JP2019115892A - Toc removal device and toc removal method - Google Patents
Toc removal device and toc removal method Download PDFInfo
- Publication number
- JP2019115892A JP2019115892A JP2017251628A JP2017251628A JP2019115892A JP 2019115892 A JP2019115892 A JP 2019115892A JP 2017251628 A JP2017251628 A JP 2017251628A JP 2017251628 A JP2017251628 A JP 2017251628A JP 2019115892 A JP2019115892 A JP 2019115892A
- Authority
- JP
- Japan
- Prior art keywords
- toc
- gas
- dissolving
- containing water
- hydrogen gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は、TOC除去装置及びTOC除去方法に係り、詳しくは、TOC含有水中の難分解性TOCを含むTOCをより簡便にかつ連続的に分解除去するTOC除去装置及びTOC除去方法に関する。 The present invention relates to a TOC removing apparatus and a TOC removing method, and more particularly, to a TOC removing apparatus and a TOC removing method for resolving and removing TOC including resistant TOC in TOC-containing water more simply and continuously.
電子部品の洗浄や表面処理には、高濃度の薬液や洗剤と、それを濯ぐための大量の純水や超純水が用いられている。このため、電子部品の高度化に伴う超純水の水質向上だけでなく、水使用量低減を狙った排水回収による水回収率の向上が課題となっている。その中で、水中の有機物成分(TOC)を効率的により低濃度まで低減させることが、水質向上および水回収率向上の両面で重要な課題である。 For cleaning and surface treatment of electronic components, a high concentration chemical solution or detergent, and a large amount of pure water or ultrapure water for rinsing it are used. For this reason, not only the improvement of the water quality of ultrapure water accompanying the advancement of electronic parts, but also the improvement of the water recovery rate by waste water recovery aiming to reduce the amount of water used has become an issue. Among them, efficiently reducing the concentration of organic components (TOC) in water to a lower concentration is an important issue in both water quality improvement and water recovery rate improvement.
TOCを分解する方法としては、生物処理と物理化学処理とがあり、生物処理が適用困難な場合、物理化学処理のうち、例えば、逆浸透(RO)膜を用いた除去や酸化剤と併用した加熱分解や低圧UVランプを用いた低圧UV酸化装置などが用いられてきた。 Methods of decomposing TOC include biological treatment and physicochemical treatment, and when it is difficult to apply biological treatment, for example, removal with a reverse osmosis (RO) membrane and use in combination with an oxidizing agent among physicochemical treatments Thermal decomposition and low pressure UV oxidizers using low pressure UV lamps have been used.
しかし、これらの方法は多大な電気エネルギー(RO膜の給水加圧ポンプの駆動電力やUV照射電力など)や熱エネルギー(加熱分解装置の蒸気など)を必要とする。
また、超純水製造装置などでよく用いられるRO膜や低圧UV酸化装置などは、分子量が小さい窒素化合物(尿素など)に代表される難分解性TOCと呼ばれるTOCに対しては、極端に分解効率が悪いといった問題もあった。
However, these methods require a large amount of electrical energy (e.g., driving power of RO membrane water supply pressure pump and UV irradiation power) and thermal energy (e.g., steam of thermal decomposition apparatus).
In addition, RO membranes and low-pressure UV oxidizers, which are often used in ultrapure water production systems, etc., are extremely degraded with respect to TOC called persistent TOC, which is represented by nitrogen compounds (such as urea) with small molecular weight. There was also a problem that the efficiency was poor.
これらの問題に対して、本発明者は、特許文献1において、触媒を用いたTOC除去方法を提案した。
この方法は、白金族の金属触媒に対し、水素水通水工程、酸素水通水工程及び有機物含有原水通水工程を繰り返し行う方法であり、次のようなメカニズムでTOCが分解される。
水素水を触媒に通水すると、触媒に水素が吸着する。触媒に水素が吸着した状態で酸素水を供給することにより、触媒上で水分子が生成し、一部の水分子が触媒上に留まる。次いで有機物含有水を供給すると、非共有電子対をもつ尿素のようなTOCと該水分子とが配位結合のような結合をして、有機物が触媒に吸着される。この吸着された有機物が白金族触媒の作用によって一部分解される。そして、次の水素水供給時に、触媒に水素が吸着すると同時に、分解生成物が触媒から離れる。
このようにして触媒に接触させた後の処理水をアニオン交換樹脂及びカチオン交換樹脂の少なくとも一方と接触させることで、TOCの分解によって生成した有機酸などのイオン性物質をイオン交換樹脂によって吸着除去できる。このため、特許文献1では、触媒充填カラムの後段にイオン交換樹脂カラムを設けている。
With respect to these problems, the inventor of the present invention has proposed a TOC removal method using a catalyst in Patent Document 1.
This method is a method of repeatedly performing the hydrogen water passing step, the oxygen water passing step and the organic substance-containing raw water passing step on the platinum group metal catalyst, and the TOC is decomposed by the following mechanism.
When hydrogen water is passed through a catalyst, hydrogen is adsorbed on the catalyst. By supplying oxygen water while hydrogen is adsorbed to the catalyst, water molecules are formed on the catalyst, and some water molecules remain on the catalyst. Then, when the organic matter-containing water is supplied, the organic matter is adsorbed to the catalyst by binding such a coordination bond between the water molecule and the TOC such as urea having a non-covalent electron pair. The adsorbed organic matter is partially decomposed by the action of the platinum group catalyst. Then, at the time of the next hydrogen water supply, the hydrogen adsorbs to the catalyst and at the same time the decomposition product leaves the catalyst.
By contacting the treated water after contacting with the catalyst in this manner with at least one of the anion exchange resin and the cation exchange resin, the ion exchange resin adsorbs and removes ionic substances such as organic acids generated by the decomposition of TOC. it can. For this reason, in patent document 1, the ion exchange resin column is provided in the back | latter stage of a catalyst packed column.
なお、本発明で用いる連続式電気脱イオン装置は、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造に広く用いられている。連続式電気脱イオン装置は、図2に示す如く、電極(陽極11,陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填したものである。図2中、17は陽極室、18は陰極室である。
連続式電気脱イオン装置は、水解離によってH+イオンとOH−イオンを生成させ、脱塩室内に充填されているイオン交換体を連続して再生することによって、効率的な脱イオン処理が可能であり、従来から広く用いられてきたイオン交換樹脂装置のような薬品を用いた再生処理を必要とせず、完全な連続採水が可能で、高純度の水が得られるという優れた特徴を有する。
The continuous electrodeionization apparatus used in the present invention is a deionized water used in various industries such as a semiconductor manufacturing plant, a liquid crystal manufacturing plant, a pharmaceutical industry, a food industry, an electric power industry, or for household use or research facilities. It is widely used in manufacturing. In the continuous electrodeionization apparatus, as shown in FIG. 2, a
Continuous electrodeionization apparatus, by dissociation of water H + ions and OH - to produce ions, by continuously reproducing ion exchanger filled in the desalting compartment, efficient deionization can It has an excellent feature that complete continuous water sampling is possible and high purity water can be obtained without requiring regeneration treatment using chemicals such as ion exchange resin devices which have been widely used conventionally. .
