JPH10272474A - Electric deionization device - Google Patents

Electric deionization device

Info

Publication number
JPH10272474A
JPH10272474A JP9077829A JP7782997A JPH10272474A JP H10272474 A JPH10272474 A JP H10272474A JP 9077829 A JP9077829 A JP 9077829A JP 7782997 A JP7782997 A JP 7782997A JP H10272474 A JPH10272474 A JP H10272474A
Authority
JP
Japan
Prior art keywords
water
exchange resin
resin
anion exchange
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9077829A
Other languages
Japanese (ja)
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP9077829A priority Critical patent/JPH10272474A/en
Publication of JPH10272474A publication Critical patent/JPH10272474A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To provide an electric deionization device with a deoxidizing function by mixing anion exchange resin and cation exchange resin to pack a desalting chamber with a mixture thereof, making a part of the anion exchange resin in the desalting chamber catalytic resin carrying metal, and feeding hydrogen to raw water to be introduced into the electric deionization device. SOLUTION: Plural anion exchange membranes A and cation exchange membrane C are alternately arranged in parallel to alternately form concentration chambers 1 and desalting chambers 2. The desalting chambers 2 each are packed with a mixture of ion exchange resin R, anion exchange resin and cation exchange resin, and catalytic resin in which metal is deposited on anion exchange resin. Ions in raw water are concentrated in the concentration chambers 1, and in the desalting chambers 2, water from which anion and cation components have been removed is produced. The raw water is contacted with the catalytic resin in the desalting chambers 2 in the presence of added gaseous H2 allowing dissolved oxygen(DO) to be decomposed and removed. In this way, water from which ions and DO have been removed is taken out as treated water through piping 12b and 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気式脱イオン装置
に係り、特に、脱酸素機能を備える電気式脱イオン装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric deionization apparatus, and more particularly to an electric deionization apparatus having a deoxygenating function.

【0002】[0002]

【従来の技術】従来、半導体、レンズ、液晶等の洗浄用
水、医薬用水等に用いられる脱塩水の製造には、電極の
間に複数のアニオン交換膜及びカチオン交換膜を交互に
配列して濃縮水室と脱塩室とを交互に形成し、脱塩室に
アニオン交換樹脂とカチオン交換樹脂とを混合して充填
した電気式脱イオン装置(「電気脱イオン装置」又は
「連続脱イオン装置」とも呼称される。)が多用されて
いる。電気式脱イオン装置は効果的な脱塩処理が可能で
あり、イオン交換樹脂のように再生を必要とせず、完全
な連続採水が可能で、極めて高純度の水が得られるとい
う優れた効果を奏する。
2. Description of the Related Art Conventionally, in the production of demineralized water used for washing water for semiconductors, lenses, liquid crystals, etc., and medical water, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between electrodes and concentrated. An electric deionizer (“electrodeionizer” or “continuous deionizer”) in which a water chamber and a desalination chamber are alternately formed, and an anion exchange resin and a cation exchange resin are mixed and filled in the desalination chamber. ) Are frequently used. The electric deionizer is capable of effective desalination treatment, does not require regeneration like ion exchange resin, allows perfect continuous water sampling, and has the excellent effect of obtaining extremely high-purity water. To play.

【0003】電気式脱イオン装置では、脱塩室に流入し
た原水中のイオンが親和力、濃度及び移動度に基いてイ
オン交換樹脂と反応して、電位をかけた電極の方向(被
処理水の流れに対して直角方向)に樹脂中を移動し、更
に、脱塩室と濃縮室とを仕切るカチオン交換膜又はアニ
オン交換膜を横切って移動し、すべての室において電荷
の中和が保たれるようになる。そして、イオン交換膜の
半浸透特性及び電位により、原水中のイオンは脱塩室で
は減少し、隣りの濃縮室では濃縮されることになる。こ
のため、脱塩室から脱塩水が回収される。
In an electric deionization apparatus, ions in raw water flowing into a desalination chamber react with an ion exchange resin on the basis of affinity, concentration and mobility, and the direction of an electrode to which an electric potential is applied (the water to be treated). (Perpendicular to the flow) in the resin, and further across a cation exchange or anion exchange membrane separating the desalting and concentration chambers, maintaining charge neutralization in all chambers. Become like Then, due to the semi-osmotic characteristics and the potential of the ion exchange membrane, the ions in the raw water decrease in the desalting chamber and are concentrated in the adjacent concentrating chamber. Therefore, desalinated water is recovered from the desalination chamber.

