WO2017130454A1 - Ultrapure water production apparatus and method for operating ultrapure water production apparatus - Google Patents

Ultrapure water production apparatus and method for operating ultrapure water production apparatus Download PDF

Info

Publication number
WO2017130454A1
WO2017130454A1 PCT/JP2016/076555 JP2016076555W WO2017130454A1 WO 2017130454 A1 WO2017130454 A1 WO 2017130454A1 JP 2016076555 W JP2016076555 W JP 2016076555W WO 2017130454 A1 WO2017130454 A1 WO 2017130454A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
chamber
boron
pure water
production apparatus
Prior art date
Application number
PCT/JP2016/076555
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 伸
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020187023019A priority Critical patent/KR102602540B1/en
Priority to CN201680080295.5A priority patent/CN108602705A/en
Priority to SG11201806360WA priority patent/SG11201806360WA/en
Publication of WO2017130454A1 publication Critical patent/WO2017130454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/54Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to an ultrapure water production apparatus for producing ultrapure water used in the electronics industry such as semiconductors and liquid crystals, and an operation method of the ultrapure water production apparatus.
  • the present invention relates to an ultrapure water production apparatus capable of efficiently removing boron and preventing the leakage and an operation method thereof.
  • ultrapure water used in the field of electronic industries such as semiconductors is processed raw water with an ultrapure water production system composed of a pretreatment system, a primary pure water system, and a subsystem for processing primary pure water. It is manufactured by.
  • the pretreatment system is composed of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc., and removes suspended substances and colloidal substances in raw water.
  • the primary pure water system basically includes a reverse osmosis (RO) membrane separation device and a regenerative ion exchange device (such as a mixed bed type or a four-bed five-column type), and the RO membrane separation device removes salts.
  • RO reverse osmosis
  • a regenerative ion exchange device such as a mixed bed type or a four-bed five-column type
  • the subsystem basically includes a low-pressure ultraviolet (UV) oxidizer, a non-regenerative mixed bed ion exchanger and an ultrafiltration (UF) membrane separator, and further increases the purity of primary pure water. Use ultrapure water.
  • UV ultraviolet
  • UF ultrafiltration
  • TOC is decomposed into an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp.
  • the organics and CO 2 produced by the decomposition are removed by the non-regenerative mixed bed ion exchanger of the subsequent stage.
  • the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrapure water production apparatus capable of efficiently removing boron and quickly preventing the leakage. Moreover, an object of this invention is to provide the operating method of this ultrapure water manufacturing apparatus.
  • the present invention firstly provides an ultrapure system having a primary pure water system, and a subsystem including an ion exchange device and a UF membrane device for treating primary pure water obtained from the primary pure water system.
  • an ultrapure water production apparatus comprising a boron concentration measuring means and an electrodeionization apparatus at a stage subsequent to the primary pure water system and before the subsystem (Invention 1).
  • the boron removal rate of the electrodeionization apparatus with respect to the primary pure water is measured in advance, and the boron concentration of the primary pure water is continuously monitored by the boron concentration measuring means.
  • the boron detection level of a general-purpose boron monitor or the like is 10 ppb, and the reading is 1 ppb level. It can be simulated with the boron concentration of treated water in the deionizer. And since the boron concentration of the ultrapure water treated by the subsystem is smaller than at least the treated water of this electrodeionization device, the boron concentration of the ultrapure water treated by the subsystem is reduced to the treated water of the electrodeionization device.
  • the primary pure water system preferably includes a reverse osmosis membrane device and an ion exchange device (Invention 2).
  • the electrodeionization apparatus comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and anode, and these cation exchange membrane and anion exchange membrane.
  • a desalting chamber and a concentrating chamber that are partitioned by the above-mentioned method, wherein the desalting chamber and the concentrating chamber are filled with an ion exchanger, and the concentrated water passing means for passing the concentrated water through the concentrating chamber; It is preferable to have means for passing raw water through the desalting chamber and taking out deionized water (Invention 3).
  • the electrodeionization apparatus having such a configuration has a high boron removal rate and can maintain a substantially constant removal rate, so that it was detected by the boron concentration measuring means.
  • the boron concentration multiplied by the boron removal rate of the electrodeionization apparatus can be accurately simulated as the boron concentration of the treated water of the electrodeionization apparatus.
  • the concentrated water passing means pass the deionized water that has passed through the desalting chamber as concentrated water (Invention 4).
  • the deionized water that has passed through the desalting chamber is passed through the concentrating chamber, so that the ionic components in the concentrating chamber and the desalting chamber are small. Therefore, it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
  • the concentrated water flow means introduces the concentrated water into the concentration chamber from the side near the deionized water outlet of the demineralization chamber, and at the raw water inlet of the demineralization chamber. It is preferable to flow out from the near side (Invention 5).
  • the electrodeionization device decreases closer to the side closer to the deionized water outlet in the demineralization chamber, and conversely, closer to the deionized water outlet.
  • the ion concentration gap between the desalting chamber and the concentrating chamber can be reduced over the entire area of the desalting chamber and the concentrating chamber, and the boron ion removal rate can be improved. Since it is large, the removal rate of boron can be further increased, so that it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
  • the present invention secondly includes a primary pure water system, and a subsystem including an ion exchange device and a UF membrane device for treating primary pure water obtained from the primary pure water system, and the primary pure water system.
  • a method of operating an ultrapure water production apparatus comprising a boron concentration measuring means and an electrodeionization apparatus upstream of the subsystem after the water system, wherein the water to be treated is connected to the primary pure water system and subsystem.
  • the ultrapure water is produced by passing the water, whether or not the ion exchange device of the subsystem needs to be replaced based on the boron ion removal rate of the electrodeionization device and the boron concentration measured by the boron concentration measuring means.
  • a method for operating an ultrapure water production apparatus is provided (invention 6).
  • the boron removal rate of the electrodeionization apparatus with respect to the primary pure water is measured in advance, and the boron concentration of the primary pure water is continuously monitored by the boron concentration measuring means.
  • the boron detection level of a general-purpose boron monitor or the like is 10 ppb, and the reading is 1 ppb level. It is possible to determine whether or not the ion exchange device needs to be replaced based on the boron concentration of the treated water of the deionizer and the boron concentration and the boron concentration of the ultrapure water of the subsystem.
  • the primary pure water system preferably includes a reverse osmosis membrane device and an ion exchange device (Invention 7).
  • the electrodeionization device comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and anode, and these cation exchange membrane and anion exchange membrane.
  • a desalting chamber and a concentrating chamber that are partitioned by the above-mentioned method, wherein the desalting chamber and the concentrating chamber are filled with an ion exchanger, and the concentrated water passing means for passing the concentrated water through the concentrating chamber; It is preferable to have means for passing raw water through the desalting chamber and taking out deionized water (Invention 8).
  • the deionized water that has passed through the desalting chamber is passed through the concentrating chamber, so that the ionic components in the concentrating chamber and the desalting chamber are small. Therefore, since the boron removal rate can be increased, it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
  • the concentrated water flow means introduces a part of the treated water that has passed through the desalting chamber as the concentrated water (Invention 9).
  • the deionized water that has passed through the desalting chamber is passed through the concentration chamber, so that the deionized water itself has a small amount of ionic components. Therefore, it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
  • invention 9 while introducing the said concentrated water from the side near the deionized water taking-out port of the said demineralization chamber of the said concentration chamber, from the side near the raw
  • the ion concentration decreases toward the side closer to the deionized water outlet in the demineralization chamber, and conversely, it is closer to the deionized water outlet.
  • the ion concentration gap between the desalting chamber and the concentrating chamber can be reduced over the entire area of the desalting chamber and the concentrating chamber, and the boron ion removal rate can be improved. Since it is large, the boron removal rate can be further increased, so that it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
  • the boron concentration measuring means and the electrodeionization device are provided in the subsequent stage of the primary pure water system, and the boron concentration of the primary pure water is continuously monitored by the boron concentration measuring means.
  • the measured boron concentration multiplied by the boron removal rate of the electrodeionization device is simulated as the boron concentration of the treatment water of the electrodeionization device, and the subsystem is based on the boron concentration of the electrodeionizer treatment water.
  • the measured value is larger than the predetermined value, replace the ion exchange device of the subsystem to replace the ion of the subsystem.
  • the exchange device can be exchanged efficiently and without causing leakage of boron.
  • FIG. 1 is a flow chart showing an ultrapure water production apparatus according to a first embodiment of the present invention.
  • an ultrapure water production apparatus 1 includes a primary pure water system 2 and a subsystem 3,
  • the pure water system 2 includes a reverse osmosis membrane (RO) device 4 and a regenerative mixed bed type ion exchange device 5, and a boron as a boron concentration measuring means is disposed at a subsequent stage of the regenerative mixed bed type ion exchange device 5.
  • a monitor 6 and an electrodeionization device 7 are provided, and the electrodeionization device 7 is connected to the subsystem 3 through a nitrogen-sealed subtank 8.
  • the sub-system 3 includes a sub-tank 8, a supply pump P, a UV oxidizer 9, a non-regenerative mixed bed ion exchanger 10, and an ultrafiltration membrane (UF membrane) 11.
  • An ultrafiltration membrane (UF) The membrane) 11 is returned to the sub tank 8 via the use point UP.
  • boron monitor 6 a general-purpose boron monitor capable of measuring a boron concentration of 10 ppb level and a reading of 1 ppb level can be used, for example, sold by Central Science Co., Ltd., SIEVERS An ultrapure water measuring online boron analyzer can be used.
  • the electrodeionization apparatus 7 a device having a configuration as shown in FIGS. 2 and 3 can be suitably used.
  • the electrodeionization apparatus 7 has a plurality of anion exchange membranes 23 and cation exchange membranes 24 alternately arranged between electrodes (anode 21 and cathode 22), and alternates a concentration chamber 25 and a demineralization chamber 26.
  • the desalting chamber 26 is mixed or filled with an ion exchanger (anion exchanger and cation exchanger) made of an ion exchange resin, an ion exchange fiber, a graft exchanger, or the like.
  • the concentration chamber 25, the anode chamber 27, and the cathode chamber 28 are also filled with an ion exchanger.
  • the electrodeionization device 7 includes a water passage means (not shown) for passing the primary pure water W1 into the demineralization chamber 26 and taking the treated water W2 through the regenerative mixed bed ion exchange device 5, and the concentration chamber 25.
