す如く、電極(陽極11、陰極12)の間に複数の
アニオン交換膜13及びカチオン交換膜14を交互に配
列して濃縮室15と脱塩室16とを交互に形成し、脱塩
室16にイオン交換樹脂、イオン交換繊維もしくはグラ
フト交換体等からなるアニオン交換体とカチオン交換体
とを混合もしくは複層状に充填した電気脱イオン装置が
多用されている(特許第1782943号、特許第27
51090号、特許第2699256号)。17は陽極
室、18は陰極室である。
2. Description of the Related Art Conventionally, in the production of deionized water used in various industries such as a semiconductor manufacturing factory, a liquid crystal factory, a food industry, an electric power industry, and a consumer or research facility, as shown in FIG. A plurality of anion exchange membranes 13 and cation exchange membranes 14 are alternately arranged between the electrodes (anode 11 and cathode 12) to alternately form a concentrating chamber 15 and a desalting chamber 16, and the desalting chamber 16 is ion-exchanged. An electric deionization device in which an anion exchanger composed of a resin, an ion exchange fiber, a graft exchange or the like and a cation exchanger are mixed or filled in a multi-layered form is frequently used (Japanese Patent Nos. 1782943 and 27).
51090, Japanese Patent No. 2699256). Reference numeral 17 is an anode chamber and 18 is a cathode chamber.

【0003】一般に、電気脱イオン装置は、水解離によ
ってHイオンとOH−イオンとを生成させ、脱塩室内
に充填されているイオン交換体を連続して再生すること
によって、効率的な脱塩処理が可能である。電気脱イオ
ン装置は、従来から脱塩処理に広く用いられてきたイオ
ン交換樹脂装置のような薬品を用いた再生処理を必要と
せず、完全な連続採水が可能で、高純度の水を製造する
ことができるという利点を有する。
In general, an electric deionization apparatus produces H + ions and OH − ions by water dissociation, and continuously regenerates an ion exchanger filled in a desalting chamber to efficiently perform deionization. Salt treatment is possible. Electrodeionization equipment does not require regeneration treatment using chemicals such as ion exchange resin equipment, which has been widely used for desalination treatment, and enables complete continuous water sampling, producing highly pure water. It has the advantage of being able to

【0004】このような電気脱イオン装置で、炭酸ガス
(CO)、シリカ、ホウ素などの弱電解物質を除去す
るためには、下記のようなイオン化反応を脱塩室内で生
起させ、イオンを発生させる必要がある。 CO+OH→HCO (pKa=6.35) SiO+OH→HSiO (pKa=9.86) HBO+OH→B(OH) (pKa=9.24)
In order to remove weak electrolytic substances such as carbon dioxide (CO 2 ), silica and boron with such an electric deionization device, the following ionization reaction is caused in the demineralization chamber to generate ions. Need to occur. CO 2 + OH → HCO 3 (pKa = 6.35) SiO 2 + OH → HSiO 3 (pKa = 9.86) H 3 BO 3 + OH → B (OH) 4 (pKa = 9.24)

【0005】これらの弱電解物質のうち、COのよう
に解離定数pKa値が低い物質は印加電圧を高めて水解
離を起こさせれば、従来の電気脱イオン装置でも完全に
除去することができるが、シリカ、ホウ素などの解離定
数が高い物質は印加電圧を上げても60〜90%程度ま
でしか除去することができない。
Among these weak electrolytic substances, substances such as CO 2 having a low dissociation constant pKa value can be completely removed by a conventional electric deionization apparatus by increasing the applied voltage to cause water dissociation. However, substances having a high dissociation constant such as silica and boron can be removed only up to about 60 to 90% even if the applied voltage is increased.

【0006】このような問題点を解決するために、従
来、次のような方法が提案されている。 脱塩室のイオン交換層をアニオン交換層、カチオン
交換層とする複層充填とし、該アニオン交換層で一時的
にアルカリ性にする方法(特開平4−71624号公
報) 電気脱イオン装置の原水のpHを9.5〜11.5
に調整して通水する方法(USP4,298,442) シリカを除去するために、従来の電気脱イオン装置
を多段に設けて通水したり、前段のRO膜装置を多段に
する方法。
In order to solve such problems, the following methods have been conventionally proposed. A method in which the ion-exchange layer in the desalting chamber is filled with multiple layers including an anion-exchange layer and a cation-exchange layer, and the anion-exchange layer is temporarily made alkaline (JP-A-4-71624). pH 9.5 to 11.5
(USP 4,298,442) In order to remove silica, a conventional electrodeionization device is provided in multiple stages to allow water to pass therethrough, or a RO membrane device in the previous stage is provided in multiple stages.

【0007】[0007]

【発明が解決しようとする課題】の脱塩室内のイオン
交換層を複層充填とする方法では、半導体分野等での要
求シリカ濃度<0.1ppbを達成することはできな
い。
In the method of filling the ion exchange layer in the desalting chamber with a multi-layered packing, the silica concentration required in the semiconductor field etc. <0.1 ppb cannot be achieved.

【0008】の原水のpHを上げる方法では、シリカ
の除去効率は5〜10%程度向上するが、pH調整のた
めに苛性ソーダなどの薬液注入設備が必要となる。 原
水中のCa2+、Mg2+等の硬度成分はスケールを生
成するため、軟化装置等で完全に除去する必要があり、
設備コストが上昇する。
In the method of raising the pH of the raw water, the removal efficiency of silica is improved by about 5 to 10%, but a chemical injection facility such as caustic soda is required for adjusting the pH. Hardness components such as Ca 2+ and Mg 2+ in raw water generate scale, so it is necessary to completely remove them with a softening device, etc.
Equipment costs increase.

【0009】の方法では、電気脱イオン装置で処理さ
れた水にはシリカやホウ素が0.5〜1.0ppb以上
含まれるため、電気脱イオン装置の後段に非再生型混床
式イオン交換装置を配置する必要がある。
In the method of (1), since the water treated by the electric deionization apparatus contains silica and boron in an amount of 0.5 to 1.0 ppb or more, the non-regeneration type mixed bed ion exchange apparatus is provided at the subsequent stage of the electric deionization apparatus. Need to be placed.

【0010】本発明は上記従来の問題点を解決し、苛性
ソーダなどの薬液を注入することなく、また、スケール
が生成せず、シリカ、ホウ素等の弱電解質の除去率が著
しく高い電気脱イオン装置を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, does not inject a chemical solution such as caustic soda, does not produce scale, and has an extremely high removal rate of weak electrolytes such as silica and boron. The purpose is to provide.

【0011】また、本発明は、有機物も除去しうる電気
脱イオン装置を提供することを目的とする。
Another object of the present invention is to provide an electrodeionization device capable of removing organic substances.