【0004】このような電気式脱イオン装置の前処理手
段としては、通常、逆浸透(RO)膜分離装置が設けら
れる。RO膜分離装置を配設することにより、原水中の
電解質、TOC成分を効率的に除去することができ、電
気式脱イオン装置における負荷を低減し、高純度の処理
水を得ることができるようになる。
A reverse osmosis (RO) membrane separation device is usually provided as a pretreatment means for such an electric deionization device. By disposing the RO membrane separation device, the electrolyte and TOC components in the raw water can be efficiently removed, the load on the electric deionization device can be reduced, and high-purity treated water can be obtained. become.

【0005】一方、水中の溶存酸素(DO)を低減する
ための脱酸素手段として、パラジウム(Pd)を担持し
た脱酸素触媒を用い、水素(H2 )やヒドラジン(N2
4)等の還元剤の存在下、DOを分解除去するものが
実用されている。
On the other hand, as a deoxidizing means for reducing dissolved oxygen (DO) in water, a deoxidizing catalyst supporting palladium (Pd) is used, and hydrogen (H 2 ) or hydrazine (N 2
A device that decomposes and removes DO in the presence of a reducing agent such as H 4 ) has been used.

【0006】[0006]

【発明が解決しようとする課題】従来の電気式脱イオン
装置は、脱イオン機能のみで、脱酸素機能を具備してい
ない。このため、電気式脱イオン装置を純水の製造に用
いる場合には、RO膜分離装置、電気式脱イオン装置及
び脱酸素装置を配置し、電気式脱イオン装置から得られ
る脱イオン水を更に脱酸素装置で処理してDOを除去す
る必要がある。
A conventional electric deionization apparatus has only a deionization function and does not have a deoxygenation function. For this reason, when the electric deionizer is used for the production of pure water, an RO membrane separator, an electric deionizer and a deoxygenator are arranged, and the deionized water obtained from the electric deionizer is further separated. It is necessary to remove DO by treatment with a deoxidizer.

【0007】本発明は上記従来の問題点を解決し、脱酸
素機能を具備する電気式脱イオン装置を提供することを
目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide an electric deionization apparatus having a deoxygenation function.

【0008】[0008]

【課題を解決するための手段】本発明の電気式脱イオン
装置は、複数のアニオン交換膜及びカチオン交換膜を交
互に配列して濃縮室と脱塩室とを交互に形成してなり、
該脱塩室にはアニオン交換樹脂とカチオン交換樹脂とが
混合されて充填されている電気式脱イオン装置におい
て、前記脱塩室内のアニオン交換樹脂の一部は金属を担
持した触媒樹脂であり、該電気式脱イオン装置に導入さ
れる原水に水素を供給する手段を備えてなることを特徴
とする。
The electric deionization apparatus of the present invention comprises a plurality of anion exchange membranes and cation exchange membranes arranged alternately to form a concentration chamber and a desalination chamber alternately.
In the electric deionizer in which the anion exchange resin and the cation exchange resin are mixed and filled in the desalination chamber, a part of the anion exchange resin in the desalination chamber is a catalyst resin supporting a metal, It is characterized by comprising means for supplying hydrogen to raw water introduced into the electrodeionization device.

【0009】本発明の電気式脱イオン装置では、脱塩室
内において、還元剤としての水素の存在下、原水中のD
Oが触媒樹脂の作用で分解除去(2H2 +O2 →2H2
O)される。
In the electric deionization apparatus of the present invention, D in the raw water is contained in the deionization chamber in the presence of hydrogen as a reducing agent.
O is decomposed and removed by the action of the catalyst resin (2H 2 + O 2 → 2H 2
O).

【0010】なお、触媒樹脂自体にもアニオン交換能が
あるため、アニオン交換樹脂の一部を触媒樹脂としたこ
とによる脱塩効果の低下は殆どなく、低DOで高純度の
高水質処理水を得ることができる。
Since the catalyst resin itself has an anion exchange ability, there is almost no decrease in the desalination effect due to the use of a part of the anion exchange resin as the catalyst resin. Obtainable.