  • the concentrated water W3 is concentrated from the side close to the outlet of the treated water W2 in the desalination chamber 26.
  • the concentrated water W3 flows into the concentrating chamber 25 from the side near the raw water inlet of the desalting chamber 26, that is, from the direction opposite to the flow direction of the primary pure water W1 in the desalting chamber 26. Concentrated waste water W4 is discharged.
  • the ion concentration was reduced by introducing a part of the treated water W2 obtained from the desalting chamber 26 into the concentration chamber 25 and using the treated water W2 as the concentrated water W3. It is preferable to use concentrated water W3.
  • a UV oxidizer that irradiates UV having a wavelength near 185 nm which is usually used in an ultrapure water production apparatus, for example, a UV oxidizer using a low-pressure mercury lamp is used. it can.
  • treated water W that has been pretreated by a pretreatment means is supplied to the primary pure water system 2 as necessary, and the reverse osmosis membrane (RO) device 4 and the regenerative mixed bed ion exchange device 5 To process.
  • the reverse osmosis membrane (RO) device 4 removes ionic and colloidal TOC in addition to removing salts.
  • the TOC component adsorbed or ion exchanged by the ion exchange resin is removed to produce the primary pure water W1.
  • the boron concentration [B] of the primary pure water W1 of the regenerative mixed bed ion exchanger 5 is continuously monitored by the boron monitor 6 having a boron detection level of 10 ppb and a reading value of 1 ppb. And after processing this primary pure water W1 with the electrodeionization apparatus 7, the obtained treated water W2 is supplied to the sub tank 8.
  • FIG. 1 the boron concentration [B] of the primary pure water W1 of the regenerative mixed bed ion exchanger 5 is continuously monitored by the boron monitor 6 having a boron detection level of 10 ppb and a reading value of 1 ppb.
  • the boron removal rate is calculated in advance by measuring the boron concentration in the treated water W2 of the electrodeionization apparatus 7 when the predetermined primary pure water W1 having a known boron concentration is treated.
  • the boron removal rate of the electrodeionization apparatus 7 is preferably 99% or more, particularly preferably 99.99% or more.
  • the above-described electrodeionization apparatus as shown in FIGS. 2 and 3 is suitable for setting the boron removal rate to 99.99% or more.
  • the product of the boron concentration of the primary pure water W1 and the boron removal rate of the electrodeionization apparatus 7 can be simulated with the boron concentration [B1] of the treated water W2 (for example, the boron concentration [B of the primary pure water W1 [B ] Is 1 ppb or less and the boron removal rate of the electrodeionization apparatus 7 is 99.99%, the boron concentration [B1] of the treated water W2 can be assumed to be 0.1 ppt or less). Thus, even if the boron concentration of the treated water W2 supplied to the subsystem 3 is 1 ppb or less, it can be continuously monitored.
  • the treated water W2 supplied to the sub tank 8 is supplied by the pump P and processed.
  • processing is performed by the UV oxidation device 9, the non-regenerative mixed bed ion exchange device 10, and the ultrafiltration membrane 11.
  • TOC is decomposed to an organic acid or CO 2 level by ultraviolet rays having a wavelength of 185 nm emitted from a UV lamp.
  • Decomposed organic acids and CO 2 is removed in non-regenerative mixed bed ion exchange device 10 in the subsequent stage.
  • the ultrafiltration membrane 11 fine particles are removed, and the outflow particles of the non-regenerative mixed bed ion exchanger 10 are also removed, and secondary pure water (ultra pure water) W5 is obtained. After this secondary pure water W5 is supplied to the use point UP, the unused portion is returned to the sub tank 8.
  • the boron concentration of the secondary pure water (ultra pure water) W5, which is the treated water of the subsystem 3 is usually much larger than the boron concentration [B1] of the treated water W2. Therefore, if the boron concentration [B1] of the treated water W2 of the electrodeionization apparatus 7 is at a level below the required water quality in consideration of the reduction in the subsystem 3, the water quality is “no problem”. As long as it is continuously operated.
  • the boron removal rate of the electrodeionization apparatus 7 is 99, 99%, and the subsystem 3 can reduce it to 1/10 or less, the primary If the boron concentration of the pure water W1 is 10 ppb or less, continuous operation can be performed.
  • the boron removal ability of the non-regenerative mixed bed ion exchange apparatus 10 is reduced by long-term use and boron easily leaks into the secondary pure water W5, the precise analysis of the secondary pure water W5 is periodically performed. To actually measure the actual boron concentration of the secondary pure water W5. Then, by comparing the actual measured value [B2] of the boron concentration with the boron concentration [B1] of the treated water W2, the measured value [B2] of the boron concentration is a decrease rate with respect to the boron concentration [B1] of the treated water W2.
  • the non-regenerative mixed bed ion exchange apparatus 10 If it shows a tendency to decrease, it is preferable to replace the non-regenerative mixed bed ion exchange apparatus 10 even before the boron concentration [B2] exceeds 0.1 ppt. In this way, boron leakage to the secondary pure water W5 can be prevented in advance. In addition, since the performance of the non-regenerative mixed bed ion exchange device 10 actually shows a tendency to deteriorate, the non-regenerative mixed bed ion exchange device 10 is replaced, so that the replacement frequency can be reduced. So it is also economical.
  • a part of the treated water W2 is concentrated water W3, and the counter flow is transiently passed through the concentration chamber 25 in the direction opposite to the water flow direction of the demineralization chamber 26. Since the concentrated drainage W4 is discharged from the concentration chamber 25 through the system, the concentration of ions in the concentrated water W3 in the concentration chamber 25 becomes lower on the extraction side of the desalination chamber 26, and desalination due to concentration diffusion. Since the influence on the chamber 26 is reduced, the boron removal rate is improved.
  • the water supply of the electrodeionization apparatus 7 is the primary pure water W1
  • there are few ions for example, electrical resistance is as large as about 18 M ⁇ * cm
  • a large amount of current is required, but the desalination chamber 26 and the concentration are concentrated.
  • the electrical resistance in the desalting chamber 26 and the concentrating chamber 25 can be reduced, so that the operating cost can be reduced.
  • the ultrapure water production apparatus of the second embodiment includes the primary pure water system 2 and the subsystem 3 in the first embodiment described above, and the subsystem 3 includes the UV oxidation apparatus 9 and the anion exchange resin apparatus 12. And a degassing membrane 13, a non-regenerative mixed bed ion exchange device 10, and an ultrafiltration membrane (UF membrane) 11.
  • the electrodeionization device 7 itself does not have airtightness, so that a small amount of carbon dioxide or oxygen is mixed in the primary pure water W1. Although there is a risk, since the CO 2 is removed by the anion exchange resin device 12 and the remaining gas component such as dissolved oxygen can be removed by the degassing membrane 13, the dissolved gas component can be reduced.
  • the primary pure water system 2 and the subsystem 3 are the structure of a present Example. Not limited to various configurations.
  • the reverse osmosis membrane (RO) device 4 may be arranged in two stages.
  • the UV oxidizer 9 is provided in the subsystem 3, but the UV oxidizer 9 may not be provided in some cases.
  • the nitrogen-sealed one is used as the sub-tank 8, it may be a normal sub-tank, and the sub-tank 8 may not be used in some cases.
  • water quality analysis means such as a specific resistance meter is provided for measuring the quality of the secondary pure water W5, and the water quality of the secondary pure water W5 is measured on-site, and the specific resistance is lower than a predetermined set value. If it falls, you may make it replace
  • a specific resistance meter is provided for measuring the quality of the secondary pure water W5
  • the specific resistance is lower than a predetermined set value. If it falls, you may make it replace
  • Example 1 Municipal water (treated water) W in Yoshida-cho, Sugawara-gun, Shizuoka Prefecture was treated with a primary pure water system 2 comprising a reverse osmosis membrane (RO) device 4 and a regenerative mixed bed ion exchange device 5. While measuring the boron concentration of this primary pure water W1 with the boron monitor 6, it processed with the electrodeionization apparatus 7, and the treated water W2 was stored in the sub tank 8.
  • the treated water W2 in the sub tank 8 is provided with a UV oxidation device 9, an anion exchange resin device 12, a degassing membrane 13, a non-regenerative mixed bed ion exchange device 10 and an ultrafiltration membrane (UF membrane) 11 in this order.
  • the secondary pure water W5 was produced by passing water through the subsystem 3.
  • Electrodeionization equipment Kurita Kogyo Co., Ltd. KCDI-UPz, desalination chamber 26, concentration chamber 25 and electrode chambers 27 and 28 are filled with ion exchange resin, and a part of treated water W2 is concentrated in a countercurrent manner. 25, water flow, boron removal rate 99.99% or more
  • the value of the boron monitor 6 was stable at 1 to 5 ppb, and the boron concentration of the treated water W2 was estimated to be 0.1 ppt or less, so that the continuous operation was performed.
  • the boron concentration of the treated water W2 was analyzed finely once a month, but was stable at a boron concentration of 0.1 ppt or less, and the boron concentration of the secondary pure water W5 was also 0.1 ppt or less.
  • the specific resistance value of the secondary pure water W5 is stable at an ultrapure water level of approximately 18.2 M ⁇ ⁇ cm even after 3 years, and the non-regenerative mixed bed ion exchange of the subsystem 3 for 3 years. Replacement of the device 10 was not necessary.
  • Example 1 In Example 1, without using the electrodeionization apparatus 7, the boron monitor 6 was provided in the subsequent stage of the non-regenerative mixed bed ion exchange apparatus 10 for monitoring.
  • Example 2 In Example 1, the boron monitor 6 was provided after the non-regenerative mixed bed ion exchange apparatus 10 of the subsystem 3 for monitoring, but the boron concentration could not be detected and the non-regenerative mixed bed type was not detected. It was difficult to determine the replacement time due to breakthrough of the ion exchanger 10.
  • Example 3 In Example 1, monitoring by the boron monitor 6 is performed in the same manner except that the electrodeionization device 7 is not used in the primary pure water device 2 but the electrodeionization device is arranged at the subsequent stage of the UV oxidation device 9 of the subsystem 3. went.
  • the value of the boron monitor 6 was stable at 1 to 5 ppb.
  • the boron concentration of the inflow water of the subsystem 3 is large and the boron monitor 6 is provided in the subsystem 3. Since the water pressure of the treated water in the electrodeionization device is low and unstable, the treatment in the anion exchange resin device 12 and the like provided in the subsequent stage is not stable, and therefore, a precise analysis of the secondary pure water W5 once a month is performed.
  • the fluctuation of the boron concentration in the gas was large, and it was difficult to judge the replacement time due to breakthrough of the non-regenerative mixed bed ion exchanger 10.
  • a decrease in the performance of the electrodeionization apparatus which is considered to be an influence of the oxidizing substance generated in the UV oxidation apparatus 9, was also observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

An ultrapure water production apparatus 1 is provided with a primary pure water system 2 and a subsystem 3. The primary pure water system 2 comprises a reverse osmosis membrane (RO) device 4 and a regenerating mixed bed-type ion exchange device 5, and after said regenerating mixed bed-type ion exchange device 5, is provided with a boron monitor 6 as a boron concentration-measuring means and an electric deionization device 7. The subsystem 3 comprises a UV oxidation device 9, a non-regenerating mixed bed-type ion exchange device 10, and an ultrafiltration membrane 11. The boron concentration of primary pure water W1 is continuously monitored by the boron monitor 6, and assuming that the product of the boron concentration [B] of the primary pure water W1 and the boron removal rate of the electric deionization device 7 is the boron concentration [B1] of the treated water W2, the boron concentration of water supplied to the subsystem 3 is continuously monitored. With such an ultrapure water production apparatus 1, it is possible to efficiently remove boron and promptly prevent leaking thereof.