特許文献1の方法では、水素水通水工程、酸素水通水工程及び原水通水工程を切り替える必要があり、圧力変動が起きるなどの課題があった。また、原水の処理で生成したイオン性物質をイオン交換樹脂に吸着させて除去する場合は、このイオン交換樹脂の交換や再生操作が必要となるため、連続処理性に課題があった。 In the method of Patent Document 1, it is necessary to switch between the hydrogen water flow process, the oxygen water flow process, and the raw water flow process, which causes problems such as pressure fluctuation. In addition, when the ionic substance generated by the treatment of the raw water is adsorbed to the ion exchange resin and removed, the exchange and regeneration operation of the ion exchange resin are required, and there is a problem in the continuous processability.
本発明は、TOC含有水中のTOCを難分解性TOCも含めてより簡便にかつ連続的に分解除去することができるTOC除去装置及びTOC除去方法を提供することを課題とする。 An object of the present invention is to provide a TOC removing apparatus and a TOC removing method capable of decomposing and removing TOC in TOC-containing water more easily and continuously, including persistent TOC.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、連続式電気脱イオン装置の脱塩室に、アニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填することにより、通水の切り換えやイオン交換樹脂の交換又は再生を行う必要もなく、TOCを、難分解性のTOCも含めて簡便にかつ連続的に分解除去できることを見出した。
即ち、連続式電気脱イオン装置の脱塩室内にアニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填し、連続式電気脱イオン装置に供給する給水を、水素ガス溶解TOC含有水と酸素ガス溶液TOC含有水とで交互に切り換えることにより、連続式電気脱イオン装置内のTOC分解能を有する触媒へTOCが吸着(酸素ガス溶解TOC含有水給水時)、脱着(水素ガス溶解TOC含有水給水時)を連続的に繰り返すことが可能となり、また脱着時にイオン化した尿素等のTOC分解物を脱塩室内のイオン交換体で吸着し、TOC分解物を吸着したイオン交換体を連続式電気脱イオン装置本来の作用で連続的に再生することで、連続して水処理を行うことが可能となる。
As a result of intensive studies to solve the above problems, the present inventors have filled the deionization chamber of a continuous electrodeionization apparatus with an anion exchanger and a cation exchanger together with a catalyst having TOC resolution. It has been found that TOC can be easily and continuously decomposed and removed, including resistant TOC, without the need for switching water flow and exchanging or regenerating ion exchange resin.
That is, the deionization chamber of the continuous electrodeionization apparatus is filled with an anion exchanger and a cation exchanger together with a catalyst having TOC resolution, and the water supplied to the continuous electrodeionization apparatus is water containing hydrogen gas dissolved TOC and oxygen By alternately switching with gas solution TOC containing water, TOC is adsorbed (at the time of water supply with oxygen gas dissolved TOC containing water) to the catalyst having TOC resolution in the continuous electrodeionization apparatus, desorption (hydrogen gas dissolved TOC containing water supply) Time) can be continuously repeated, and desorbed TOC decomposition products such as ionized urea at the time of desorption are adsorbed by the ion exchanger in the deionization chamber, and the ion exchanger adsorbed the TOC decomposition products is continuously electrodeionized. By continuously regenerating by the original action of the device, it becomes possible to perform water treatment continuously.
本発明はこのような知見に基づいて達成されたものであり、本発明は以下を要旨とする。 The present invention has been achieved based on such findings, and the present invention provides the following.
[1] 脱塩室内に、TOC分解能を有する触媒を含む連続式電気脱イオン装置を有することを特徴とするTOC除去装置。 [1] A TOC removing device characterized by having a continuous electrodeionization device containing a catalyst having TOC resolution in a deionization chamber.
[2] TOC含有水に水素ガス又は酸素ガスを溶解させるガス溶解手段と、該ガス溶解手段で水素ガスを溶解させたTOC含有水と酸素ガスを溶解させたTOC含有水とを前記連続式電気脱イオン装置の前記脱塩室に交互に導入する手段とを有することを特徴とする[1]に記載のTOC除去装置。 [2] A gas dissolving means for dissolving hydrogen gas or oxygen gas in TOC containing water, TOC containing water in which hydrogen gas is dissolved in the gas dissolving means, and TOC containing water in which oxygen gas is dissolved The TOC removing device according to [1], further comprising: means for introducing alternately into the deionization chamber of the deionizing device.
[3] 前記ガス溶解手段が、前記連続式電気脱イオン装置の前段に設けられたガス溶解膜モジュールと、該ガス溶解膜モジュールの気相室に水素ガスを供給する水素ガス供給手段と該気相室に酸素ガスを供給する酸素ガス供給手段と、該水素ガス供給手段及び酸素ガス供給手段によるガスの供給を交互に切り換える切換手段と、該ガス溶解膜モジュールの液相室に前記TOC含有水を供給する手段とを有し、該液相室から流出するガス溶解TOC含有水が前記連続式電気脱イオン装置の脱塩室に導入されることを特徴とする[2]に記載のTOC除去装置。 [3] A gas dissolution membrane module in which the gas dissolution means is provided at a front stage of the continuous electrodeionization apparatus, hydrogen gas supply means for supplying hydrogen gas to the gas phase chamber of the gas dissolution membrane module, and the gas The oxygen gas supply means for supplying oxygen gas to the phase chamber, the switching means for alternately switching the gas supply by the hydrogen gas supply means and the oxygen gas supply means, the TOC containing water in the liquid phase chamber of the gas dissolution membrane module And means for supplying water, wherein the gas-dissolved TOC-containing water flowing out of the liquid phase chamber is introduced into the deionization chamber of the continuous electrodeionization apparatus [2]. apparatus.