【0011】ところで、電気式脱イオン装置において
は、陽極、陰極間に直流電流を流すため、陰極室からは
水素を含む陰極水が、また、陽極室からは酸素を含む陽
極水が排出される。これらの陰極水及び陽極水は、系外
へ取り出して気液分離処理を行う必要があるが、特に、
陰極水は、水素濃度が高くなると爆発の危険があること
から、その処理が重要とされていた。
In the electric deionization apparatus, since a direct current flows between the anode and the cathode, cathode water containing hydrogen is discharged from the cathode chamber, and anode water containing oxygen is discharged from the anode chamber. . These cathode water and anode water need to be taken out of the system and subjected to gas-liquid separation treatment.
Cathode water treatment has been regarded as important, since there is a danger of explosion when the hydrogen concentration becomes high.

【0012】本発明では、この水素を含む陰極水を原水
側に返送し、水素源として利用することもできる。一般
に、電気式脱イオン装置の陰極水は、その運転条件によ
っても異なるが、0.5〜5ppm程度の溶存水素を含
むものであるため、陰極水を水素源として有効に利用で
きる。
In the present invention, the cathode water containing hydrogen can be returned to the raw water side and used as a hydrogen source. In general, the cathode water of the electric deionization apparatus varies depending on the operating conditions, but contains about 0.5 to 5 ppm of dissolved hydrogen, so that the cathode water can be effectively used as a hydrogen source.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の電
気式脱イオン装置の実施の形態を詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an electric deionization apparatus according to an embodiment of the present invention.

【0014】図1は本発明の電気式脱イオン装置の実施
の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an electric deionization apparatus according to the present invention.

【0015】この電気式脱イオン装置では、複数のアニ
オン交換膜Aとカチオン交換膜Cとが交互に並列に配置
されており、それぞれ濃縮室1と脱塩室2とが交互に形
成されている。そして、脱塩室2には、樹脂Rが充填さ
れている。3は陽極、4は陰極であり、5は陽極室、6
は陰極室である。
In this electric deionization apparatus, a plurality of anion exchange membranes A and cation exchange membranes C are alternately arranged in parallel, and a concentration chamber 1 and a desalination chamber 2 are formed alternately. . The desalting chamber 2 is filled with the resin R. 3 is an anode, 4 is a cathode, 5 is an anode chamber, 6
Is a cathode chamber.

【0016】脱塩室2には、アニオン交換樹脂及びカチ
オン交換樹脂と、アニオン交換樹脂に金属を担持した触
媒樹脂とが混合されて充填されている。また、原水の導
入配管11には、H2 ガスの注入配管10が設けられて
いる。
The desalting chamber 2 is filled with a mixture of an anion exchange resin and a cation exchange resin and a catalyst resin having a metal supported on the anion exchange resin. Further, an H 2 gas injection pipe 10 is provided in the raw water introduction pipe 11.

【0017】本発明において、カチオン交換樹脂及びア
ニオン交換樹脂の種類や混合比には特に制限はないが、
通常の場合、カチオン交換樹脂と触媒樹脂を含むアニオ
ン交換樹脂との割合は30〜40%:60〜70%(体
積割合)程度とするのが好ましい。
In the present invention, the types and mixing ratios of the cation exchange resin and the anion exchange resin are not particularly limited.
In a normal case, the ratio of the cation exchange resin to the anion exchange resin containing the catalyst resin is preferably about 30 to 40%: about 60 to 70% (volume ratio).

【0018】また、触媒樹脂の割合は、触媒樹脂を含む
アニオン交換樹脂量の10〜40%(体積割合)程度で
あることが好ましい。触媒樹脂の割合がこれよりも少な
いと脱酸素機能が十分に得られず、逆に多いとコストが
高くなるという問題がある。
The proportion of the catalyst resin is preferably about 10 to 40% (volume ratio) of the amount of the anion exchange resin containing the catalyst resin. If the ratio of the catalyst resin is lower than this, a sufficient deoxygenation function cannot be obtained, and if it is higher, the cost increases.