Description

超純水製造装置および超純水製造装置の運転方法Ultrapure water production apparatus and operation method of ultrapure water production apparatus
 本発明は半導体、液晶等の電子産業分野で利用される超純水を製造する超純水製造装置およびこの超純水製造装置の運転方法に関する。特に、ホウ素を効率的に除去して、そのリークを予防可能な超純水製造装置およびその運転方法に関する。 The present invention relates to an ultrapure water production apparatus for producing ultrapure water used in the electronics industry such as semiconductors and liquid crystals, and an operation method of the ultrapure water production apparatus. In particular, the present invention relates to an ultrapure water production apparatus capable of efficiently removing boron and preventing the leakage and an operation method thereof.
 従来、半導体等の電子産業分野で用いられている超純水は、前処理システム、一次純水システム及び一次純水を処理するサブシステムで構成される超純水製造装置で原水を処理することにより製造されている。 Conventionally, ultrapure water used in the field of electronic industries such as semiconductors is processed raw water with an ultrapure water production system composed of a pretreatment system, a primary pure water system, and a subsystem for processing primary pure water. It is manufactured by.
 この超純水製造装置において、前処理システムは、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより構成され、原水中の懸濁物質やコロイド物質の除去を行う。この過程では高分子系有機物、疎水性有機物などを除去することもできる。また、一次純水システムは、基本的に逆浸透(RO)膜分離装置及び再生型イオン交換装置(混床式又は4床5塔式など)を備え、RO膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。再生型イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換することによりTOC成分の除去を行う。 In this ultrapure water production apparatus, the pretreatment system is composed of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc., and removes suspended substances and colloidal substances in raw water. In this process, high molecular organic substances, hydrophobic organic substances and the like can be removed. The primary pure water system basically includes a reverse osmosis (RO) membrane separation device and a regenerative ion exchange device (such as a mixed bed type or a four-bed five-column type), and the RO membrane separation device removes salts. At the same time, ionic and colloidal TOC are removed. In the regenerative ion exchange apparatus, the TOC component is removed by removing salts and adsorbing or exchanging ions with an ion exchange resin.
 さらに、サブシステムは、基本的に低圧紫外線(UV)酸化装置、及び非再生型混床式イオン交換装置及び限外濾過(UF)膜分離装置を備え、一次純水の純度をより一層高めて超純水にする。低圧UV酸化装置では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOにまで分解する。そして、分解により生成した有機物及びCOは後段の非再生型混床式イオン交換装置で除去される。UF膜分離装置では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。 Furthermore, the subsystem basically includes a low-pressure ultraviolet (UV) oxidizer, a non-regenerative mixed bed ion exchanger and an ultrafiltration (UF) membrane separator, and further increases the purity of primary pure water. Use ultrapure water. In the low-pressure UV oxidizer, TOC is decomposed into an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. The organics and CO 2 produced by the decomposition are removed by the non-regenerative mixed bed ion exchanger of the subsequent stage. In the UF membrane separation apparatus, the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.
 このような従来の超純水製造装置のサブシステムでは、一次純水システムから弱イオン成分、特にホウ素イオンがリークしてきたら非再生型混床式イオン交換装置で除去しているが、非再生型混床式イオン交換装置は、ある程度ホウ素イオンを吸着したら交換する必要がある。近年、超純水に求められるホウ素濃度は0.1ppt以下とますます低くなっており、非再生型混床式イオン交換装置では低濃度域でのホウ素の除去効率が悪いので、ホウ素の要求水質を確実に維持するためには非再生型混床式イオン交換装置を早めに交換する必要があり、その交換頻度が短くなってしまう、という問題点があった。そこで、特許文献1に記載されているようにサブシステム中に電気脱イオン装置を設けることが考えられる。 In the subsystem of such a conventional ultrapure water production apparatus, if weak ion components, particularly boron ions, leak from the primary pure water system, they are removed by a non-regenerative mixed-bed ion exchange device. The mixed bed type ion exchange apparatus needs to be exchanged after adsorbing boron ions to some extent. In recent years, the concentration of boron required for ultrapure water has become lower and lower than 0.1ppt, and non-regenerative mixed bed ion exchangers have poor boron removal efficiency at low concentrations. In order to maintain this reliably, it is necessary to replace the non-regenerative mixed bed type ion exchange apparatus at an early stage, and there is a problem in that the replacement frequency is shortened. Therefore, it is conceivable to provide an electrodeionization device in the subsystem as described in Patent Document 1.
特開平7-8948号公報Japanese Patent Laid-Open No. 7-8948
 しかしながら、特許文献1に記載されているようにサブシステム中に電気脱イオン装置を設けた場合、サブシステムでは超純水に近い高純度の水を処理することになるので、電気が流れにくく脱イオンのための電気抵抗が大きくなってしまうため電流効率が悪く、電気脱イオン装置にかかる負荷も大きくなる、という問題点がある。また、電気脱イオン装置は、その耐圧性を考慮して被処理水の供給圧をあまり大きくできないうえに、処理水の吐出圧力は供給圧よりさらに小さくなるので、電気脱イオン装置の後段での処理が不安定となるため水質の安定性が確保できない上に、ユースポイントにまで超純水を供給するには水圧不足となる、という問題点がある。そこで、電気脱イオン装置の後段に別途ブースターポンプなどの供給装置を設けたりしているが、ブースターポンプからの溶出物の処理を配慮する必要があり、サブシステムの大型化を招きやすい、という問題点がある。 However, when an electrodeionization device is provided in the subsystem as described in Patent Document 1, since the subsystem processes high-purity water close to ultrapure water, it is difficult for electricity to flow. Since the electrical resistance for ions increases, current efficiency is poor, and the load applied to the electrodeionization apparatus also increases. In addition, the electrodeionization device cannot increase the supply pressure of the treated water in consideration of its pressure resistance, and the discharge pressure of the treated water is further smaller than the supply pressure. Since the treatment becomes unstable, the water quality cannot be secured, and the water pressure is insufficient to supply ultrapure water to the point of use. Therefore, although a separate supply device such as a booster pump is provided after the electrodeionization device, it is necessary to consider the treatment of the effluent from the booster pump, and the problem is that the size of the subsystem tends to increase. There is a point.
 さらに、超純水製造装置をどのような構成とした場合であっても、サブシステムから供給される超純水へのホウ素のリークを素早く検知する必要があるが、0.1pptレベルのホウ素濃度をオンサイトで測定する手段がないため、その検知が困難である、という問題点がある。 Furthermore, it is necessary to quickly detect a boron leak to the ultrapure water supplied from the subsystem regardless of the configuration of the ultrapure water production apparatus. Since there is no means for measuring on-site, there is a problem that it is difficult to detect.
 本発明は、上記課題に鑑みてなされたものであり、ホウ素を効率的に除去して、そのリークを迅速に予防可能な超純水製造装置を提供することを目的とする。また、本発明はこの超純水製造装置の運転方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrapure water production apparatus capable of efficiently removing boron and quickly preventing the leakage. Moreover, an object of this invention is to provide the operating method of this ultrapure water manufacturing apparatus.
 上記目的に鑑み、本発明は第一に、一次純水システムと、該一次純水システムから得られた一次純水を処理するイオン交換装置及びUF膜装置を備えたサブシステムとを有する超純水製造装置において、前記一次純水システムの後段で前記サブシステムの前段にホウ素濃度測定手段と電気脱イオン装置とを備える超純水製造装置を提供する(発明1)。 In view of the above object, the present invention firstly provides an ultrapure system having a primary pure water system, and a subsystem including an ion exchange device and a UF membrane device for treating primary pure water obtained from the primary pure water system. In the water production apparatus, there is provided an ultrapure water production apparatus comprising a boron concentration measuring means and an electrodeionization apparatus at a stage subsequent to the primary pure water system and before the subsystem (Invention 1).
 かかる発明(発明1)によれば、あらかじめ一次純水に対する電気脱イオン装置のホウ素除去率を計測しておき、一次純水のホウ素濃度をホウ素濃度測定手段で連続監視する。汎用的なホウ素モニタなどのホウ素検知手段のホウ素の検知レベルは10ppb、読値で1ppbレベルであり、ホウ素濃度測定手段で検知されたホウ素濃度に電気脱イオン装置のホウ素除去率をかけたものを電気脱イオン装置の処理水のホウ素濃度と擬制することができる。そして、サブシステムで処理した超純水のホウ素濃度は、少なくともこの電気脱イオン装置の処理水よりも小さくなるので、サブシステムで処理された超純水のホウ素濃度を電気脱イオン装置処理水のホウ素濃度を基準に判断し、一次純水のホウ素濃度が安定していれば連続運転を継続して、適宜サブシステムの処理水(超純水)のホウ素濃度を精密分析して、その上昇率が大きくなったら、サブシステムのイオン交換装置の破過が近いと判断して、これを交換することで、ホウ素を効率的に除去することができるとともに、ホウ素のリークを迅速に予防することができる。 According to this invention (Invention 1), the boron removal rate of the electrodeionization apparatus with respect to the primary pure water is measured in advance, and the boron concentration of the primary pure water is continuously monitored by the boron concentration measuring means. The boron detection level of a general-purpose boron monitor or the like is 10 ppb, and the reading is 1 ppb level. It can be simulated with the boron concentration of treated water in the deionizer. And since the boron concentration of the ultrapure water treated by the subsystem is smaller than at least the treated water of this electrodeionization device, the boron concentration of the ultrapure water treated by the subsystem is reduced to the treated water of the electrodeionization device. Judging from the boron concentration as a standard, if the boron concentration of primary pure water is stable, continuous operation is continued, and the boron concentration in the treated water (ultra pure water) of the subsystem is appropriately analyzed, and the rate of increase When the value of the ion exchange increases, it is judged that the breakthrough of the ion exchange device of the subsystem is near, and by replacing this, boron can be efficiently removed and boron leakage can be prevented quickly. it can.
 上記発明(発明1)においては、前記一次純水システムが、逆浸透膜装置及びイオン交換装置を有するのが好ましい(発明2)。 In the above invention (Invention 1), the primary pure water system preferably includes a reverse osmosis membrane device and an ion exchange device (Invention 2).
 かかる発明(発明2)によれば、一次純水システムにおいて、ホウ素を効率よく除去することができる。 According to this invention (Invention 2), boron can be efficiently removed in the primary pure water system.
 上記発明(発明1,2)においては、前記電気脱イオン装置が、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に原水を通水して脱イオン水を取り出す手段とを有するのが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the electrodeionization apparatus comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and anode, and these cation exchange membrane and anion exchange membrane. A desalting chamber and a concentrating chamber that are partitioned by the above-mentioned method, wherein the desalting chamber and the concentrating chamber are filled with an ion exchanger, and the concentrated water passing means for passing the concentrated water through the concentrating chamber; It is preferable to have means for passing raw water through the desalting chamber and taking out deionized water (Invention 3).
 かかる発明(発明3)によれば、このような構成を有する電気脱イオン装置は、ホウ素の除去率が高く、ほぼ一定の除去率を維持することができるので、ホウ素濃度測定手段で検知されたホウ素の濃度に電気脱イオン装置のホウ素除去率をかけたものを電気脱イオン装置の処理水のホウ素濃度として精度よく擬制することができる。 According to this invention (Invention 3), the electrodeionization apparatus having such a configuration has a high boron removal rate and can maintain a substantially constant removal rate, so that it was detected by the boron concentration measuring means. The boron concentration multiplied by the boron removal rate of the electrodeionization apparatus can be accurately simulated as the boron concentration of the treated water of the electrodeionization apparatus.