【0012】[0012]

【課題を解決するための手段】本発明(請求項1)の電
気脱イオン装置は、陰極、陽極、該陰極と陽極の間に複
数のカチオン交換膜とアニオン交換膜とを配列すること
により交互に形成された濃縮室と脱塩室、及び該脱塩室
に充填されたイオン交換体を有する電気脱イオン装置に
おいて、該脱塩室は、厚さの大きい1次脱塩室と厚さの
小さい2次脱塩室とが交互に配置されており、原水は該
1次脱塩室に導入され、1次脱塩室から流出した1次脱
塩水が該2次脱塩室に導入され、2次脱塩室からの2次
脱塩水が処理水として取り出され、該1次脱塩水の一部
が前記各濃縮室に通水されることを特徴とするものであ
る。
The electrodeionization device of the present invention (claim 1) is alternated by arranging a cathode, an anode, and a plurality of cation exchange membranes and anion exchange membranes between the cathode and the anode. In an electric deionization apparatus having a concentrating chamber and a demineralizing chamber formed in the above, and an ion exchanger filled in the demineralizing chamber, the demineralizing chamber has a large thickness and a primary demineralizing chamber. Small secondary desalination chambers are alternately arranged, raw water is introduced into the primary desalination chamber, primary deionized water flowing out from the primary desalination chamber is introduced into the secondary desalination chamber, The secondary demineralized water from the secondary demineralization chamber is taken out as treated water, and a part of the primary demineralized water is passed to each of the concentration chambers.

【0013】また、本発明(請求項2)の電気脱イオン
装置は、陰極、陽極、該陰極と陽極の間に複数のカチオ
ン交換膜とアニオン交換膜とを配列することにより交互
に形成された濃縮室と脱塩室、及び該脱塩室に充填され
たイオン交換体を有する電気脱イオン装置において、該
脱塩室は、厚さの大きい1次脱塩室と厚さの小さい2次
脱塩室とが交互に配置されており、原水は該1次脱塩室
に導入され、1次脱塩室から流出した1次脱塩水が該2
次脱塩室に導入され、2次脱塩室からの2次脱塩水が処
理水として取り出され、陰極側にアニオン交換膜を介し
て1次脱塩室が配置された濃縮室には原水が通水され、
陰極側にアニオン交換膜を介して2次脱塩室が配置され
た濃縮室には該1次脱塩水の一部が通水されることを特
徴とするものである。なお、本発明(請求項2)の方が
前記発明(請求項1)に比べ、1次脱塩水を2次脱塩室
へ導入する量が増やせるため、多くの2次脱塩水を得ら
れる点で有利である。
The electrodeionization device of the present invention (claim 2) is formed alternately by arranging a cathode, an anode, and a plurality of cation exchange membranes and anion exchange membranes between the cathode and the anode. In an electric deionization apparatus having a concentrating chamber, a demineralizing chamber, and an ion exchanger filled in the demineralizing chamber, the demineralizing chamber includes a primary demineralizing chamber having a large thickness and a secondary demineralizing chamber having a small thickness. The salt chambers are alternately arranged, the raw water is introduced into the primary demineralizing chamber, and the primary demineralized water flowing out from the primary demineralizing chamber is used in the second
The secondary demineralized water is introduced into the secondary demineralizing chamber, the secondary demineralized water from the secondary demineralizing chamber is taken out as treated water, and raw water is stored in the concentrating chamber in which the primary demineralizing chamber is arranged on the cathode side through the anion exchange membrane. Water is passed,
A feature is that a part of the primary demineralized water is passed through a concentrating chamber in which a secondary demineralizing chamber is arranged on the cathode side via an anion exchange membrane. In addition, the present invention (Claim 2) can increase the amount of the primary demineralized water introduced into the secondary demineralization chamber as compared with the above-mentioned invention (Claim 1), so that more secondary demineralized water can be obtained. Is advantageous.

【0014】一般に電気脱イオン装置では限界電流密度
以上の電流を流して脱塩を行うが、この時、前述のよう
に水解離が生じてOH、Hが発生し、電荷を運ぶよ
うになる。このHイオンのイオン移動度は349.7
cmΩ−1eq−1で、他のイオンのイオン移動度
(30〜70cmΩ−1eq−1)に比べ、圧倒的に
速い(イオン移動度は無限希釈溶液におけるデータ、日
本化学会編「化学便覧」参照)。このため、特に脱塩室
の厚みWが大きくなると、水解離が生じたときにイオン
移動度の違いによる移動速度の差が広がり、Hは速や
かにに濃縮室側に排出され、OHイオンが脱塩室に取
り残され易い。また、Ca2+、Mg2+などの多価の
カチオンやアニオンは比較的容易に濃縮室側に排出され
るが、Na 、Kは1価であると共に、Hイオンが
電荷を運ぶ役割をしているため、脱塩室に残り易い。こ
の結果として、処理水中にNaOH、KOH等の1価の
アルカリ金属水酸化物が含有されるようになり、処理水
(脱イオン水)のpHはアルカリ性となる。
Generally, in the electric deionization apparatus, the limiting current density is
Demineralization is performed by passing the above current, but at this time, as described above.
Water dissociation occurs in OH, H+Will occur and carry the charge
Growls This H+The ion mobility of ions is 349.7.
cmTwoΩ-1eq-1And the ion mobility of other ions
(30-70 cmTwoΩ-1eq-1) Compared to
Fast (ion mobility data for infinitely diluted solutions, day
(See "Chemical Handbook" edited by the Chemical Society of Japan). For this reason, especially in the desalting chamber
When the thickness W of the
The difference in movement speed due to the difference in mobility spreads, and H+Is fast
Crab is discharged to the concentration chamber side, OHIons are taken into the desalting chamber
It is easy to be left behind. Also, Ca2+, Mg2+Such as multivalent
Cations and anions are relatively easily discharged to the concentration chamber side.
But Na +, K+Is monovalent and H+Ion
Since it plays a role of carrying electric charges, it is easy to remain in the desalination chamber. This
As a result of the
Alkali metal hydroxide is added, treated water
The pH of (deionized water) becomes alkaline.

【0015】なお、同様の理由で濃縮水は、pHが逆に
酸性となる。
For the same reason, the pH of the concentrated water is conversely acidic.

【0016】本発明の電気脱イオン装置にあっては、こ
の理由から、厚さの大きい1次脱塩室内がアルカリ性と
なり、シリカ、ホウ素等の弱電解物質がイオン化し、効
率よく除去される。この1次脱塩処理水が2次脱塩室
(従来と同様に厚さの小さい脱塩室)に通水されて強電
解物質が除去され、これにより高比抵抗の良好な水質の
処理水を得ることができる。
For this reason, in the electric deionization apparatus of the present invention, the primary deionization chamber having a large thickness becomes alkaline, and weak electrolytic substances such as silica and boron are ionized and efficiently removed. The primary demineralized water is passed through a secondary demineralization chamber (a demineralization chamber having a small thickness as in the conventional case) to remove strong electrolytic substances, and as a result, the treated water of high specific resistance and good water quality. Can be obtained.