【0019】この触媒樹脂としては、脱酸素機能を有す
るものであれば良く、担持される金属としても特に制限
はなく、CuやPd等の貴金属が挙げられるが、特にP
d等の貴金属で処理水側への溶出の少ないものが好まし
い。金属の担持量は一般には0.5〜5mg−金属/m
L−樹脂程度であることが好ましい。
The catalyst resin may be any resin having a deoxygenating function, and there is no particular limitation on the metal to be supported. Examples thereof include noble metals such as Cu and Pd.
A noble metal such as d which has little elution to the treated water side is preferable. The amount of supported metal is generally 0.5 to 5 mg-metal / m
It is preferably about L-resin.

【0020】触媒樹脂としては具体的には、Pdを1〜
3mg−Pd/mL−樹脂の割合で弱塩基性アニオン交
換樹脂又は強塩基性アニオン交換樹脂に担持した脱酸素
触媒樹脂のバイエル社製「OC−1063」,「OC−
1045」等を用いることができる。
Specifically, as the catalyst resin, Pd is 1 to
"OC-1063", "OC-103" manufactured by Bayer Co., Ltd., a deoxygenation catalyst resin supported on a weakly basic anion exchange resin or a strongly basic anion exchange resin at a ratio of 3 mg-Pd / mL-resin.
1045 "can be used.

【0021】原水への水素の添加量は、水中のDO濃度
に対して1/4〜1/8、一般的には理論量の1/8程
度で良く、例えば、原水のDOが8ppmであれば水素
濃度が1〜2ppmとなるように添加する。
The amount of hydrogen added to raw water may be 1/4 to 1/8 of the DO concentration in water, generally about 1/8 of the theoretical amount. For example, if DO in raw water is 8 ppm, For example, it is added so that the hydrogen concentration becomes 1-2 ppm.

【0022】なお、原水への水素添加方法は、原水に水
素を溶存できる方法であれば良く、また、その添加箇所
についても特に制限はないが、電気式脱イオン装置の入
口直前で添加するのが好適である。
The method of adding hydrogen to raw water is not particularly limited as long as it can dissolve hydrogen in raw water, and there is no particular limitation on the location of addition. Is preferred.

【0023】この電気式脱イオン装置では、原水(通常
の場合、RO膜分離装置の透過水(以下「RO処理水」
と称す。)の導入配管11は、濃縮室1への給水配管1
1a、脱塩室2への給水配管11b、陽極室5への給水
配管11c及び陰極室6への給水配管11dに分岐され
ており、原水は、配管10よりH2 ガスが注入された
後、濃縮室1、脱塩室2、陽極室5及び陰極室4にそれ
ぞれ供給される。
In this electric deionization apparatus, raw water (usually, permeated water of an RO membrane separation apparatus (hereinafter referred to as “RO treated water”)
Called. ) Is a feed pipe 1 for the enrichment chamber 1
1a, a water supply pipe 11b to the desalting chamber 2, a water supply pipe 11c to the anode chamber 5, and a water supply pipe 11d to the cathode chamber 6, and after the H 2 gas is injected from the pipe 10, It is supplied to the concentration room 1, the desalination room 2, the anode room 5 and the cathode room 4, respectively.

【0024】原水中のイオンは濃縮室1内に濃縮され、
脱塩室2ではアニオン、カチオン成分が除去された水が
製造されるが、この脱イオン処理において、原水は添加
されたH2 ガスの存在下、脱塩室2内の触媒樹脂と接触
することでDOが分解除去される。このようにしてイオ
ン及びDOが除去された水は、脱塩室2から、配管12
b及び12を経て処理水として取り出される。
The ions in the raw water are concentrated in the concentration chamber 1,
In the deionization chamber 2, water from which anion and cation components are removed is produced. In this deionization treatment, the raw water comes into contact with the catalyst resin in the deionization chamber 2 in the presence of added H 2 gas. DO is decomposed and removed. The water from which ions and DO have been removed in this manner is supplied from the desalination chamber 2 to the pipe 12.
It is taken out as treated water via b and 12.

【0025】一方、濃縮室1から配管13a,13b及
び13cを経て排出される濃縮水は、一部は配管13d
により原水側へ循環され、残部は排水として配管14よ
り系外へ排出される。なお、濃縮水はその全量を原水側
へ戻しても良い。
On the other hand, the concentrated water discharged from the concentration chamber 1 through the pipes 13a, 13b and 13c is partially
Circulates to the raw water side, and the remainder is discharged out of the system from the pipe 14 as waste water. The concentrated water may be entirely returned to the raw water side.