 上記発明(発明3)においては、前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水を濃縮水として通水するのが好ましい(発明4)。 In the above invention (Invention 3), it is preferable that the concentrated water passing means pass the deionized water that has passed through the desalting chamber as concentrated water (Invention 4).
 かかる発明(発明4)によれば、脱塩室を通水した脱イオン水を濃縮室に通水することにより、脱塩水自体イオン成分が微量であるため、濃縮室と脱塩室のイオン濃度の格差を低減することができ、ホウ素の除去率を高くすることができるので、サブシステムのイオン交換装置を長期間交換する必要がない。 According to this invention (invention 4), the deionized water that has passed through the desalting chamber is passed through the concentrating chamber, so that the ionic components in the concentrating chamber and the desalting chamber are small. Therefore, it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
 上記発明(発明4)においては、前記濃縮水通水手段が、前記濃縮水を前記脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、脱塩室の原水入口に近い側から流出するのが好ましい(発明5)。 In the above invention (Invention 4), the concentrated water flow means introduces the concentrated water into the concentration chamber from the side near the deionized water outlet of the demineralization chamber, and at the raw water inlet of the demineralization chamber. It is preferable to flow out from the near side (Invention 5).
 かかる発明(発明5)によれば、電気脱イオン装置は、脱塩室では脱イオン水取り出し口に近い側に向かうほどイオン濃度は低減するので、これとは逆に脱イオン水取り出し口に近い側から脱イオン水を濃縮室に供給することで、脱塩室と濃縮室のイオン濃度の格差を脱塩室と濃縮室の全域において縮小することができ、ホウ素イオンの除去率の向上効果が大きいため、ホウ素の除去率をさらに高くすることができるので、サブシステムのイオン交換装置を長期間交換する必要がない。 According to this invention (invention 5), the electrodeionization device decreases closer to the side closer to the deionized water outlet in the demineralization chamber, and conversely, closer to the deionized water outlet. By supplying deionized water to the concentrating chamber from the side, the ion concentration gap between the desalting chamber and the concentrating chamber can be reduced over the entire area of the desalting chamber and the concentrating chamber, and the boron ion removal rate can be improved. Since it is large, the removal rate of boron can be further increased, so that it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
 また、本発明は第二に、一次純水システムと、該一次純水システムから得られた一次純水を処理するイオン交換装置及びUF膜装置を備えたサブシステムとを有し、前記一次純水システムの後段で前記サブシステムの前段にホウ素濃度測定手段と電気脱イオン装置とを備えた超純水製造装置の運転方法であって、被処理水を一次純水システム及びサブシステムを連続して通水して超純水を製造するに際し、前記電気脱イオン装置のホウ素イオンの除去率と前記ホウ素濃度測定手段により測定されたホウ素濃度とから前記サブシステムのイオン交換装置の交換の要否を判断することを特徴とする超純水製造装置の運転方法を提供する(発明6)。 In addition, the present invention secondly includes a primary pure water system, and a subsystem including an ion exchange device and a UF membrane device for treating primary pure water obtained from the primary pure water system, and the primary pure water system. A method of operating an ultrapure water production apparatus comprising a boron concentration measuring means and an electrodeionization apparatus upstream of the subsystem after the water system, wherein the water to be treated is connected to the primary pure water system and subsystem. When the ultrapure water is produced by passing the water, whether or not the ion exchange device of the subsystem needs to be replaced based on the boron ion removal rate of the electrodeionization device and the boron concentration measured by the boron concentration measuring means. A method for operating an ultrapure water production apparatus is provided (invention 6).
 かかる発明(発明6)によれば、あらかじめ一次純水に対する電気脱イオン装置のホウ素除去率を計測しておき、一次純水のホウ素濃度をホウ素濃度測定手段で連続監視する。汎用的なホウ素モニタなどのホウ素検知手段のホウ素の検知レベルは10ppb、読値で1ppbレベルであり、ホウ素濃度測定手段で検知されたホウ素濃度に電気脱イオン装置のホウ素除去率をかけたものを電気脱イオン装置の処理水のホウ素濃度と擬制し、このホウ素濃度と、前記サブシステムの超純水のホウ素濃度とからイオン交換装置の交換の要否を判断することができる。 According to this invention (Invention 6), the boron removal rate of the electrodeionization apparatus with respect to the primary pure water is measured in advance, and the boron concentration of the primary pure water is continuously monitored by the boron concentration measuring means. The boron detection level of a general-purpose boron monitor or the like is 10 ppb, and the reading is 1 ppb level. It is possible to determine whether or not the ion exchange device needs to be replaced based on the boron concentration of the treated water of the deionizer and the boron concentration and the boron concentration of the ultrapure water of the subsystem.
 上記発明(発明6)においては、前記一次純水システムが、逆浸透膜装置及びイオン交換装置を有するのが好ましい(発明7)。 In the above invention (Invention 6), the primary pure water system preferably includes a reverse osmosis membrane device and an ion exchange device (Invention 7).
 かかる発明(発明7)によれば、一次純水システムにおいて、ホウ素を効率よく除去することができる。 According to this invention (Invention 7), boron can be efficiently removed in the primary pure water system.
 上記発明(発明6,7)においては、前記電気脱イオン装置が、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に原水を通水して脱イオン水を取り出す手段とを有するのが好ましい(発明8)。 In the above inventions (Inventions 6 and 7), the electrodeionization device comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and anode, and these cation exchange membrane and anion exchange membrane. A desalting chamber and a concentrating chamber that are partitioned by the above-mentioned method, wherein the desalting chamber and the concentrating chamber are filled with an ion exchanger, and the concentrated water passing means for passing the concentrated water through the concentrating chamber; It is preferable to have means for passing raw water through the desalting chamber and taking out deionized water (Invention 8).
 かかる発明(発明8)によれば、脱塩室を通水した脱イオン水を濃縮室に通水することにより、脱塩水自体イオン成分が微量であるため、濃縮室と脱塩室のイオン濃度の格差を低減することができるので、ホウ素の除去率を高くすることができるので、サブシステムのイオン交換装置を長期間交換する必要がない。 According to this invention (invention 8), the deionized water that has passed through the desalting chamber is passed through the concentrating chamber, so that the ionic components in the concentrating chamber and the desalting chamber are small. Therefore, since the boron removal rate can be increased, it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
 上記発明(発明8)においては、前記濃縮水通水手段が、前記濃縮水として前記脱塩室を通水した処理水の一部を導入するのが好ましい(発明9)。 In the above invention (Invention 8), it is preferable that the concentrated water flow means introduces a part of the treated water that has passed through the desalting chamber as the concentrated water (Invention 9).
 かかる発明(発明9)によれば、脱塩室を通水した脱イオン水を濃縮室に通水することにより、脱塩水自体イオン成分が微量であるため、濃縮室と脱塩室のイオン濃度の格差を低減することができ、ホウ素の除去率を高くすることができるので、サブシステムのイオン交換装置を長期間交換する必要がない。 According to this invention (invention 9), the deionized water that has passed through the desalting chamber is passed through the concentration chamber, so that the deionized water itself has a small amount of ionic components. Therefore, it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
 上記発明(発明9)においては、前記濃縮水を前記濃縮室の前記脱塩室の脱イオン水取り出し口に近い側から導入すると共に、前記濃縮室の前記脱塩室の原水入口に近い側から流出させるのが好ましい(発明10)。 In the said invention (invention 9), while introducing the said concentrated water from the side near the deionized water taking-out port of the said demineralization chamber of the said concentration chamber, from the side near the raw | natural water inlet of the said demineralization chamber of the said concentration chamber It is preferable to let it flow out (Invention 10).
 かかる発明(発明10)によれば、電気脱イオン装置は、脱塩室では脱イオン水取り出し口に近い側に向かうほどイオン濃度は低減するので、これとは逆に脱イオン水取り出し口に近い側から脱イオン水を濃縮室に供給することで、脱塩室と濃縮室のイオン濃度の格差を脱塩室と濃縮室の全域において縮小することができ、ホウ素イオンの除去率の向上効果が大きいために、ホウ素の除去率をさらに高くすることができるので、サブシステムのイオン交換装置を長期間交換する必要がない。 According to this invention (invention 10), in the electrodeionization apparatus, the ion concentration decreases toward the side closer to the deionized water outlet in the demineralization chamber, and conversely, it is closer to the deionized water outlet. By supplying deionized water to the concentrating chamber from the side, the ion concentration gap between the desalting chamber and the concentrating chamber can be reduced over the entire area of the desalting chamber and the concentrating chamber, and the boron ion removal rate can be improved. Since it is large, the boron removal rate can be further increased, so that it is not necessary to replace the ion exchange device of the subsystem for a long period of time.
 本発明によれば、一次純水システムの後段にホウ素濃度測定手段と電気脱イオン装置とを設けて、一次純水のホウ素濃度をホウ素濃度測定手段で連続監視して、このホウ素濃度測定手段で測定されたホウ素濃度に電気脱イオン装置のホウ素除去率をかけたものを電気脱イオン装置の処理水のホウ素濃度と擬制し、この電気脱イオン装置処理水のホウ素濃度を基準として、サブシステムで処理された二次純水(超純水)のホウ素濃度の実測値と比較して、実測値が所定の値より大きくなったら、サブシステムのイオン交換装置を交換することで、サブシステムのイオン交換装置をホウ素のリークを招くことなく、かつ効率よく交換することができる。 According to the present invention, the boron concentration measuring means and the electrodeionization device are provided in the subsequent stage of the primary pure water system, and the boron concentration of the primary pure water is continuously monitored by the boron concentration measuring means. The measured boron concentration multiplied by the boron removal rate of the electrodeionization device is simulated as the boron concentration of the treatment water of the electrodeionization device, and the subsystem is based on the boron concentration of the electrodeionizer treatment water. Compared with the measured boron concentration of the treated secondary pure water (ultra pure water), if the measured value is larger than the predetermined value, replace the ion exchange device of the subsystem to replace the ion of the subsystem. The exchange device can be exchanged efficiently and without causing leakage of boron.
本発明の第一の実施形態に係る超純水製造装置を示すフロー図である。It is a flowchart which shows the ultrapure water manufacturing apparatus which concerns on 1st embodiment of this invention. 同実施形態に係る超純水製造装置に用いる電気脱イオン装置の構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of the electrodeionization apparatus used for the ultrapure water manufacturing apparatus which concerns on the same embodiment. 図2の電気脱イオン装置を示す系統図である。It is a systematic diagram which shows the electrodeionization apparatus of FIG. 本発明の第二の実施形態に係る超純水製造装置を示すフロー図である。It is a flowchart which shows the ultrapure water manufacturing apparatus which concerns on 2nd embodiment of this invention.
 以下、本発明の第一の実施形態に係る超純水製造装置について添付図面を参照して説明する。 Hereinafter, the ultrapure water production apparatus according to the first embodiment of the present invention will be described with reference to the accompanying drawings.
 図1は本発明の第一の実施形態による超純水製造装置を示すフロー図であり、図1において、超純水製造装置1は、一次純水システム2とサブシステム3とを備え、一次純水システム2は、逆浸透膜(RO)装置4及び再生型混床式イオン交換装置5を有し、この再生型混床式イオン交換装置5の後段には、ホウ素濃度測定手段としてのホウ素モニタ6と電気脱イオン装置7とを有し、この電気脱イオン装置7は、窒素シールしたサブタンク8を介してサブシステム3に接続している。そして、サブシステム3は、サブタンク8と供給ポンプPとUV酸化装置9と非再生型混床式イオン交換装置10と限外ろ過膜(UF膜)11とを有し、限外ろ過膜(UF膜)11からユースポイントUPを経由してサブタンク8に還流する構成となっている。 FIG. 1 is a flow chart showing an ultrapure water production apparatus according to a first embodiment of the present invention. In FIG. 1, an ultrapure water production apparatus 1 includes a primary pure water system 2 and a subsystem 3, The pure water system 2 includes a reverse osmosis membrane (RO) device 4 and a regenerative mixed bed type ion exchange device 5, and a boron as a boron concentration measuring means is disposed at a subsequent stage of the regenerative mixed bed type ion exchange device 5. A monitor 6 and an electrodeionization device 7 are provided, and the electrodeionization device 7 is connected to the subsystem 3 through a nitrogen-sealed subtank 8. The sub-system 3 includes a sub-tank 8, a supply pump P, a UV oxidizer 9, a non-regenerative mixed bed ion exchanger 10, and an ultrafiltration membrane (UF membrane) 11. An ultrafiltration membrane (UF) The membrane) 11 is returned to the sub tank 8 via the use point UP.