【0017】なお、2次脱塩室に対しアニオン交換膜を
介して隣り合う濃縮室へは、弱電解物質を殆ど含まない
1次脱塩水を通水するので、この2次脱塩室に濃縮室か
ら弱電解物質が逆混入してくることはない。
Since the primary demineralized water containing almost no weak electrolytic substance is passed to the concentrating chamber adjacent to the secondary demineralizing chamber through the anion exchange membrane, the secondary demineralizing chamber is concentrated. The weak electrolyte does not come back into the chamber.

【0018】しかも、本発明では、電気脱イオン装置を
多段に接続することなく、1台の装置でかかる高水質の
処理水を得ることができる。
Further, according to the present invention, it is possible to obtain the treated water of high quality with one apparatus without connecting the electric deionization apparatus in multiple stages.

【0019】本発明では、1次脱塩室及び2次脱塩室の
少なくとも一方に、有機物分解能を有した物質が含まれ
ていてもよい。
In the present invention, at least one of the primary desalination chamber and the secondary desalination chamber may contain a substance having an organic substance decomposing ability.

【0020】この有機物分解能を有した物質としては、
金属を担持した粒状担体、活性炭などが例示される。こ
の有機物分解能を有した物質は、恐らくは有機物を有機
酸に分解し、この有機酸がイオン状に解離し、濃縮室へ
排出されるものと推察される。
As a substance having this organic substance decomposing ability,
Examples include granular carriers carrying metal and activated carbon. It is presumed that the substance having the ability to decompose organic matter probably decomposes the organic matter into organic acid, and the organic acid is dissociated into ions and discharged to the concentration chamber.

【0021】本発明では、2次脱塩水が通水される高次
脱塩室を設けてもよい。
In the present invention, a high-order demineralization chamber through which secondary demineralized water flows may be provided.

【0022】本発明では、脱塩室は、原水を脱塩室に通
水することにより脱塩水のpHが原水よりも1以上上昇
する性質を持つ1次脱塩室と、アニオン交換体層とカチ
オン交換体層を交互に充填した2次脱塩室とが交互に配
置された構成とされてもよい。この場合、1次脱塩室
は、厚さ7mm以上であるか、又は原水が最初に通水さ
れるイオン交換体としてアニオン交換体のみを充填した
構成であることが好ましい。
In the present invention, the desalting chamber has a primary desalting chamber having a property that the pH of the desalinated water is increased by 1 or more as compared with the raw water by passing the raw water through the desalting chamber, and an anion exchanger layer. The secondary desalting chambers in which the cation exchanger layers are alternately filled may be alternately arranged. In this case, it is preferable that the primary desalination chamber has a thickness of 7 mm or more, or has a configuration in which only an anion exchanger is filled as an ion exchanger through which raw water is first passed.

【0023】[0023]

【発明の実施の形態】以下、図面を参照して実施の形態
について説明する。第1,2図はそれぞれ実施の形態に
係る電気脱イオン装置の模式的な構成図である。第1,
2図のいずれにおいても、陽極11、陰極12の間に複
数のアニオン交換膜A及びカチオン交換膜Cを交互に配
列して濃縮室と脱塩室とを交互に形成し、脱塩室1,2
にイオン交換樹脂、イオン交換繊維もしくはグラフト交
換体等からなるアニオン交換体とカチオン交換体とを混
合もしくは複層状に充填している。陽極11、陰極12
に沿ってそれぞれ陽極室17、陰極室18が設けられて
いる。
DETAILED DESCRIPTION OF THE INVENTION Embodiments will be described below with reference to the drawings. 1 and 2 are schematic configuration diagrams of the electric deionization apparatus according to the embodiment. First,
In any of the drawings, a plurality of anion exchange membranes A and cation exchange membranes C are alternately arranged between the anode 11 and the cathode 12 to alternately form a concentration chamber and a desalting chamber. Two
Further, an anion exchanger and an anion exchanger made of an ion exchange resin, an ion exchange fiber, a graft exchange or the like are mixed or packed in a multi-layered manner. Anode 11 and cathode 12
An anode chamber 17 and a cathode chamber 18 are provided along the above.

【0024】脱塩室は、厚さが7mm以上の1次脱塩室
1と、厚さが7mm未満の2次脱塩室2とからなる。濃
縮室3,4の厚さはすべて同一である。
The desalination chamber comprises a primary desalination chamber 1 having a thickness of 7 mm or more and a secondary desalination chamber 2 having a thickness of less than 7 mm. The thickening chambers 3 and 4 have the same thickness.

【0025】陰極室18にカチオン膜Cを介して厚さの
大きい1次脱塩室1が配置され、以下陽極11に向かっ
て濃縮室3、2次脱塩室2、濃縮室4、1次脱塩室1、
濃縮室3、2次脱塩室2の順に配置されている。なお、
第1,2図では1次脱塩室1及び2次脱塩室2がそれぞ
れ2室ずつ配置されているが、この配置数はこれに限定
されるものではない。
A primary demineralization chamber 1 having a large thickness is arranged in the cathode chamber 18 via a cation membrane C, and thereafter, a concentrating chamber 3, a secondary demineralizing chamber 2, a concentrating chamber 4, and a primary chamber are directed toward the anode 11. Desalination chamber 1,
The concentrating chamber 3 and the secondary desalting chamber 2 are arranged in this order. In addition,
In FIGS. 1 and 2, two primary demineralization chambers 1 and two secondary demineralization chambers 2 are arranged, but the number of arrangements is not limited to this.

【0026】なお、アニオン交換膜Aを介して陰極側に
1次脱塩室1が配置される濃縮室には符号3が付され、
陰極側にアニオン交換膜Aを介して2次脱塩室2が配置
される濃縮室には符号4が付されている。
The reference numeral 3 is attached to the concentration chamber in which the primary deionization chamber 1 is arranged on the cathode side through the anion exchange membrane A,
The reference numeral 4 is attached to the concentrating chamber in which the secondary desalting chamber 2 is arranged on the cathode side via the anion exchange membrane A.

【0027】第1図においては、原水は原水供給配管5
から1次脱塩室1に導入され、1次脱塩室1の処理水
(1次脱塩水)は配管6から2次脱塩室2に導入され
る。2次脱塩室2の処理水(2次脱塩水)は配管7を介
して処理水として取り出される。
In FIG. 1, the raw water is the raw water supply pipe 5.
Is introduced into the primary desalination chamber 1, and the treated water in the primary desalination chamber 1 (primary desalination water) is introduced from the pipe 6 into the secondary desalination chamber 2. Treated water (secondary demineralized water) in the secondary desalination chamber 2 is taken out as treated water through the pipe 7.