[4] 前記連続式電気脱イオン装置の陽極で発生した酸素ガスを前記TOC含有水に溶解させる酸素ガスとして前記ガス溶解手段に送給する酸素ガス送給手段、及び/又は、前記連続式電気脱イオン装置の陰極で発生した水素ガスを前記TOC含有水に溶解させる水素ガスとして前記ガス溶解手段に送給する水素ガス送給手段を有することを特徴とする[2]又は[3]に記載のTOC除去装置。 [4] Oxygen gas feed means for feeding the oxygen gas generated at the anode of the continuous electrodeionization apparatus to the gas dissolving means as oxygen gas for dissolving in the TOC-containing water, and / or the continuous electricity A hydrogen gas delivery means is provided for feeding the hydrogen gas generated at the cathode of the deionization apparatus to the gas dissolving means as the hydrogen gas for dissolving the TOC-containing water as described in [2] or [3]. TOC remover.
[5] 前記TOC分解能を有する触媒が白金族金属の微粒子よりなり、イオン交換樹脂に担持されていることを特徴とする[1]ないし[4]のいずれかに記載のTOC除去装置。 [5] The TOC removal apparatus according to any one of [1] to [4], wherein the catalyst having TOC resolution is made of fine particles of a platinum group metal and supported on an ion exchange resin.
[6] 前記連続式電気脱イオン装置の脱塩室に、カチオン交換樹脂と、前記TOC分解能を有する金属が担持されたアニオン交換樹脂とが充填されていることを特徴とする[1]ないし[5]のいずれかに記載のTOC除去装置。 [6] A deionization chamber of the continuous electrodeionization apparatus is filled with a cation exchange resin and an anion exchange resin on which a metal having TOC resolution is supported. The TOC removal apparatus in any one of 5].
[7] TOC含有水中のTOCを分解除去する方法において、該TOC含有水に水素ガスを溶解させる水素ガス溶解工程と、該TOC含有水に酸素ガスを溶解させる酸素ガス溶解工程とを有し、[1]ないし[6]のいずれかに記載のTOC除去装置の前記脱塩室に、該水素ガス溶解工程からの水素ガス溶解TOC含有水と該酸素ガス溶解工程からの酸素ガス溶解TOC含有水とを交互に導入して該TOC含有水中のTOCを分解除去することを特徴とするTOC除去方法。 [7] A method for decomposing and removing TOC in TOC-containing water, comprising a hydrogen gas dissolution step of dissolving hydrogen gas in the TOC-containing water, and an oxygen gas dissolution step of dissolving oxygen gas in the TOC-containing water, In the deionization chamber of the TOC removal apparatus according to any one of [1] to [6], hydrogen gas-dissolved TOC-containing water from the hydrogen gas-dissolving step and oxygen gas-dissolved TOC-containing water from the oxygen gas-dissolving step And alternately introducing and decomposing and removing TOC in the TOC-containing water.
本発明によれば、TOC含有水中の難分解性のTOCも含めてTOCをより簡便にかつ連続的に分解除去することが可能となる。 According to the present invention, it becomes possible to decompose and remove TOC more easily and continuously, including the persistent TOC in TOC-containing water.
以下に本発明のTOC除去装置及びTOC除去方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of the TOC removing apparatus and the TOC removing method of the present invention will be described in detail.
本発明のTOC除去装置は、脱塩室にアニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填してなる連続式電気脱イオン装置(以下、「本発明の連続式電気脱イオン装置」と称す場合がある。)を有することを特徴とするものである。
本発明の連続式電気脱イオン装置の部材構成自体は、図2に示す一般的な連続式電気脱イオン装置と同様であり、本発明の連続式電気脱イオン装置は、連続式電気脱イオン装置の脱塩室にTOC分解能を有する触媒を充填してなることを特徴とする。
The TOC removal apparatus of the present invention is a continuous electrodeionization apparatus (hereinafter referred to as "the continuous electrodeionization apparatus according to the present invention") comprising a desalting chamber filled with an anion exchanger and a cation exchanger together with a catalyst having TOC resolution. In some cases, and may be referred to as
The member configuration itself of the continuous electrodeionization device of the present invention is the same as the general continuous electrodeionization device shown in FIG. 2, and the continuous electrodeionization device of the present invention is a continuous electrodeionization device. The desalting chamber of the catalyst is filled with a catalyst having TOC resolution.
前述の通り、連続式電気脱イオン装置は、図2に示す如く、電極(陽極11,陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填したものである。
本発明の連続式電気脱イオン装置は、このような一般的な連続式電気脱イオン装置の脱塩室にアニオン交換体及びカチオン交換体と共にTOC分解能を有する触媒を充填してなるものであるが、その充填方法としては、
(1) 複数の脱塩室のうちの一部の脱塩室にTOC分解能を有する触媒を充填し、他の脱塩室にはアニオン交換体及びカチオン交換体を充填する。
(2) 複数の脱塩室のうちの一部にTOC分解能を有する触媒とアニオン交換体及びカチオン交換体とを充填し、他の脱塩室にはアニオン交換体及びカチオン交換体を充填する。
(3) すべての脱塩室にTOC分解能を有する触媒とアニオン交換体及びカチオン交換体とを充填する。
などの方法が考えられるが、TOC分解能を有する触媒に接しない被処理水のTOCは分解されないため、(3)の方法でTOC分解能を有する触媒を充填するこが好ましい。
As described above, in the continuous electrodeionization apparatus, as shown in FIG. 2, a plurality of
The continuous electrodeionization apparatus of the present invention comprises an anion exchanger and a cation exchanger together with a catalyst having TOC resolution in the deionization chamber of such a general continuous electrodeionization apparatus. , As its filling method,
(1) A part of the plurality of desalting compartments is filled with a catalyst having TOC resolution, and the other desalting compartments are filled with anion exchangers and cation exchangers.
(2) A part of the plurality of desalting compartments is filled with a catalyst having TOC resolution, an anion exchanger and a cation exchanger, and the other desalting compartments are filled with an anion exchanger and a cation exchanger.
(3) All demineralization chambers are filled with a catalyst having TOC resolution, an anion exchanger and a cation exchanger.
Although methods such as the above can be considered, since TOC of the treated water not in contact with the catalyst having TOC resolution is not decomposed, it is preferable to load the catalyst having TOC resolution by the method of (3).
TOC分解能を有する触媒としては、TOC分解能を有するものであればよく、特に制限はないが、難分解性のTOC分解能にも優れることから白金族の金属触媒を用いることが好ましい。
触媒に用いる白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。こられの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。
The catalyst having TOC resolution is not particularly limited as long as it has TOC resolution, but it is preferable to use a platinum group metal catalyst because it is also excellent in non-degradable TOC resolution.
As a platinum group metal used for a catalyst, ruthenium, rhodium, palladium, osmium, iridium and platinum can be mentioned. These platinum group metals can be used alone or in combination of two or more, or as an alloy of two or more, or the purity of a naturally produced mixture. It can also be used without separating the product into single components. Among these, platinum, palladium, platinum / palladium alloy alone or a mixture of two or more of them can be particularly preferably used because they have strong catalytic activity.