 この超純水製造装置1において、ホウ素モニタ6としては、ホウ素濃度10ppbレベル、読値で1ppbレベルの測定が可能な汎用的なホウ素モニタを用いることができ、例えば、セントラル科学(株)販売、SIEVERS超純水測定オンラインホウ素分析計を用いることができる。 In this ultrapure water production apparatus 1, as the boron monitor 6, a general-purpose boron monitor capable of measuring a boron concentration of 10 ppb level and a reading of 1 ppb level can be used, for example, sold by Central Science Co., Ltd., SIEVERS An ultrapure water measuring online boron analyzer can be used.
 また、電気脱イオン装置7としては、図2及び図3に示すような構成を有するものを好適に用いることができる。 Further, as the electrodeionization apparatus 7, a device having a configuration as shown in FIGS. 2 and 3 can be suitably used.
 図2において、電気脱イオン装置7は、電極(陽極21、陰極22)の間に複数のアニオン交換膜23及びカチオン交換膜24を交互に配列して濃縮室25と脱塩室26とを交互に形成したものであり、脱塩室26には、イオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるイオン交換体(アニオン交換体及びカチオン交換体)が混合もしくは複層状に充填されている。また、濃縮室25と、陽極室27及び陰極室28にも、イオン交換体が充填されている。 In FIG. 2, the electrodeionization apparatus 7 has a plurality of anion exchange membranes 23 and cation exchange membranes 24 alternately arranged between electrodes (anode 21 and cathode 22), and alternates a concentration chamber 25 and a demineralization chamber 26. The desalting chamber 26 is mixed or filled with an ion exchanger (anion exchanger and cation exchanger) made of an ion exchange resin, an ion exchange fiber, a graft exchanger, or the like. . The concentration chamber 25, the anode chamber 27, and the cathode chamber 28 are also filled with an ion exchanger.
 この電気脱イオン装置7には、脱塩室26に再生型混床式イオン交換装置5の一次純水W1を通水して処理水W2取り出す通水手段(図示せず)と、濃縮室25に濃縮水W3を通水する濃縮水通水手段(図示せず)とが設けられていて、本実施形態においては濃縮水W3を脱塩室26の処理水W2の取り出し口に近い側から濃縮室25内に導入すると共に、脱塩室26の原水入口に近い側から流出する、すなわち脱塩室26における一次純水W1の流通方向と反対方向から濃縮水W3を濃縮室25に導入して濃縮排水W4を吐出する構成となっている。 The electrodeionization device 7 includes a water passage means (not shown) for passing the primary pure water W1 into the demineralization chamber 26 and taking the treated water W2 through the regenerative mixed bed ion exchange device 5, and the concentration chamber 25. In the present embodiment, the concentrated water W3 is concentrated from the side close to the outlet of the treated water W2 in the desalination chamber 26. In addition to being introduced into the chamber 25, the concentrated water W3 flows into the concentrating chamber 25 from the side near the raw water inlet of the desalting chamber 26, that is, from the direction opposite to the flow direction of the primary pure water W1 in the desalting chamber 26. Concentrated waste water W4 is discharged.
 具体的には、図3に示すように脱塩室26から得られる処理水W2の一部を濃縮室25に導入して濃縮水W3として処理水W2を用いることで、イオン濃度が低減された濃縮水W3とすることが好ましい。 Specifically, as shown in FIG. 3, the ion concentration was reduced by introducing a part of the treated water W2 obtained from the desalting chamber 26 into the concentration chamber 25 and using the treated water W2 as the concentrated water W3. It is preferable to use concentrated water W3.
 さらにサブシステム3のUV酸化装置9としては、通常、超純水製造装置に用いられる185nm付近の波長を有するUVを照射するUV酸化装置、例えば低圧水銀ランプを用いたUV酸化装置を用いることができる。 Further, as the UV oxidizer 9 of the subsystem 3, a UV oxidizer that irradiates UV having a wavelength near 185 nm, which is usually used in an ultrapure water production apparatus, for example, a UV oxidizer using a low-pressure mercury lamp is used. it can.
 上述したような構成を有する超純水製造装置の運転方法について説明する。まず、必要に応じ図示しない前処理手段により前処理を施した被処理水Wを一次純水システム2に供給し、逆浸透膜(RO)装置4及び再生型混床式イオン交換装置5とで処理する。逆浸透膜(RO)装置4では、塩類除去のほかにイオン性、コロイド性のTOCを除去する。再生型混床式イオン交換装置5では、塩類除去のほかにイオン交換樹脂によって吸着又はイオン交換されるTOC成分を除去して、一次純水W1を製造する。 The operation method of the ultrapure water production apparatus having the above-described configuration will be described. First, treated water W that has been pretreated by a pretreatment means (not shown) is supplied to the primary pure water system 2 as necessary, and the reverse osmosis membrane (RO) device 4 and the regenerative mixed bed ion exchange device 5 To process. The reverse osmosis membrane (RO) device 4 removes ionic and colloidal TOC in addition to removing salts. In the regenerative type mixed bed type ion exchange device 5, in addition to removing salts, the TOC component adsorbed or ion exchanged by the ion exchange resin is removed to produce the primary pure water W1.
 そして、本実施形態においては、この再生型混床式イオン交換装置5の一次純水W1をホウ素の検知レベルが10ppb、読値で1ppbレベルのホウ素モニタ6によりホウ素濃度〔B〕を連続監視する。そして、この一次純水W1を電気脱イオン装置7で処理した後、得られた処理水W2をサブタンク8に供給する。 In the present embodiment, the boron concentration [B] of the primary pure water W1 of the regenerative mixed bed ion exchanger 5 is continuously monitored by the boron monitor 6 having a boron detection level of 10 ppb and a reading value of 1 ppb. And after processing this primary pure water W1 with the electrodeionization apparatus 7, the obtained treated water W2 is supplied to the sub tank 8. FIG.
 このとき、ホウ素濃度が既知の所定の一次純水W1を処理した際の電気脱イオン装置7の処理水W2におけるホウ素濃度を測定することでホウ素除去率をあらかじめ算定しておく。電気脱イオン装置7のホウ素除去率は99%以上、特に99.99%以上であるのが好ましい。特に前述した図2及び図3に示すような電気脱イオン装置は、ホウ素除去率を99.99%以上とするのに好適である。そして、一次純水W1のホウ素濃度と、電気脱イオン装置7のホウ素除去率の積を処理水W2のホウ素濃度〔B1〕と擬制することができる(例えば、一次純水W1のホウ素濃度〔B〕が1ppb以下で電気脱イオン装置7のホウ素除去率が99.99%であれば、処理水W2のホウ素濃度〔B1〕のホウ素濃度は0.1ppt以下と擬制できる)。このようにしてサブシステム3へ供給される処理水W2のホウ素濃度が1ppb以下であっても連続的に監視することができる。 At this time, the boron removal rate is calculated in advance by measuring the boron concentration in the treated water W2 of the electrodeionization apparatus 7 when the predetermined primary pure water W1 having a known boron concentration is treated. The boron removal rate of the electrodeionization apparatus 7 is preferably 99% or more, particularly preferably 99.99% or more. In particular, the above-described electrodeionization apparatus as shown in FIGS. 2 and 3 is suitable for setting the boron removal rate to 99.99% or more. The product of the boron concentration of the primary pure water W1 and the boron removal rate of the electrodeionization apparatus 7 can be simulated with the boron concentration [B1] of the treated water W2 (for example, the boron concentration [B of the primary pure water W1 [B ] Is 1 ppb or less and the boron removal rate of the electrodeionization apparatus 7 is 99.99%, the boron concentration [B1] of the treated water W2 can be assumed to be 0.1 ppt or less). Thus, even if the boron concentration of the treated water W2 supplied to the subsystem 3 is 1 ppb or less, it can be continuously monitored.
 続いて、サブタンク8に供給された処理水W2をポンプPにより供給して処理する。サブシステム3では、UV酸化装置9と非再生型混床式イオン交換装置10と限外ろ過膜11とによる処理を行う。UV酸化装置9では、UVランプより出される波長185nmの紫外線によりTOCを有機酸さらにはCOレベルにまで分解する。分解された有機酸及びCOは後段の非再生型混床式イオン交換装置10で除去される。限外ろ過膜11では、微小粒子が除去され、非再生型混床式イオン交換装置10の流出粒子も除去され、二次純水(超純水)W5が得られる。この二次純水W5はユースポイントUPに供給された後、未使用分がサブタンク8に返送される。 Subsequently, the treated water W2 supplied to the sub tank 8 is supplied by the pump P and processed. In the subsystem 3, processing is performed by the UV oxidation device 9, the non-regenerative mixed bed ion exchange device 10, and the ultrafiltration membrane 11. In the UV oxidizer 9, TOC is decomposed to an organic acid or CO 2 level by ultraviolet rays having a wavelength of 185 nm emitted from a UV lamp. Decomposed organic acids and CO 2 is removed in non-regenerative mixed bed ion exchange device 10 in the subsequent stage. In the ultrafiltration membrane 11, fine particles are removed, and the outflow particles of the non-regenerative mixed bed ion exchanger 10 are also removed, and secondary pure water (ultra pure water) W5 is obtained. After this secondary pure water W5 is supplied to the use point UP, the unused portion is returned to the sub tank 8.
 このような超純水製造装置1の運転において、サブシステム3の処理水である二次純水(超純水)W5のホウ素濃度は、通常は処理水W2のホウ素濃度〔B1〕よりも大幅に低くなるので、電気脱イオン装置7の処理水W2のホウ素濃度〔B1〕が、サブシステム3での低減分を考慮して要求水質以下となるレベルであれば水質的には「問題なし」として連続運転すればよい。例えば、二次純水W5のホウ素の要求水質が0.1pptで電気脱イオン装置7のホウ素除去率が99、99%で、サブシステム3で1/10以下にまで低減可能であれば、一次純水W1のホウ素濃度が10ppb以下であれば連続運転することができる。 In such operation of the ultrapure water production apparatus 1, the boron concentration of the secondary pure water (ultra pure water) W5, which is the treated water of the subsystem 3, is usually much larger than the boron concentration [B1] of the treated water W2. Therefore, if the boron concentration [B1] of the treated water W2 of the electrodeionization apparatus 7 is at a level below the required water quality in consideration of the reduction in the subsystem 3, the water quality is “no problem”. As long as it is continuously operated. For example, if the required water quality of boron in the secondary pure water W5 is 0.1 ppt, the boron removal rate of the electrodeionization apparatus 7 is 99, 99%, and the subsystem 3 can reduce it to 1/10 or less, the primary If the boron concentration of the pure water W1 is 10 ppb or less, continuous operation can be performed.
 そして、長期間の使用により非再生型混床式イオン交換装置10のホウ素除去能は低下して二次純水W5にホウ素がリークしやすくなるので、定期的に二次純水W5の精密分析を行い、二次純水W5の実際のホウ素濃度を実測するのが好ましい。そして、このホウ素濃度の実測値〔B2〕と処理水W2のホウ素濃度〔B1〕とを対比して、ホウ素濃度の実測値〔B2〕の値が処理水W2のホウ素濃度〔B1〕に対する減少率が低下する傾向を示したら、ホウ素濃度〔B2〕が0.1pptを超える前であっても非再生型混床式イオン交換装置10を交換するのが好ましい。このようにして二次純水W5へのホウ素のリークを未然に防止することができる。しかも、実際に非再生型混床式イオン交換装置10の性能が低下する傾向を示してから、非再生型混床式イオン交換装置10を交換することになるので、その交換頻度も少なくて済むので、経済性にも優れている。 Further, since the boron removal ability of the non-regenerative mixed bed ion exchange apparatus 10 is reduced by long-term use and boron easily leaks into the secondary pure water W5, the precise analysis of the secondary pure water W5 is periodically performed. To actually measure the actual boron concentration of the secondary pure water W5. Then, by comparing the actual measured value [B2] of the boron concentration with the boron concentration [B1] of the treated water W2, the measured value [B2] of the boron concentration is a decrease rate with respect to the boron concentration [B1] of the treated water W2. If it shows a tendency to decrease, it is preferable to replace the non-regenerative mixed bed ion exchange apparatus 10 even before the boron concentration [B2] exceeds 0.1 ppt. In this way, boron leakage to the secondary pure water W5 can be prevented in advance. In addition, since the performance of the non-regenerative mixed bed ion exchange device 10 actually shows a tendency to deteriorate, the non-regenerative mixed bed ion exchange device 10 is replaced, so that the replacement frequency can be reduced. So it is also economical.