【0028】1次脱塩水の一部は、配管8によって配管
6から分取され、各濃縮室3,4と陰極室18及び陽極
室17とに通水され、各濃縮室3,4と、陰極室18及
び陽極室17からの排水は配管9を介して濃縮排水とし
て取り出される。この濃縮排水は例えば逆浸透(RO)
処理システムへ送られる。
A part of the primary demineralized water is collected from the pipe 6 by the pipe 8 and is passed through the concentration chambers 3, 4 and the cathode chamber 18 and the anode chamber 17, respectively. Wastewater from the cathode chamber 18 and the anode chamber 17 is taken out as concentrated wastewater through the pipe 9. This concentrated wastewater is, for example, reverse osmosis (RO)
Sent to the processing system.

【0029】第2図においては、濃縮室3へ、原水供給
配管5から分岐した配管8bを介して原水が通水され、
濃縮室3からの濃縮排水は配管9bから取り出され、例
えば逆浸透処理装置へ送られる。濃縮室4、陰極室18
及び陽極室17へは、配管6から分岐した配管8aを介
して1次脱塩水が導入され、その排水は配管9aを介し
て取り出され、例えば別個の電気脱イオン装置へ送られ
る。
In FIG. 2, raw water is passed to the concentrating chamber 3 through the pipe 8b branched from the raw water supply pipe 5,
The concentrated waste water from the concentrating chamber 3 is taken out from the pipe 9b and sent to, for example, a reverse osmosis treatment device. Concentration chamber 4, cathode chamber 18
The primary demineralized water is introduced into the anode chamber 17 via the pipe 8a branched from the pipe 6, and the drainage thereof is taken out via the pipe 9a and sent to, for example, a separate electric deionization device.

【0030】かかる電気脱イオン装置においては、1次
脱塩室1は厚さが大きく、内部のpHが原水よりも好ま
しくは1以上高いアルカリ性となり、シリカ、ホウ素等
の弱電解質がイオン化し、濃縮室3へ排出される。厚さ
の小さい2次脱塩室2では、強電解質が効率良く脱イオ
ンされ、2次脱塩水は高比抵抗のものとなる。なお、2
次脱塩室2に対しアニオン交換膜Aを介して隣接する濃
縮室4及び陽極室17には、それぞれ、シリカ、ホウ素
等が除去された1次脱塩水が通水されるので、陽極室1
7及び濃縮室4から2次脱塩室2へ弱電解物質が逆混入
することはない。
In such an electric deionization apparatus, the primary deionization chamber 1 has a large thickness, and its internal pH becomes alkaline which is preferably higher than that of raw water by 1 or more, and weak electrolytes such as silica and boron are ionized and concentrated. It is discharged to the chamber 3. In the secondary deionization chamber 2 having a small thickness, the strong electrolyte is efficiently deionized, and the secondary deionized water has a high specific resistance. 2
Since the primary demineralized water from which silica, boron, etc. have been removed is passed through the concentrating chamber 4 and the anode chamber 17 which are adjacent to the secondary demineralizing chamber 2 via the anion exchange membrane A, the anode chamber 1
7 and the weak electrolytic substance do not reversely mix into the secondary desalination chamber 2 from the concentration chamber 4.

【0031】次に、本発明装置及びその運転方法のさら
に好ましい態様について説明する。
Next, a more preferable embodiment of the device of the present invention and the operating method thereof will be described.

【0032】(1) 1次脱塩室1の厚さは7〜300
mmとくに8〜30mmが好ましい。2次脱塩室2の厚
さは1.0mm以上7mm未満、特に2〜5mmが好ま
しい。但し、脱塩室内に充填されるイオン交換体がアニ
オン交換樹脂とカチオン交換樹脂とを交互に配列してな
る場合や、イオン交換樹脂との接触効率を向上させたも
の等、脱塩室厚みが厚くても処理水比抵抗値が向上する
ようなものについては、脱塩室の厚みは15mmまで許
容できる。
(1) The thickness of the primary deionization chamber 1 is 7 to 300.
mm Particularly preferably 8 to 30 mm. The thickness of the secondary desalination chamber 2 is 1.0 mm or more and less than 7 mm, and particularly preferably 2 to 5 mm. However, when the ion exchanger filled in the desalination chamber comprises anion exchange resin and cation exchange resin arranged alternately, or when the contact efficiency with the ion exchange resin is improved, etc. The thickness of the desalting chamber can be up to 15 mm if the treated water has a high specific resistance even if it is thick.

【0033】(2) イオン交換膜は均質膜および不均
質膜のいずれのものも用いることができる。
(2) As the ion exchange membrane, either a homogeneous membrane or a heterogeneous membrane can be used.

【0034】(3) 脱塩室に充填されるイオン交換体
はアニオン、カチオン樹脂の混合層が最もよく、印加電
圧を上昇させると1次脱塩室1はアニオン単独層でも同
様の効果が得られる。しかし、1次脱塩室でCa2+
Mg2+を除去するためには、混合層の方が好ましい。
なお、アニオン樹脂とカチオン樹脂の混合比は体積比で
6:4〜9:1、好ましくは7.5:2.5程度が良
い。カチオン樹脂はスケール発生要因となるCa2+
1次脱塩室で除去するために必要である。この場合、イ
オン交換体の体積比は再生型(OH型、H型)で測定し
たものとする。
(3) The ion exchanger filled in the desalting chamber is most preferably a mixed layer of anion and cation resin, and when the applied voltage is increased, the primary desalting chamber 1 can have the same effect even if it is an anion single layer. To be However, Ca 2+ in the primary desalination chamber,
A mixed layer is preferable to remove Mg 2+ .
The volume ratio of the anion resin to the cation resin is 6: 4 to 9: 1, preferably about 7.5: 2.5. The cationic resin is necessary for removing Ca 2+, which is a factor of scale generation, in the primary desalting chamber. In this case, the volume ratio of the ion exchanger is measured by the regeneration type (OH type, H type).

【0035】(4)イオン交換体の種類はビーズ状、繊
維状のイオン交換樹脂、繊維や不織布等にグラフト重合
を利用して交換基を導入したグラフト重合交換体が例示
される。良好な水質を得るためには、望ましくは均一寸
法のビーズ状のイオン交換樹脂が好ましい。「均一寸法
のイオン交換樹脂」とはビーズの90%が平均ビード寸
法の10%以内にあり、ビード混合物内におけるアニオ
ン交換樹脂とカチオン交換樹脂の相対平均寸法が少なく
とも0.8のものを示す。
(4) Examples of the type of ion exchanger include a bead-shaped or fibrous ion-exchange resin, and a graft polymerization exchanger in which an exchange group is introduced into a fiber or a nonwoven fabric by utilizing graft polymerization. In order to obtain good water quality, a beaded ion exchange resin having a uniform size is preferable. "Ion exchange resin of uniform size" refers to those in which 90% of the beads are within 10% of the average bead size and the relative average size of the anion exchange resin and cation exchange resin in the bead mixture is at least 0.8.