白金族の金属触媒は、白金族の金属微粒子でもよく、白金族の金属ナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。 The platinum group metal catalyst may be platinum group metal fine particles, or may be a metal supported catalyst in which platinum group metal nanocolloid particles are supported on the surface of a support.
白金族の金属ナノコロイド粒子の平均粒子径は好ましくは1〜50nmであり、より好ましくは1.2〜20nmであり、さらに好ましくは1.4〜5nmである。金属ナノコロイド粒子の平均粒子径が1nm未満であると、TOCの分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、TOCの分解除去に対する触媒活性が低下するおそれがある。 The average particle size of the platinum group metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. If the average particle size of the metal nanocolloid particles is less than 1 nm, the catalyst activity for the decomposition and removal of TOC may be reduced. If the average particle size of the metal nanocolloid particles exceeds 50 nm, the specific surface area of the nanocolloid particles may be reduced, and the catalytic activity for the decomposition and removal of TOC may be reduced.
白金族の金属ナノコロイド粒子を担持させる担体に特に制限はなく、例えば、マグネシア、チタニア、アルミナ、シリカ−アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。これらの中で、アニオン交換樹脂を特に好適に用いることができる。白金族の金属ナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定的に担持されて剥離しにくい。アニオン交換樹脂としては、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。また、アニオン交換樹脂の交換基は、OH形であることが好ましい。 There is no restriction | limiting in particular in the support | carrier which carry | supports platinum group metal nanocolloid particle | grains, For example, magnesia, a titania, an alumina, a silica-alumina, a zirconia, activated carbon, a zeolite, diatomaceous earth, ion exchange resin etc. can be mentioned. Among these, anion exchange resins can be particularly preferably used. Since platinum group metal nanocolloid particles have an electric double layer and are negatively charged, they are stably supported on an anion exchange resin and hardly exfoliate. The anion exchange resin is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel-type resin. Moreover, it is preferable that the exchange group of anion exchange resin is OH form.
アニオン交換樹脂への白金族の金属ナノコロイド粒子の担持量は、0.01〜0.2重量%であることが好ましく、0.04〜0.1重量%であることがより好ましい。金属ナノコロイド粒子の担持量が0.01重量%未満であると、TOCの分解除去に対する触媒活性が不足するおそれがある。金属ナノコロイド粒子の担持量は0.2重量%以下でTOCの分解除去に対して十分な触媒活性が発現し、通常は0.2重量%を超える金属ナノコロイド粒子を担持させる必要はない。また、金属ナノコロイド粒子の担持量が増加すると、水中への金属の溶出のおそれも大きくなる。 The loading amount of the platinum group metal nanocolloid particles on the anion exchange resin is preferably 0.01 to 0.2% by weight, and more preferably 0.04 to 0.1% by weight. If the loading amount of the metal nanocolloidal particles is less than 0.01% by weight, there is a possibility that the catalytic activity for the decomposition and removal of TOC may be insufficient. The loading amount of the metal nanocolloid particles is 0.2 wt% or less, sufficient catalytic activity for decomposing and removing TOC is developed, and it is not usually necessary to support the metal nanocolloid particles exceeding 0.2 wt%. In addition, when the loading amount of metal nanocolloidal particles is increased, the possibility of metal elution in water also increases.
脱塩室へのTOC分解能を有する触媒の充填量は特に制限はなく、要求されるTOC分解能により適宜調整される。 The loading amount of the catalyst having TOC resolution into the demineralization chamber is not particularly limited, and is appropriately adjusted according to the required TOC resolution.
本発明の連続式電気脱イオン装置の脱塩室に充填されるアニオン交換体及びカチオン交換体としては、イオン交換樹脂、イオン交換繊維、グラフト交換体等が挙げられるが、好ましくは、アニオン交換樹脂及びカチオン交換樹脂である。 Examples of the anion exchanger and cation exchanger packed in the deionization chamber of the continuous electrodeionization apparatus of the present invention include ion exchange resin, ion exchange fiber, graft exchanger and the like, preferably anion exchange resin And cation exchange resin.
脱塩室内のアニオン交換体とカチオン交換体の充填割合には特に制限はないが、通常、アニオン交換体:カチオン交換体=1:1〜7:3(体積比)で充填される。 There are no particular limitations on the filling ratio of the anion exchanger and the cation exchanger in the demineralization chamber, but in general, anion exchanger: cation exchanger = 1: 1 to 7: 3 (volume ratio).
前述の通り、TOC分解能を有する触媒は、白金族の金属触媒を、アニオン交換樹脂に担持して用いることが好ましいことから、本発明の連続式電気脱イオン装置としては、脱塩室内のアニオン交換樹脂として、従来の通常のアニオン交換樹脂に代えて、前述の白金族金属担持アニオン交換樹脂を充填したものを用いることは、TOC分解能を有する触媒を十分に充填することができる上に、白金族金属担持アニオン交換樹脂を充填するのみで、TOC分解能を有する触媒の充填とアニオン交換体の充填を行えるため、好ましい態様である。 As described above, since it is preferable to use a platinum group metal catalyst supported on an anion exchange resin as the catalyst having TOC resolution, as the continuous electrodeionization apparatus of the present invention, anion exchange in the demineralization chamber is preferable. Using a resin filled with the above-mentioned platinum group metal-supported anion exchange resin in place of a conventional ordinary anion exchange resin as a resin can sufficiently charge a catalyst having TOC decomposability, and additionally, it can be used as a platinum group metal. This is a preferred embodiment because the loading of the catalyst having TOC resolution and the loading of the anion exchanger can be performed only by loading the metal-supported anion exchange resin.
この場合、TOC分解能を有する触媒の担時は表面のみで起こるので、アニオン交換樹脂の内部のアニオン交換能力は有したままとなる。そのため連続式電気脱イオン装置の脱塩室に充填するアニオン交換樹脂を上記の金属触媒担持アニオン交換樹脂としても、イオン交換能が損なわれることはない。 In this case, since the loading of the catalyst having TOC decomposition occurs only on the surface, the anion exchange capacity inside the anion exchange resin remains. Therefore, even when the anion exchange resin packed in the deionization chamber of the continuous electrodeionization apparatus is the above metal catalyst-supported anion exchange resin, the ion exchange capacity is not impaired.