 特に、本実施形態においては、電気脱イオン装置7として、この処理水W2の一部を濃縮水W3として濃縮室25に脱塩室26の通水方向とは逆方向に向流一過式で通水し、濃縮室25から濃縮排水W4を系外へ排出させているので、脱塩室26の取り出し側ほど濃縮室25の濃縮水W3中のイオン濃度が低いものとなり、濃度拡散による脱塩室26への影響が小さくなるため、ホウ素の除去率が向上している。また、電気脱イオン装置7の給水は一次純水W1であるため、イオンが少ない(例えば電気抵抗が18MΩ・cm程度と大きい)ので、多量の電流が必要であるが、脱塩室26及び濃縮室25の両方にイオン交換体を充填することにより、脱塩室26及び濃縮室25における電気抵抗を低下させることができるので、運転費を低減することができるようになっている。 In particular, in the present embodiment, as the electrodeionization apparatus 7, a part of the treated water W2 is concentrated water W3, and the counter flow is transiently passed through the concentration chamber 25 in the direction opposite to the water flow direction of the demineralization chamber 26. Since the concentrated drainage W4 is discharged from the concentration chamber 25 through the system, the concentration of ions in the concentrated water W3 in the concentration chamber 25 becomes lower on the extraction side of the desalination chamber 26, and desalination due to concentration diffusion. Since the influence on the chamber 26 is reduced, the boron removal rate is improved. Moreover, since the water supply of the electrodeionization apparatus 7 is the primary pure water W1, since there are few ions (for example, electrical resistance is as large as about 18 MΩ * cm), a large amount of current is required, but the desalination chamber 26 and the concentration are concentrated. By filling both chambers 25 with ion exchangers, the electrical resistance in the desalting chamber 26 and the concentrating chamber 25 can be reduced, so that the operating cost can be reduced.
 さらに、本実施形態においては、サブタンク8として窒素シールしたものを用いているので、空気中の二酸化炭素や酸素の溶解を抑制して二次純水W5の比抵抗の低下を抑制することができるようになっている。 Furthermore, in this embodiment, since the nitrogen tank sealed as the sub tank 8 is used, dissolution of carbon dioxide and oxygen in the air can be suppressed and a decrease in specific resistance of the secondary pure water W5 can be suppressed. It is like that.
 次に本発明の第二実施形態に係る超純水製造装置について図4に基づいて説明する。 Next, the ultrapure water production apparatus according to the second embodiment of the present invention will be described with reference to FIG.
 第二の実施形態の超純水製造装置は、前述した第一の実施形態において、一次純水システム2とサブシステム3とを備え、サブシステム3が、UV酸化装置9とアニオン交換樹脂装置12と脱気膜13と非再生型混床式イオン交換装置10と限外ろ過膜(UF膜)11とを有する構成としたものである。 The ultrapure water production apparatus of the second embodiment includes the primary pure water system 2 and the subsystem 3 in the first embodiment described above, and the subsystem 3 includes the UV oxidation apparatus 9 and the anion exchange resin apparatus 12. And a degassing membrane 13, a non-regenerative mixed bed ion exchange device 10, and an ultrafiltration membrane (UF membrane) 11.
 このようにサブシステムにアニオン交換樹脂装置12と脱気膜13とを設けることにより、電気脱イオン装置7はそれ自身気密性を有しないので、一次純水W1に炭酸ガスや酸素が微量混入するリスクがあるが、アニオン交換樹脂装置12によりCOを除去するとともに脱気膜13で溶存酸素などの残存する気体成分を除去することができるので、溶存ガス成分を低減することができる。 By providing the anion exchange resin device 12 and the degassing membrane 13 in the subsystem in this manner, the electrodeionization device 7 itself does not have airtightness, so that a small amount of carbon dioxide or oxygen is mixed in the primary pure water W1. Although there is a risk, since the CO 2 is removed by the anion exchange resin device 12 and the remaining gas component such as dissolved oxygen can be removed by the degassing membrane 13, the dissolved gas component can be reduced.
 以上、本発明について、前記実施形態に基づき説明してきたが、本発明は前記実施形態に限らず種々の変形実施が可能であり、一次純水システム2とサブシステム3は本実施例の構成に限らず種々の構成とすることができる。例えば、一次純水システム2では逆浸透膜(RO)装置4を2段に直列してもよい。また、第一の実施形態では、サブシステム3にUV酸化装置9を設けたが、UV酸化装置9は場合によっては設けなくてもよい。さらに、サブタンク8としては、窒素シールしたものを用いたが、通常のサブタンクであってもよく、場合によってはサブタンク8を用いなくてもよい。さらに、二次純水W5の水質測定用に比抵抗計などの他の水質分析手段を設けて、二次純水W5の水質をオンサイトで計測して、比抵抗が所定の設定値よりも低下したら非再生型混床式イオン交換装置10を交換するようにしてもよい。 As mentioned above, although this invention has been demonstrated based on the said embodiment, this invention is not restricted to the said embodiment, A various deformation | transformation implementation is possible, and the primary pure water system 2 and the subsystem 3 are the structure of a present Example. Not limited to various configurations. For example, in the primary pure water system 2, the reverse osmosis membrane (RO) device 4 may be arranged in two stages. In the first embodiment, the UV oxidizer 9 is provided in the subsystem 3, but the UV oxidizer 9 may not be provided in some cases. Further, although the nitrogen-sealed one is used as the sub-tank 8, it may be a normal sub-tank, and the sub-tank 8 may not be used in some cases. Further, other water quality analysis means such as a specific resistance meter is provided for measuring the quality of the secondary pure water W5, and the water quality of the secondary pure water W5 is measured on-site, and the specific resistance is lower than a predetermined set value. If it falls, you may make it replace | exchange the non-regenerative type mixed bed type ion exchange apparatus 10. FIG.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
〔実施例1〕
 静岡県榛原郡吉田町の市水(被処理水)Wを逆浸透膜(RO)装置4と再生型混床式イオン交換装置5とからなる1次純水システム2で処理した。この一次純水W1のホウ素濃度をホウ素モニタ6で測定する一方、電気脱イオン装置7で処理し、処理水W2をサブタンク8に貯留した。このサブタンク8内の処理水W2をUV酸化装置9、アニオン交換樹脂装置12、脱気膜13、非再生型混床式イオン交換装置10及び限外ろ過膜(UF膜)11をこの順に備えたサブシステム3で通水処理して、二次純水W5を製造した。
[Example 1]
Municipal water (treated water) W in Yoshida-cho, Sugawara-gun, Shizuoka Prefecture was treated with a primary pure water system 2 comprising a reverse osmosis membrane (RO) device 4 and a regenerative mixed bed ion exchange device 5. While measuring the boron concentration of this primary pure water W1 with the boron monitor 6, it processed with the electrodeionization apparatus 7, and the treated water W2 was stored in the sub tank 8. FIG. The treated water W2 in the sub tank 8 is provided with a UV oxidation device 9, an anion exchange resin device 12, a degassing membrane 13, a non-regenerative mixed bed ion exchange device 10 and an ultrafiltration membrane (UF membrane) 11 in this order. The secondary pure water W5 was produced by passing water through the subsystem 3.
 なお、電気脱イオン装置7としては、以下のものを使用した。
 電気脱イオン装置:栗田工業(株)製 KCDI-UPz、脱塩室26、濃縮室25及び電極室27,28にイオン交換樹脂を充填し、処理水W2の一部を向流式で濃縮室25に通水、ホウ素除去率99.99%以上
In addition, as the electrodeionization apparatus 7, the following were used.
Electrodeionization equipment: Kurita Kogyo Co., Ltd. KCDI-UPz, desalination chamber 26, concentration chamber 25 and electrode chambers 27 and 28 are filled with ion exchange resin, and a part of treated water W2 is concentrated in a countercurrent manner. 25, water flow, boron removal rate 99.99% or more
 この超純水製造装置の運転において、ホウ素モニタ6の値は1~5ppbで安定しており、処理水W2のホウ素濃度は0.1ppt以下と推測されるので連続運転した。この処理水W2のホウ素濃度を月1回精密分析したが、ホウ素濃度0.1ppt以下で安定しており、二次純水W5のホウ素濃度も0.1ppt以下であった。そして、二次純水W5の比抵抗値は、ほぼ18.2MΩ・cmと超純水レベルで3年間経過しても安定しており、3年間サブシステム3の非再生型混床式イオン交換装置10の交換は不要であった。 In the operation of this ultrapure water production apparatus, the value of the boron monitor 6 was stable at 1 to 5 ppb, and the boron concentration of the treated water W2 was estimated to be 0.1 ppt or less, so that the continuous operation was performed. The boron concentration of the treated water W2 was analyzed finely once a month, but was stable at a boron concentration of 0.1 ppt or less, and the boron concentration of the secondary pure water W5 was also 0.1 ppt or less. The specific resistance value of the secondary pure water W5 is stable at an ultrapure water level of approximately 18.2 MΩ · cm even after 3 years, and the non-regenerative mixed bed ion exchange of the subsystem 3 for 3 years. Replacement of the device 10 was not necessary.
〔比較例1〕
 実施例1において、電気脱イオン装置7を用いずに、非再生型混床式イオン交換装置10の後段にホウ素モニタ6を設けて監視を行った。
[Comparative Example 1]
In Example 1, without using the electrodeionization apparatus 7, the boron monitor 6 was provided in the subsequent stage of the non-regenerative mixed bed ion exchange apparatus 10 for monitoring.
 この超純水製造装置の運転において、3週間でホウ素モニタ6の値が1ppbを超えたので、非再生型混床式イオン交換装置10の交換が必要となった。 In the operation of this ultrapure water production apparatus, since the value of the boron monitor 6 exceeded 1 ppb in 3 weeks, it was necessary to replace the non-regenerative mixed bed ion exchange apparatus 10.
〔比較例2〕
 実施例1において、サブシステム3の非再生型混床式イオン交換装置10の後段にホウ素モニタ6を設けて監視を行ったが、ホウ素濃度を検知することができず、非再生型混床式イオン交換装置10の破過による交換時期の判断が困難であった。
[Comparative Example 2]
In Example 1, the boron monitor 6 was provided after the non-regenerative mixed bed ion exchange apparatus 10 of the subsystem 3 for monitoring, but the boron concentration could not be detected and the non-regenerative mixed bed type was not detected. It was difficult to determine the replacement time due to breakthrough of the ion exchanger 10.
〔比較例3〕
 実施例1において、一次純水装置2に電気脱イオン装置7を用いずに、サブシステム3のUV酸化装置9の後段に電気脱イオン装置を配置した以外は同様にしてホウ素モニタ6による監視を行った。
[Comparative Example 3]
In Example 1, monitoring by the boron monitor 6 is performed in the same manner except that the electrodeionization device 7 is not used in the primary pure water device 2 but the electrodeionization device is arranged at the subsequent stage of the UV oxidation device 9 of the subsystem 3. went.
 上述したような超純水製造装置の運転においては、ホウ素モニタ6の値は1~5ppbで安定していたが、サブシステム3の流入水のホウ素濃度が大きいうえに、サブシステム3に設けた電気脱イオン装置の処理水の水圧が低く、しかも安定しないので、この後段に設けたアニオン交換樹脂装置12等での処理も安定せず、このため二次純水W5の月1回の精密分析におけるホウ素濃度の変動が大きく、非再生型混床式イオン交換装置10の破過による交換時期の判断が困難であった。また、UV酸化装置9で生じた酸化性物質の影響とみられる電気脱イオン装置の性能の低下も認められた。 In the operation of the ultrapure water production apparatus as described above, the value of the boron monitor 6 was stable at 1 to 5 ppb. However, the boron concentration of the inflow water of the subsystem 3 is large and the boron monitor 6 is provided in the subsystem 3. Since the water pressure of the treated water in the electrodeionization device is low and unstable, the treatment in the anion exchange resin device 12 and the like provided in the subsequent stage is not stable, and therefore, a precise analysis of the secondary pure water W5 once a month is performed. The fluctuation of the boron concentration in the gas was large, and it was difficult to judge the replacement time due to breakthrough of the non-regenerative mixed bed ion exchanger 10. In addition, a decrease in the performance of the electrodeionization apparatus, which is considered to be an influence of the oxidizing substance generated in the UV oxidation apparatus 9, was also observed.
1…超純水製造装置
2…一次純水システム
3…サブシステム
4…逆浸透膜(RO)装置
5…再生型混床式イオン交換装置
6…ホウ素モニタ(ホウ素濃度測定手段)
7…電気脱イオン装置
8…サブタンク
9…UV酸化装置
10…非再生型混床式イオン交換装置
11…限外ろ過膜(UF膜)
12…アニオン交換樹脂装置
13…脱気膜
W…被処理水
W1一次純水
W2…処理水
W3…濃縮水
W4…濃縮排水
W5…二次純水(超純水)
DESCRIPTION OF SYMBOLS 1 ... Ultrapure water production apparatus 2 ... Primary pure water system 3 ... Subsystem 4 ... Reverse osmosis membrane (RO) apparatus 5 ... Regenerative mixed bed type ion exchange apparatus 6 ... Boron monitor (boron concentration measuring means)
DESCRIPTION OF SYMBOLS 7 ... Electrodeionization apparatus 8 ... Sub tank 9 ... UV oxidation apparatus 10 ... Non-regenerative mixed bed type ion exchange apparatus 11 ... Ultrafiltration membrane (UF membrane)
DESCRIPTION OF SYMBOLS 12 ... Anion exchange resin apparatus 13 ... Deaeration membrane W ... To-be-processed water W1 Primary pure water W2 ... Treated water W3 ... Concentrated water W4 ... Concentrated waste water W5 ... Secondary pure water (ultra pure water)