【0036】(5) 第1,2図では、濃縮水を脱塩室
と同方向の並行通水としているが、濃縮水を脱塩室と逆
方向から通水する向流通水(脱塩室が下向流の場合は、
濃縮室は上向流)でも良い。
(5) In FIGS. 1 and 2, the concentrated water is made to flow in parallel in the same direction as the desalting chamber, but the concentrated water is made to flow in the opposite direction to the desalting chamber (the desalting chamber). Is downward flow,
Upflow may be used in the concentrating chamber).

【0037】(6) 低導電率の1次脱塩水が通液され
る濃縮室にはイオン導電体もしくは電子導電体を充填す
ることが好ましい。イオン導電体とはイオン交換樹脂、
イオン交換繊維、グラフト重合により官能基を不織布に
導入したもの等をいう。電子導電体とは粒状、繊維状活
性炭、金属ビーズ等のことをいう。これにより、50μ
s/cm以下の低導電率の水を濃縮室へ通液しても、塩
化ナトリウムなどの薬剤を添加することなく、弱電解物
質除去のために必要な電流値を確保することができる。
(6) It is preferable to fill the concentrating chamber, through which the low-conductivity primary demineralized water is passed, with an ionic conductor or an electronic conductor. Ion conductor is an ion exchange resin,
Ion exchange fibers, and those obtained by introducing functional groups into the nonwoven fabric by graft polymerization, etc. The electronic conductor means granular, fibrous activated carbon, metal beads and the like. As a result, 50μ
Even if water having a low conductivity of s / cm or less is passed through the concentrating chamber, it is possible to secure a current value necessary for removing the weak electrolytic substance without adding a chemical such as sodium chloride.

【0038】(7) 電極室(陰極室及び陽極室)には
イオン交換樹脂、イオン交換繊維、活性炭などのイオン
導電体を充填するのが好ましい。特に、表面積の大き
さ、及び取り扱いやすさから活性炭繊維が最も好まし
い。従来においても電極室にイオン導電体を充填するこ
とがあったが、被処理水の一部を分岐して電極室に通液
するのが一般的であった。これでは電極室内でCaスケ
ールが発生したり、陽極側で塩素イオンがClにな
り、イオン交換体の酸化劣化が激しい問題があった。2
Cl→Cl+2e 第1,2図の通り、Ca2+
Clイオンを含まない1次脱塩水を電極室へ通水する
ことにより、充填物の劣化が防止され、長期間安定運転
することができる。
(7) In the electrode chamber (cathode chamber and anode chamber)
Ion exchange resin, ion exchange fiber, activated carbon, etc.
It is preferable to fill the conductor. Especially large surface area
Activated carbon fiber is the most preferred because it is easy to handle.
Yes. Even in the past, it was possible to fill the electrode chamber with an ionic conductor.
However, some of the water to be treated was branched and passed through the electrode chamber.
It was common to do. This is Ca scale in the electrode chamber.
Or chlorine ions on the anode sideTwoIn
Therefore, there is a problem that the oxidative deterioration of the ion exchanger is severe. Two
Cl→ ClTwo+ 2e As shown in Figs. 1 and 2, Ca2+,
ClPassing primary demineralized water that does not contain ions to the electrode chamber
As a result, deterioration of the filling is prevented and stable operation for a long time is possible.
can do.

【0039】(8) 有機物分解能を有した物質として
は、活性炭(もしくは粒状活性炭)のほか、金属又は金
属酸化物が例示される。金属又は金属酸化物は、活性炭
や、イオン交換樹脂、イオン交換繊維などに担持される
ことが好ましい。金属としては白金、コバルトが例示さ
れる。この有機物分解能を有した物質は、1次脱塩室及
び2次脱塩室の一方又は双方に配置されるが、溶出物が
生じることがあることを考慮すると、1次脱塩室にのみ
配置することが好ましい。この有機物分解能を有した物
質は、イオン交換体と混合して充填しても良く、イオン
交換体とは別個の充填層を構成するように充填されても
よい。種々の実験の結果、この有機物分解能を有した物
質を充填することにより、TOC成分の30〜50%程
度が除去され得ることが見出された。
(8) Examples of the substance capable of decomposing organic substances include activated carbon (or granular activated carbon), and metal or metal oxide. The metal or metal oxide is preferably supported on activated carbon, ion exchange resin, ion exchange fiber or the like. Examples of the metal include platinum and cobalt. The substance having this organic matter decomposing ability is placed in one or both of the primary desalination chamber and the secondary desalting chamber, but considering that eluate may occur, it is placed only in the primary desalting chamber. Preferably. The substance having the organic substance decomposing ability may be mixed and filled with the ion exchanger, or may be filled so as to form a packed layer separate from the ion exchanger. As a result of various experiments, it was found that about 30 to 50% of the TOC component can be removed by filling with a substance having this organic substance decomposing ability.

【0040】(9) 本発明装置を運転する場合、1次
脱塩室に導入される原水に対し、被処理水中のTOC濃
度の2〜20倍、好ましくは10倍量の酸化助剤を添加
すると、非イオン状有機物の除去率が添加しない場合と
比較して20〜40%向上する。酸化助剤としては過酸
化水素、オゾン、過マンガン酸カリウム等の酸化剤が例
示されるが、不純物、構成部材の耐久性を考慮すると、
過酸化水素が好ましい。
(9) When the apparatus of the present invention is operated, the oxidation aid is added in an amount of 2 to 20 times, preferably 10 times the TOC concentration in the water to be treated, with respect to the raw water introduced into the primary desalting chamber. Then, the removal rate of the nonionic organic matter is improved by 20 to 40% as compared with the case where no addition is made. Examples of the oxidation aid include hydrogen peroxide, ozone, and oxidizing agents such as potassium permanganate. Considering impurities and durability of constituent members,
Hydrogen peroxide is preferred.

【0041】(10) 1次脱塩室と2次脱塩室の間に
紫外線酸化装置等のTOC分解装置を導入すると有機物
を安定して除去できる。
(10) By introducing a TOC decomposition device such as an ultraviolet oxidation device between the primary desalination chamber and the secondary desalination chamber, organic substances can be stably removed.