【0026】また、陽極室5から排出される陽極水はO
2 を含む上に、塩素、オゾンなどの酸化剤成分を含むた
め、これを原水側に循環すると樹脂劣化の原因となるた
め、原水側には戻さず、配管15,14より系外へ排出
する。
The anode water discharged from the anode chamber 5 is O
Since it contains oxidant components such as chlorine and ozone in addition to the above, if it is circulated to the raw water side, it will cause deterioration of the resin. .

【0027】一方、陰極室6からの陰極水は、配管16
a,16bより排出されるが、前述の如く、水素を含む
ものであるため、本発明では、この陰極水を水素源とし
て利用しても良い。この場合には、破線で示す配管16
cにより、陰極の一部又は全部を原水側へ返送する。こ
のように陰極水を返送することで、別途添加するH2
ス量を低減ないし不要とすることができる。
On the other hand, the cathode water from the cathode chamber 6 is supplied to the pipe 16
Although discharged from a and 16b, since it contains hydrogen as described above, in the present invention, this cathode water may be used as a hydrogen source. In this case, the pipe 16 indicated by a broken line
By c, a part or all of the cathode is returned to the raw water side. By returning the cathode water in this way, the amount of H 2 gas added separately can be reduced or made unnecessary.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0029】説明の便宜上まず比較例を挙げる。First, a comparative example will be described for convenience of explanation.

【0030】比較例1 厚木市水のRO膜((株)東レ製「SU−720」1
本)処理水を電気式連続脱イオン装置(栗田工業(株)
製「ピュアコンテ」)に通水し(処理水量800L/h
r)、得られた処理水(脱塩水)の水質を調べ、結果を
表1に示した。
Comparative Example 1 RO membrane of Atsugi City water (“SU-720” 1 manufactured by Toray Industries, Inc.)
Main) Treated water is electrically deionized continuously (Kurita Kogyo Co., Ltd.)
(“Pure Conte”) (800 L / h)
r), the quality of the obtained treated water (desalted water) was examined, and the results are shown in Table 1.

【0031】なお、用いた電気式連続脱イオン装置は脱
塩室にアニオン交換樹脂(三菱化学(株)製「PA31
6」)とカチオン交換樹脂(三菱化学(株)製「PK2
28」)とが35:65(容量比)で充填されたもので
ある。
The electric continuous deionizer used was an anion exchange resin (“PA31” manufactured by Mitsubishi Chemical Corporation) in a desalting chamber.
6 ”) and a cation exchange resin (“ PK2 ”manufactured by Mitsubishi Chemical Corporation).
28 ") and 35:65 (volume ratio).

【0032】実施例1 比較例1において、アニオン交換樹脂の20%をバイエ
ル社製「OC−1045」(Pdを強塩基性アニオン交
換樹脂に2mg−Pd/mL−樹脂の割合で担持した脱
酸素触媒樹脂)に変えると共に、電気式連続脱イオン装
置に供給するRO処理水に、H2 ガスを溶存H2 濃度と
して1〜1.2ppm(DOの1/6〜1/7)となる
ように供給したこと以外は同様に処理を行い、得られた
処理水の水質を調べ、結果を表1に示した。
Example 1 In Comparative Example 1, 20% of the anion exchange resin was deoxygenated by Bayer "OC-1045" (Pd was carried on a strongly basic anion exchange resin at a ratio of 2 mg-Pd / mL-resin). (Catalyst resin) and in the RO treated water supplied to the electric continuous deionization apparatus, the H 2 gas is dissolved so that the dissolved H 2 concentration becomes 1 to 1.2 ppm (1 / to 1/7 of DO). The same treatment was carried out except for the supply, and the quality of the obtained treated water was examined. The results are shown in Table 1.