Claims (10)

  1.  一次純水システムと、該一次純水システムから得られた一次純水を処理するイオン交換装置及びUF膜装置を備えたサブシステムとを有する超純水製造装置において、前記一次純水システムの後段で前記サブシステムの前段にホウ素濃度測定手段と電気脱イオン装置とを備える超純水製造装置。 In the ultrapure water production apparatus having a primary pure water system, and a sub-system provided with an ion exchange device and a UF membrane device for treating the primary pure water obtained from the primary pure water system, the latter stage of the primary pure water system An ultrapure water production apparatus comprising a boron concentration measuring means and an electrodeionization device in the preceding stage of the subsystem.
  2.   前記一次純水システムが、逆浸透膜装置及びイオン交換装置を有することを特徴とする請求項1に記載の超純水製造装置。 The ultrapure water production apparatus according to claim 1, wherein the primary pure water system includes a reverse osmosis membrane device and an ion exchange device.
  3.  前記電気脱イオン装置が、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に原水を通水して脱イオン水を取り出す手段とを有することを特徴とする請求項1又は2に記載の超純水製造装置。 The electrodeionization apparatus comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a desalting chamber and a concentration chamber formed by the cation exchange membrane and the anion exchange membrane. The demineralization chamber and the concentration chamber are filled with an ion exchanger, and the concentrated water passage means for passing the concentrated water to the concentration chamber and the raw water to the demineralization chamber are dewatered. The ultrapure water production apparatus according to claim 1, further comprising means for taking out ionic water.
  4.  前記濃縮水通水手段が、前記脱塩室を通水した脱イオン水を濃縮水として通水することを特徴とする請求項3に記載の超純水製造装置。 The ultrapure water production apparatus according to claim 3, wherein the concentrated water flow means passes deionized water that has passed through the demineralization chamber as concentrated water.
  5.  前記濃縮水通水手段が、前記濃縮水を前記脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、脱塩室の原水入口に近い側から流出することを特徴とする請求項4に記載の超純水製造装置。 The concentrated water flow means introduces the concentrated water into the concentration chamber from the side near the deionized water outlet of the desalting chamber and flows out from the side near the raw water inlet of the desalting chamber. The ultrapure water production apparatus according to claim 4.
  6.  一次純水システムと、該一次純水システムから得られた一次純水を処理するイオン交換装置及びUF膜装置を備えたサブシステムとを有し、前記一次純水システムの後段で前記サブシステムの前段にホウ素濃度測定手段と電気脱イオン装置とを備えた超純水製造装置の運転方法であって、被処理水を一次純水システム及びサブシステムを連続して通水して超純水を製造するに際し、前記電気脱イオン装置のホウ素イオンの除去率と前記ホウ素濃度測定手段により測定されたホウ素濃度とから前記サブシステムのイオン交換装置の交換の要否を判断することを特徴とする超純水製造装置の運転方法。 A primary pure water system; and a subsystem including an ion exchange device and a UF membrane device for treating the primary pure water obtained from the primary pure water system; A method for operating an ultrapure water production apparatus comprising a boron concentration measuring means and an electrodeionization device in the previous stage, wherein the treated water is continuously passed through a primary pure water system and a subsystem to obtain ultrapure water. In manufacturing, the necessity of replacement of the ion exchange device of the subsystem is judged from the boron ion removal rate of the electrodeionization device and the boron concentration measured by the boron concentration measuring means. Operation method of pure water production equipment.
  7.   前記一次純水システムが、逆浸透膜装置及びイオン交換装置を有することを特徴とする請求項6に記載の超純水製造装置の運転方法。 The operation method of the ultrapure water production apparatus according to claim 6, wherein the primary pure water system has a reverse osmosis membrane device and an ion exchange device.
  8.  前記電気脱イオン装置が、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に濃縮水を通水する濃縮水通水手段と前記脱塩室に原水を通水して脱イオン水を取り出す手段とを有することを特徴とする請求項6又は7に記載の超純水製造装置の運転方法。 The electrodeionization apparatus comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a desalting chamber and a concentration chamber formed by the cation exchange membrane and the anion exchange membrane. The demineralization chamber and the concentration chamber are filled with an ion exchanger, and the concentrated water passage means for passing the concentrated water to the concentration chamber and the raw water to the demineralization chamber are dewatered. The operation method of the ultrapure water production apparatus according to claim 6, further comprising means for taking out ionic water.
  9.  前記濃縮水通水手段が、前記濃縮水として前記脱塩室を通水した処理水の一部を導入することを特徴とする請求項8に記載の超純水製造装置の運転方法。 The operation method of the ultrapure water production apparatus according to claim 8, wherein the concentrated water flow means introduces a part of the treated water that has passed through the desalination chamber as the concentrated water.
  10.  前記濃縮水を前記濃縮室の前記脱塩室の脱イオン水取り出し口に近い側から導入すると共に、前記濃縮室の前記脱塩室の原水入口に近い側から流出させることを特徴とする請求項9に記載の超純水製造装置の運転方法。 The concentrated water is introduced from a side near the deionized water outlet of the demineralizing chamber of the concentrating chamber, and flows out from a side of the concentrating chamber near the raw water inlet. The operating method of the ultrapure water manufacturing apparatus of Claim 9.
PCT/JP2016/076555 2016-01-28 2016-09-09 Ultrapure water production apparatus and method for operating ultrapure water production apparatus WO2017130454A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187023019A KR102602540B1 (en) 2016-01-28 2016-09-09 Ultrapure water production device and method of operating the ultrapure water production device
CN201680080295.5A CN108602705A (en) 2016-01-28 2016-09-09 The method of operation of Ultrapure Water Purifiers and Ultrapure Water Purifiers
SG11201806360WA SG11201806360WA (en) 2016-01-28 2016-09-09 Ultrapure water production apparatus and method for operating ultrapure water production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016014922A JP6119886B1 (en) 2016-01-28 2016-01-28 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2016-014922 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130454A1 true WO2017130454A1 (en) 2017-08-03