【0042】[0042]

【実施例】以下の実施例及び比較例では、次の(1)〜
(4)の装置を直列に接続し、市水を処理した。即ち、
市水を活性炭処理した後、RO(逆浸透)処理し、膜脱
気処理した後、電気脱イオン装置に通水した。 (1) 活性炭装置 :栗田工業(株)製「クリコ
ールKW10−30」 (2) RO装置 :栗田工業(株)製「膜エー
スKN200」 (3) 膜脱気装置:SEPARELEF040P (4) 電気脱イオン装置:栗田工業(株)製「ピュア
エースPA−200」
EXAMPLES In the following examples and comparative examples, the following (1) to
The equipment of (4) was connected in series to treat city water. That is,
City water was treated with activated carbon, then subjected to RO (reverse osmosis) treatment, membrane degassing treatment, and then passed through an electric deionization device. (1) Activated carbon device: "Kurikoru KW10-30" manufactured by Kurita Industry Co., Ltd. (2) RO device: "Membrane Ace KN200" manufactured by Kurita Industry Co., Ltd. (3) Membrane deaerator: SEPARELEF040P (4) Electrodeionization Equipment: "Pure Ace PA-200" manufactured by Kurita Water Industries Ltd.

【0043】比較例1 イオン交換膜として下記のものを用い、また、1次脱塩
室に充填するイオン交換樹脂として下記のアニオン交換
樹脂とカチオン交換樹脂とをアニオン交換樹脂:カチオ
ン交換樹脂=7.5:2.5(体積比)で混合したもの
を用い、2次脱塩室及び濃縮室には、この比が6:4の
ものを用い、第3図に示すような電気脱イオン装置を組
み立てた。 アニオン交換膜 :(株)トクヤマ製「ネオセプタAH
A」 カチオン交換膜 :(株)トクヤマ製「ネオセプタCM
B」 アニオン交換樹脂:ダウケミカル製「マラソンA」 カチオン交換樹脂:ダウケミカル製「マラソンC」
Comparative Example 1 The following was used as the ion exchange membrane, and the following anion exchange resin and cation exchange resin were used as the ion exchange resin to be filled in the primary deionization chamber: anion exchange resin: cation exchange resin = 7 The ratio of 6: 4 (volume ratio) was used for the secondary deionization chamber and the concentration chamber, and the ratio was 6: 4. Assembled. Anion Exchange Membrane: “Neoceptor AH” manufactured by Tokuyama Corporation
A "cation exchange membrane:" Neoceptor CM "manufactured by Tokuyama Corporation
B "Anion exchange resin: Dow Chemical's" Marathon A "Cation exchange resin: Dow Chemical's" Marathon C "

【0044】なお、第3図は、第1図において配管8を
1次脱塩水配管6ではなく原水配管5から分岐させ、電
極室17,18及び濃縮室3,4にいずれも原水を通水
するようにしたものであり、その他の構成は第1図と全
く同一である。
In FIG. 3, the pipe 8 in FIG. 1 is branched from the raw water pipe 5 instead of the primary demineralized water pipe 6, and raw water is passed through the electrode chambers 17 and 18 and the concentration chambers 3 and 4. The other configurations are exactly the same as those in FIG.

【0045】脱塩室及び濃縮室の厚さ及び縦横寸法は次
の通りである。 1次脱塩室厚さ:15mm、幅:150mm、高さ:5
00mm、 2次脱塩室厚さ:5mm、幅:150mm、高さ:50
0mm、 濃縮室厚さ:5mm、幅:150mm、高さ:500m
m、 1次脱塩室及び2次脱塩室の数は第3図の通りそれぞれ
2個である。
The thickness and vertical and horizontal dimensions of the desalination chamber and the concentration chamber are as follows. Primary desalination chamber thickness: 15 mm, width: 150 mm, height: 5
00 mm, secondary desalination chamber thickness: 5 mm, width: 150 mm, height: 50
0 mm, concentration chamber thickness: 5 mm, width: 150 mm, height: 500 m
m, the number of primary desalination chambers and the number of secondary desalination chambers are two as shown in FIG.

【0046】アニオン交換樹脂及びカチオン交換樹脂は
超純水で十分に洗浄したものを用いた。電極室にはクラ
レケミカル(株)製の活性炭素繊維クラクティブFTを
充填した。
As the anion exchange resin and the cation exchange resin, those thoroughly washed with ultrapure water were used. The electrode chamber was filled with activated carbon fiber Cractive FT manufactured by Kuraray Chemical Co., Ltd.

【0047】この電気脱イオン装置に次に示す条件で通
水を行い、処理水の比抵抗値、シリカ、ホウ素、その他
のイオン類の測定結果及び除去率を調べ、結果を表1に
示した。 通水量:200L/h 電圧:30V 電流:3A 回収率:80%
Water was passed through this electric deionization apparatus under the following conditions, and the specific resistance value of treated water, the measurement result of silica, boron and other ions and the removal rate were examined. The results are shown in Table 1. . Water flow rate: 200 L / h Voltage: 30 V Current: 3 A Recovery rate: 80%

【0048】実施例1 比較例1において、配管8を第1図の通り1次脱塩水配
管6に接続したこと以外は同様にして処理した。処理水
の比抵抗値、シリカ、ホウ素、その他のイオン類の測定
結果及び除去率を調べ、結果を表1に示した。
Example 1 The same treatment as in Comparative Example 1 was carried out except that the pipe 8 was connected to the primary deionized water pipe 6 as shown in FIG. The specific resistance value of the treated water, the measurement results of silica, boron and other ions and the removal rate were examined, and the results are shown in Table 1.

【0049】実施例2 第2図の通りに配管8a,8b,9a,9bを接続し、
印加電圧を25Vとしたこと以外は比較例1及び実施例
1と同様にして通水して測定を行った。結果を表1に示
す。
Example 2 The pipes 8a, 8b, 9a and 9b are connected as shown in FIG.
The measurement was performed by passing water in the same manner as in Comparative Example 1 and Example 1 except that the applied voltage was 25V. The results are shown in Table 1.

【0050】実施例3 実施例2において、1次脱塩室の厚さを7mmとし、充
填するイオン交換樹脂を全てアニオン交換樹脂としたこ
と以外は同様にして通水した。結果を表1に示す。
Example 3 Water was passed in the same manner as in Example 2 except that the thickness of the primary deionization chamber was set to 7 mm and all the ion exchange resins to be filled were anion exchange resins. The results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】表1の通り、本発明例によると、シリカ及
びホウ素が十分に除去された高比抵抗の処理水が得られ
る。
As shown in Table 1, according to the examples of the present invention, treated water having high specific resistance from which silica and boron are sufficiently removed can be obtained.

【0053】実施例4 1次脱塩室の中に白金を担持させた粒状活性炭を20%
加えた。その他の構成は実施例1と同じとした。
Example 4 20% of granular activated carbon supporting platinum in the primary deionization chamber
added. Other configurations were the same as those in the first embodiment.

【0054】この電気脱イオン装置に対し、イソプロピ
ルアルコール(IPA)を100ppb as C と
なるように添加した市水を実施例1と同様に通水し、T
OC濃度を測定した。結果を表2に示す。
To this electric deionization apparatus, city water to which isopropyl alcohol (IPA) was added so as to be 100 ppb as C was passed in the same manner as in Example 1 to obtain T
The OC concentration was measured. The results are shown in Table 2.