【0033】実施例2 実施例1において、H2 ガスの供給量を低減する目的
で、40L/hrの割合で排出される陰極水(溶存水素
濃度2〜3ppm)をRO処理水側に返送し、溶存水素
濃度が1〜1.2ppmとなるように調整したこと以外
は同様に処理を行い、得られた処理水の水質を表1に示
した。
Example 2 In Example 1, in order to reduce the supply of H 2 gas, the cathode water (dissolved hydrogen concentration: 2 to 3 ppm) discharged at a rate of 40 L / hr was returned to the RO treated water side. The treatment was carried out in the same manner except that the dissolved hydrogen concentration was adjusted to 1 to 1.2 ppm, and the quality of the treated water obtained is shown in Table 1.

【0034】なお、この実施例では、陰極水を返送した
ことにより、H2 ガスの使用量を実施例1の場合の12
〜13%に低減できた。
In this embodiment, the amount of H 2 gas used is reduced to 12% in the first embodiment by returning the cathode water.
To 13%.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、本発明によれば、脱塩水製造室
内のアニオン交換樹脂の一部を触媒樹脂に替え、水素供
給手段を設けるのみで、電気式脱イオン装置により脱酸
素を行うことができ、しかも、アニオン交換樹脂を触媒
樹脂に替えても脱塩能力が損なわれることもなく、低D
Oで高純度の処理水を得ることができることがわかる。
As shown in Table 1, according to the present invention, a part of the anion exchange resin in the demineralized water production chamber is replaced with a catalyst resin, and deoxygenation can be performed by an electric deionization apparatus only by providing a hydrogen supply means. In addition, even if the anion exchange resin is replaced with a catalyst resin, the desalting ability is not impaired,
It is understood that high-purity treated water can be obtained with O.

【0037】[0037]

【発明の効果】以上詳述した通り、本発明の電気式脱イ
オン装置は、脱酸素機能を備えるため、従来の処理設備
で必要とされていた脱酸素手段を省略ないし小型化する
ことができ、工業的、経済的に極めて有利である。
As described above in detail, the electric deionization apparatus of the present invention has a deoxygenation function, so that the deoxygenation means required in the conventional processing equipment can be omitted or reduced in size. It is extremely advantageous industrially and economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気式脱イオン装置の実施の形態を示
す系統図である。
FIG. 1 is a system diagram showing an embodiment of an electric deionization apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 濃縮室 2 脱塩室 3 陽極 4 陰極 5 陽極室 6 陰極室 A アニオン交換膜 C カチオン交換膜 R イオン交換樹脂 DESCRIPTION OF SYMBOLS 1 Concentration room 2 Demineralization room 3 Anode 4 Cathode 5 Anode room 6 Cathode room A Anion exchange membrane C Cation exchange membrane R Ion exchange resin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のアニオン交換膜及びカチオン交換
膜を交互に配列して濃縮室と脱塩室とを交互に形成して
なり、該脱塩室にはアニオン交換樹脂とカチオン交換樹
脂とが混合されて充填されている電気式脱イオン装置に
おいて、 前記脱塩室内のアニオン交換樹脂の一部は金属を担持し
た触媒樹脂であり、 該電気式脱イオン装置に導入される原水に水素を供給す
る手段を備えてなることを特徴とする電気式脱イオン装
置。
1. An enrichment chamber and a desalination chamber are formed alternately by alternately arranging a plurality of anion exchange membranes and cation exchange membranes, and an anion exchange resin and a cation exchange resin are provided in the desalination chamber. In the electric deionization apparatus mixed and filled, a part of the anion exchange resin in the deionization chamber is a catalyst resin supporting a metal, and hydrogen is supplied to raw water introduced into the electric deionization apparatus. An electric deionization apparatus characterized by comprising means for performing:
【請求項2】 請求項1において、前記水素を供給する
手段は、前記電気式脱イオン装置から排出される水素を
含有した陰極水を原水の導入側へ返送する手段を含んで
なることを特徴とする電気式脱イオン装置。
2. The apparatus according to claim 1, wherein the means for supplying hydrogen includes means for returning cathode water containing hydrogen discharged from the electric deionization apparatus to an inlet side of raw water. Electric deionizer.
JP9077829A 1997-03-28 1997-03-28 Electric deionization device Pending JPH10272474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9077829A JPH10272474A (en) 1997-03-28 1997-03-28 Electric deionization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9077829A JPH10272474A (en) 1997-03-28 1997-03-28 Electric deionization device

Publications (1)

Publication Number Publication Date
JPH10272474A true JPH10272474A (en) 1998-10-13