なお、本発明の連続式電気脱イオン装置は、濃縮室にもアニオン交換体及びカチオン交換体を充填したものであってもよい。 In the continuous electrodeionization apparatus of the present invention, the concentration chamber may also be filled with an anion exchanger and a cation exchanger.
特許文献1に記載されるようにTOC分解能を有する触媒によるTOCの分解には、予め水素を供給し、次いで酸素を供給する必要がある。
従って、本発明のTOC除去装置では、原水であるTOC含有水に水素ガス又は酸素ガスを溶解させるガス溶解手段と、該ガス溶解手段で水素ガスを溶解させたTOC含有水と酸素ガスを溶解させたTOC含有水とを本発明の連続式電気脱イオン装置の脱塩室に交互に導入する手段とを設けることが好ましい。このガス溶解手段として、連続式電気脱イオン装置の前段にガス溶解膜モジュールを設け、ガス溶解膜モジュールの気相室に水素ガスを供給する水素ガス供給手段と酸素ガスを供給する酸素ガス供給手段と、水素ガス供給手段及び酸素ガス供給手段によるガスの供給を交互に切り換える切換手段と、ガス溶解膜モジュールの液相室にTOC含有水を供給する手段とを設け、ガス溶解膜モジュールの液相室から流出するガス溶解TOC含有水を連続式電気脱イオン装置の脱塩室に導入するようにすることが好ましい。
前述の通り、特許文献1の方法では、水素水通水工程、酸素水通水工程及び有機物含有原水通水工程を繰り返し行う必要があったのに対して、本発明では、水素ガスと酸素ガスを切り換えることで、水素水、酸素水を交互に通水することが可能であるため、水素ガス溶解TOC含有水と酸素ガス溶解TOC含有水との交互通水でTOCを分解除去できる。
As described in Patent Document 1, the decomposition of TOC by the catalyst having TOC decomposition needs to be previously supplied with hydrogen and then supplied with oxygen.
Therefore, in the TOC removal apparatus of the present invention, a gas dissolving means for dissolving hydrogen gas or oxygen gas in TOC containing water which is raw water, and TOC containing water and hydrogen gas in which hydrogen gas is dissolved by the gas dissolving means It is preferable to provide means for alternately introducing the TOC-containing water into the deionization chamber of the continuous electrodeionization apparatus of the present invention. As the gas dissolution means, a gas dissolution membrane module is provided at the front stage of the continuous electrodeionization apparatus, and hydrogen gas supply means for supplying hydrogen gas to the gas phase chamber of the gas dissolution membrane module and oxygen gas supply means for supplying oxygen gas And switching means for alternately switching the gas supply by the hydrogen gas supply means and the oxygen gas supply means, and means for supplying TOC-containing water to the liquid phase chamber of the gas dissolution membrane module; It is preferable to introduce the gas-dissolved TOC-containing water flowing out of the chamber into the deionization chamber of the continuous electrodeionization apparatus.
As described above, in the method of Patent Document 1, it is necessary to repeat the hydrogen water passing step, the oxygen water passing step and the organic substance-containing raw water passing step repeatedly, whereas in the present invention, the hydrogen gas and the oxygen gas are used. Since it is possible to alternately supply hydrogen water and oxygen water by switching, the TOC can be decomposed and removed by alternately passing water containing hydrogen gas dissolved TOC and water containing oxygen gas dissolved TOC.
また、連続式電気脱イオン装置では、水に直流電圧を印加することから、陽極で酸素が、陰極で水素がそれぞれ発生するため、陽極で発生した酸素ガスを原水のTOC含有水に溶解させる酸素ガスとして、陰極で発生した水素ガスを原水のTOC含有水に溶解させる水素ガスとして、それぞれガス溶解膜モジュール等のガス溶解手段に送給して有効利用することが好ましい。 Further, in the continuous electrodeionization apparatus, since a DC voltage is applied to water, oxygen is generated at the anode and hydrogen is generated at the cathode. Therefore, the oxygen gas generated at the anode is dissolved in TOC-containing water of the raw water It is preferable to supply hydrogen gas generated at the cathode as a gas to hydrogen gas dissolving means such as a gas dissolving membrane module as hydrogen gas to dissolve in TOC-containing water of raw water for effective use.
図1は、このような好適態様を組み込んだ本発明のTOC除去装置の実施の形態を示す系統図である。
原水のTOC除去装置は、原水供給配管L1を経て、ガス溶解手段であるガス溶解膜モジュール1へ供給される。ガス溶解手段はTOC含有水にガスを溶解することができるものであれば制限はなく、膜、エゼクター、散気機構などが用いられる。ここでは取り扱いが簡便なガス溶解膜モジュール1を例示した。原水はガス溶解膜モジュール1にて適宜、窒素ガスと水素ガス又は酸素ガスとが溶解され、ガス溶解膜モジュール1の液相室1Bよりガス溶解水として給水配管L2を経て、連続式電気脱イオン装置2へ供給される。窒素ガスタンク3内の窒素ガスはキャリアガスとして窒素ガス流量調整弁V1を有する窒素ガス配管L3及びガス供給本管L6を経てガス溶解膜モジュール1の気相室1Aに供給される。窒素ガスは、ガス溶解膜モジュール1の膜の型式により10〜1000NL/min程度を供給することが望ましいが、水量と膜本数に依存するためその限りではない。窒素ガスの供給は、水素ガスが爆発性があるため希釈の意味があるが、防爆対策が施されていればその限りではない。
FIG. 1 is a system diagram showing an embodiment of the TOC removing apparatus of the present invention incorporating such a preferred embodiment.