【0055】なお、対比のために、上記実施例1,2,
3の装置に対しても同じくIPAを添加した市水を通水
してTOC濃度を測定し、結果を表2に示した。
For comparison, the above-mentioned Examples 1, 2,
The TOC concentration was measured by passing city water containing IPA to the apparatus of No. 3, and the results are shown in Table 2.

【0056】さらに、この実施例4において、原水にH
を1ppm添加した他は同様にして通水を行い、
TOC濃度の測定を行った。結果を表2に示す。
Further, in this Example 4, H was added to the raw water.
Water was passed in the same manner except that 1 ppm of 2 O 2 was added,
The TOC concentration was measured. The results are shown in Table 2.

【0057】[0057]

【表2】 [Table 2]

【0058】表2の通り、1次脱塩室内のイオン交換樹
脂に活性炭を加えることにより、TOC成分を分解する
ことができ、この際、Hを添加することにより、
分解が促進される。なお、これにより、TOC分解用紫
外線酸化装置を併用する場合には処理負荷を軽減するこ
とができる。
As shown in Table 2, the TOC component can be decomposed by adding activated carbon to the ion exchange resin in the primary desalting chamber. At this time, by adding H 2 O 2 ,
Decomposition is accelerated. In this case, the processing load can be reduced when the TOC decomposition ultraviolet oxidation device is also used.

【0059】[0059]

【発明の効果】以上の通り、本発明によると、シリカ、
ホウ素などの弱電解物質を十分に除去でき、高比抵抗、
高水質の処理水を1台の装置で得ることができる電気脱
イオン装置が提供される。本発明では、有機物分解能を
有した物質を脱塩室に充填することにより、有機物を除
去することも可能である。
As described above, according to the present invention, silica,
Weak boron, etc. can be removed sufficiently, high specific resistance,
Provided is an electric deionization device capable of obtaining high-quality treated water with one device. In the present invention, it is also possible to remove the organic substance by filling the desalting chamber with a substance having the ability to decompose the organic substance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態に係る電気脱イオン装置の構成図で
ある。
FIG. 1 is a configuration diagram of an electrodeionization device according to an embodiment.

【図2】別の実施の形態に係る電気脱イオン装置の構成
図である。
FIG. 2 is a configuration diagram of an electric deionization apparatus according to another embodiment.

【図3】比較例に係る電気脱イオン装置の構成図であ
る。
FIG. 3 is a configuration diagram of an electrodeionization device according to a comparative example.

【図4】従来の電気脱イオン装置の構成図である。FIG. 4 is a configuration diagram of a conventional electrodeionization device.

【符号の説明】[Explanation of symbols]

1 1次脱塩室 2 2次脱塩室 3,4 濃縮室 10 イオン交換体 11 陽極 12 陰極 13,A アニオン交換膜 14,C カチオン交換膜 15 濃縮室 16 脱塩室 17 陽極室 18 陰極室 1 Primary desalination chamber 2 Secondary desalination chamber 3,4 Concentration chamber 10 Ion exchanger 11 Anode 12 cathode 13, A Anion exchange membrane 14, C cation exchange membrane 15 Concentration room 16 Desalination chamber 17 Anode chamber 18 Cathode chamber