Family

ID=13644939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9077829A Pending JPH10272474A (en) 1997-03-28 1997-03-28 Electric deionization device

Country Status (1)

Country Link
JP (1) JPH10272474A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126862A (en) * 2001-10-23 2003-05-07 Kurita Water Ind Ltd Apparatus and method for electric deionization
KR100426669B1 (en) * 1999-08-11 2004-04-13 쿠리타 고교 가부시키가이샤 Electrodeionization apparatus and pure water producing apparatus
WO2005090242A1 (en) * 2004-03-18 2005-09-29 The Boc Group Plc Electromembrane process and apparatus
JP2007090277A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Water treatment system and fungistatic method
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2010036173A (en) * 2008-08-08 2010-02-18 Japan Organo Co Ltd Water treatment system and water treatment method
JP2012040560A (en) * 2011-10-24 2012-03-01 Japan Organo Co Ltd Water treatment system and water treatment method
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
WO2021261143A1 (en) * 2020-06-23 2021-12-30 オルガノ株式会社 Method and apparatus for removing hydrogen peroxide, and apparatus for producing pure water
WO2022190727A1 (en) * 2021-03-10 2022-09-15 オルガノ株式会社 Water treatment method and water treatment apparatus
WO2024053305A1 (en) * 2022-09-06 2024-03-14 オルガノ株式会社 Ultrapure water production device and ultrapure water production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426669B1 (en) * 1999-08-11 2004-04-13 쿠리타 고교 가부시키가이샤 Electrodeionization apparatus and pure water producing apparatus
JP2003126862A (en) * 2001-10-23 2003-05-07 Kurita Water Ind Ltd Apparatus and method for electric deionization
WO2005090242A1 (en) * 2004-03-18 2005-09-29 The Boc Group Plc Electromembrane process and apparatus
JP2007090277A (en) * 2005-09-29 2007-04-12 Kurita Water Ind Ltd Water treatment system and fungistatic method
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2010036173A (en) * 2008-08-08 2010-02-18 Japan Organo Co Ltd Water treatment system and water treatment method
JP2012040560A (en) * 2011-10-24 2012-03-01 Japan Organo Co Ltd Water treatment system and water treatment method
JP2019115892A (en) * 2017-12-27 2019-07-18 栗田工業株式会社 Toc removal device and toc removal method
WO2021261143A1 (en) * 2020-06-23 2021-12-30 オルガノ株式会社 Method and apparatus for removing hydrogen peroxide, and apparatus for producing pure water
WO2022190727A1 (en) * 2021-03-10 2022-09-15 オルガノ株式会社 Water treatment method and water treatment apparatus
KR20230145404A (en) 2021-03-10 2023-10-17 오르가노 가부시키가이샤 Water treatment methods and water treatment devices
WO2024053305A1 (en) * 2022-09-06 2024-03-14 オルガノ株式会社 Ultrapure water production device and ultrapure water production method

Similar Documents

Publication Publication Date Title
KR100465579B1 (en) Method and apparatus for electrodeionization of water
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
KR100426669B1 (en) Electrodeionization apparatus and pure water producing apparatus
US6858145B2 (en) Method of removing organic impurities from water
EP1090880A1 (en) Electrolytic ozone generating method, system and ozone water producing system
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
WO2004108606A1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
JPH10272474A (en) Electric deionization device
JP2004283710A (en) Pure water producer
WO2004110939A1 (en) Pure water production system
JP2003094064A (en) Electric deionization equipment
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
CA1315236C (en) Ozone-generating electrolytic cell provided with a solid electrolyte for treating water
JPH07180076A (en) Process and apparatus for electrolytic formation of arsine
JP2003266097A (en) Ultrapure water making apparatus
US5225054A (en) Method for the recovery of cyanide from solutions
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
KR20180052765A (en) Water treatment device and water treatment method
JP2003001258A (en) Electrolytic deionizing apparatus
CN112424128B (en) Pure water production system and pure water production method
JPH11114576A (en) Deionized water producing device
JP2007245120A (en) Electrically operated apparatus for producing deionized water
JP3700244B2 (en) Pure water production equipment
JPH0824868A (en) Water treatment apparatus
JP2002011475A (en) Electric deionization device and device for producing pure water