Family

ID=58666492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076555 WO2017130454A1 (en) 2016-01-28 2016-09-09 Ultrapure water production apparatus and method for operating ultrapure water production apparatus

Country Status (6)

Country Link
JP (1) JP6119886B1 (en)
KR (1) KR102602540B1 (en)
CN (1) CN108602705A (en)
SG (1) SG11201806360WA (en)
TW (1) TWI710529B (en)
WO (1) WO2017130454A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089018A (en) * 2017-11-14 2019-06-13 オルガノ株式会社 Method of operating pure production apparatus and pure water production apparatus
CN110217924A (en) * 2019-06-21 2019-09-10 长沙如洋环保科技有限公司 A kind of use for laboratory water purification machine
WO2021235107A1 (en) * 2020-05-20 2021-11-25 オルガノ株式会社 Boron removal device and boron removal method, and pure water production device and pure water production method
WO2022074975A1 (en) * 2020-10-05 2022-04-14 オルガノ株式会社 Pure water production system and pure water production method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454330B2 (en) * 2018-06-20 2024-03-22 オルガノ株式会社 Boron removal method in treated water, boron removal system, ultrapure water production system, and boron concentration measurement method
CN112154125B (en) * 2018-06-27 2023-02-24 野村微科学股份有限公司 Electrodeionization device, ultrapure water production system, and ultrapure water production method
JP7192519B2 (en) * 2019-01-22 2022-12-20 栗田工業株式会社 Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method
JP2020142178A (en) * 2019-03-05 2020-09-10 栗田工業株式会社 Ultrapure water production apparatus and method for operating the ultrapure water production apparatus
JP7289206B2 (en) * 2019-03-13 2023-06-09 オルガノ株式会社 Boron removal device, boron removal method, pure water production device, and pure water production method
CN110185676A (en) * 2019-06-05 2019-08-30 深圳市粤永能源环保科技有限公司 A kind of pure water hydraulics system
JP6863510B1 (en) * 2019-12-25 2021-04-21 栗田工業株式会社 Control method of ultrapure water production equipment
JP7129965B2 (en) * 2019-12-25 2022-09-02 野村マイクロ・サイエンス株式会社 Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
CN112337323B (en) * 2020-09-28 2021-06-15 南京工业大学 PVDF (polyvinylidene fluoride) polymer separation membrane and preparation method thereof
JP7205576B1 (en) * 2021-07-19 2023-01-17 栗田工業株式会社 Operation method of pure water production system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117744A (en) * 1994-10-21 1996-05-14 Nomura Micro Sci Co Ltd Method for detecting break of ion exchange apparatus
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
WO2009016982A1 (en) * 2007-07-30 2009-02-05 Kurita Water Industries Ltd. Pure water production apparatus and pure water production method
JP2010042324A (en) * 2008-08-08 2010-02-25 Kurita Water Ind Ltd Pure water producing apparatus and pure water producing method
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2014233698A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Operation control method for pure water production device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426072B2 (en) * 1996-01-17 2003-07-14 オルガノ株式会社 Ultrapure water production equipment
JP3794268B2 (en) * 2001-01-05 2006-07-05 栗田工業株式会社 Electrodeionization apparatus and operation method thereof
JP3794354B2 (en) * 2002-07-08 2006-07-05 栗田工業株式会社 Electrodeionization equipment
JP2004261643A (en) * 2003-02-14 2004-09-24 Kurita Water Ind Ltd Electrodeionization apparatus, and operating method therefor
EP2735546B1 (en) * 2012-11-21 2018-02-07 Ovivo Inc. Treatment of water, particularly for obtaining ultrapure water
JP6362299B2 (en) * 2013-03-27 2018-07-25 栗田工業株式会社 Operation method of ion exchange resin apparatus and ion exchange resin apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117744A (en) * 1994-10-21 1996-05-14 Nomura Micro Sci Co Ltd Method for detecting break of ion exchange apparatus
JP2003266097A (en) * 2002-03-13 2003-09-24 Kurita Water Ind Ltd Ultrapure water making apparatus
WO2009016982A1 (en) * 2007-07-30 2009-02-05 Kurita Water Industries Ltd. Pure water production apparatus and pure water production method
JP2010042324A (en) * 2008-08-08 2010-02-25 Kurita Water Ind Ltd Pure water producing apparatus and pure water producing method
JP2011110515A (en) * 2009-11-27 2011-06-09 Kurita Water Ind Ltd Method and apparatus for purifying ion exchange resin
JP2014233698A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Operation control method for pure water production device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089018A (en) * 2017-11-14 2019-06-13 オルガノ株式会社 Method of operating pure production apparatus and pure water production apparatus
CN110217924A (en) * 2019-06-21 2019-09-10 长沙如洋环保科技有限公司 A kind of use for laboratory water purification machine
WO2021235107A1 (en) * 2020-05-20 2021-11-25 オルガノ株式会社 Boron removal device and boron removal method, and pure water production device and pure water production method
JP7368310B2 (en) 2020-05-20 2023-10-24 オルガノ株式会社 Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
WO2022074975A1 (en) * 2020-10-05 2022-04-14 オルガノ株式会社 Pure water production system and pure water production method

Also Published As

Publication number Publication date
TWI710529B (en) 2020-11-21
JP2017131846A (en) 2017-08-03
KR102602540B1 (en) 2023-11-15
CN108602705A (en) 2018-09-28
SG11201806360WA (en) 2018-08-30
JP6119886B1 (en) 2017-04-26
KR20180103964A (en) 2018-09-19
TW201726557A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6119886B1 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
WO2019244443A1 (en) Method for removing boron from water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration
JP2008259961A (en) Electrodeionizing apparatus and its operation method
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2020078772A (en) Electrodeionization device and method for producing deionized water using the same
JP4439674B2 (en) Deionized water production equipment
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
TW202100227A (en) Pure water production device and operation method of pure water production device
JP2013193004A (en) Pure water production method
US20230183115A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
JP7405066B2 (en) Ultrapure water production equipment and ultrapure water production method
JP2009160500A (en) Ultrapure water production method and apparatus
JP2010036173A (en) Water treatment system and water treatment method
JP7192519B2 (en) Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method
JP7243039B2 (en) Urea monitoring device and pure water production device
JP5382282B2 (en) Pure water production equipment
JPH10216749A (en) Ultrapure water making apparatus
JP5257175B2 (en) Ultrapure water production equipment
JP7103467B1 (en) Control method of electric deionization system and electric deionization system
TW202317480A (en) Method of recovering electrode water, and method of manufacturing ultrapure water or water for use in pharmaceuticals
TW202304821A (en) Method for operating pure-water production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201806360W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023019

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16888040

Country of ref document: EP

Kind code of ref document: A1