The TOC removal device for raw water is supplied to the gas dissolving membrane module 1 which is a gas dissolving means through the raw water supply pipe L1. The gas dissolving means is not limited as long as it can dissolve gas in TOC-containing water, and a membrane, ejector, aeration mechanism, etc. may be used. Here, the gas dissolving membrane module 1 which is easy to handle is illustrated. Raw water is appropriately dissolved in nitrogen gas and hydrogen gas or oxygen gas in the gas dissolving membrane module 1, and it passes through the water supply pipe L2 as gas dissolving water from the
水素ガスタンク5内の水素ガスは窒素ガス流量の0.1〜4.0体積%、例えば1体積%程度が、水素ガス流量調整弁V3を有する水素ガス配管L5及びガス供給本管L6を経てガス溶解膜モジュール1の気相室1Aに供給される。水素ガスの供給量は、水素ガスの爆発限界が窒素ガス流量の4体積%以上であることから、安全をみて窒素ガス流量の1体積%程度が好ましいが、既述の通り、防爆対策を施していればその限りではない。
The hydrogen gas in the hydrogen gas tank 5 is 0.1 to 4.0% by volume, for example, about 1% by volume, of the nitrogen gas flow rate, and is supplied via the hydrogen gas line L5 having the hydrogen gas flow rate adjustment valve V3 and the gas supply main line L6. It is supplied to the
酸素ガスタンク4内の酸素ガスは、酸素ガス流量調整弁V2を有する酸素ガス配管L4及びガス供給本管L6を経てガス溶解膜モジュール1の気相室1Aに供給される。酸素ガスの供給量も、水素ガスと同様に窒素ガス流量の0.1〜20体積%、例えば1体積%程度の供給で十分なので望ましい。L7はガス溶解膜モジュール1の気相室1Aからの排気配管である。
The oxygen gas in the
このように、キャリアガスとしての窒素ガスと共に水素ガスと酸素ガスを交互に供給して、連続式電気脱イオン装置2への供給を水素ガス溶解原水→酸素ガス溶解原水→水素ガス溶解ガス→酸素ガス溶解原水………と交互に繰り返すことで、連続式電気脱イオン装置2の脱塩室内の触媒でTOCを吸脱着することができる。
また、脱着の際に約1/2のTOCがイオン化するが、生成したイオン性分解物は連続通水で吸脱着を繰り返すことで、連続式電気脱イオン装置2の脱塩室内のイオン交換体に捕捉され、連続式電気脱イオン装置2の濃縮室を経て系外へ排出される。
Thus, hydrogen gas and oxygen gas are alternately supplied together with nitrogen gas as a carrier gas to supply hydrogen to the continuous electrodeionization apparatus 2 → hydrogen gas dissolving raw water → oxygen gas dissolving raw water → hydrogen gas dissolving gas → oxygen The catalyst in the deionization chamber of the continuous electrodeionization apparatus 2 can adsorb and desorb TOC by alternately repeating the gas-dissolved raw water.
In addition, about 1/2 TOC is ionized during desorption, but the generated ionized decomposition product is repeatedly absorbed and desorbed by continuous water passage, whereby the ion exchanger in the deionization chamber of the continuous electrodeionization apparatus 2 is repeated. And is discharged out of the system through the concentration chamber of the continuous electrodeionization device 2.
ここで、TOCがTOC分解能を有する触媒に吸脱着するメカニズムは以下の通りである。
まず、金属触媒に水素ガス溶解水が供給されると触媒に水素が吸蔵され、表面には触媒金属と水素の弱い結合が生じる。その状態で酸素ガスとTOCの共存系が金属触媒に接触すると、触媒金属表面に存在する水素原子と酸素原子が結合するときに、酸素原子中の電子が水素(金属)方向に引っ張られて電子が欠乏し、そことTOCの非共有電子対が結合すると考えられる。その状態で、再び水素ガス溶解水を接触すると、酸素原子から脱離が起こり、TOCの一部はイオン化して脱離すると考えられている。そのため、水素ガス溶解水と酸素ガス溶解水は交互に金属触媒に接触させる必要があるが、上記のようにガス溶解手段へのガス供給を酸素ガスと水素ガスで切り替えることで対応することができ、通水流路を切り替える必要はなく、圧力変動などを伴うことなく簡便に対応することができる。この場合、交互にガスを切り替えるタイミングは1〜600秒程度、特に10〜300秒程度の間隔が好ましく、酸素ガスの供給時間は水素ガスの供給時間の0.5〜2.0倍程度とすることが好ましい。
Here, the mechanism by which TOC adsorbs and desorbs to a catalyst having TOC resolution is as follows.
First, when hydrogen gas-dissolved water is supplied to the metal catalyst, hydrogen is stored in the catalyst, and a weak bond between the catalyst metal and hydrogen is generated on the surface. When a coexistence system of oxygen gas and TOC comes into contact with the metal catalyst in that state, when hydrogen atoms and oxygen atoms present on the surface of the catalyst metal combine, electrons in the oxygen atoms are pulled in the hydrogen (metal) direction It is thought that there is a deficiency, and the non-covalent electron pair of TOC bonds with it. In this state, when hydrogen gas-dissolved water is brought into contact again, desorption from oxygen atoms occurs, and it is believed that part of TOC is ionized and detached. Therefore, it is necessary to make hydrogen gas dissolved water and oxygen gas dissolved water alternately contact the metal catalyst, but it can be coped with by switching the gas supply to the gas dissolving means with oxygen gas and hydrogen gas as described above. It is not necessary to switch the water flow path, and it is possible to easily cope with the pressure fluctuation and the like. In this case, the timing of switching the gas alternately is preferably about 1 to 600 seconds, particularly preferably about 10 to 300 seconds, and the oxygen gas supply time is about 0.5 to 2.0 times the hydrogen gas supply time. Is preferred.
なお、連続式電気脱イオン装置2の脱塩室には、まず最初に水素ガス溶解原水が供給される。ここで供給された水素ガス溶解原水中のTOCは、酸素が存在しないため、そのまま流出してしまうが、この初回の給水で得られる処理水については初期ブローすることが望ましい。また、水素ガス溶解原水と酸素ガス溶解原水とを交互に繰り返した場合、水素ガス溶解原水の給水のTOCは酸素が吸着した樹脂層を通ることで瞬間的に吸脱離が起こることにより問題なく処理される。 In the demineralization chamber of the continuous electrodeionization apparatus 2, hydrogen gas-dissolved raw water is firstly supplied. The TOC in the hydrogen gas-dissolved raw water supplied here flows out as it is because oxygen does not exist, but it is desirable to initially blow the treated water obtained by this initial water supply. Moreover, when hydrogen gas dissolving raw water and oxygen gas dissolving raw water are alternately repeated, TOC of the feed water of hydrogen gas dissolving raw water passes through the resin layer to which oxygen was adsorbed, and absorption and desorption occur instantaneously without problems. It is processed.
このようにして、連続式電気脱イオン装置1で原水中のTOCが分解され、分解により生成したイオン性物質は脱塩室内のイオン交換体によるイオン交換により除去された処理水は、連続式電気脱イオン装置1の処理水排出配管L8より系外へ排出される。 Thus, the TOC in the raw water is decomposed by the continuous electrodeionization apparatus 1, and the ionic substance produced by the decomposition is removed by the ion exchange with the ion exchanger in the deionization chamber, and the treated water is continuously electricity. It is discharged out of the system from the treated water discharge pipe L8 of the deionization device 1.
