JPH0824868A - Water treatment apparatus - Google Patents

Water treatment apparatus

Info

Publication number
JPH0824868A
JPH0824868A JP6185407A JP18540794A JPH0824868A JP H0824868 A JPH0824868 A JP H0824868A JP 6185407 A JP6185407 A JP 6185407A JP 18540794 A JP18540794 A JP 18540794A JP H0824868 A JPH0824868 A JP H0824868A
Authority
JP
Japan
Prior art keywords
water
treated
treatment
reverse osmosis
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6185407A
Other languages
Japanese (ja)
Inventor
Chikakazu Murata
周和 村田
Katsumi Okugawa
克巳 奥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP6185407A priority Critical patent/JPH0824868A/en
Publication of JPH0824868A publication Critical patent/JPH0824868A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To remove an oxidizing agent by electrolytic treatment without adding a reducing agent or applying activated carbon treatment by arranging a diaphragm type electrolytic apparatus on the front stage of an ion exchange device or a reverse osmosis membrane device and passing water to be treated containing an oxidizing agent through the cathode chamber of the diaphram type electrolytic apparatus to subject the same to electrolytic treatment. CONSTITUTION:Water to be treated containing an oxidizing agent is supplied to a clalifier 86 such as a flocculating filter device, a precise filter membrane device, an ultrafiltration membrane device or the like from piping 96 to be subjected to clarification treatment. The water to be treated come out from the clarifier 86 is introduced into the cathode chamber 88 of a two-chamber type diaphragm type electrolytic device 87 divided into cathode and anode chambers 88, 99 by a diaphragm 92 through piping 100 to reduce the oxidizing agent by electrolytic treatment. The water to be treated introduced into the anode chamber 90 from piping 98 is circulated to the introducing piping 96 through piping 99 and introduced into a desalting part 94 through piping 102 to be subjected to desalting treatment and discharged from piping 104.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換装置や逆浸
透膜装置を用いて被処理水の脱塩処理、軟化処理等を行
う水処理装置に関し、さらに詳述すると、被処理水に酸
化剤が含まれている場合に使用される水処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment device for performing desalination treatment, softening treatment, etc. of water to be treated by using an ion exchange device or a reverse osmosis membrane device. The present invention relates to a water treatment device used when an agent is contained.

【0002】[0002]

【従来の技術】従来、イオン交換装置や逆浸透膜装置を
用いて被処理水の脱塩処理、軟化処理等を行う水処理装
置が使用されている。しかし、このような水処理装置に
おいて酸化剤を含む被処理水をイオン交換装置や逆浸透
膜装置に導入すると、被処理水中の酸化剤によってイオ
ン交換樹脂や逆浸透膜等の酸化劣化が生じる。そのた
め、イオン交換装置や逆浸透膜装置を用いた水処理装置
によって酸化剤を含む被処理水の処理を行う場合、イオ
ン交換樹脂等の酸化劣化を防止する目的で、イオン交換
装置や逆浸透膜装置の前段側で被処理水に活性炭処理を
施して酸化剤を分解したり、被処理水に還元剤を添加し
て酸化剤を還元したりすることにより、被処理水から酸
化剤を除去している。
2. Description of the Related Art Conventionally, there has been used a water treatment device which performs desalination treatment, softening treatment and the like of water to be treated using an ion exchange device and a reverse osmosis membrane device. However, when water to be treated containing an oxidant is introduced into an ion exchange device or a reverse osmosis membrane device in such a water treatment device, the oxidant in the water to be treated causes oxidative deterioration of the ion exchange resin or the reverse osmosis membrane. Therefore, when water to be treated containing an oxidant is treated with a water treatment device using an ion exchange device or a reverse osmosis membrane device, the ion exchange device or the reverse osmosis membrane is used for the purpose of preventing oxidative deterioration of the ion exchange resin or the like. The oxidizer is removed from the water to be treated by subjecting the water to be treated to activated carbon treatment to decompose the oxidizer or adding a reducing agent to the water to reduce the oxidizer at the front side of the equipment. ing.

【0003】例えば、工業用水や市水を除濁処理した
後、逆浸透膜装置やイオン交換装置による脱塩処理を行
う水処理装置では、被処理水に塩素等の酸化剤が含まれ
ている場合、逆浸透膜、イオン交換樹脂等の酸化劣化を
防止するために、逆浸透膜装置やイオン交換装置の前段
側で被処理水を活性炭塔に通水したり、被処理水に還元
剤を添加したりすることが行われている。
[0003] For example, in a water treatment device which performs demineralization treatment of industrial water or city water and then desalination treatment by a reverse osmosis membrane device or an ion exchange device, the water to be treated contains an oxidizer such as chlorine. In this case, in order to prevent oxidative deterioration of the reverse osmosis membrane, ion exchange resin, etc., the water to be treated is passed through an activated carbon tower or a reducing agent is added to the water to be treated in the upstream side of the reverse osmosis membrane device or the ion exchange device. It is being added.

【0004】図6はこのような水処理装置の一例を示
す。図6において、2は活性炭塔、4は安全フィルタ、
6は逆浸透膜装置、8は混床式イオン交換装置、10は
活性炭塔2に連結された被処理水導入配管、12は活性
炭塔2と安全フィルタ4との連結配管、14は安全フィ
ルタ4と逆浸透膜装置6との連結配管、16は逆浸透膜
装置6とイオン交換装置8との連結配管、18は処理水
排出配管を示す。
FIG. 6 shows an example of such a water treatment device. In FIG. 6, 2 is an activated carbon tower, 4 is a safety filter,
6 is a reverse osmosis membrane device, 8 is a mixed bed type ion exchange device, 10 is a treated water introducing pipe connected to the activated carbon tower 2, 12 is a connecting pipe between the activated carbon tower 2 and the safety filter 4, and 14 is a safety filter 4 And 16 are connection pipes of the reverse osmosis membrane device 6, 16 is a connection pipe of the reverse osmosis membrane device 6 and the ion exchange device 8, and 18 is a treated water discharge pipe.

【0005】図6の装置による水処理は、以下のように
行われる。 塩素等の酸化剤を含む被処理水(例えば水道水等の市
水)は被処理水導入配管10から活性炭塔2に導入さ
れ、活性炭処理によって被処理水から酸化剤が除去され
る。 活性炭塔2を出た被処理水は配管12を通って安全フ
ィルタ4に導入され、ここで鉄等の大きな粒子が除去さ
れる。 安全フィルタ4を出た被処理水は配管14を通って逆
浸透膜装置6に導入され、逆浸透膜装置6の透過水は配
管16を通ってイオン交換装置8に導入される。これに
より、被処理水の脱塩処理が行われる。脱塩水(処理
水)は配管18から排出される。なお、図6において1
7は逆浸透膜装置6の濃縮水を取り出すための配管を示
す。
Water treatment by the apparatus of FIG. 6 is performed as follows. Treated water containing an oxidizing agent such as chlorine (for example, city water such as tap water) is introduced into the activated carbon tower 2 through the treated water introducing pipe 10 and the oxidizing agent is removed from the treated water by the activated carbon treatment. The water to be treated that has exited the activated carbon tower 2 is introduced into the safety filter 4 through the pipe 12, where large particles such as iron are removed. The water to be treated that has left the safety filter 4 is introduced into the reverse osmosis membrane device 6 through the pipe 14, and the permeated water of the reverse osmosis membrane device 6 is introduced into the ion exchange device 8 through the pipe 16. Thereby, the desalination treatment of the water to be treated is performed. Demineralized water (treated water) is discharged from the pipe 18. In addition, in FIG.
Reference numeral 7 denotes a pipe for taking out the concentrated water of the reverse osmosis membrane device 6.

【0006】また、表流水(河川水、湖沼水など)や工
業用水を精密濾過膜、限外濾過膜等を用いて除濁処理し
た後、逆浸透膜による脱塩処理を行って純水を得る水処
理装置では、原水中の有機物、微生物等が精密濾過膜や
限外濾過膜の膜面に蓄積することによる運転障害を防止
する目的で、精密濾過膜装置や限外濾過膜装置の前段側
で被処理水に次亜塩素酸ナトリウム等の酸化剤を殺菌剤
として添加しており、そのため被処理水中には酸化剤が
含まれている。
[0006] Surface water (river water, lake water, etc.) and industrial water are clarified by using a microfiltration membrane, an ultrafiltration membrane, etc., and then desalted by a reverse osmosis membrane to obtain pure water. In the water treatment equipment to be obtained, in order to prevent operation failures due to accumulation of organic substances and microorganisms in the raw water on the membrane surface of the microfiltration membrane or ultrafiltration membrane, the preceding stage of the microfiltration membrane equipment or ultrafiltration membrane equipment On the side, an oxidizer such as sodium hypochlorite is added to the water to be treated as a bactericide, and therefore the water to be treated contains the oxidant.

【0007】このような水処理装置では、精密濾過膜装
置や限外濾過膜装置の後段側で例えばポリアミド系、ア
ラミド系等の合成複合膜を用いた逆浸透膜装置によって
脱塩処理を行う場合、被処理水中に酸化剤が含まれてい
ると逆浸透膜の酸化劣化が生じ、分離性能が低下する。
そのため、逆浸透膜装置の前段側で被処理水中に亜硫酸
塩等の還元剤を添加し、酸化剤を還元してから被処理水
を逆浸透膜装置に供給している。
In such a water treatment device, when desalination treatment is performed by a reverse osmosis membrane device using a synthetic composite membrane of, for example, polyamide type, aramid type, etc. in the subsequent stage of the microfiltration membrane device or the ultrafiltration membrane device. If the water to be treated contains an oxidant, the reverse osmosis membrane will be oxidatively deteriorated and the separation performance will be deteriorated.
Therefore, a reducing agent such as sulfite is added to the water to be treated on the upstream side of the reverse osmosis membrane device to reduce the oxidizing agent, and then the water to be treated is supplied to the reverse osmosis membrane device.

【0008】図7はこのような水処理装置の一例を示
す。図7において、20は中空糸型の限外濾過膜装置、
22は脱炭酸塔、24は脱炭酸塔22への空気導入機
構、26は合成複合膜からなる逆浸透膜を用いた逆浸透
膜装置、28は限外濾過膜装置20に連結された被処理
水導入配管、30は導入配管28に連結された酸化剤添
加機構、32は限外濾過膜装置20の濃縮水を被処理水
側に循環する循環配管、45は濃縮水のブロー管、34
は限外濾過膜装置20の透過水を脱炭酸塔22に導入す
る連結配管、36は配管34に連結された酸添加機構、
38は脱炭酸塔22と逆浸透膜装置26との連結配管、
40は配管38に連結された還元剤添加機構、42は配
管38の還元剤添加機構40連結箇所より下流側に連結
された中和剤添加機構、44は処理水排出配管を示す。
FIG. 7 shows an example of such a water treatment device. In FIG. 7, 20 is a hollow fiber type ultrafiltration membrane device,
22 is a decarbonation tower, 24 is an air introduction mechanism to the decarbonation tower 22, 26 is a reverse osmosis membrane device using a reverse osmosis membrane composed of a synthetic composite membrane, and 28 is a treated object connected to the ultrafiltration membrane device 20. Water introducing pipe, 30 is an oxidizing agent adding mechanism connected to the introducing pipe 28, 32 is a circulation pipe for circulating the concentrated water of the ultrafiltration membrane device 20 to the treated water side, 45 is a concentrated water blow pipe, and 34
Is a connecting pipe for introducing permeated water of the ultrafiltration membrane device 20 to the decarbonation tower 22, 36 is an acid addition mechanism connected to the pipe 34,
38 is a connecting pipe between the decarbonation tower 22 and the reverse osmosis membrane device 26,
Reference numeral 40 is a reducing agent addition mechanism connected to the pipe 38, 42 is a neutralizing agent addition mechanism connected to the downstream side of the reducing agent addition mechanism 40 connection point of the pipe 38, and 44 is a treated water discharge pipe.

【0009】図7の装置による処理は、以下のように行
われる。 被処理水導入配管28を流れる被処理水(表流水や工
業用水)に酸化剤添加機構30からNaClOが添加さ
れる。NaClOの添加量は例えば1mgCl/リット
ルである。 酸化剤が添加された被処理水は限外濾過膜装置20に
導入され、除濁処理が行われる。除濁された被処理水
(限外濾過膜装置20の透過水)は配管34を通って脱
炭酸塔22に導入され、脱炭酸処理が行われる。このと
き、配管34において被処理水に酸添加機構36からH
Clが添加され、脱炭酸処理の進行のために脱炭酸塔2
2の前段側で被処理水が酸性に調整される。なお、限外
濾過膜装置20の濃縮水の一部は配管32を通って被処
理水側に循環され、濃縮水の残部はブロー管45を通っ
て系外にブローされる。 脱炭酸塔22を出た被処理水(脱炭酸水)は配管38
を通って逆浸透膜装置26に導入され、脱塩処理が行わ
れる。このとき、配管38においてまず被処理水に還元
剤添加機構40からNa2SO3が添加され、この還元剤
によって酸化剤(NaClO)が還元されて除去された
後、中和剤添加機構42からNaOHが添加され、被処
理水が中和される。透過水(脱塩水)は配管44から排
出される。なお、図7において27は逆浸透膜装置26
の濃縮水を取り出すための配管を示す。
The processing by the apparatus of FIG. 7 is performed as follows. NaClO is added from the oxidant addition mechanism 30 to the water to be treated (surface water or industrial water) flowing through the treated water introducing pipe 28. The amount of NaClO added is, for example, 1 mgCl / liter. The water to be treated to which the oxidizing agent has been added is introduced into the ultrafiltration membrane device 20 and subjected to a turbidity treatment. The turbid water to be treated (permeated water of the ultrafiltration membrane device 20) is introduced into the decarbonation tower 22 through the pipe 34 and is subjected to decarbonation treatment. At this time, in the pipe 34, H
Cl is added, and the decarbonation tower 2 is used for the progress of the decarbonation process.
The water to be treated is adjusted to be acidic on the upstream side of 2. In addition, a part of the concentrated water of the ultrafiltration membrane device 20 is circulated to the treated water side through the pipe 32, and the rest of the concentrated water is blown out of the system through the blow pipe 45. The water to be treated (decarbonated water) leaving the decarbonation tower 22 is piped 38
It is introduced into the reverse osmosis membrane device 26 through and is desalted. At this time, in the pipe 38, Na 2 SO 3 is first added to the water to be treated from the reducing agent addition mechanism 40, the oxidizing agent (NaClO) is reduced and removed by this reducing agent, and then the neutralizing agent addition mechanism 42 is used. NaOH is added to neutralize the water to be treated. The permeated water (demineralized water) is discharged from the pipe 44. In FIG. 7, 27 is a reverse osmosis membrane device 26.
The piping for taking out the concentrated water of is shown.

【0010】[0010]

【発明が解決しようとする課題】上述したように、従
来、イオン交換装置や逆浸透膜装置を用いた水処理装置
によって酸化剤を含有する被処理水の処理を行う場合、
イオン交換樹脂や逆浸透膜等の酸化劣化を防止する目的
で、イオン交換装置や逆浸透膜装置の前段側において、
還元剤を用いた還元処理あるいは活性炭処理によって被
処理水から酸化剤を除去している。
As described above, conventionally, when the water to be treated containing the oxidant is treated by the water treatment device using the ion exchange device or the reverse osmosis membrane device,
In order to prevent oxidative deterioration of the ion exchange resin and reverse osmosis membrane, etc.
The oxidizing agent is removed from the water to be treated by a reducing treatment using a reducing agent or an activated carbon treatment.

【0011】しかし、被処理水中の酸化剤の除去を還元
剤の添加によって行う手段は、装置運用に使用する薬品
種、薬品量が増加し、薬品コストが高くなるとともに、
被処理水中の塩類濃度が増加し、イオン交換装置や逆浸
透膜装置への塩類負荷が増大するという問題がある。
However, the means for removing the oxidizing agent in the water to be treated by adding the reducing agent increases the types of chemicals used in the operation of the apparatus, the amount of chemicals, and increases the chemical cost.
There is a problem that the salt concentration in the water to be treated increases and the salt load on the ion exchange device and the reverse osmosis membrane device increases.

【0012】また、被処理水中の酸化剤の除去を活性炭
処理によって行う手段は、活性炭塔の設置スペースの確
保、活性炭の定期的な洗浄及び交換などが必要となり、
コスト面、メンテナンス面で不利になる上、被処理水へ
の微粉炭の漏出、活性炭洗浄による水回収率の低下が生
じるという問題がある。
Further, the means for removing the oxidizer in the water to be treated by the activated carbon treatment requires securing the installation space of the activated carbon tower, periodical cleaning and replacement of the activated carbon,
There is a problem in that it is disadvantageous in terms of cost and maintenance, pulverized coal leaks into the water to be treated, and the water recovery rate decreases due to activated carbon cleaning.

【0013】本発明は、上記事情に鑑みてなされたもの
で、イオン交換装置や逆浸透膜装置を用いた水処理装置
において、被処理水に酸化剤が含まれている場合に、イ
オン交換装置や逆浸透膜装置の前段側で還元剤の添加や
活性炭処理によることなく被処理水から酸化剤を除去す
ることができ、したがって前述した還元剤添加や活性炭
処理による不利を解消することが可能な水処理装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances. In a water treatment device using an ion exchange device or a reverse osmosis membrane device, when the water to be treated contains an oxidant, the ion exchange device is used. The oxidizing agent can be removed from the water to be treated without adding a reducing agent or treating with activated carbon on the upstream side of the reverse osmosis membrane device, thus eliminating the disadvantages of adding the reducing agent or treating with activated carbon described above. An object is to provide a water treatment device.

【0014】[0014]

【課題を解決するための手段及び作用】本発明者らは、
上記目的を達成するために鋭意検討を行った結果、イオ
ン交換装置や逆浸透膜装置を用いた水処理装置におい
て、イオン交換装置や逆浸透膜装置の前段側に隔膜式電
解装置を設置し、酸化剤を含む被処理水を隔膜式電解装
置の陰極室に通して電解処理を施した場合、電子を受け
る還元反応によって被処理水中の酸化剤が還元され、し
たがって還元剤の添加や活性炭処理によることなく電解
処理によって酸化剤を除去した被処理水をイオン交換装
置や逆浸透膜装置に供給できることを知見し、本発明を
なすに至った。
Means and Action for Solving the Problems The present inventors have
As a result of intensive studies to achieve the above-mentioned object, in a water treatment apparatus using an ion exchange device or a reverse osmosis membrane device, a diaphragm-type electrolysis device is installed on the upstream side of the ion exchange device or the reverse osmosis membrane device, When water to be treated containing an oxidant is passed through the cathode chamber of a diaphragm electrolyzer for electrolytic treatment, the oxidant in the water to be treated is reduced by a reduction reaction that receives electrons. The inventors have found that the water to be treated from which the oxidant has been removed by the electrolytic treatment can be supplied to the ion exchange device or the reverse osmosis membrane device without the need to complete the present invention.

【0015】したがって、本発明は、イオン交換装置又
は逆浸透膜装置により被処理水の処理を行う水処理装置
において、前記イオン交換装置又は逆浸透膜装置の前段
側に隔膜式電解装置を設置するとともに、酸化剤を含む
被処理水を前記隔膜式電解装置の陰極室に導入し、該陰
極室で酸化剤を含む被処理水の電解処理を行ってから被
処理水をイオン交換装置又は逆浸透膜装置に供給するよ
う構成したことを特徴とする水処理装置を提供する。
Therefore, according to the present invention, in a water treatment device for treating water to be treated by an ion exchange device or a reverse osmosis membrane device, a diaphragm electrolysis device is installed in front of the ion exchange device or the reverse osmosis membrane device. Together with this, the water to be treated containing an oxidant is introduced into the cathode chamber of the diaphragm electrolyzer, and the water to be treated containing the oxidant is electrolyzed in the cathode chamber, and then the water to be treated is exchanged with an ion exchange device or reverse osmosis. Provided is a water treatment device configured to supply to a membrane device.

【0016】以下、本発明につきさらに詳しく説明す
る。本発明の水処理装置に使用する隔膜式電解装置の構
成に限定はなく、隔膜で仕切られた陰極室及び陽極室を
備え、陰極と陽極との間に直流電流を流すことにより陰
極室及び陽極室を流れる水に電解処理を施すことができ
るものであればいずれのものでも使用できるが、例えば
図1に示す2室式電解装置や図2に示す3室式電解装置
(特開平5−339769号等)を好適に用いることが
できる。
The present invention will be described in more detail below. There is no limitation on the structure of the diaphragm type electrolyzer used in the water treatment apparatus of the present invention, which is provided with a cathode chamber and an anode chamber partitioned by a diaphragm, and a cathode chamber and an anode by flowing a direct current between the cathode and the anode. Although any water can be used as long as it can electrolyze the water flowing through the chamber, for example, the two-chamber electrolysis device shown in FIG. 1 or the three-chamber electrolysis device shown in FIG. 2 (Japanese Patent Laid-Open No. 5-339769). No.) can be preferably used.

【0017】図1の2室式電解装置は、陰極52が設置
された陰極室54と、陽極56が設置された陽極室58
とを隔膜60で仕切ったものである。図1において6
2、63は陰極側水流路、64、65は陽極側水流路を
示す。図2の3室式電解装置は、陰極66が設置された
陰極室68と、陽極70が設置された陽極室72と、陰
極室68と陽極室72との間に設けられ、イオン交換樹
脂等の固体電解質が充填された中間室74とを隔膜76
及び78で仕切ったものである。図2において80、8
1は陰極側水流路、82、83は陽極側水流路、84、
85は中間室水流路を示す。
The two-chamber electrolysis apparatus of FIG. 1 has a cathode chamber 54 in which a cathode 52 is installed and an anode chamber 58 in which an anode 56 is installed.
And are separated by a diaphragm 60. 6 in FIG.
Reference numerals 2 and 63 are cathode-side water flow paths, and 64 and 65 are anode-side water flow paths. The three-chamber electrolysis apparatus of FIG. 2 is provided between the cathode chamber 68 in which the cathode 66 is installed, the anode chamber 72 in which the anode 70 is installed, and between the cathode chamber 68 and the anode chamber 72. And the intermediate chamber 74 filled with the solid electrolyte of
And 78. In FIG. 2, 80, 8
1 is a cathode side water flow channel, 82 and 83 are anode side water flow channels, 84,
Reference numeral 85 indicates an intermediate chamber water flow path.

【0018】図1及び図2の装置において、電解装置の
陰極、陽極としては、例えば白金、白金ブラック、カー
ボン等からなるものを用いることができる。また、隔膜
としては、電流は通すが水の自由な移動を制限するもの
を使用することができ、例えばイオン交換膜、精密濾過
膜(MF)、限外濾過膜(UF)、逆浸透膜(RO)、
セラミック膜等を用いることができる。このような隔膜
式電解装置では、陰極室に酸化剤を含む被処理水を流す
とともに、陰極と陽極との間に直流電流を流すことによ
り、陰極室における電気化学的還元反応によって被処理
水中の酸化剤を還元することができるので、その後被処
理水をイオン交換装置又は逆浸透膜装置に供給する構成
とすることにより、イオン交換樹脂や逆浸透膜の酸化劣
化を確実に防止することができる。
In the apparatus shown in FIGS. 1 and 2, as the cathode and the anode of the electrolysis apparatus, those made of platinum, platinum black, carbon or the like can be used. Further, as the diaphragm, it is possible to use one that allows an electric current to pass but restricts free movement of water. For example, an ion exchange membrane, a microfiltration membrane (MF), an ultrafiltration membrane (UF), a reverse osmosis membrane ( RO),
A ceramic film or the like can be used. In such a diaphragm type electrolyzer, while water to be treated containing an oxidant is caused to flow in the cathode chamber and a direct current is caused to flow between the cathode and the anode, the electrochemical reduction reaction in the cathode chamber causes a reduction in the water to be treated. Since the oxidant can be reduced, the water to be treated is then supplied to the ion exchange device or the reverse osmosis membrane device, whereby the oxidative deterioration of the ion exchange resin or the reverse osmosis membrane can be reliably prevented. .

【0019】なお、この原理を応用した電解装置として
は、例えばアルカリイオン水生成器(日本インテック
社)等がある。また、電解装置としては、複数の電極と
隔膜を交互に配置し多数の電解室を設けた隔膜式電解装
置を用いることも可能である。
An electrolytic apparatus applying this principle is, for example, an alkaline ionized water generator (Japan Intec Co., Ltd.). Further, as the electrolysis device, it is also possible to use a diaphragm type electrolysis device in which a plurality of electrodes and diaphragms are alternately arranged and a large number of electrolysis chambers are provided.

【0020】本発明の水処理装置に用いるイオン交換装
置の種類に限定はなく、各種のイオン交換装置が使用可
能である。具体的には、例えば混床式イオン交換装置、
2床3塔式イオン交換装置、軟化装置、電気式脱イオン
水製造装置等を用いることができる。混床式イオン交換
装置は、陽イオン交換樹脂及び陰イオン交換樹脂を混合
して1つのイオン交換樹脂塔に充填したものである。2
床3塔式イオン交換装置は、脱炭酸塔の前段及び後段に
それぞれ陽イオン交換樹脂塔及び陰イオン交換樹脂塔を
設置したものである。軟化装置は、Na形陽イオン交換
樹脂によって硬水の軟化を行うものである。
The type of ion exchange device used in the water treatment device of the present invention is not limited, and various ion exchange devices can be used. Specifically, for example, a mixed bed type ion exchange device,
A two-bed, three-column type ion exchange device, a softening device, an electric deionized water production device, etc. can be used. The mixed bed type ion exchange apparatus is one in which a cation exchange resin and an anion exchange resin are mixed and packed in one ion exchange resin tower. Two
The three-bed floor ion exchange apparatus is one in which a cation exchange resin tower and an anion exchange resin tower are installed in the front and rear stages of the decarbonation tower, respectively. The softening device softens hard water with Na-type cation exchange resin.

【0021】電気式脱イオン水製造装置は、電気透析法
によって脱塩を行うもので、基本的にはカチオン交換膜
とアニオン交換膜で形成される隙間に、イオン交換体と
して例えばアニオン交換樹脂とカチオン交換樹脂のそれ
ぞれの単独の樹脂層を交互に一組以上積層したり、ある
いはアニオン交換樹脂とカチオン交換樹脂の混合イオン
交換樹脂層を充填して脱塩室とし、イオン交換樹脂層に
被処理水を通すとともに、前記両イオン交換膜を介して
被処理水の流れに対して直角方向に直流電流を作用させ
て、両イオン交換膜の外側に形成した濃縮室に流れてい
る濃縮水中に被処理水中のイオンを電気的に排除しなが
ら脱イオン水を製造するものである。
The electric deionized water producing apparatus is for desalting by an electrodialysis method, and basically, an anion exchange resin such as an anion exchange resin is provided in a gap formed by the cation exchange membrane and the anion exchange membrane. One or more pairs of individual cation-exchange resin layers are alternately laminated, or a mixed ion-exchange resin layer of anion-exchange resin and cation-exchange resin is filled into a desalting chamber, and the ion-exchange resin layer is treated. Along with passing water, a direct current is applied in a direction perpendicular to the flow of the water to be treated through the both ion exchange membranes so that the concentrated water flowing in the concentration chamber formed outside the both ion exchange membranes is exposed to The deionized water is produced while electrically removing the ions in the treated water.

【0022】本発明の水処理装置に用いる逆浸透膜装置
の種類にも制限はなく、各種の逆浸透膜装置が使用可能
であり、例えばポリアミド系、アラミド系等の合成複合
膜からなる逆浸透膜を用いた逆浸透膜装置を用いること
ができる。また、逆浸透膜装置としてはスパイラル型、
中空糸型、管状型等のいかなるタイプのものでもよい。
The type of reverse osmosis membrane device used in the water treatment apparatus of the present invention is not limited, and various types of reverse osmosis membrane devices can be used. For example, reverse osmosis composed of a synthetic composite membrane of polyamide type, aramid type, etc. A reverse osmosis membrane device using a membrane can be used. Also, as a reverse osmosis membrane device, a spiral type,
Any type such as hollow fiber type and tubular type may be used.

【0023】なお、本発明の水処理装置においては、隔
膜式電解装置の後段側にイオン交換装置及び逆浸透膜装
置の両方を設置してもよく、一方のみを設置してもよ
く、これらは水処理装置の目的に応じて任意に選択でき
る。
In the water treatment apparatus of the present invention, both the ion exchange apparatus and the reverse osmosis membrane apparatus may be installed in the latter stage of the diaphragm type electrolysis apparatus, or only one of them may be installed. It can be arbitrarily selected according to the purpose of the water treatment device.

【0024】本発明の水処理装置は、前述した隔膜式電
解装置と、イオン交換装置又は逆浸透膜装置とを備え、
酸化剤を含む被処理水を隔膜式電解装置の陰極室に通水
してからイオン交換装置又は逆浸透膜装置に供給するよ
う構成したものであり、この場合被処理水にはどのよう
な酸化剤が含まれていてもよいが、代表的にはNaCl
O、クロラミン等の塩素系酸化剤、03、H22等の酸
素系酸化剤が挙げられる。例えば酸化剤としてNaCl
Oを含む被処理水を隔膜式電解装置の陰極室に通水した
場合、陰極室において下記式の還元反応によって酸化剤
が還元される。 ClO- + H2O + 2e- → Cl- + 2O
- また、他の酸化剤も電子を受ける還元反応によって同様
に還元される。
The water treatment device of the present invention comprises the above-mentioned diaphragm type electrolysis device and an ion exchange device or a reverse osmosis membrane device,
The water to be treated containing the oxidant is passed through the cathode chamber of the diaphragm electrolyzer before being supplied to the ion exchange device or the reverse osmosis membrane device. Agent may be included, but typically NaCl
Examples thereof include chlorine-based oxidizing agents such as O and chloramine, and oxygen-based oxidizing agents such as 0 3 and H 2 O 2 . For example, NaCl as an oxidizing agent
When water to be treated containing O is passed through the cathode chamber of the diaphragm type electrolysis apparatus, the oxidizing agent is reduced by the reduction reaction of the following formula in the cathode chamber. ClO + H 2 O + 2e → Cl + 2O
H Also other oxidants are similarly reduced by the reduction reaction receiving electrons.

【0025】[0025]

【実施例】以下、実施例により本発明を具体的に示す
が、本発明は下記実施例に限定されるものではない。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited to the following examples.

【0026】実施例1 図3は、本発明水処理装置の一実施例を示す。図3にお
いて、86は凝集濾過装置、精密濾過膜装置、限外濾過
膜装置等の除濁装置、87は陰極室88と陽極室90と
が隔膜92で仕切られた2室式の隔膜式電解装置(図1
参照)、94はイオン交換装置又は逆浸透膜装置を備え
た脱塩部、96は除濁装置86に連結された被処理水導
入配管、98、99は導入配管96を流れる被処理水の
一部を電解装置87の陽極室90に通水してから導入配
管96に循環させる循環配管、100は除濁装置86と
電解装置87の陰極室88との連結配管、102は陰極
室88と脱塩部94との連結配管、104は処理水排出
配管を示す。
Embodiment 1 FIG. 3 shows an embodiment of the water treatment device of the present invention. In FIG. 3, 86 is a flocculating device such as a coagulation filtration device, a microfiltration membrane device, and an ultrafiltration membrane device, and 87 is a two-chamber diaphragm electrolysis in which a cathode chamber 88 and an anode chamber 90 are separated by a diaphragm 92. Device (Fig. 1
), 94 is a desalination unit equipped with an ion exchange device or a reverse osmosis membrane device, 96 is a treated water introduction pipe connected to the turbidity removal device 86, and 98 and 99 are treated water flowing through the introduction pipe 96. A circulation pipe which circulates water to the anode chamber 90 of the electrolysis device 87 and then circulates it through the introduction pipe 96, 100 is a connection pipe between the turbidity removal device 86 and the cathode chamber 88 of the electrolysis device 87, and 102 is the cathode chamber 88 and the desorption chamber. Reference numeral 104 denotes a connection pipe with the salt portion 94, and 104 denotes a treated water discharge pipe.

【0027】図3の装置による水処理は、以下のように
行われる。 酸化剤を含む被処理水(工業用水、表流水、市水等)
は配管96から除濁装置86に供給され、被処理水の除
濁処理が行われる。 除濁装置86を出た被処理水は配管100を通って電
解装置87の陰極室88に導入され、ここで電解処理が
行われて酸化剤が還元される。なお、配管98から陽極
室90に導入された被処理水は、配管99を通って導入
配管96に循環される。 陰極室88を出た被処理水は配管102を通って脱塩
部94に導入され、被処理水の脱塩処理が行われる。脱
塩水は配管104から排出される。
Water treatment by the apparatus shown in FIG. 3 is performed as follows. Treated water containing oxidants (industrial water, surface water, city water, etc.)
Is supplied from the pipe 96 to the turbidity-eliminating device 86, and the water to be treated is turbidized. The water to be treated which has flowed out of the turbidity removal device 86 is introduced into the cathode chamber 88 of the electrolysis device 87 through the pipe 100, where the electrolysis treatment is performed and the oxidant is reduced. The water to be treated introduced from the pipe 98 into the anode chamber 90 is circulated through the pipe 99 to the introduction pipe 96. The water to be treated that has left the cathode chamber 88 is introduced into the desalination unit 94 through the pipe 102, and the desalination treatment of the water to be treated is performed. The demineralized water is discharged from the pipe 104.

【0028】実施例2 図4は、本発明水処理装置の他の実施例を示す。本例の
装置は、図6に示した従来の水処理装置において、被処
理水中の酸化剤を活性炭処理によって除去する代わり
に、隔膜式電解装置によって除去するようにしたもので
ある。したがって、図4において図6の装置と同一構成
の部分には同一参照符号を付してその説明を省略する。
また、隔膜式電解装置は図3の装置で使用したものと同
様のものであるため、図4において図3の装置と同一構
成の部分には同一参照符号を付してその説明を省略す
る。
Embodiment 2 FIG. 4 shows another embodiment of the water treatment device of the present invention. The apparatus of this example is the conventional water treatment apparatus shown in FIG. 6, in which the oxidizing agent in the water to be treated is removed by a diaphragm electrolysis apparatus instead of being removed by activated carbon treatment. Therefore, in FIG. 4, the same components as those of the apparatus of FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.
Further, since the diaphragm electrolysis device is the same as that used in the device of FIG. 3, in FIG. 4, parts having the same configurations as those of the device of FIG.

【0029】図4の装置においては、被処理水導入配管
10を流れる被処理水は、まず電解装置87の陰極室8
8に導入され、ここで電解処理が行われて酸化剤が除去
された後、連結配管106を通って安全フィルタ4に供
給されるようになっている。図4の装置による水処理
は、塩素等の酸化剤を含む被処理水が電解装置87の陰
極室88に導入され、被処理水中の酸化剤が電解処理に
よって除去されること以外は、図6の水処理装置と同様
である。
In the apparatus shown in FIG. 4, the water to be treated flowing through the water to be treated introducing pipe 10 first has the cathode chamber 8 of the electrolyzer 87.
8 and is subjected to an electrolytic treatment to remove the oxidant, and then supplied to the safety filter 4 through the connecting pipe 106. The water treatment by the apparatus of FIG. 4 is the same as that of FIG. 6 except that the water to be treated containing an oxidizing agent such as chlorine is introduced into the cathode chamber 88 of the electrolyzer 87 and the oxidizing agent in the water to be treated is removed by the electrolytic treatment. It is the same as the water treatment device of.

【0030】実施例3 図5は、本発明水処理装置のさらに他の実施例を示す。
本例の装置は、図7に示した従来の水処理装置におい
て、被処理水中の酸化剤を還元剤の添加によって除去す
る代わりに、隔膜式電解装置によって除去するようにし
たものである。したがって、図5において図7の装置と
同一構成の部分には同一参照符号を付してその説明を省
略する。また、隔膜式電解装置は図3の装置で使用した
ものと同様のものであるため、図5において図3の装置
と同一構成の部分には同一参照符号を付してその説明を
省略する。
Embodiment 3 FIG. 5 shows still another embodiment of the water treatment device of the present invention.
The apparatus of this example is the conventional water treatment apparatus shown in FIG. 7, in which the oxidizing agent in the water to be treated is removed by a diaphragm electrolysis apparatus instead of being removed by adding a reducing agent. Therefore, in FIG. 5, the same components as those of the apparatus of FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted. Further, since the diaphragm type electrolysis device is the same as that used in the device of FIG. 3, the same reference numerals are given to the same components in FIG. 5 as those of the device of FIG. 3, and the description thereof will be omitted.

【0031】図5の装置においては、脱炭酸塔22と逆
浸透膜装置26との連結配管38に電解装置87の陰極
室88が介装されている。すなわち、配管38の上流部
38aの流出端が陰極室88の入口に連結され、下流部
38bの流入端及び流出端がそれぞれ陰極室88の出口
及び逆浸透膜装置26に連結されている。また、逆浸透
膜装置26の濃縮水が配管27を通って電解装置87の
陽極室90に通水された後、配管110を通って導入配
管28に循環されるようになっている。さらに、本装置
では、図7に示した還元剤添加機構40及び中和剤添加
機構42は設けられていない。なお、本装置において中
和剤添加機構が設けられていない理由は、陰極室88に
おいて、電解反応によって被処理水中に含まれているN
+等の陽イオンからNaOH等のアルカリ成分が生成
され、自然に中和が行われるためであり、これについて
は後述の実験例に示されている通りである。図5の装置
による水処理は、酸化剤(NaClO)を含む被処理水
(脱炭酸水)が電解装置87の陰極室88に導入され、
被処理水中の酸化剤が電解処理によって除去されるとと
もに、酸の中和が同時に行われること以外は、図7の水
処理装置と同様である。
In the apparatus of FIG. 5, a cathode chamber 88 of an electrolysis apparatus 87 is provided in a connecting pipe 38 connecting the decarbonation tower 22 and the reverse osmosis membrane apparatus 26. That is, the outflow end of the upstream portion 38a of the pipe 38 is connected to the inlet of the cathode chamber 88, and the inflow end and the outflow end of the downstream portion 38b are connected to the outlet of the cathode chamber 88 and the reverse osmosis membrane device 26, respectively. Further, the concentrated water of the reverse osmosis membrane device 26 is passed through the pipe 27 to the anode chamber 90 of the electrolysis device 87, and then circulated to the introduction pipe 28 through the pipe 110. Furthermore, in this apparatus, the reducing agent addition mechanism 40 and the neutralizing agent addition mechanism 42 shown in FIG. 7 are not provided. The reason why the neutralizing agent addition mechanism is not provided in this device is that N contained in the water to be treated is electrolytically reacted in the cathode chamber 88.
This is because an alkaline component such as NaOH is generated from cations such as a + and neutralization is naturally performed, which is as shown in the experimental example described later. In the water treatment by the apparatus of FIG. 5, water to be treated (decarbonated water) containing an oxidant (NaClO) is introduced into the cathode chamber 88 of the electrolysis apparatus 87,
The water treatment apparatus is the same as the water treatment apparatus in FIG. 7, except that the oxidizing agent in the water to be treated is removed by electrolytic treatment and the acid is neutralized at the same time.

【0032】実施例1〜3の水処理装置は、還元剤の添
加や活性炭処理によることなく、電解処理によって被処
理水中の酸化剤を除去した後、イオン交換装置や逆浸透
膜装置に被処理水を供給するようにしたので、還元剤の
添加によって酸化剤の除去を行う場合に生じる薬品コス
トの増大、イオン交換装置や逆浸透膜装置への塩類負荷
の増大といった問題や、活性炭処理によって酸化剤の除
去を行う場合に生じるコスト面やメンテナンス面での不
利、被処理水への微粉炭の漏出、活性炭洗浄による水回
収率の低下といった問題を回避することができる。ま
た、実施例3の水処理装置では、図7の装置に設けたよ
うな中和剤添加機構が不要になるという利点もある。
In the water treatment apparatuses of Examples 1 to 3, after removing the oxidizing agent in the water to be treated by electrolytic treatment without adding a reducing agent or treating with activated carbon, the water is treated in an ion exchange apparatus or a reverse osmosis membrane apparatus. Since water is supplied, problems such as an increase in the chemical cost that occurs when the oxidizing agent is removed by adding the reducing agent, an increase in the salt load on the ion exchange device and the reverse osmosis membrane device, and oxidation due to activated carbon treatment It is possible to avoid problems such as disadvantages in cost and maintenance in removing the agent, leakage of pulverized coal into the water to be treated, and reduction in water recovery rate due to washing with activated carbon. In addition, the water treatment apparatus of Example 3 has an advantage that the neutralizing agent addition mechanism provided in the apparatus of FIG. 7 is unnecessary.

【0033】なお、実施例1、2の水処理装置では被処
理水導入配管を流れる被処理水の一部を電解装置の陽極
室に通水してから被処理水導入配管に循環させ、また実
施例3の水処理装置では逆浸透膜装置の濃縮水を電解装
置の陽極室に通水してから被処理水導入配管に循環させ
るようにしたが、陽極室に流す水は他の水であってもよ
い。
In the water treatment apparatuses of Examples 1 and 2, a part of the water to be treated flowing through the treated water introducing pipe is passed through the anode chamber of the electrolyzer and then circulated through the treated water introducing pipe. In the water treatment device of Example 3, the concentrated water of the reverse osmosis membrane device was made to pass through the anode chamber of the electrolysis device and then circulated through the treated water introduction pipe, but the water to be passed to the anode chamber was other water. It may be.

【0034】[実験例1]図4の水処理装置を用いて塩
素系酸化剤を含む市水(被処理水)の脱塩処理を行っ
た。この場合、電解装置87として隔膜92にナフィオ
ン450(商品名、デュポン社製イオン交換膜)を使用
したものを用い、電流密度0.6A/dm2、陰極室8
8への通水量1m3/hの条件で電解処理を行った。ま
た、比較のため、従来装置である図6の水処理装置を用
いて同じ被処理水の脱塩処理を行った。被処理水である
市水の水質、両装置における酸化剤除去水の水質を表1
に示す。酸化剤除去水は、図4の装置では陰極室88の
出口水、図6の装置では活性炭塔2の出口水である。
[Experimental Example 1] City water (treatment water) containing a chlorine-based oxidizing agent was desalted by using the water treatment apparatus shown in FIG. In this case, as the electrolysis device 87, a diaphragm 92 using Nafion 450 (trade name, an ion exchange membrane manufactured by DuPont) is used, and the current density is 0.6 A / dm 2 , and the cathode chamber 8 is used.
The electrolysis treatment was performed under the condition that the water flow rate to 8 was 1 m 3 / h. Further, for comparison, the same desalination treatment of the water to be treated was performed using the water treatment apparatus of FIG. 6 which is a conventional apparatus. Table 1 shows the water quality of city water, which is the water to be treated, and the water quality of oxidant-removed water in both devices.
Shown in The oxidant-removed water is the outlet water of the cathode chamber 88 in the apparatus of FIG. 4 and the outlet water of the activated carbon tower 2 in the apparatus of FIG.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、電解処理を行った陰極室88の
出口水には残留塩素が認められず、また酸化還元電位も
活性炭処理水より低く還元状態になっており、後段側の
逆浸透膜、イオン交換樹脂の酸化劣化を引き起こさない
ことがわかる。
From Table 1, it is found that no residual chlorine is found in the outlet water of the cathode chamber 88 subjected to the electrolytic treatment, and the oxidation-reduction potential is lower than that of the activated carbon-treated water, which is in a reduced state. It can be seen that the ion-exchange resin does not cause oxidative deterioration.

【0037】[実験例2]図5の水処理装置を用いて工
業用水(被処理水)の脱塩処理を行った。この場合、電
解装置87の構成及び電解処理の条件は実験例1と同様
とした。また、比較のため、従来装置である図7の水処
理装置を用いて工業用水の脱塩処理を行った。なお、い
ずれの装置においても酸化剤添加機構30からの被処理
水へのNaClO添加量は1mgCl/リットルとし
た。結果を表2に示す。表2における脱炭酸水は脱炭酸
塔22の出口水であり、その水質は両装置とも同じであ
る。また、表2における被脱塩水は、図5の装置では陰
極室88の出口水、図7の装置では中和剤添加機構42
によって中和剤が添加された後の水である。
[Experimental Example 2] Industrial water (water to be treated) was desalted by using the water treatment apparatus shown in FIG. In this case, the configuration of the electrolysis device 87 and the conditions of the electrolysis treatment were the same as in Experimental Example 1. For comparison, industrial water was desalted by using the conventional water treatment apparatus shown in FIG. In any of the apparatuses, the amount of NaClO added to the water to be treated from the oxidizing agent adding mechanism 30 was 1 mgCl / liter. Table 2 shows the results. The decarbonated water in Table 2 is the outlet water of the decarbonation tower 22, and its water quality is the same in both devices. The water to be desalinated in Table 2 is the outlet water of the cathode chamber 88 in the apparatus of FIG. 5, and the neutralizing agent addition mechanism 42 in the apparatus of FIG.
Water after the neutralizing agent has been added by.

【0038】[0038]

【表2】 [Table 2]

【0039】表2より、電解処理を行った陰極室88の
出口水(被脱塩水)には残留塩素が認められず、酸化還
元電位も還元剤を添加した被脱塩水より低く還元状態に
なっており、後段側の逆浸透膜の酸化劣化を引き起こさ
ないことがわかる。また、ナトリウムイオン、硫酸イオ
ンも薬品を添加していないために従来装置の如く増加し
ておらず、逆浸透膜装置への塩類負荷が小さくなること
がわかる。
From Table 2, no residual chlorine was found in the outlet water (water to be desalinated) of the cathode chamber 88 subjected to the electrolytic treatment, and the oxidation-reduction potential was lower than that of the desalinated water to which the reducing agent was added, which was in a reduced state. It is clear that the reverse osmosis membrane on the rear side does not cause oxidative deterioration. Further, it is understood that sodium ion and sulfate ion do not increase as in the conventional device because no chemicals are added, and the salt load on the reverse osmosis membrane device is reduced.

【0040】[0040]

【発明の効果】本発明装置によれば、被処理水に酸化剤
が含まれている場合に、イオン交換装置や逆浸透膜装置
の前段側で還元剤の添加や活性炭処理によることなく被
処理水から酸化剤を除去することができ、したがってイ
オン交換樹脂や逆浸透膜等の酸化劣化を防止することが
できると同時に、還元剤添加や活性炭処理によって酸化
剤を除去する場合の不利を解消することができる。
According to the apparatus of the present invention, when the water to be treated contains an oxidizing agent, the water to be treated can be treated without addition of a reducing agent or activated carbon treatment before the ion exchange apparatus or the reverse osmosis membrane apparatus. Oxidizing agent can be removed from water, and therefore oxidative deterioration of ion exchange resin, reverse osmosis membrane, etc. can be prevented, and at the same time, the disadvantages of removing the oxidizing agent by adding a reducing agent or activated carbon treatment are eliminated. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は2室式隔膜式電解装置の一例を示す概略
図である。
FIG. 1 is a schematic view showing an example of a two-chamber diaphragm electrolysis device.

【図2】図2は3室式隔膜式電解装置の一例を示す概略
図である。
FIG. 2 is a schematic view showing an example of a three-chamber diaphragm electrolysis device.

【図3】図3は本発明の一実施例に係る水処理装置を示
すフロー図である。
FIG. 3 is a flowchart showing a water treatment device according to an embodiment of the present invention.

【図4】図4は本発明の一実施例に係る水処理装置を示
すフロー図である。
FIG. 4 is a flow chart showing a water treatment device according to an embodiment of the present invention.

【図5】図5は本発明の一実施例に係る水処理装置を示
すフロー図である。
FIG. 5 is a flow chart showing a water treatment device according to an embodiment of the present invention.

【図6】図6はイオン交換装置又は逆浸透膜装置を用い
た従来の水処理装置の一例を示すフロー図である。
FIG. 6 is a flow chart showing an example of a conventional water treatment device using an ion exchange device or a reverse osmosis membrane device.

【図7】図7はイオン交換装置又は逆浸透膜装置を用い
た従来の水処理装置の一例を示すフロー図である。
FIG. 7 is a flow chart showing an example of a conventional water treatment device using an ion exchange device or a reverse osmosis membrane device.

【符号の説明】[Explanation of symbols]

6 逆浸透膜装置 8 イオン交換装置 20 限外濾過膜装置 22 脱炭酸塔 26 逆浸透膜装置 30 酸化剤添加機構 54 陰極室 58 陽極室 60 隔膜 68 陰極室 72 陽極室 76 隔膜 78 隔膜 86 除濁装置 87 隔膜式電解装置 88 陰極室 90 陽極室 92 隔膜 94 脱塩部 6 Reverse Osmosis Membrane Device 8 Ion Exchange Device 20 Ultrafiltration Membrane Device 22 Decarbonation Tower 26 Reverse Osmosis Membrane Device 30 Oxidizer Addition Mechanism 54 Cathode Chamber 58 Anode Chamber 60 Diaphragm 68 Cathode Chamber 72 Anode Chamber 76 Diaphragm 78 Diaphragm 86 Dispersion Device 87 Diaphragm type electrolysis device 88 Cathode chamber 90 Anode chamber 92 Diaphragm 94 Desalination section

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 J M 503 A 504 B Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C02F 9/00 JM 503 A 504 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換装置又は逆浸透膜装置により
被処理水の処理を行う水処理装置において、前記イオン
交換装置又は逆浸透膜装置の前段側に隔膜式電解装置を
設置するとともに、酸化剤を含む被処理水を前記隔膜式
電解装置の陰極室に導入し、該陰極室で酸化剤を含む被
処理水の電解処理を行ってから被処理水をイオン交換装
置又は逆浸透膜装置に供給するよう構成したことを特徴
とする水処理装置。
1. In a water treatment device for treating water to be treated by an ion exchange device or a reverse osmosis membrane device, a diaphragm type electrolytic device is installed in front of the ion exchange device or the reverse osmosis membrane device, and an oxidizer is used. Water to be treated is introduced into the cathode chamber of the diaphragm electrolyzer, and the water to be treated containing the oxidizing agent is electrolyzed in the cathode chamber, and then the treated water is supplied to the ion exchange device or the reverse osmosis membrane device. A water treatment device characterized in that
JP6185407A 1994-07-14 1994-07-14 Water treatment apparatus Pending JPH0824868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6185407A JPH0824868A (en) 1994-07-14 1994-07-14 Water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185407A JPH0824868A (en) 1994-07-14 1994-07-14 Water treatment apparatus

Publications (1)

Publication Number Publication Date
JPH0824868A true JPH0824868A (en) 1996-01-30

Family

ID=16170258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185407A Pending JPH0824868A (en) 1994-07-14 1994-07-14 Water treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0824868A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000827A (en) * 2005-06-27 2007-01-11 Japan Organo Co Ltd Water treatment method and apparatus
JP2012205985A (en) * 2011-03-29 2012-10-25 Sumitomo Osaka Cement Co Ltd Method and apparatus for treating wastewater using membrane separation
JP2014024013A (en) * 2012-07-27 2014-02-06 Omega:Kk Desalination method of sea water or the like
WO2016047257A1 (en) * 2014-09-26 2016-03-31 株式会社日本トリム Electrolyzed water-generating device and apparatus provided with same for manufacturing water to prepare dialysate
CN112723616A (en) * 2020-12-14 2021-04-30 九江德福科技股份有限公司 Wastewater recycling method
US20230159365A1 (en) * 2021-11-23 2023-05-25 Qingdao university of technology System for reducing hardness of water body and method for reducing hardness of water body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000827A (en) * 2005-06-27 2007-01-11 Japan Organo Co Ltd Water treatment method and apparatus
JP2012205985A (en) * 2011-03-29 2012-10-25 Sumitomo Osaka Cement Co Ltd Method and apparatus for treating wastewater using membrane separation
JP2014024013A (en) * 2012-07-27 2014-02-06 Omega:Kk Desalination method of sea water or the like
WO2016047257A1 (en) * 2014-09-26 2016-03-31 株式会社日本トリム Electrolyzed water-generating device and apparatus provided with same for manufacturing water to prepare dialysate
JPWO2016047257A1 (en) * 2014-09-26 2017-07-06 株式会社日本トリム Electrolyzed water generating apparatus and dialysate preparation water production apparatus provided with the same
CN112723616A (en) * 2020-12-14 2021-04-30 九江德福科技股份有限公司 Wastewater recycling method
US20230159365A1 (en) * 2021-11-23 2023-05-25 Qingdao university of technology System for reducing hardness of water body and method for reducing hardness of water body

Similar Documents

Publication Publication Date Title
KR100426669B1 (en) Electrodeionization apparatus and pure water producing apparatus
JP4978098B2 (en) Electrodeionization equipment
JP3575271B2 (en) Pure water production method
JP2004283710A (en) Pure water producer
JP5145305B2 (en) Electric deionized water production equipment
JP4710176B2 (en) Ultrapure water production equipment
JP2005000828A (en) Pure water production apparatus
JP2001198577A (en) Electric deionizing device
JP3137831B2 (en) Membrane processing equipment
JPH0824868A (en) Water treatment apparatus
JP5114307B2 (en) Electric deionized water production equipment
JP3952127B2 (en) Electrodeionization treatment method
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JP5285135B2 (en) Water treatment system and water treatment method
JP7246399B2 (en) Pure water production system and pure water production method
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP2003001258A (en) Electrolytic deionizing apparatus
JP4599668B2 (en) Operation method of electrodeionization equipment
JP2010036173A (en) Water treatment system and water treatment method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JPH07148423A (en) Method for cleaning membrane separator
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP4497387B2 (en) Secondary pure water production equipment