JP2011110515A - Method and apparatus for purifying ion exchange resin - Google Patents

Method and apparatus for purifying ion exchange resin Download PDF

Info

Publication number
JP2011110515A
JP2011110515A JP2009270279A JP2009270279A JP2011110515A JP 2011110515 A JP2011110515 A JP 2011110515A JP 2009270279 A JP2009270279 A JP 2009270279A JP 2009270279 A JP2009270279 A JP 2009270279A JP 2011110515 A JP2011110515 A JP 2011110515A
Authority
JP
Japan
Prior art keywords
water
ion exchange
exchange resin
ppt
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270279A
Other languages
Japanese (ja)
Other versions
JP5617231B2 (en
Inventor
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009270279A priority Critical patent/JP5617231B2/en
Publication of JP2011110515A publication Critical patent/JP2011110515A/en
Application granted granted Critical
Publication of JP5617231B2 publication Critical patent/JP5617231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce an ion exchange resin exhibiting remarkably reduced boron elution in particular, by highly purifying the same. <P>SOLUTION: An ion exchange resin is purified by washing the same with water having been treated to contain boron at a concentration of 1 ppt or lower. The treated water is produced by treating raw water of a boron concentration of 100 ppt or lower by causing the same to flow through a reverse osmosis membrane device 1, a degassing membrane device 2, and an electric deionizer 3 one after another in that order, and subsequently causing the resulting water to flow through an oxidation device 4 employing an ultraviolet ray for oxidation, an ion exchange device 5 that is not to be reactivated, and an ultrafiltration device 6 one after another in that order. In the electric deionizer 3, a portion of the deionized water coming out of a desalination chamber is made to countercurrently flow through a concentration chamber, relative to the desalination chamber. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、イオン交換樹脂を高度に精製して、特にホウ素溶出量が著しく低減されたイオン交換樹脂を得るための精製方法及び精製装置に関する。
本発明はまた、このようなイオン交換樹脂の精製に用いるイオン交換樹脂精製用水の製造方法及び製造装置に関する。
The present invention relates to a purification method and a purification apparatus for highly purifying an ion exchange resin, and particularly to obtain an ion exchange resin with a significantly reduced boron elution amount.
The present invention also relates to a method and apparatus for producing water for purifying ion exchange resin used for purification of such ion exchange resin.

半導体産業では、半導体製品の洗浄、その他の用途に超純水が用いられているが、この超純水の水質に対する要望は厳しくなってきている。特に、超純水中のホウ素イオンなどは、半導体基板上に残留すると半導体製造に著しい支障をきたすため、半導体製造に用いられる超純水においては、微粒子、TOC(全有機炭素)と共に、ホウ素イオンの低減が必要とされている。   In the semiconductor industry, ultrapure water is used for cleaning semiconductor products and other applications, but the demand for the quality of this ultrapure water is becoming stricter. In particular, boron ions in ultrapure water cause a significant hindrance to semiconductor manufacturing if they remain on the semiconductor substrate. Therefore, in ultrapure water used for semiconductor manufacturing, boron ions together with fine particles and TOC (total organic carbon). Reduction is required.

超純水製造システムでは、脱酸素装置、逆浸透膜装置、1次脱イオン装置、紫外線酸化装置、2次脱イオン装置、限外濾過膜装置など、異種の処理装置を組合せて超純水が製造されている。
このような超純水製造システムにおいて、末端の脱イオン装置として設置される非再生型のイオン交換樹脂塔(非再生型イオン交換装置)には、新品または使用頻度の比較的少ない強酸性カチオン交換樹脂および強塩基性アニオン交換樹脂を精製処理した、H形の強酸性カチオン交換樹脂、OH形の強塩基性アニオン交換樹脂が用いられている。通常は、このイオン交換樹脂塔としては、両イオン交換樹脂を混合した混床式イオン交換樹脂塔が採用され、18MΩ・cm以上の処理水質を得るように設計されている。この非再生型イオン交換装置においては、イオン交換樹脂によるイオン除去性能はもとより、イオン交換樹脂自体からの不純物のリークを低減することが必要である。
In the ultrapure water production system, ultrapure water is produced by combining different types of treatment equipment, such as deoxygenation equipment, reverse osmosis membrane equipment, primary deionization equipment, ultraviolet oxidation equipment, secondary deionization equipment, and ultrafiltration membrane equipment. It is manufactured.
In such an ultrapure water production system, a non-regenerative ion exchange resin tower (non-regenerative ion exchange device) installed as a terminal deionization device is new or has a relatively low use frequency of strongly acidic cation exchange. H-type strongly acidic cation exchange resins and OH-type strongly basic anion exchange resins obtained by purifying a resin and a strongly basic anion exchange resin are used. Usually, as this ion exchange resin tower, a mixed bed type ion exchange resin tower in which both ion exchange resins are mixed is adopted and designed to obtain a treated water quality of 18 MΩ · cm or more. In this non-regenerative ion exchange apparatus, it is necessary to reduce the leakage of impurities from the ion exchange resin itself as well as the ion removal performance by the ion exchange resin.

イオン交換樹脂からの不純物のリークを抑制するためのコンディショニング方法や処理剤については、従来より種々の提案がなされており、例えば、特許文献1には、イオン交換樹脂のコンディショニング方法として、超純水に無機ガスを溶解したガス溶解水を用いてイオン交換樹脂を洗浄し、その後超純水で洗浄する方法が提案されている。   Various proposals have been made regarding conditioning methods and treatment agents for suppressing leakage of impurities from ion exchange resins. For example, Patent Document 1 discloses ultrapure water as a conditioning method for ion exchange resins. A method has been proposed in which ion-exchange resin is washed with gas-dissolved water in which an inorganic gas is dissolved, and then washed with ultrapure water.

このようなイオン交換樹脂のコンディショニングに当たり、コンディショニングの最終段階での超純水によるイオン交換樹脂の洗浄では、洗浄時間が長い程、イオン交換樹脂のTOC成分等の不純物溶出性を低減することができるため、場合によっては、1週間から1ヶ月の長期間に亘る洗浄が行われている。   In such ion-exchange resin conditioning, in the ion-exchange resin cleaning with ultrapure water in the final stage of conditioning, the longer the cleaning time, the lower the elution of impurities such as the TOC component of the ion-exchange resin. Therefore, in some cases, cleaning is performed over a long period of one week to one month.

しかしながら、本発明者の検討により、イオン交換樹脂を長期間洗浄すると、TOC成分等の溶出性は低減されるが、洗浄に用いた超純水中のホウ素がイオン交換樹脂に吸着し、吸着したホウ素がイオン交換樹脂の使用時に脱着して生産水中に混入する結果となり、ホウ素濃度が十分に低減された生産水が得られないことが判明した。
この問題は、超純水による洗浄時間が長い程助長され、特に3週間以上もの長期間洗浄を行う場合においては、洗浄によるイオン交換樹脂のホウ素汚染の問題が顕著であり、このようなイオン交換樹脂を用いて、例えば超純水を製造する場合には、超純水の製造を開始してから、生産水中にホウ素が溶出しなくなるまで採水を行うことができず、超純水製造現場での採水までの装置の立ち上げに長時間を要することとなる。
However, according to the study of the present inventor, when the ion exchange resin is washed for a long period of time, elution of TOC components and the like is reduced, but boron in the ultrapure water used for washing is adsorbed and adsorbed on the ion exchange resin. Boron was desorbed during use of the ion exchange resin and mixed into the production water, and it was found that production water with a sufficiently reduced boron concentration could not be obtained.
This problem is promoted as the cleaning time with ultrapure water is increased. Especially when cleaning for a long period of 3 weeks or more, the problem of boron contamination of the ion exchange resin due to the cleaning is remarkable. For example, when producing ultrapure water using resin, it is not possible to collect water from the start of production of ultrapure water until boron does not elute in the production water. It takes a long time to start up the device until sampling.

ところで、水中のホウ素を除去する場合、通常の電気脱イオン装置ではホウ素除去率が低く(例えば50〜70%)、効率的なホウ素除去を行うことができない。また、電気脱イオン装置に逆浸透膜装置を組み合わせても、十分なホウ素除去率を達成し得ない。一方、非再生型イオン交換装置では、ホウ素が早期に飽和してしまうため、頻繁に、例えば2週間毎にイオン交換樹脂を交換する必要があり、不経済である。多床方式のイオン交換樹脂装置で、イオン交換樹脂の再生を頻繁に行うことにより、ある程度のホウ素除去効率を得ることはできるが、例えば1日に1回というような頻度で定期的に再生を行う必要があり、連続通水ができず、また、連続通水するためには、予備系列が必要であるなど、運転が難しい上に、再生のために高濃度の酸やアルカリを必要とし、またその再生排水が排出されるなど、処理が煩雑である。   By the way, when removing boron in water, an ordinary electrodeionization apparatus has a low boron removal rate (for example, 50 to 70%) and cannot perform efficient boron removal. Moreover, even if a reverse osmosis membrane device is combined with an electrodeionization device, a sufficient boron removal rate cannot be achieved. On the other hand, in a non-regenerative ion exchange apparatus, since boron is saturated early, it is necessary to replace the ion exchange resin frequently, for example, every two weeks, which is uneconomical. Although a certain amount of boron removal efficiency can be obtained by frequently regenerating the ion exchange resin in a multi-bed type ion exchange resin apparatus, for example, the regeneration is performed periodically at a frequency of once a day. It is necessary to carry out, continuous water flow is not possible, and for continuous water flow, a preliminary series is necessary and operation is difficult, and high concentration acid and alkali are required for regeneration, Further, the treatment is complicated, for example, the recycled wastewater is discharged.