前述の通り、連続式電気脱イオン装置2では水に直流電圧を印加することから、陽極で酸素ガス、陰極で水素ガスがそれぞれ発生するため、陽極で発生した酸素ガスを原水に溶解させる酸素ガスとして、陰極で発生した水素ガスを原水に溶解させる水素ガスとしてそれぞれ有効利用するため、図1のTOC除去装置では、連続式電気脱イオン装置2の陽極で発生した酸素ガスを酸素ガス排気配管L9を経て酸素ガスタンク4に送給し、陰極で発生した水素ガスを水素ガス排気配管L10を経て水素ガスタンク5に送給するように構成されている。L11及びL12は、各々のガスを系外に排気するための配管である。 As described above, in the continuous electrodeionization apparatus 2, since a DC voltage is applied to water, oxygen gas is generated at the anode and hydrogen gas is generated at the cathode respectively, so oxygen gas generated at the anode is dissolved in raw water In order to effectively use the hydrogen gas generated at the cathode as hydrogen gas to be dissolved in the raw water, the oxygen gas generated at the anode of the continuous electrodeionization device 2 is used as the oxygen gas exhaust pipe L9 in the TOC removal device of FIG. The hydrogen gas generated at the cathode is supplied to the hydrogen gas tank 5 through the hydrogen gas exhaust pipe L10. L11 and L12 are pipes for exhausting the respective gases out of the system.
このような本発明のTOC除去装置によれば、TOC含有水中のTOCを難分解性のTOCを含めて簡便に連続処理して高度に分解除去することができる。特に本発明は、TOC濃度1〜10ppb程度の超純水中のTOC成分を更に低濃度化するシステムとして好適である。 According to such a TOC removing apparatus of the present invention, TOC in TOC-containing water can be simply and continuously processed to be highly decomposed and removed, including persistent TOC. In particular, the present invention is suitable as a system for further reducing the concentration of TOC components in ultrapure water having a TOC concentration of about 1 to 10 ppb.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be more specifically described by way of examples and comparative examples.
以下の実施例及び比較例では、いずれも、尿素をTOC源として含むTOC濃度3ppbのTOC含有水を原水として1m3/hrの流量で処理を行った。 In each of the following examples and comparative examples, treatment was performed at a flow rate of 1 m 3 / hr using TOC-containing water having a TOC concentration of 3 ppb containing urea as a TOC source as raw water.
[実施例1]
図1に示す本発明のTOC除去装置により原水を処理した。
試験に用いた装置仕様は次の通りである。
ガス溶解膜モジュール:セルガード社製「リキセルG284」(4×28インチ)
連続式電気脱イオン装置:栗田工業(株)製「KCDI」
連続式電気脱イオン装置の脱塩室内の充填樹脂:
アニオン交換樹脂:栗田工業(株)製「ナノセイバー」
(白金ナノコロイド担体アニオン交換樹脂)10L
カチオン交換樹脂:栗田工業(株)製「KR−UC1」10L
Example 1
Raw water was treated by the TOC removal device of the present invention shown in FIG.
The specifications of the device used for the test are as follows.
Gas dissolution membrane module: "Liquidelle G284" (4 x 28 inches) manufactured by Celgard
Continuous electrodeionization apparatus: "KCDI" manufactured by Kurita Kogyo Co., Ltd.
Filling resin in the deionization chamber of the continuous electrodeionization apparatus:
Anion exchange resin: "Nano Saber" manufactured by Kurita Kogyo Co., Ltd.
(Platinum nanocolloid carrier anion exchange resin) 10 L
Cation exchange resin: Kurita Kogyo Co., Ltd. "KR-UC1" 10 L
窒素ガス流量は10NL/minで一定とし、水素ガス流量は0.1NL/min、酸素ガス流量は0.5NL/minとし、水素ガス30秒供給、酸素ガス60秒供給で水素ガスと酸素ガスの供給を交互に切り換えた。 The nitrogen gas flow rate is constant at 10 NL / min, the hydrogen gas flow rate is 0.1 NL / min, the oxygen gas flow rate is 0.5 NL / min, hydrogen gas is supplied for 30 seconds, oxygen gas is for 60 seconds, and hydrogen gas and oxygen gas are supplied. The supply was switched alternately.
その結果、連続式電気脱イオン装置の処理水のTOC濃度は1ppb以下であり、連続運転にてTOCを高度に分解除去することができた。 As a result, the TOC concentration of the treated water of the continuous electrodeionization apparatus was 1 ppb or less, and the TOC could be highly decomposed and removed in the continuous operation.
[比較例1]
原水を低圧紫外線ランプ装置(日本フォトサイエンス社製「AZ−26」)を用いて処理し、さらにイオン交換樹脂カラム(栗田工業(株)製「KR−UA1」と「KR−UC1」の混合樹脂)処理したところ、処理水のTOC濃度は3ppbであり、尿素が主成分であるため全く分解されなかった。
Comparative Example 1
Raw water is treated with a low pressure ultraviolet lamp device ("AZ-26" manufactured by Japan Photo Science Co., Ltd.), and an ion exchange resin column (mixed resin of "KR-UA1" and "KR-UC1" manufactured by Kurita Kogyo Co., Ltd.) After treatment, the TOC concentration of the treated water was 3 ppb, and it was not decomposed at all because urea was the main component.
[比較例2]
特許文献1に記載の方法で原水の処理を行った。即ち、連続式電気脱イオン装置の代りに栗田工業(株)製「ナノセイバー」(白金ナノコロイド担体アニオン交換樹脂)を充填した触媒カラムを用い、その後段にイオン交換樹脂カラム(栗田工業(株)製「KR−UA1」と「KR−UC1」の混合樹脂)を設置した。
その結果、イオン交換樹脂カラムの処理水のTOC濃度は1ppb以下であったが、触媒カラムを水素処理から酸素処理に切りかえる際に、10kPa程度の圧力変動が起こり、連続処理が行えなかった。またイオン交換樹脂の吸着量が20日程度で破過し、樹脂交換が必要となり連続処理が行えなかった。
Comparative Example 2
The raw water was treated by the method described in Patent Document 1. That is, instead of the continuous electrodeionization apparatus, a catalyst column packed with "Nanosaber" (platinum nanocolloid carrier anion exchange resin) manufactured by Kurita Kogyo Co., Ltd. is used, followed by an ion exchange resin column (Kurita Kogyo Co., Ltd. A mixed resin of “KR-UA1” and “KR-UC1” manufactured by A.K.
As a result, the TOC concentration of the treated water of the ion exchange resin column was 1 ppb or less, but when switching the catalyst column from hydrogen treatment to oxygen treatment, pressure fluctuation of about 10 kPa occurred and continuous treatment could not be performed. Further, the adsorption amount of the ion exchange resin was broken in about 20 days, and resin exchange was required, and continuous processing could not be performed.