フロントページの続き Fターム(参考) 4D006 GA17 JA30Z JA41Z JA44B JA56Z KA26 KA31 KA33 KA63 KB01 KB30 KD01 KD21 KD22 MA03 MA13 MA14 MB07 PA01 PB02 PC01 PC11 PC31 PC42 4D050 AA05 AB07 BB02 BB09 BB11 BC05 BC06 BC10 BD02 CA03 CA06 CA09 4D061 DA02 DB13 EA09 EB04 EB13 EB17 EB19 ED01 ED02 ED03 FA08 FA16 Continued front page    F-term (reference) 4D006 GA17 JA30Z JA41Z JA44B                       JA56Z KA26 KA31 KA33                       KA63 KB01 KB30 KD01 KD21                       KD22 MA03 MA13 MA14 MB07                       PA01 PB02 PC01 PC11 PC31                       PC42                 4D050 AA05 AB07 BB02 BB09 BB11                       BC05 BC06 BC10 BD02 CA03                       CA06 CA09                 4D061 DA02 DB13 EA09 EB04 EB13                       EB17 EB19 ED01 ED02 ED03                       FA08 FA16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陰極、 陽極、 該陰極と陽極の間に複数のカチオン交換膜とアニオン交
換膜とを配列することにより交互に形成された濃縮室と
脱塩室、 及び該脱塩室に充填されたイオン交換体を有する電気脱
イオン装置において、 該脱塩室は、厚さの大きい1次脱塩室と厚さの小さい2
次脱塩室とが交互に配置されており、 原水は該1次脱塩室に導入され、1次脱塩室から流出し
た1次脱塩水が該2次脱塩室に導入され、2次脱塩室か
らの2次脱塩水が処理水として取り出され、 該1次脱塩水の一部が前記各濃縮室に通水されることを
特徴とする電気脱イオン装置。
1. A cathode, an anode, a concentrating chamber and a desalting chamber alternately formed by arranging a plurality of cation exchange membranes and anion exchange membranes between the cathode and the anode, and filling the desalting chamber. In the electric deionization apparatus having a deionized ion exchanger, the deionization chamber has a large thickness of the primary deionization chamber and a small thickness of 2
Secondary demineralization chambers are alternately arranged, raw water is introduced into the primary demineralization chamber, primary demineralized water flowing out from the primary demineralization chamber is introduced into the secondary demineralization chamber, and secondary demineralization chamber is introduced. An electric deionization device, wherein secondary demineralized water from the demineralization chamber is taken out as treated water, and a part of the primary demineralized water is passed to each of the concentration chambers.
【請求項2】 陰極、 陽極、 該陰極と陽極の間に複数のカチオン交換膜とアニオン交
換膜とを配列することにより交互に形成された濃縮室と
脱塩室、 及び該脱塩室に充填されたイオン交換体を有する電気脱
イオン装置において、 該脱塩室は、厚さの大きい1次脱塩室と厚さの小さい2
次脱塩室とが交互に配置されており、 原水は該1次脱塩室に導入され、1次脱塩室から流出し
た1次脱塩水が該2次脱塩室に導入され、2次脱塩室か
らの2次脱塩水が処理水として取り出され、 陰極側にアニオン交換膜を介して1次脱塩室が配置され
た濃縮室には原水が通水され、 陰極側にアニオン交換膜を介して2次脱塩室が配置され
た濃縮室には該1次脱塩水の一部が通水されることを特
徴とする電気脱イオン装置。
2. A cathode, an anode, a concentrating chamber and a desalting chamber alternately formed by arranging a plurality of cation exchange membranes and anion exchange membranes between the cathode and the anode, and filling the desalting chamber. In the electric deionization apparatus having a deionized ion exchanger, the deionization chamber has a large thickness of the primary deionization chamber and a small thickness of 2
Secondary demineralization chambers are alternately arranged, raw water is introduced into the primary demineralization chamber, primary demineralized water flowing out from the primary demineralization chamber is introduced into the secondary demineralization chamber, and secondary demineralization chamber is introduced. Secondary demineralized water from the desalination chamber is taken out as treated water, raw water is passed through the anion exchange membrane on the cathode side to the concentrating chamber where the primary desalination chamber is arranged, and anion exchange membrane is placed on the cathode side. An electric deionization device, wherein a part of the primary demineralized water is passed through a concentrating chamber in which a secondary demineralizing chamber is arranged via the.
【請求項3】 請求項1又は2において、前記1次脱塩
室の厚さは7mm以上であり、2次脱塩室の厚さは7m
m未満であることを特徴とする電気脱イオン装置。
3. The thickness of the primary desalination chamber according to claim 1 or 2, and the thickness of the secondary desalination chamber is 7 mm or more.
An electric deionization apparatus characterized by being less than m.
【請求項4】 請求項1ないし3のいずれか1項におい
て、前記1次脱塩室及び2次脱塩室の少なくとも一方
に、有機物分解能を有した物質が含まれていることを特
徴とする電気脱イオン装置。
4. The method according to claim 1, wherein at least one of the primary desalination chamber and the secondary desalination chamber contains a substance having an organic substance decomposing ability. Electrodeionization equipment.
【請求項5】 請求項1ないし4のいずれか1項におい
て、前記2次脱塩室よりも厚さの小さい高次脱塩室が設
けられ、厚さの大きい脱塩室から厚さの小さい脱塩室に
順次に通水が行われることを特徴とする電気脱イオン装
置。
5. The high-order desalination chamber having a smaller thickness than that of the secondary desalination chamber according to claim 1, wherein the desalination chamber has a larger thickness and a smaller thickness. An electric deionization device characterized in that water is sequentially supplied to the deionization chamber.
【請求項6】 請求項1又は2において、前記脱塩室
は、原水を脱塩室に通水することにより脱塩水のpHが
原水よりも1以上上昇する性質を持つ1次脱塩室と、ア
ニオン交換体層とカチオン交換体層を交互に充填した2
次脱塩室とが交互に配置された構成であることを特徴と
する電気脱イオン装置。
6. The primary desalination chamber according to claim 1 or 2, wherein the desalination chamber has a property that when the raw water is passed through the desalination chamber, the pH of the desalinated water is increased by 1 or more than that of the raw water. , Anion exchanger layers and cation exchanger layers were alternately packed 2
An electric deionization device having a configuration in which secondary deionization chambers are alternately arranged.
【請求項7】 請求項6において、1次脱塩室は、厚さ
7mm以上であるか、又は原水が最初に通水されるイオ
ン交換体としてアニオン交換体のみを充填した構成であ
ることを特徴とする電気脱イオン装置。
7. The method according to claim 6, wherein the primary deionization chamber has a thickness of 7 mm or more, or has a structure in which only an anion exchanger is filled as an ion exchanger through which raw water is first passed. Characterized electric deionization device.
JP2001182102A 2001-06-15 2001-06-15 Electrolytic deionizing apparatus Pending JP2003001258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182102A JP2003001258A (en) 2001-06-15 2001-06-15 Electrolytic deionizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182102A JP2003001258A (en) 2001-06-15 2001-06-15 Electrolytic deionizing apparatus

Publications (1)

Publication Number Publication Date
JP2003001258A true JP2003001258A (en) 2003-01-07

Family

ID=19022263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182102A Pending JP2003001258A (en) 2001-06-15 2001-06-15 Electrolytic deionizing apparatus

Country Status (1)

Country Link
JP (1) JP2003001258A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500192A (en) * 2002-03-13 2006-01-05 ダイオネックス コーポレイション Water purification apparatus and method
JP2011088085A (en) * 2009-10-23 2011-05-06 Japan Organo Co Ltd Electric deionized water making apparatus
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2011139980A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2012040560A (en) * 2011-10-24 2012-03-01 Japan Organo Co Ltd Water treatment system and water treatment method
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
JP2023014927A (en) * 2021-07-19 2023-01-31 栗田工業株式会社 Operational method for pure water production system
WO2023149415A1 (en) * 2022-02-02 2023-08-10 栗田工業株式会社 Pure water production apparatus and operation method for pure water production apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500192A (en) * 2002-03-13 2006-01-05 ダイオネックス コーポレイション Water purification apparatus and method
JP2011088085A (en) * 2009-10-23 2011-05-06 Japan Organo Co Ltd Electric deionized water making apparatus
JP2011139979A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2011139980A (en) * 2010-01-06 2011-07-21 Japan Organo Co Ltd Electric deionized water producing apparatus and method of producing deionized water
JP2012040560A (en) * 2011-10-24 2012-03-01 Japan Organo Co Ltd Water treatment system and water treatment method
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
JP7040008B2 (en) 2017-12-27 2022-03-23 栗田工業株式会社 TOC removal device
JP2023014927A (en) * 2021-07-19 2023-01-31 栗田工業株式会社 Operational method for pure water production system
WO2023149415A1 (en) * 2022-02-02 2023-08-10 栗田工業株式会社 Pure water production apparatus and operation method for pure water production apparatus
JP7347556B2 (en) 2022-02-02 2023-09-20 栗田工業株式会社 Pure water production equipment and operating method for pure water production equipment

Similar Documents

Publication Publication Date Title
JP3826690B2 (en) Electrodeionization device and pure water production device
KR100426669B1 (en) Electrodeionization apparatus and pure water producing apparatus
US7699968B2 (en) Water purifying system
KR20040086244A (en) Fractional deionization process
WO2004108606A1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JP2004283710A (en) Pure water producer
JP4403621B2 (en) Electrodeionization equipment
JP2003001258A (en) Electrolytic deionizing apparatus
JP4710176B2 (en) Ultrapure water production equipment
JP3952127B2 (en) Electrodeionization treatment method
JP5114307B2 (en) Electric deionized water production equipment
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP3729349B2 (en) Electric regenerative desalination equipment
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP4505965B2 (en) Pure water production method
JP3729347B2 (en) Electric regenerative desalination equipment
JP4552273B2 (en) Electrodeionization equipment
JP4599668B2 (en) Operation method of electrodeionization equipment
JP2002205071A (en) Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP3729348B2 (en) Electric regenerative desalination equipment
TW524714B (en) Deion device and deion method with the deion device
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP3674475B2 (en) Pure water production method