これに対して、特許文献2には、原水よりもホウ素濃度の低い水を、電気脱イオン装置の濃縮室に脱塩室と向流方向に通水することにより、電気脱イオン装置におけるホウ素除去率を高め、ホウ素濃度が著しく低減された水を得る発明が記載されている。   On the other hand, in Patent Document 2, water having a lower boron concentration than raw water is passed through the concentration chamber of the electrodeionization device in the countercurrent direction with the demineralization chamber, thereby removing boron in the electrodeionization device. An invention is described that increases the rate and obtains water with a significantly reduced boron concentration.

特許文献2に開示される電気脱イオン装置であれば、水中のホウ素を高度に除去することができるが、電気脱イオン装置は、一般に超純水製造システムにおける非再生型イオン交換装置よりも前段に設けられるものであり、このような電気脱イオン装置を用いてホウ素除去率を高めても、後段の非再生型イオン交換装置に充填されたイオン交換樹脂からのホウ素の溶出の問題があると、最終処理水としてはホウ素が混入した水となる。   The electrodeionization apparatus disclosed in Patent Document 2 can highly remove boron in water, but the electrodeionization apparatus is generally preceded by a non-regenerative ion exchange apparatus in an ultrapure water production system. Even if the boron removal rate is increased by using such an electrodeionization apparatus, there is a problem of elution of boron from the ion exchange resin filled in the non-regenerative ion exchange apparatus at the subsequent stage. The final treated water is water mixed with boron.

特開2009−240943号公報JP 2009-240943 A 特許第3794268号公報Japanese Patent No. 3794268

従来のイオン交換樹脂の精製のための超純水による洗浄にあっては、洗浄時間が長い程イオン交換樹脂からのTOC成分やイオン成分等の溶出性を低減することができるが、長時間洗浄により、イオン交換樹脂にホウ素が吸着し、ホウ素溶出性が高められるという問題がある。   In the conventional cleaning with ultrapure water for the purification of ion exchange resin, the longer the cleaning time, the more elution of TOC components and ion components from the ion exchange resin can be reduced, but the longer cleaning time. Therefore, there is a problem that boron is adsorbed on the ion exchange resin and boron elution is improved.

本発明は、このようなイオン交換樹脂のホウ素汚染の問題を解決し、TOC成分やイオン成分の溶出性だけでなく、ホウ素の溶出性も十分に低減されたイオン交換樹脂を得ることができるイオン交換樹脂の精製方法及び装置と、このようなイオン交換樹脂の精製に用いるイオン交換樹脂用精製水の製造方法及び装置を提供することを課題とする。   The present invention solves the problem of boron contamination of such an ion exchange resin, and can obtain an ion exchange resin in which not only the elution of TOC component and ion component but also the elution of boron is sufficiently reduced. It is an object of the present invention to provide a method and an apparatus for purifying an exchange resin and a method and an apparatus for producing purified water for ion exchange resin used for the purification of such an ion exchange resin.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、イオン交換樹脂のコンディショニングにおける最終段階の精製処理に用いる水として、ホウ素濃度が著しく低減された水を用いることにより、長時間洗浄を行った場合のイオン交換樹脂のホウ素汚染を防止して、ホウ素溶出性の問題のないイオン交換樹脂を得ることができること、例えばホウ素溶出量が1ppt以下のイオン交換樹脂を得るためにはホウ素濃度1ppt以下の水で洗浄する必要があること、を見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a water having a significantly reduced boron concentration for a long time as the water used for the final purification process in the conditioning of the ion exchange resin. In order to obtain an ion exchange resin having no boron elution problem by preventing boron contamination of the ion exchange resin when washing is performed, for example, in order to obtain an ion exchange resin having a boron elution amount of 1 ppt or less, boron is used. It was found that it was necessary to wash with water having a concentration of 1 ppt or less.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

本発明(請求項1)のイオン交換樹脂の精製方法は、ホウ素濃度1ppt以下に処理した水を用いてイオン交換樹脂を精製することを特徴とする。   The method for purifying an ion exchange resin of the present invention (invention 1) is characterized in that the ion exchange resin is purified using water treated to a boron concentration of 1 ppt or less.

請求項2のイオン交換樹脂の精製方法は、請求項1において、ホウ素濃度1ppt以下に処理した水が、ホウ素濃度100ppt以下の原水を、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に通水して処理し、その後、紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に通水して処理した水であって、前記電気脱イオン装置において、脱塩室からの脱イオン水の一部が、脱塩室と向流方向で濃縮室に通水されることを特徴とする。   The method for purifying an ion exchange resin according to claim 2 is the reverse osmosis membrane device, degassing membrane device, and electrodeionization device according to claim 1, wherein the water treated to have a boron concentration of 1 ppt or less is raw water having a boron concentration of 100 ppt or less. In that order, followed by passing through an ultraviolet oxidizer, a non-regenerative ion exchange device, and an ultrafiltration membrane device in this order. Part of the deionized water from the chamber is passed through the concentration chamber in a counter-current direction to the desalination chamber.

請求項3のイオン交換樹脂の精製方法は、請求項2において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とする。   The method for purifying an ion exchange resin according to claim 3 is the method according to claim 2, wherein the non-regenerative ion exchange device or the ultrafiltration membrane device has a boron concentration of treated water obtained by passing water to be treated into the device. The amount of increase of the water to be treated with respect to the boron concentration has a cleanliness of 1 ppt or less.

請求項4のイオン交換樹脂の精製方法は、請求項2又は3において、前記原水が、前記イオン交換樹脂の精製に使用した水の全量又は一部を含むことを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for purifying an ion exchange resin according to the second or third aspect, wherein the raw water contains all or part of the water used for the purification of the ion exchange resin.

本発明(請求項5)のイオン交換樹脂の精製装置は、原水を処理してホウ素濃度1ppt以下の処理水を得る水処理装置と、該水処理装置で得られた処理水が導入されるイオン交換樹脂精製塔とを有することを特徴とする。   An apparatus for purifying an ion exchange resin according to the present invention (Claim 5) includes a water treatment device for treating raw water to obtain treated water having a boron concentration of 1 ppt or less, and ions into which treated water obtained by the water treatment device is introduced. And an exchange resin purification tower.

請求項6のイオン交換樹脂の精製装置は、請求項5において、前記原水のホウ素濃度が100ppt以下であり、前記水処理装置は、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に接続された一次処理システムと、さらにその後段に紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に接続された二次処理システムとを有しており、前記電気脱イオン装置は、脱塩室からの脱イオン水の一部を、脱塩室と向流方向で濃縮室に通水させる手段を有することを特徴とする。   An apparatus for purifying an ion exchange resin according to claim 6 is characterized in that, in claim 5, the concentration of boron in the raw water is 100 ppt or less, and the water treatment apparatus is a reverse osmosis membrane device, a degassing membrane device, or an electrodeionization device. A primary treatment system connected in order, and a secondary treatment system connected in the order of an ultraviolet oxidation device, a non-regenerative ion exchange device, and an ultrafiltration membrane device in the subsequent stage, and the electrodeionization The apparatus is characterized by having means for allowing a part of deionized water from the desalting chamber to flow through the concentration chamber in a counter-current direction to the desalting chamber.

請求項7のイオン交換樹脂の精製装置は、請求項6において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とする。   The apparatus for purifying an ion exchange resin according to claim 7 is the boron concentration of treated water obtained by passing the treated water through the apparatus according to claim 6, wherein the non-regenerative ion exchange apparatus or the ultrafiltration membrane apparatus is passed through the apparatus. The amount of increase of the water to be treated with respect to the boron concentration has a cleanliness of 1 ppt or less.

請求項8のイオン交換樹脂の精製装置は、請求項6又は7において、前記イオン交換樹脂精製塔においてイオン交換樹脂の精製に使用した水の全量又は一部を、前記水処理装置の原水として返送する手段を有することを特徴とする。   The purification apparatus for an ion exchange resin according to claim 8 returns the whole or part of the water used for purification of the ion exchange resin in the ion exchange resin purification tower as raw water of the water treatment apparatus according to claim 6 or 7. It has the means to do.

本発明(請求項9)のイオン交換樹脂用精製水の製造方法は、イオン交換樹脂の精製に用いる水を製造する方法において、ホウ素濃度100ppt以下の原水を、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に通水して処理し、その後、紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に通水して処理してホウ素濃度1ppt以下の処理水を得る方法であって、前記電気脱イオン装置において、脱塩室からの脱イオン水の一部が、脱塩室と向流方向で濃縮室に通水されることを特徴とする。   The method for producing purified water for ion exchange resin according to the present invention (Claim 9) is a method for producing water used for purification of an ion exchange resin, wherein raw water having a boron concentration of 100 ppt or less is converted into a reverse osmosis membrane device and a deaeration membrane device. , And the electrodeionization apparatus in order, and then processed by treatment, and then the ultraviolet oxidation apparatus, the non-regenerative ion exchange apparatus, and the ultrafiltration membrane apparatus in order of treatment and treatment with a boron concentration of 1 ppt or less. In the electrodeionization apparatus, a part of the deionized water from the demineralization chamber is passed through the concentration chamber in a countercurrent direction to the demineralization chamber.

請求項10のイオン交換樹脂用精製水の製造方法は、請求項9において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とする。   The method for producing purified water for ion exchange resin according to claim 10 is the treated water according to claim 9, wherein the non-regenerative ion exchange device or the ultrafiltration membrane device is obtained by passing water to be treated through the device. The amount of increase of the boron concentration with respect to the boron concentration of the water to be treated has a cleanliness of 1 ppt or less.

請求項11のイオン交換樹脂用精製水の製造方法は、請求項9又は10において、前記原水が、イオン交換樹脂の精製に使用した水の全量又は一部を含むことを特徴とする。   The method for producing purified water for ion exchange resin according to claim 11 is characterized in that, in claim 9 or 10, the raw water contains all or part of the water used for purification of the ion exchange resin.

本発明(請求項12)のイオン交換樹脂用精製水の製造装置は、イオン交換樹脂の精製に用いる水を製造する装置において、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に接続された一次処理システムと、さらにその後段に紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に接続された二次処理システムと、該一次処理システムにホウ素濃度100ppt以下の原水を供給する手段とを有しており、前記電気脱イオン装置は、脱塩室からの脱イオン水の一部を、脱塩室と向流方向で濃縮室に通水させる手段を有することを特徴とする。   The apparatus for producing purified water for ion exchange resin of the present invention (Claim 12) is an apparatus for producing water used for purification of ion exchange resin, in the order of reverse osmosis membrane device, deaeration membrane device, and electrodeionization device. A primary treatment system connected, a secondary treatment system connected in the order of an ultraviolet oxidation device, a non-regenerative ion exchange device, and an ultrafiltration membrane device in the subsequent stage, and a boron concentration of 100 ppt or less in the primary treatment system A means for supplying raw water, and the electrodeionization apparatus has means for passing a part of the deionized water from the desalting chamber to the concentrating chamber in a counter-current direction to the desalting chamber. It is characterized by.

請求項13のイオン交換樹脂用精製水の製造装置は、請求項12において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とする。   The apparatus for producing purified water for ion exchange resin according to claim 13 is the treated water according to claim 12, wherein the non-regenerative ion exchange apparatus or the ultrafiltration membrane apparatus is obtained by passing water to be treated through the apparatus. The amount of increase of the boron concentration with respect to the boron concentration of the water to be treated has a cleanliness of 1 ppt or less.

請求項14のイオン交換樹脂用精製水の製造装置は、請求項12又は13において、イオン交換樹脂の精製に使用した水の全量又は一部を前記原水に混合する手段を有することを特徴とする。   The apparatus for producing purified water for ion exchange resin according to claim 14 has means for mixing the whole or part of the water used for purification of the ion exchange resin with the raw water according to claim 12 or 13. .

本発明によれば、長時間洗浄によるイオン交換樹脂の精製を行った場合のホウ素汚染の問題を解決することができるため、TOC成分、イオン成分と共に、ホウ素の溶出性も十分に低減されたイオン交換樹脂を得ることができる。
本発明により高度に精製処理されたイオン交換樹脂は、ホウ素溶出の問題がないことから、このイオン交換樹脂を用いることにより、例えば超純水の製造現場において、運転の開始初期からホウ素混入の問題のない水を得ることができ、採水までの装置立ち上げ時間を大幅に短縮することができる。
According to the present invention, it is possible to solve the problem of boron contamination when the ion exchange resin is purified by washing for a long time, so that the ion that has sufficiently reduced boron elution along with the TOC component and the ion component. An exchange resin can be obtained.
Since the ion exchange resin highly purified according to the present invention has no problem of boron elution, by using this ion exchange resin, for example, at the production site of ultrapure water, there is a problem of boron contamination from the beginning of operation. Water can be obtained, and the apparatus startup time until water sampling can be greatly shortened.

本発明のイオン交換樹脂精製用水製造のための水処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the water treatment apparatus for the water manufacture for ion exchange resin refinement | purification of this invention. 本発明において好適に用いられる電気脱イオン装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electrodeionization apparatus used suitably in this invention.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

なお、本発明において、水質の評価に用いる計器としては特に制限はないが、本発明においては、以下の水質測定装置で測定された値を水質項目として採用する。
TOC:アナテル社製 TOC計「アナテル1000XP」
比抵抗:栗田工業(株)製 比抵抗計「MX−4」
ホウ素:シーバース社製 ホウ素計
微粒子数:栗田工業(株)製「KLAMIC−KS」
In the present invention, there is no particular limitation on the instrument used for evaluating the water quality, but in the present invention, the value measured by the following water quality measuring device is adopted as the water quality item.
TOC: Anatel TOC meter “Anatel 1000XP”
Specific resistance: resistivity meter “MX-4” manufactured by Kurita Kogyo Co., Ltd.
Boron: Boron meter manufactured by Seaverse Co., Ltd. Number of fine particles: “KLAMIC-KS” manufactured by Kurita Industries Co., Ltd.

[イオン交換樹脂精製用水]
本発明において、イオン交換樹脂の精製に用いる水(以下「精製用水」と称す場合がある。)は、ホウ素濃度1ppt以下の水(超純水)である。
この精製用水のホウ素濃度が1pptを超えるとホウ素溶出量が十分に低減されたイオン交換樹脂を得ることができない。
[Ion-exchange resin purification water]
In the present invention, water used for the purification of the ion exchange resin (hereinafter sometimes referred to as “purification water”) is water having a boron concentration of 1 ppt or less (ultra pure water).
When the boron concentration of this purification water exceeds 1 ppt, an ion exchange resin with a sufficiently reduced boron elution amount cannot be obtained.

精製用水のホウ素濃度は低い程好ましく、この水のホウ素濃度は特に1ppt以下、とりわけ0.5ppt以下であることが好ましい。ただし、後述の精製用水の製造におけるホウ素除去のための処理の限界から、通常精製用水のホウ素濃度の下限は1ppt程度である。   The boron concentration in the water for purification is preferably as low as possible, and the boron concentration in this water is particularly preferably 1 ppt or less, particularly preferably 0.5 ppt or less. However, the lower limit of the boron concentration of the purification water is usually about 1 ppt from the limit of the treatment for removing boron in the production of the purification water described later.

なお、この精製用水のホウ素以外の水質成分としては次のような値であることが好ましい。
比抵抗:18.2MΩ・cm以上
TOC:1ppb以下
微粒子数:1個/1mL以下(1mLの水中に存在する粒径0.05μm以上の微粒子の数が1個以下。以下同様。)
In addition, it is preferable that it is the following values as water quality components other than boron of this water for refinement | purification.
Specific resistance: 18.2 MΩ · cm or more TOC: 1 ppb or less Number of fine particles: 1 particle / l mL or less (the number of particles having a particle diameter of 0.05 μm or more present in 1 mL of water is 1 or less, and so on)

[精製用水の製造]
以下に、ホウ素濃度1ppt以下の精製用水を製造する方法について、図1を参照して説明するが、本発明の精製用水を製造する方法は、何ら図1に示す方法に限定されるものではなく、他のいかなる方法であってもよい。
[Production of water for purification]
Hereinafter, a method for producing purification water having a boron concentration of 1 ppt or less will be described with reference to FIG. 1. However, the method for producing the purification water of the present invention is not limited to the method shown in FIG. Any other method may be used.

図1は、本発明に係る精製用水を製造するための装置の一例を示す系統図であり、図中、1は逆浸透膜装置、2は脱気膜装置、3は電気脱イオン装置、4は紫外線酸化装置、5は非再生型イオン交換装置、6は限外濾過膜装置であり、逆浸透膜装置1、脱気膜装置及び電気脱イオン装置3で一次処理システムが形成され、紫外線酸化装置、非再生型イオン交換装置5及び限外濾過膜装置6で二次処理システムが形成されている。なお、一次処理システムと二次処理システムとの間には、必要に応じて中継槽が設けられていてもよい。   FIG. 1 is a system diagram showing an example of an apparatus for producing purification water according to the present invention. In the figure, 1 is a reverse osmosis membrane apparatus, 2 is a degassing membrane apparatus, 3 is an electrodeionization apparatus, 4 Is an ultraviolet oxidation device, 5 is a non-regenerative ion exchange device, and 6 is an ultrafiltration membrane device. The primary treatment system is formed by the reverse osmosis membrane device 1, the deaeration membrane device, and the electrodeionization device 3, and the ultraviolet oxidation The apparatus, the non-regenerative ion exchange device 5 and the ultrafiltration membrane device 6 form a secondary processing system. A relay tank may be provided between the primary processing system and the secondary processing system as necessary.

ホウ素濃度が1ppt以下の本発明に係る精製用水は、このような装置を用い、被処理水(原水)を、逆浸透膜装置1、脱気膜装置2、電気脱イオン装置3、紫外線酸化装置4、非再生型イオン交換装置5、及び限外濾過膜装置6に通水して処理することにより製造することができるが、この精製用水の製造において、原水はホウ素濃度が100ppt以下の比較的ホウ素濃度の低いものであることが好ましい。原水のホウ素濃度が100pptを超えるものであると、このような装置を用いても、ホウ素濃度が1ppt以下の水を得ることができない場合がある。従って、通常の一般的な超純水製造装置で製造されたホウ素濃度100ppt以下、例えばホウ素濃度5〜50ppt程度の超純水を原水として処理することが望ましい。なお、この精製用水製造用の原水は、ホウ素濃度が100ppt以下であれば、後述のイオン交換樹脂の精製処理に用いた水を含んでいてもよく、この精製排水の再利用により水使用量の低減を図ることができる。   The purification water according to the present invention having a boron concentration of 1 ppt or less uses such a device, and the treated water (raw water) is converted into reverse osmosis membrane device 1, degassing membrane device 2, electrodeionization device 3, and ultraviolet oxidation device. 4. It can be produced by passing water through the non-regenerative ion exchange device 5 and the ultrafiltration membrane device 6 for processing, but in the production of this purification water, the raw water is a relatively low boron concentration of 100 ppt or less. It is preferable that the boron concentration is low. If the boron concentration of the raw water exceeds 100 ppt, water having a boron concentration of 1 ppt or less may not be obtained even if such an apparatus is used. Therefore, it is desirable to treat, as raw water, ultrapure water having a boron concentration of 100 ppt or less, for example, a boron concentration of about 5 to 50 ppt, manufactured by a normal general ultrapure water production apparatus. If the boron concentration is 100 ppt or less, the raw water for producing the purification water may contain water used for the ion exchange resin purification process described later. Reduction can be achieved.

この精製用水製造用の原水のホウ素以外の水質としては、例えば、次のような水質であることが好ましい。
比抵抗:10MΩ・cm以上、例えば15〜18MΩ・cm
TOC:10ppb以下、例えば1〜5ppb
微粒子数:1000個/1mL以下、例えば100〜500個/1mL
For example, the following water quality is preferable as the water quality other than boron of the raw water used for producing the purification water.
Specific resistance: 10 MΩ · cm or more, for example, 15 to 18 MΩ · cm
TOC: 10 ppb or less, for example, 1 to 5 ppb
Number of fine particles: 1000 particles / 1 mL or less, for example, 100 to 500 particles / 1 mL

また、このようなホウ素濃度の原水からホウ素濃度1ppt以下の処理水を確実に得るために、電気脱イオン装置3については、前述の特許第3794268号公報に記載されるような、脱塩室から得られる脱イオン水の一部を、脱塩室の通水方向とは向流方向に濃縮室に通水するように構成された電気脱イオン装置を用いることが好ましい。   In addition, in order to reliably obtain treated water having a boron concentration of 1 ppt or less from such boron-concentrated raw water, the electrodeionization apparatus 3 can be used from a demineralization chamber as described in the aforementioned Japanese Patent No. 3794268. It is preferable to use an electrodeionization apparatus configured to pass a part of the deionized water obtained through the concentrating chamber in a direction opposite to the flow direction of the desalting chamber.

以下に、この電気脱イオン装置について、図2を参照して説明する。   Below, this electrodeionization apparatus is demonstrated with reference to FIG.

図2は、本発明に好適な電気脱イオン装置の一例を示す模式的な断面図であって、この電気脱イオン装置は、電極(陽極11、陰極12)の間に複数のアニオン交換膜(A膜)13及びカチオン交換膜(C膜)14を交互に配列して濃縮室15と脱塩室16とを交互に形成したものであり、脱塩室16には、イオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体が混合もしくは複層状に充填されている。   FIG. 2 is a schematic cross-sectional view showing an example of an electrodeionization apparatus suitable for the present invention. This electrodeionization apparatus includes a plurality of anion exchange membranes (electrodes 11 and 12) (an anode 11 and a cathode 12). A membrane) 13 and cation exchange membrane (C membrane) 14 are alternately arranged to form a concentration chamber 15 and a desalting chamber 16 alternately. In the desalting chamber 16, an ion exchange resin, an ion exchange An anion exchanger and a cation exchanger made of a fiber or a graft exchanger are mixed or packed in a multilayered manner.

また、濃縮室15と、陽極室17及び陰極室18にも、イオン交換体、活性炭又は金属等の電気伝導体(メッシュ電極を含む)が充填されている。   The concentration chamber 15, the anode chamber 17, and the cathode chamber 18 are also filled with an electric conductor (including a mesh electrode) such as an ion exchanger, activated carbon, or metal.

被処理水は脱塩室16に導入され、脱塩室16からは脱イオン水が取り出される。この脱イオン水の一部は、濃縮室15に脱塩室16の通水方向とは逆方向に向流一過式で通水され、濃縮室15の流出水は系外へ排出される。即ち、この電気脱イオン装置では、濃縮室15と脱塩室16とが交互に並設され、脱塩室16の脱イオン水取り出し側に濃縮室15の流入口が設けられており、脱塩室16の被処理水流入側に濃縮室15の流出口が設けられている。また、脱イオン水の一部は陽極室17の入口側に送給され、そして、陽極室17の流出水は、陰極室18の入口側へ送給され、陰極室18の流出水は排水として系外へ排出される。   The water to be treated is introduced into the desalting chamber 16, and deionized water is taken out from the desalting chamber 16. A portion of this deionized water is passed through the concentrating chamber 15 in a counter-current and transient manner in a direction opposite to the direction of water passing through the desalting chamber 16, and the outflow water from the concentrating chamber 15 is discharged out of the system. That is, in this electric deionization apparatus, the concentrating chambers 15 and the desalting chambers 16 are alternately arranged in parallel, and the inlet of the concentrating chamber 15 is provided on the deionized water take-out side of the desalting chamber 16. An outlet of the concentrating chamber 15 is provided on the treated water inflow side of the chamber 16. A part of the deionized water is supplied to the inlet side of the anode chamber 17, and the effluent water of the anode chamber 17 is supplied to the inlet side of the cathode chamber 18, and the effluent water of the cathode chamber 18 is used as drainage. It is discharged out of the system.

このように、濃縮室15に脱イオン水を脱塩室16と向流一過式で通水することにより、脱イオン水取り出し側ほど濃縮室15内の濃縮水の濃度が低いものとなり、濃度拡散による脱塩室16への影響が小さくなり、イオン除去率、特にホウ素の除去率を飛躍的に高めることができる。   In this way, by passing deionized water through the concentrating chamber 15 in a countercurrent and transient manner with the desalting chamber 16, the concentration of the concentrated water in the concentrating chamber 15 becomes lower toward the deionized water extraction side. The influence of the diffusion on the desalting chamber 16 is reduced, and the ion removal rate, particularly the boron removal rate, can be dramatically increased.

従来、電気脱イオン装置の濃縮水(濃縮室の流出水)は、水回収率の向上のために一部のみを排出した後、濃縮室の入口側に循環しており、例えば濃縮室のLVは80m/hr以上とされていた。   Conventionally, concentrated water (flowing water from the concentration chamber) of the electrodeionization apparatus is circulated to the inlet side of the concentration chamber after being partially discharged to improve the water recovery rate. Was 80 m / hr or more.

これに対して、図2の電気脱イオン装置では、濃縮室にイオン交換体を充填することで、濃縮室のLVを20m/hr以下としても、脱イオン性能を確保することができる。これは、濃縮室内がスペーサであると、濃縮室膜面におけるホウ素の膜面濃縮を水流により拡散させる必要があったのに対し、濃縮室にイオン交換体等を充填することで、イオン交換体を通じてイオンが拡散するため、高い通水速度(LV)を必要としないためと考えられる。   On the other hand, in the electrodeionization apparatus of FIG. 2, deionization performance can be ensured by filling the concentration chamber with an ion exchanger, even if the LV of the concentration chamber is 20 m / hr or less. This is because when the concentrating chamber is a spacer, it was necessary to diffuse the concentration of boron on the membrane surface of the concentrating chamber by a water flow, whereas by filling the concentrating chamber with an ion exchanger or the like, the ion exchanger This is probably because ions diffuse through the surface, so that a high water flow rate (LV) is not required.

このように通水速度が低くても良いため、一過式で濃縮水を通水しても、水回収率は従来よりも向上させることができ、しかも、循環ポンプを用いる必要もないため、さらに経済的である。本発明では、濃縮室の通水LVを20m/hr以下、例えば10〜20m/hrとして一過式で濃縮水を通水することが、高度にホウ素を除去する上で好ましい。   Since the water flow rate may be low in this way, even if the concentrated water is passed through in a transient manner, the water recovery rate can be improved as compared with the conventional one, and it is not necessary to use a circulation pump. It is more economical. In the present invention, it is preferable to pass the concentrated water in a transient manner by setting the water flow LV in the concentration chamber to 20 m / hr or less, for example, 10 to 20 m / hr, in order to highly remove boron.

濃縮室充填物は、必要電流確保のためには活性炭等でも良いが、上記イオン拡散作用の点から、イオン交換体を充填することが望ましい。   The concentrating chamber filling may be activated carbon or the like in order to secure the necessary current, but it is preferable to fill the ion exchanger from the viewpoint of the ion diffusion action.

この図2の電気脱イオン装置では、電極室17,18にも脱イオン水を供給しているが、電極室17,18でも濃縮室15と同様に、電流確保のために、イオン交換体や活性炭、又は電気伝導体である金属若しくはメッシュ電極等を充填することで、水質によらず消費電圧が一定になり、超純水等の高水質の水を通水しても必要電流を確保することが可能となる。   In the electrodeionization apparatus of FIG. 2, deionized water is also supplied to the electrode chambers 17 and 18, but in the electrode chambers 17 and 18, as in the concentration chamber 15, an ion exchanger or Filling with activated carbon, metal or mesh electrode, which is an electrical conductor, makes the power consumption constant regardless of the water quality, ensuring the necessary current even when passing high-quality water such as ultrapure water. It becomes possible.

なお、電極室では、特に陽極室での塩素やオゾン等の酸化剤の発生が起こるため、充填物としては、長期的にはイオン交換樹脂等を用いるよりも、メッシュ電極等の金属を用いることが好ましい。また、電極室へ図2のように脱イオン水を供給することは、電極室供給水にClが殆ど無いため、塩素の発生を防止できるので、充填物や電極の長期安定化のためには望ましい。 In the electrode chamber, the generation of oxidizers such as chlorine and ozone occurs in the anode chamber in particular. Therefore, the packing material should be made of a metal such as a mesh electrode rather than using an ion exchange resin in the long term. Is preferred. Further, supplying deionized water to the electrode chamber as shown in FIG. 2 can prevent generation of chlorine because there is almost no Cl − in the electrode chamber supply water, so that long-term stabilization of the filling material and the electrode can be achieved. Is desirable.

なお、電極室は上記のような充填物を用いなくても、電極板の通水面側を多孔質状に加工し、その部分に電極水を通水できるようにしても良く、その場合、電極板と電極室が一体化できるので、組立等が簡単になる等のメリットがある。   In addition, the electrode chamber may be made porous so that the water passage surface side of the electrode plate can be made porous without using the filler as described above, and in this case, the electrode water can be passed. Since the plate and the electrode chamber can be integrated, there are advantages such as easy assembly.

このような電気脱イオン装置において、ホウ素除去率の向上のためには、脱塩室の厚さが小さい方が有利である。脱塩室の厚さは5mm以下が良く、この厚さは小さいほど良いが、水の通水性や製作時の取り扱い性等を考慮すると実用上2mm以上とすることが好ましい。   In such an electrodeionization apparatus, in order to improve the boron removal rate, it is advantageous that the thickness of the demineralization chamber is smaller. The thickness of the desalting chamber is preferably 5 mm or less, and the smaller the thickness, the better. However, in consideration of water permeability, handling at the time of production, etc., it is preferably 2 mm or more in practice.

また、電流を確保して、濃度拡散の影響を排除することで、ホウ素の除去率向上を図ることが好ましく、電流確保のためには、濃縮室、更には電極室に先に記したような工夫が必要となるが、ホウ素高除去率の達成のための必要電流は、電流効率として10%以下に相当する電流値、さらに99.9%以上のホウ素除去率を得るためには望ましくは電流効率5%以下に相当する電流値が必要となる。なお、電流効率とは以下の式で示される。
電流効率(%)=1.31×セル当たり流量(L/min)×(被処理水当量導電率
(μS/cm)−脱イオン水当量導電率(μS/cm))/電流(A)
Further, it is preferable to improve the boron removal rate by securing the current and eliminating the influence of concentration diffusion. For securing the current, the concentration chamber, and further the electrode chamber as described above Although a device is required, the current required for achieving a high boron removal rate is preferably a current value in order to obtain a current value corresponding to 10% or less as a current efficiency, and further a boron removal rate of 99.9% or more. A current value corresponding to an efficiency of 5% or less is required. The current efficiency is expressed by the following formula.
Current efficiency (%) = 1.31 × flow rate per cell (L / min) × (treated water equivalent conductivity)
(ΜS / cm) −deionized water equivalent conductivity (μS / cm)) / current (A)

なお、この電気脱イオン装置におけるセル当たりの流量としては130L/hr以下、例えば100〜120L/hrとすることが好ましく、セル内のイオン交換樹脂に対する通水SVとしては130hr−1以下、例えば100〜120hr−1程度が好ましく、電流条件は6A以上、特に8A以上、好ましくは8〜10A程度、水回収率は90%以下、特に80%以下、例えば75〜80%とすることが好ましい。 The flow rate per cell in this electrodeionization apparatus is preferably 130 L / hr or less, for example, 100 to 120 L / hr, and the water flow SV for the ion exchange resin in the cell is 130 hr −1 or less, for example 100. About 120 hr −1 is preferable, the current condition is 6 A or more, particularly 8 A or more, preferably about 8 to 10 A, and the water recovery rate is preferably 90% or less, particularly 80% or less, for example, 75 to 80%.

このような電気脱イオン装置は、高比抵抗の被処理水からホウ素をさらに低減する場合であっても、必要電流が確保できるので、濃縮室及び電極室のいずれか一方にでも電流が流れなければ、電気脱イオン装置全体の電流が流れなくなるという従来の問題点は解消される。   Such an electrodeionization apparatus can secure a necessary current even when boron is further reduced from the water to be treated having a high specific resistance, so that the current does not flow through either the concentration chamber or the electrode chamber. Thus, the conventional problem that the current of the entire electrodeionization apparatus stops flowing can be solved.

なお、電気脱イオン装置の脱塩室及び濃縮室に充填するイオン交換樹脂は、アニオン交換樹脂とカチオン交換樹脂との混合樹脂が好ましく、その混合比率としては、アニオン交換樹脂:カチオン交換樹脂=5:5〜7:3(体積比)の同割合から若干量アニオン交換樹脂を過剰とすることがホウ素の除去の点で好ましい。   The ion exchange resin filled in the demineralization chamber and the concentration chamber of the electrodeionization apparatus is preferably a mixed resin of an anion exchange resin and a cation exchange resin, and the mixing ratio thereof is anion exchange resin: cation exchange resin = 5. : From the same ratio of 5 to 7: 3 (volume ratio), it is preferable in terms of removal of boron that the anion exchange resin is slightly excessive.

このような電気脱イオン装置であれば、ホウ素濃度10〜100ppt程度の被処理水からホウ素濃度1ppt以下の高度にホウ素が除去された水を得ることができる。   With such an electrodeionization apparatus, it is possible to obtain water from which boron is highly removed with a boron concentration of 1 ppt or less from water to be treated having a boron concentration of about 10 to 100 ppt.

なお、このような電気脱イオン装置3の前段に脱気膜装置2を設けて水中の溶存酸素(DO)を例えばDO濃度10ppb以下に低減することにより、電気脱イオン装置3における酸化劣化を防止して、電気脱イオン装置3の寿命を延長することができる。   In addition, by providing the deaeration membrane device 2 in the preceding stage of the electrodeionization device 3 and reducing the dissolved oxygen (DO) in the water to a DO concentration of 10 ppb or less, for example, the oxidative deterioration in the electrodeionization device 3 is prevented. Thus, the lifetime of the electrodeionization apparatus 3 can be extended.

図1に示す精製用水製造装置のその他の処理装置の仕様等については特に制限はないが、図2に示すような高ホウ素除去率の電気脱イオン装置を用いても、電気脱イオン装置3の後段の装置でホウ素汚染の問題があると、結果として得られる処理水のホウ素濃度を十分に低減することができず、ホウ素濃度1ppt以下の精製用水を得ることができないため、電気脱イオン装置3の後段の非再生型イオン交換装置5又は限外濾過膜装置6、好ましくは非再生型イオン交換装置5及び限外濾過膜装置6が共に、当該装置に通水される被処理水(装置入口水)のホウ素濃度に対して、この装置から得られる処理水(装置出口水)のホウ素濃度の増加の程度(即ち、装置出口水ホウ素濃度−装置入口水ホウ素濃度。以下、この増加量を「ホウ素汚染率」と称す場合がある。)、即ち、当該装置を通過することによるホウ素汚染の程度が1ppt以下、特に0.5ppt以下、例えば0.1〜0.5pptであるような清浄度の高い装置であることが好ましい。このような清浄度の高い非再生型イオン交換装置としては、例えば、本発明の方法により精製されたイオン交換樹脂を充填した非再生型イオン交換装置が挙げられる。また、限外濾過膜装置としては、本発明で用いる精製水により高度に洗浄された装置が挙げられる。   Although there are no particular restrictions on the specifications of other treatment apparatuses of the purification water production apparatus shown in FIG. 1, even if an electrodeionization apparatus having a high boron removal rate as shown in FIG. If there is a problem of boron contamination in the subsequent apparatus, the boron concentration of the resulting treated water cannot be sufficiently reduced, and purification water having a boron concentration of 1 ppt or less cannot be obtained. Non-regenerative ion exchange device 5 or ultrafiltration membrane device 6 in the latter stage, preferably both non-regenerative ion exchange device 5 and ultrafiltration membrane device 6 are treated water (device inlet) that is passed through the device. The degree of increase in the boron concentration of the treated water (device outlet water) obtained from this apparatus with respect to the boron concentration of water (that is, the apparatus outlet water boron concentration minus the apparatus inlet water boron concentration. Boron contamination ), That is, a highly clean apparatus in which the degree of boron contamination by passing through the apparatus is 1 ppt or less, particularly 0.5 ppt or less, for example, 0.1 to 0.5 ppt. Preferably there is. Examples of such a highly clean non-regenerative ion exchange apparatus include a non-regenerative ion exchange apparatus filled with an ion exchange resin purified by the method of the present invention. Moreover, as an ultrafiltration membrane apparatus, the apparatus wash | cleaned highly by the purified water used by this invention is mentioned.

電気脱イオン装置3として、図2に示す電気脱イオン装置を用いた、図1に示す装置であれば、ホウ素濃度1ppt以下であって、比抵抗18.2MΩ・cm以上、TOC1ppb以下、微粒子数1個/1mL以下であるような、高純度の水を製造することができる。   If the electrodeionization apparatus 3 shown in FIG. 1 is used as the electrodeionization apparatus 3, the boron concentration is 1 ppt or less, the specific resistance is 18.2 MΩ · cm or more, the TOC is 1 ppb or less, the number of fine particles It is possible to produce high-purity water such that it is 1 / mL or less.

本発明においては、このようにして製造される高純度水を精製用水として用いるが、この高純度水は、イオン交換樹脂精製用水に限らず、高い清浄度が要求される限外濾過膜装置などの装置の清浄化のための洗浄水としても用いることができる。   In the present invention, high-purity water produced in this way is used as purification water, but this high-purity water is not limited to ion-exchange resin purification water, but an ultrafiltration membrane device that requires high cleanliness, etc. It can also be used as washing water for cleaning the apparatus.

[イオン交換樹脂の精製]
本発明においては、上述のようなホウ素濃度1ppt以下の精製用水を用いてイオン交換樹脂を洗浄して精製する。
[Purification of ion exchange resin]
In the present invention, the ion exchange resin is washed and purified using the above-described purification water having a boron concentration of 1 ppt or less.

このイオン交換樹脂の洗浄には、イオン交換樹脂を適当なカラムに充填して上記の精製用水を通水する。
従って、例えば、図1に示す精製用水製造装置の限外濾過膜装置6から取り出される処理水をこのイオン交換樹脂充填カラムに通水する手段を設け、イオン交換樹脂を精製すればよい。
For washing the ion exchange resin, an appropriate column is filled with the ion exchange resin, and the water for purification is passed through.
Therefore, for example, a means for passing treated water taken out from the ultrafiltration membrane device 6 of the purification water production apparatus shown in FIG. 1 through this ion exchange resin packed column may be provided to purify the ion exchange resin.

この精製処理における条件としては、精製に供するイオン交換樹脂の汚染の程度と目的とするイオン交換樹脂の清浄度によって異なるが、通常、次のような条件とすることが好ましい。   Conditions for this purification treatment vary depending on the degree of contamination of the ion exchange resin to be purified and the cleanliness of the target ion exchange resin, but the following conditions are usually preferred.

通水方向:下向流通水
通水SV:10〜50hr−1
通水LV:30〜150m/hr
Water flow direction: Downstream water flow Water flow SV: 10 to 50 hr −1
Water flow LV: 30 to 150 m / hr

洗浄時間についても、精製に供するイオン交換樹脂の汚染の程度と目的とするイオン交換樹脂の清浄度、その他の洗浄条件に応じて適宜決定されるが、通常4〜5日から10〜30日程度であり、特に、本発明は、3週間以上の洗浄を行い、洗浄水からのホウ素吸着が問題となる長期間洗浄の場合に有効である。   The washing time is also appropriately determined according to the degree of contamination of the ion exchange resin used for purification, the cleanliness of the target ion exchange resin, and other washing conditions, but is usually about 4 to 5 to 10 to 30 days. In particular, the present invention is effective for long-term cleaning in which cleaning for 3 weeks or more is performed and boron adsorption from the cleaning water becomes a problem.

なお、イオン交換樹脂の洗浄時間を所定の値に設定する他、イオン交換樹脂の洗浄カラムの洗浄排水排出配管に、前述の水質測定計器を設け、連続的又は間欠的に(例えば30分おき)に洗浄排水の水質をモニタリングし、その値が所定の値となった場合に、例えば、洗浄排水のホウ素濃度が1ppt以下となった場合に、洗浄を終了するように自動制御することもできる。   In addition to setting the ion exchange resin cleaning time to a predetermined value, the water quality measuring instrument described above is provided in the cleaning drain discharge pipe of the ion exchange resin cleaning column, continuously or intermittently (for example, every 30 minutes). When the water quality of the cleaning wastewater is monitored and the value becomes a predetermined value, for example, when the boron concentration of the cleaning wastewater becomes 1 ppt or less, the cleaning can be automatically controlled to end.

[洗浄排水の再利用]
上記のイオン交換樹脂の精製処理に用いた洗浄排水の全量を廃棄することは、水使用量が多大となり不経済である。
従って、イオン交換樹脂の洗浄に用いた洗浄排水は、これを原水としてホウ素濃度1ppt以下の精製用水を製造する際に問題とならない程度の水質であれば、前述の精製用水の製造装置の原水として処理し、再利用することが好ましい。
[Reuse of washing wastewater]
Discarding the entire amount of the washing wastewater used for the purification treatment of the ion exchange resin is uneconomical because of the large amount of water used.
Accordingly, the washing wastewater used for washing the ion exchange resin can be used as the raw water of the above-described purification water production apparatus if the water quality does not cause any problems when the purification water having a boron concentration of 1 ppt or less is used as the raw water. Preferably it is processed and reused.

具体的には、TOC1ppm以下、比抵抗1MΩ・cm以上、ホウ素濃度100ppt以下の洗浄排水であれば、精製用水の製造原水として再利用することができる。   Specifically, any cleaning wastewater having a TOC of 1 ppm or less, a specific resistance of 1 MΩ · cm or more, and a boron concentration of 100 ppt or less can be reused as raw water for production of purification water.

従って、イオン交換樹脂の洗浄カラムの洗浄排水排出配管に前述の水質測定計器を設け、連続的又は間欠的に(例えば30分おき)に洗浄排水の水質をモニタリングし、その値が所定の値となった場合には、洗浄排水の排出配管の流路を切り換え、前述の精製用水製造装置の逆浸透膜装置1の入口側に返送するようにしてもよい。   Therefore, the above-mentioned water quality measuring instrument is provided in the washing drain discharge pipe of the washing column of the ion exchange resin, and the quality of the washing drainage is monitored continuously or intermittently (for example, every 30 minutes). In such a case, the flow path of the discharge pipe for cleaning waste water may be switched and returned to the inlet side of the reverse osmosis membrane device 1 of the above-described purification water production apparatus.

また、この場合において、更に前述の如く、洗浄排水の水質が所定の値となった場合に、洗浄を終了するようにすることにより、原水からの精製用水の製造、精製用水によるイオン交換樹脂の精製、洗浄排水の再利用を連続的な自動運転で行うことができ、効率的である。   Further, in this case, as described above, when the quality of the washing wastewater reaches a predetermined value, the washing is terminated, whereby the production of the purification water from the raw water and the ion exchange resin by the purification water are performed. It is efficient because refining and reuse of washing wastewater can be performed by continuous automatic operation.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1]
図1に示す装置を用い、他の超純水製造装置で得られた下記水質の超純水を原水として、イオン交換樹脂精製用水を製造した。
[Example 1]
Using the apparatus shown in FIG. 1, ion-exchange resin purification water was manufactured using ultrapure water having the following water quality obtained by another ultrapure water manufacturing apparatus as raw water.

<原水水質>
ホウ素:20ppb
比抵抗:15MΩ・cm
TOC:500ppb
<Raw water quality>
Boron: 20 ppb
Specific resistance: 15 MΩ · cm
TOC: 500ppb

電気脱イオン装置としては、図2に示す如く、脱塩室からの脱イオン水の一部を濃縮室に、脱塩室の通水方向に対して向流通水する電気脱イオン装置である栗田工業(株)製電気脱イオン装置「KCDI−UPz」を用いた。この電気脱イオン装置の脱塩室及び濃縮室には、アニオン交換樹脂とカチオン交換樹脂を6:4(体積比)の割合で混合したものを充填した。陽極室と陰極室には活性炭を充填した。脱塩室の厚さは5mm、濃縮室の厚さは5mmである。   As shown in FIG. 2, as the electrodeionization apparatus, Kurita is an electrodeionization apparatus that circulates a part of the deionized water from the demineralization chamber into the concentrating chamber in the direction of water flow in the direction of water flow in the demineralization chamber. An industrial deionization apparatus “KCDI-UPz” was used. The demineralization chamber and the concentration chamber of this electrodeionization apparatus were filled with a mixture of an anion exchange resin and a cation exchange resin in a ratio of 6: 4 (volume ratio). The anode chamber and the cathode chamber were filled with activated carbon. The thickness of the desalting chamber is 5 mm, and the thickness of the concentration chamber is 5 mm.

この電気脱イオン装置の運転条件は次の通りである。   The operating conditions of this electrodeionization apparatus are as follows.

[運転条件]
電流:10A(電流効率2%)
脱塩室SV:115hr−1
濃縮室LV:15m/hr
脱イオン水量 :25m/hr
濃縮室流量:5m/hr
電極室流量:200L/hr
水回収率 :80%
[Operating conditions]
Current: 10A (current efficiency 2%)
Desalination chamber SV: 115 hr −1
Concentration chamber LV: 15 m / hr
Deionized water volume: 25 m 3 / hr
Concentration chamber flow rate: 5 m 3 / hr
Electrode chamber flow rate: 200 L / hr
Water recovery rate: 80%

即ち、脱イオン水25m/hr中の5m/hrを濃縮室に向流一過式で通水し、200L/hrを陽極室に通水した後陰極室に通水した。 That is, through the water in a countercurrent transient expression concentrating chamber 5 m 3 / hr in deionized water 25 m 3 / hr, was passed through the cathode chamber was passed through a 200L / hr to the anode chamber.

その他の装置の仕様は次の通りである。   The specifications of other devices are as follows.

逆浸透膜装置:栗田工業(株)製「K−RO−A2031」
脱気膜装置:セルガード社製「X40」
紫外線酸化装置:日本フォトサイエンス社製「SUV−4800TOC−N」
非再生型イオン交換装置:栗田工業(株)製「KR−FM1」
限外濾過膜装置:栗田工業(株)「KU−1510HS−H」
Reverse osmosis membrane device: “K-RO-A2031” manufactured by Kurita Kogyo Co., Ltd.
Deaeration membrane device: "X40" manufactured by Celgard
Ultraviolet oxidizer: “SUV-4800TOC-N” manufactured by Nippon Photo Science Co., Ltd.
Non-regenerative ion exchanger: “KR-FM1” manufactured by Kurita Kogyo Co., Ltd.
Ultrafiltration membrane device: Kurita Industry Co., Ltd. “KU-1510HS-H”

なお、非再生型イオン交換装置及び限外濾過膜装置は薬品洗浄後、超純水でコンディショニングすることにより、ホウ素汚染率1pptに清浄化したものを用いた。   The non-regenerative ion exchange apparatus and ultrafiltration membrane apparatus used were cleaned to a boron contamination rate of 1 ppt by cleaning with chemicals and then conditioning with ultrapure water.

この装置により、以下の水質の処理水を得ることができた。   With this apparatus, the following treated water was obtained.

<処理水>
ホウ素:1ppt以下
比抵抗:18.24MΩ・cm
TOC:1ppb以下
微粒子数:1個/1mL以下
<Treatment water>
Boron: 1 ppt or less Specific resistance: 18.24 MΩ · cm
TOC: 1 ppb or less Number of fine particles: 1 particle / 1 mL or less

得られた処理水を精製用水として用い、イオン交換樹脂(栗田工業(株)製「KR−FM1」)を充填したカラムにSV30hr−1で下向流通水して洗浄する処理を30日行った。 The obtained treated water was used as purification water, and a column packed with an ion exchange resin (“KR-FM1” manufactured by Kurita Kogyo Co., Ltd.) was subjected to a treatment by washing with downward flowing water at SV30hr −1 for 30 days. .

洗浄後のイオン交換樹脂について、各成分の溶出量を調べ、結果を表1に示した。   About the ion exchange resin after washing | cleaning, the elution amount of each component was investigated and the result was shown in Table 1.

[比較例1]
実施例1において、精製用水として、ホウ素が1pptより多い、以下の水質の水を用いたこと以外は同様にしてイオン交換樹脂の洗浄を行い、同様に各成分の溶出量を調べ、結果を表1に示した。
ホウ素:30ppt
比抵抗:18.2MΩ・cm
TOC:1ppb以下
微粒子数:1個/1mL以下
[Comparative Example 1]
In Example 1, the ion-exchange resin was washed in the same manner except that the following water quality water containing more than 1 ppt of boron was used as the purification water, and the elution amount of each component was similarly examined, and the results are shown in Table 1. It was shown in 1.
Boron: 30ppt
Specific resistance: 18.2 MΩ · cm
TOC: 1 ppb or less Number of fine particles: 1 particle / 1 mL or less

[参考例1]
比較例1において、洗浄時間を3日と短くしたこと以外は同様にしてイオン交換樹脂の洗浄を行い、同様に各成分の溶出量を調べ、結果を表1に示した。
[Reference Example 1]
In Comparative Example 1, the ion exchange resin was washed in the same manner except that the washing time was shortened to 3 days. Similarly, the elution amount of each component was examined, and the results are shown in Table 1.

Figure 2011110515
Figure 2011110515

表1より、本発明によれば、TOC成分のみならず、ホウ素溶出量の少ない高清浄のイオン交換樹脂を得ることができることが分かる。   From Table 1, it can be seen that according to the present invention, not only the TOC component but also a highly clean ion exchange resin with a small boron elution amount can be obtained.

これに対して、精製用水のホウ素濃度が1pptを超える比較例1では、イオン交換樹脂からのホウ素の溶出の問題がある。
なお、この精製用水を用いても、参考例1のように、洗浄時間が短いと、ホウ素の溶出の問題はないが、この場合にはTOCの溶出が問題となる。
On the other hand, in Comparative Example 1 where the boron concentration of the water for purification exceeds 1 ppt, there is a problem of elution of boron from the ion exchange resin.
Even if this purification water is used, there is no problem of boron elution when the washing time is short as in Reference Example 1, but in this case, TOC elution becomes a problem.

なお、実施例1において、イオン交換樹脂の洗浄に用いた洗浄排水の水質をモニタリングし、その水質が1日後に、TOC1ppm以下、比抵抗1MΩ・cm以上、ホウ素濃度100ppt以下となったため、2日以降の洗浄排水を精製用水の製造原水として用いて、実施例1におけると同様にして原水の製造を行ったところ、実施例1におけると同様の水質の処理水を得ることができた。   In Example 1, the water quality of the washing wastewater used for washing the ion exchange resin was monitored, and after 1 day, the water quality became TOC 1 ppm or less, specific resistance 1 MΩ · cm or more, and boron concentration 100 ppt or less. When the raw water was produced in the same manner as in Example 1 using the subsequent washing waste water as the production raw water for purification, treated water having the same water quality as in Example 1 could be obtained.

1 逆浸透膜装置
2 脱気膜装置
3 電気脱イオン装置
4 紫外線酸化装置
5 非再生型イオン交換装置
6 限外濾過膜装置
11 陽極
12 陰極
13 アニオン交換膜(A膜)
14 カチオン交換膜(C膜)
15 濃縮室
16 脱塩室
17 陽極室
18 陰極室
DESCRIPTION OF SYMBOLS 1 Reverse osmosis membrane apparatus 2 Deaeration membrane apparatus 3 Electrodeionization apparatus 4 Ultraviolet oxidization apparatus 5 Non-regenerative ion exchange apparatus 6 Ultrafiltration membrane apparatus 11 Anode 12 Cathode 13 Anion exchange membrane (A membrane)
14 Cation exchange membrane (C membrane)
15 Concentration chamber 16 Desalination chamber 17 Anode chamber 18 Cathode chamber

Claims (14)

ホウ素濃度1ppt以下に処理した水を用いてイオン交換樹脂を精製することを特徴とするイオン交換樹脂の精製方法。   A method for purifying an ion exchange resin, comprising purifying an ion exchange resin using water treated to a boron concentration of 1 ppt or less. 請求項1において、ホウ素濃度1ppt以下に処理した水が、ホウ素濃度100ppt以下の原水を、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に通水して処理し、その後、紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に通水して処理した水であって、前記電気脱イオン装置において、脱塩室からの脱イオン水の一部が、脱塩室と向流方向で濃縮室に通水されることを特徴とするイオン交換樹脂の精製方法。   In claim 1, water treated to a boron concentration of 1 ppt or less is treated by passing raw water having a boron concentration of 100 ppt or less in the order of a reverse osmosis membrane device, a deaeration membrane device, and an electrodeionization device, and then ultraviolet rays. Water that has been treated by passing through an oxidizing device, a non-regenerative ion exchange device, and an ultrafiltration membrane device in this order, and in the electrodeionization device, a portion of the deionized water from the desalting chamber is dehydrated. A method for purifying an ion exchange resin, wherein water is passed through a concentration chamber in a counterflow direction with respect to a salt chamber. 請求項2において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とするイオン交換樹脂の精製方法。   3. The non-regenerative ion exchange device or the ultrafiltration membrane device according to claim 2, wherein the amount of increase in the boron concentration of the treated water obtained by passing the treated water through the device is 1 ppt. A method for purifying an ion exchange resin, characterized by having the following cleanliness. 請求項2又は3において、前記原水が、前記イオン交換樹脂の精製に使用した水の全量又は一部を含むことを特徴とするイオン交換樹脂の精製方法。   The method for purifying an ion exchange resin according to claim 2 or 3, wherein the raw water contains all or part of the water used for the purification of the ion exchange resin. 原水を処理してホウ素濃度1ppt以下の処理水を得る水処理装置と、該水処理装置で得られた処理水が導入されるイオン交換樹脂精製塔とを有することを特徴とするイオン交換樹脂の精製装置。   An ion exchange resin comprising: a water treatment device for treating raw water to obtain treated water having a boron concentration of 1 ppt or less; and an ion exchange resin purification tower into which treated water obtained by the water treatment device is introduced. Purification equipment. 請求項5において、前記原水のホウ素濃度が100ppt以下であり、前記水処理装置は、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に接続された一次処理システムと、さらにその後段に紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に接続された二次処理システムとを有しており、前記電気脱イオン装置は、脱塩室からの脱イオン水の一部を、脱塩室と向流方向で濃縮室に通水させる手段を有することを特徴とするイオン交換樹脂の精製装置。   In Claim 5, The boron concentration of the said raw | natural water is 100 ppt or less, The said water treatment apparatus is a primary treatment system connected in order of the reverse osmosis membrane apparatus, the deaeration membrane apparatus, and the electrodeionization apparatus, Furthermore, the subsequent stage A secondary treatment system connected in the order of an ultraviolet oxidation device, a non-regenerative ion exchange device, and an ultrafiltration membrane device, and the electrodeionization device comprises deionized water from a demineralization chamber. An apparatus for purifying an ion exchange resin, comprising means for passing a part of water through a desalination chamber and a concentration chamber in a countercurrent direction. 請求項6において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とするイオン交換樹脂の精製装置。   7. The non-regenerative ion exchange apparatus or ultrafiltration membrane apparatus according to claim 6, wherein the amount of increase in the boron concentration of the treated water obtained by passing the treated water through the apparatus is 1 ppt. An apparatus for purifying an ion exchange resin, characterized by having the following cleanliness. 請求項6又は7において、前記イオン交換樹脂精製塔においてイオン交換樹脂の精製に使用した水の全量又は一部を、前記水処理装置の原水として返送する手段を有することを特徴とするイオン交換樹脂の精製装置。   8. The ion exchange resin according to claim 6, further comprising means for returning all or part of the water used for the purification of the ion exchange resin in the ion exchange resin purification tower as raw water of the water treatment apparatus. Purification equipment. イオン交換樹脂の精製に用いる水を製造する方法において、ホウ素濃度100ppt以下の原水を、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に通水して処理し、その後、紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に通水して処理してホウ素濃度1ppt以下の処理水を得る方法であって、前記電気脱イオン装置において、脱塩室からの脱イオン水の一部が、脱塩室と向流方向で濃縮室に通水されることを特徴とするイオン交換樹脂用精製水の製造方法。   In the method for producing water used for the purification of ion exchange resin, raw water having a boron concentration of 100 ppt or less is treated by passing water in the order of reverse osmosis membrane device, degassing membrane device, and electrodeionization device, and then UV oxidation. Apparatus, a non-regenerative ion exchange device, and an ultrafiltration membrane device are passed through the water in order to obtain treated water having a boron concentration of 1 ppt or less, in the electrodeionization device, from the demineralization chamber. A method for producing purified water for ion-exchange resin, wherein a portion of the deionized water is passed through the concentration chamber in a counter-current direction to the desalting chamber. 請求項9において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とするイオン交換樹脂用精製水の製造方法。   10. The non-regenerative ion exchange device or ultrafiltration membrane device according to claim 9, wherein the amount of increase in the boron concentration of the treated water obtained by passing the treated water through the device is 1 ppt. The manufacturing method of the purified water for ion exchange resins characterized by having the following cleanliness. 請求項9又は10において、前記原水が、イオン交換樹脂の精製に使用した水の全量又は一部を含むことを特徴とするイオン交換樹脂用精製水の製造方法。   11. The method for producing purified water for ion exchange resin according to claim 9 or 10, wherein the raw water contains the whole or a part of the water used for purification of the ion exchange resin. イオン交換樹脂の精製に用いる水を製造する装置において、逆浸透膜装置、脱気膜装置、及び電気脱イオン装置の順に接続された一次処理システムと、さらにその後段に紫外線酸化装置、非再生型イオン交換装置、及び限外濾過膜装置の順に接続された二次処理システムと、該一次処理システムにホウ素濃度100ppt以下の原水を供給する手段とを有しており、前記電気脱イオン装置は、脱塩室からの脱イオン水の一部を、脱塩室と向流方向で濃縮室に通水させる手段を有することを特徴とするイオン交換樹脂用精製水の製造装置。   In an apparatus for producing water used for the purification of ion exchange resin, a primary treatment system connected in the order of a reverse osmosis membrane device, a deaeration membrane device, and an electrodeionization device, and an ultraviolet oxidation device, non-regenerative type in the subsequent stage A secondary treatment system connected in order of an ion exchange device and an ultrafiltration membrane device, and means for supplying raw water having a boron concentration of 100 ppt or less to the primary treatment system, and the electrodeionization device comprises: An apparatus for producing purified water for ion-exchange resin, comprising means for passing a part of deionized water from a desalting chamber through a concentration chamber in a counter-current direction to the desalting chamber. 請求項12において、前記非再生型イオン交換装置又は限外濾過膜装置は、該装置に被処理水を通水して得られる処理水のホウ素濃度の被処理水のホウ素濃度に対する増加量が1ppt以下の清浄度を有することを特徴とするイオン交換樹脂用精製水の製造装置。   13. The non-regenerative ion exchange device or ultrafiltration membrane device according to claim 12, wherein the amount of increase in the boron concentration of the treated water obtained by passing the treated water through the device is 1 ppt. An apparatus for producing purified water for ion-exchange resin, characterized by having the following cleanliness. 請求項12又は13において、イオン交換樹脂の精製に使用した水の全量又は一部を前記原水に混合する手段を有することを特徴とするイオン交換樹脂用精製水の製造装置。   14. The apparatus for producing purified water for ion exchange resin according to claim 12 or 13, further comprising means for mixing all or part of the water used for purification of the ion exchange resin with the raw water.
JP2009270279A 2009-11-27 2009-11-27 Method and apparatus for purifying ion exchange resin Active JP5617231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270279A JP5617231B2 (en) 2009-11-27 2009-11-27 Method and apparatus for purifying ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270279A JP5617231B2 (en) 2009-11-27 2009-11-27 Method and apparatus for purifying ion exchange resin

Publications (2)

Publication Number Publication Date
JP2011110515A true JP2011110515A (en) 2011-06-09
JP5617231B2 JP5617231B2 (en) 2014-11-05

Family

ID=44233286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270279A Active JP5617231B2 (en) 2009-11-27 2009-11-27 Method and apparatus for purifying ion exchange resin

Country Status (1)

Country Link
JP (1) JP5617231B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102045A (en) * 2013-01-16 2013-05-15 武汉千水环境工程技术有限公司 System for treating waste water from production of carbon fiber
CN105016501A (en) * 2014-04-29 2015-11-04 中国石油化工集团公司 Method for treating high boron content terrestrial heat tail water
CN105314776A (en) * 2015-12-09 2016-02-10 高学理 Multi-membrane-process seawater desalination integrated technique and apparatus thereof
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
JP6119886B1 (en) * 2016-01-28 2017-04-26 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2018001106A (en) * 2016-07-04 2018-01-11 栗田工業株式会社 Electrodeionization device and method for operating the same
JP2018061933A (en) * 2016-10-12 2018-04-19 栗田工業株式会社 Electrodeionization apparatus
CN111672327A (en) * 2020-07-16 2020-09-18 上海核工程研究设计院有限公司 System and method for testing performance of pollution discharge ionization desalination membrane stack of steam generator
CN113213691A (en) * 2021-05-13 2021-08-06 江苏固环环境科技有限公司 Resource treatment process for mixed salt wastewater containing organic matters
WO2021235130A1 (en) * 2020-05-20 2021-11-25 オルガノ株式会社 Device for removing toc and method for removing toc
CN113874328A (en) * 2019-05-30 2021-12-31 奥加诺株式会社 Ultrapure water production system and ultrapure water production method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2002205069A (en) * 2001-01-05 2002-07-23 Kurita Water Ind Ltd Electrodeionization apparatus and operating method thereof
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004033976A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Deionized water manufacturing method and apparatus therefor
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2004261648A (en) * 2003-02-21 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method thereof
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
JP2005000828A (en) * 2003-06-12 2005-01-06 Kurita Water Ind Ltd Pure water production apparatus
JP2005246126A (en) * 2004-03-01 2005-09-15 Nomura Micro Sci Co Ltd Device and method for manufacturing pure water or ultra pure water
JP2009028695A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Apparatus and method for manufacturing pure water
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009240943A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Conditioning method of ion-exchange resin
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2011088070A (en) * 2009-10-22 2011-05-06 Kurita Water Ind Ltd Ultrapure water production method and apparatus for ion exchange resin purifier

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113281A (en) * 1999-08-11 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus and pure water making apparatus
JP2002205069A (en) * 2001-01-05 2002-07-23 Kurita Water Ind Ltd Electrodeionization apparatus and operating method thereof
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
JP2004033976A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Deionized water manufacturing method and apparatus therefor
JP2004057935A (en) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd Ultrapure-water making system
JP2004261648A (en) * 2003-02-21 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method thereof
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
JP2005000828A (en) * 2003-06-12 2005-01-06 Kurita Water Ind Ltd Pure water production apparatus
JP2005246126A (en) * 2004-03-01 2005-09-15 Nomura Micro Sci Co Ltd Device and method for manufacturing pure water or ultra pure water
JP2009028695A (en) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd Apparatus and method for manufacturing pure water
JP2009112944A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009240943A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Conditioning method of ion-exchange resin
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2011088070A (en) * 2009-10-22 2011-05-06 Kurita Water Ind Ltd Ultrapure water production method and apparatus for ion exchange resin purifier

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102045A (en) * 2013-01-16 2013-05-15 武汉千水环境工程技术有限公司 System for treating waste water from production of carbon fiber
CN105016501A (en) * 2014-04-29 2015-11-04 中国石油化工集团公司 Method for treating high boron content terrestrial heat tail water
CN105016501B (en) * 2014-04-29 2017-09-12 中国石油化工集团公司 A kind of processing method of high boric geothermal tail water
KR20170117365A (en) * 2015-02-17 2017-10-23 쿠리타 고교 가부시키가이샤 Electrodeionization device and pure water production device
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
WO2016133041A1 (en) * 2015-02-17 2016-08-25 栗田工業株式会社 Electrodeionization device and pure water production device
KR102259712B1 (en) 2015-02-17 2021-06-01 쿠리타 고교 가부시키가이샤 Electrodeionization device and pure water production device
US10252218B2 (en) 2015-02-17 2019-04-09 Kurita Water Industries Ltd. Electrodeionization device and pure-water production system
CN105314776A (en) * 2015-12-09 2016-02-10 高学理 Multi-membrane-process seawater desalination integrated technique and apparatus thereof
WO2017130454A1 (en) * 2016-01-28 2017-08-03 栗田工業株式会社 Ultrapure water production apparatus and method for operating ultrapure water production apparatus
JP2017131846A (en) * 2016-01-28 2017-08-03 栗田工業株式会社 Apparatus for producing ultrapure water, and method for operating the same
JP6119886B1 (en) * 2016-01-28 2017-04-26 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
CN108602705A (en) * 2016-01-28 2018-09-28 栗田工业株式会社 The method of operation of Ultrapure Water Purifiers and Ultrapure Water Purifiers
JP2018001106A (en) * 2016-07-04 2018-01-11 栗田工業株式会社 Electrodeionization device and method for operating the same
CN109715566A (en) * 2016-10-12 2019-05-03 栗田工业株式会社 Electric deionizer
KR101932393B1 (en) * 2016-10-12 2018-12-24 쿠리타 고교 가부시키가이샤 Electric deionization device
KR20180051492A (en) * 2016-10-12 2018-05-16 쿠리타 고교 가부시키가이샤 Electric deionization device
JP2018061933A (en) * 2016-10-12 2018-04-19 栗田工業株式会社 Electrodeionization apparatus
CN113874328A (en) * 2019-05-30 2021-12-31 奥加诺株式会社 Ultrapure water production system and ultrapure water production method
CN113874328B (en) * 2019-05-30 2023-09-12 奥加诺株式会社 Ultrapure water production system and ultrapure water production method
WO2021235130A1 (en) * 2020-05-20 2021-11-25 オルガノ株式会社 Device for removing toc and method for removing toc
JP7383141B2 (en) 2020-05-20 2023-11-17 オルガノ株式会社 TOC removal device and TOC removal method
CN111672327A (en) * 2020-07-16 2020-09-18 上海核工程研究设计院有限公司 System and method for testing performance of pollution discharge ionization desalination membrane stack of steam generator
CN113213691A (en) * 2021-05-13 2021-08-06 江苏固环环境科技有限公司 Resource treatment process for mixed salt wastewater containing organic matters

Also Published As

Publication number Publication date
JP5617231B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JP6228531B2 (en) Ultrapure water production apparatus and ultrapure water production method
US7699968B2 (en) Water purifying system
WO2015012054A1 (en) Method and device for treating boron-containing water
JP2011194402A (en) Ultrapure water production plant
JP3969221B2 (en) Method and apparatus for producing deionized water
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JP2004000919A (en) Apparatus for producing desalted water
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JPWO2018092395A1 (en) Electrodeionization apparatus and method for producing deionized water
JP3656458B2 (en) Pure water production method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JP2007268331A (en) Apparatus for manufacturing electrically deionized water
JP5285135B2 (en) Water treatment system and water treatment method
JP2010036173A (en) Water treatment system and water treatment method
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP2009160500A (en) Ultrapure water production method and apparatus
JPH10216749A (en) Ultrapure water making apparatus
KR101036880B1 (en) Wastewater recycling apparatus and method of preparing ultrapure water using reusable water prepared by the same
JP3992996B2 (en) Wastewater treatment method and apparatus
JP6561448B2 (en) Method and apparatus for electrodeionization treatment of vanadium-containing water
JP5564817B2 (en) Ion exchange resin regeneration method and ultrapure water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150