1 ガス溶解膜モジュール
2 連続式電気脱イオン装置
10 イオン交換体
11 陽極
12 陰極
13 アニオン交換膜
14 カチオン交換膜
15 濃縮室
16 脱塩室
17 陽極室
18 陰極室
Reference Signs List 1 gas dissolving membrane module 2
Claims (7)
該ガス溶解手段で水素ガスを溶解させたTOC含有水と酸素ガスを溶解させたTOC含有水とを前記連続式電気脱イオン装置の前記脱塩室に交互に導入する手段と
を有することを特徴とする請求項1に記載のTOC除去装置。 Gas dissolving means for dissolving hydrogen gas or oxygen gas in TOC-containing water;
Means for alternately introducing TOC-containing water in which hydrogen gas is dissolved by the gas dissolution means and TOC-containing water in which oxygen gas is dissolved into the deionization chamber of the continuous electrodeionization apparatus The TOC removal apparatus according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017251628A JP7040008B2 (en) | 2017-12-27 | 2017-12-27 | TOC removal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017251628A JP7040008B2 (en) | 2017-12-27 | 2017-12-27 | TOC removal device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019115892A true JP2019115892A (en) | 2019-07-18 |
JP7040008B2 JP7040008B2 (en) | 2022-03-23 |
Family
ID=67303779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017251628A Active JP7040008B2 (en) | 2017-12-27 | 2017-12-27 | TOC removal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7040008B2 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10272474A (en) * | 1997-03-28 | 1998-10-13 | Kurita Water Ind Ltd | Electric deionization device |
JP2003001258A (en) * | 2001-06-15 | 2003-01-07 | Kurita Water Ind Ltd | Electrolytic deionizing apparatus |
US6780328B1 (en) * | 1997-06-20 | 2004-08-24 | Li Zhang | Fluid purification devices and methods employing deionization followed by ionization followed by deionization |
JP2008132492A (en) * | 2002-12-27 | 2008-06-12 | Ebara Corp | Electric demineralizer |
WO2010013677A1 (en) * | 2008-07-28 | 2010-02-04 | 栗田工業株式会社 | Process and equipment for the treatment of water containing organic matter |
JP2011167633A (en) * | 2010-02-18 | 2011-09-01 | Kurita Water Ind Ltd | Water treatment method and apparatus |
JP2011224440A (en) * | 2010-04-16 | 2011-11-10 | Japan Organo Co Ltd | Electrical apparatus for producing deionized water |
JP2013208557A (en) * | 2012-03-30 | 2013-10-10 | Kurita Water Ind Ltd | Method for treating organic matter-containing water |
JP2014133225A (en) * | 2013-01-11 | 2014-07-24 | Kankyo Joka Kenkyusho:Kk | Method for removing urea within pure water |
JP2015083286A (en) * | 2013-10-25 | 2015-04-30 | オルガノ株式会社 | Deionized water production system and method for operating the same |
JP2017018847A (en) * | 2015-07-07 | 2017-01-26 | オルガノ株式会社 | Electric type deionized water production apparatus and deionized water production method |
-
2017
- 2017-12-27 JP JP2017251628A patent/JP7040008B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10272474A (en) * | 1997-03-28 | 1998-10-13 | Kurita Water Ind Ltd | Electric deionization device |
US6780328B1 (en) * | 1997-06-20 | 2004-08-24 | Li Zhang | Fluid purification devices and methods employing deionization followed by ionization followed by deionization |
JP2003001258A (en) * | 2001-06-15 | 2003-01-07 | Kurita Water Ind Ltd | Electrolytic deionizing apparatus |
JP2008132492A (en) * | 2002-12-27 | 2008-06-12 | Ebara Corp | Electric demineralizer |
WO2010013677A1 (en) * | 2008-07-28 | 2010-02-04 | 栗田工業株式会社 | Process and equipment for the treatment of water containing organic matter |
JP2011167633A (en) * | 2010-02-18 | 2011-09-01 | Kurita Water Ind Ltd | Water treatment method and apparatus |
JP2011224440A (en) * | 2010-04-16 | 2011-11-10 | Japan Organo Co Ltd | Electrical apparatus for producing deionized water |
JP2013208557A (en) * | 2012-03-30 | 2013-10-10 | Kurita Water Ind Ltd | Method for treating organic matter-containing water |
JP2014133225A (en) * | 2013-01-11 | 2014-07-24 | Kankyo Joka Kenkyusho:Kk | Method for removing urea within pure water |
JP2015083286A (en) * | 2013-10-25 | 2015-04-30 | オルガノ株式会社 | Deionized water production system and method for operating the same |
JP2017018847A (en) * | 2015-07-07 | 2017-01-26 | オルガノ株式会社 | Electric type deionized water production apparatus and deionized water production method |
Also Published As
Publication number | Publication date |
---|---|
JP7040008B2 (en) | 2022-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101692212B1 (en) | Process and equipment for the treatment of water containing organic matter | |
JP4648307B2 (en) | Continuous electrodeionization apparatus and method | |
JP5499753B2 (en) | Water treatment method and apparatus | |
WO2000064568A1 (en) | Apparatus for producing water containing dissolved ozone | |
WO2015068635A1 (en) | Method and apparatus for manufacturing pure water | |
JP2011194402A (en) | Ultrapure water production plant | |
JP2011110515A (en) | Method and apparatus for purifying ion exchange resin | |
JP4599803B2 (en) | Demineralized water production equipment | |
WO2021131360A1 (en) | Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system | |
JP4635827B2 (en) | Ultrapure water production method and apparatus | |
JP5499433B2 (en) | Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus | |
JP5919960B2 (en) | Treatment method for organic water | |
JP2003266097A (en) | Ultrapure water making apparatus | |
JP2002210494A (en) | Device for manufacturing extrapure water | |
JP7040008B2 (en) | TOC removal device | |
JP2016047496A (en) | Pure water production apparatus, ultrapure water production system, and pure water production method | |
CN112424128B (en) | Pure water production system and pure water production method | |
JP2000308815A (en) | Producing device of ozone dissolved water | |
WO2022190608A1 (en) | Method and apparatus for treating water | |
JP2015178107A (en) | Method of producing ultrapure water and ultrapure water production equipment | |
JP7570249B2 (en) | Water treatment system and water treatment method | |
JP3674475B2 (en) | Pure water production method | |
US20240239695A1 (en) | Water treatment method and water treatment apparatus | |
JP2018086657A (en) | Pure water production apparatus, ultrapure water production system, and pure water producing method | |
WO2021261145A1 (en) | Water treatment apparatus and water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210824 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7040008 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |