JP7192519B2 - Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method - Google Patents

Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method Download PDF

Info

Publication number
JP7192519B2
JP7192519B2 JP2019008582A JP2019008582A JP7192519B2 JP 7192519 B2 JP7192519 B2 JP 7192519B2 JP 2019008582 A JP2019008582 A JP 2019008582A JP 2019008582 A JP2019008582 A JP 2019008582A JP 7192519 B2 JP7192519 B2 JP 7192519B2
Authority
JP
Japan
Prior art keywords
water
exchange resin
pure water
ultrapure water
ultrapure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019008582A
Other languages
Japanese (ja)
Other versions
JP2020116507A (en
Inventor
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019008582A priority Critical patent/JP7192519B2/en
Publication of JP2020116507A publication Critical patent/JP2020116507A/en
Application granted granted Critical
Publication of JP7192519B2 publication Critical patent/JP7192519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、ホウ素を極限まで低減したホウ素超高純度除去型超純水製造装置及びホウ素超高純度除去超純水の製造方法に関し、特に高精度の半導体等の電子産業分野、あるいは超純水の分析用のブランク水などに利用可能なホウ素超高純度除去型超純水製造装置及びホウ素超高純度除去超純水の製造方法に関する。 TECHNICAL FIELD The present invention relates to an apparatus for producing ultrapure boron-removed ultrapure water in which boron is reduced to the limit and a method for producing ultrapure boron-removed ultrapure water. The present invention relates to an apparatus for producing ultrapure boron-removed ultrapure water and a method for producing ultrapure water from which ultrapure boron is removed, which can be used for blank water for analysis of

半導体製造工場では、不純物を高度に除去して純度を高めた超純水が使用されている。この超純水の水質管理項目としては、抵抗率、微粒子、生菌、TOC、溶存酸素、ホウ素、シリカ、その他のカチオンイオン及びアニオンイオン、重金属等が挙げられる。 Semiconductor manufacturing plants use ultrapure water that has been purified to a high degree by removing impurities. Water quality control items for this ultrapure water include resistivity, fine particles, viable bacteria, TOC, dissolved oxygen, boron, silica, other cations and anions, and heavy metals.

これらの水質を分析するための水質分析装置においては、ブランク水で希釈したり校正したりすることなどが行われるが、超純水よりも汚染されている水をブランク水として希釈や校正などに用いると、測定値や校正値が異常となり、安定した正しい値が得られなくなる。 Water quality analyzers for analyzing these water qualities are diluted and calibrated with blank water. If it is used, the measured and calibrated values will become abnormal, and it will not be possible to obtain stable and correct values.

そこで、従来は超純水製造装置で製造された超純水をさらにイオン交換樹脂を充填したカラムで処理したり、ホウ素キレート樹脂を充填したカラムで処理した後イオン交換樹脂を充填したカラムで処理したりして、超純水をさらに高純度化していた。 Therefore, conventionally, the ultrapure water produced by ultrapure water production equipment is further processed in a column filled with ion exchange resin, or processed in a column filled with boron chelate resin and then processed in a column filled with ion exchange resin. By doing so, the ultrapure water was further purified.

これらの方法により高純度のブランク水が得られるものの、超純水をイオン交換樹脂を充填したカラムで処理してブランク水を製造する方法では、カラムの寿命が2~3週間以下程度と短いだけでなく、超純水中のホウ素の濃度の変動によりホウ素がブレークしてブランク水中にリークする虞があるので、ブランク水を頻繁にサンプリングして分析しなければならない、という問題点があった。また、超純水をホウ素キレート樹脂を充填したカラムで処理した後イオン交換樹脂を充填したカラムで処理してブランク水を製造する方法では、ホウ素がブレークするまでの寿命の点では長くなるものの、依然処理水を頻繁にサンプリング・分析してホウ素のブレークを監視しなければならない、という問題点があった。 Although high-purity blank water can be obtained by these methods, the method of producing blank water by treating ultrapure water in a column filled with ion-exchange resin only has a short column life of 2 to 3 weeks or less. Moreover, there is a risk that boron may break and leak into the blank water due to fluctuations in the boron concentration in the ultrapure water, so the blank water must be frequently sampled and analyzed. In addition, in the method of producing blank water by treating ultrapure water in a column filled with a boron chelate resin and then in a column filled with an ion exchange resin, the life until boron breaks is longer, but There is still a problem that the treated water must be frequently sampled and analyzed to monitor boron breakage.

そこで、ホウ素キレート樹脂を充填したカラムの代わりに電気脱イオン装置を用いることにより、ホウ素とその他のイオンとを両方除去するとともに、ホウ素がリークするのを監視することを不要とすることが考えられるが、ホウ素を高純度に除去可能な電気脱イオン装置の処理水のNa濃度は最低でも50pptであり、電気脱イオン装置の処理水である超純水のNa濃度は10ppt以下であることから、Na濃度が大幅に増加してしまう、という問題点あることがわかった。 Therefore, by using an electrodeionization device instead of a column filled with a boron chelate resin, it is possible to remove both boron and other ions and eliminate the need to monitor boron leakage. However, the Na concentration of the treated water of the electrodeionization apparatus capable of removing boron with high purity is at least 50 ppt, and the Na concentration of the ultrapure water, which is the treated water of the electrodeionization apparatus, is 10 ppt or less. It turned out that there exists a problem that Na concentration will increase sharply.

本発明は、上記課題に鑑みてなされたものであり、超純水の分析用のブランク水などに利用可能なホウ素超高純度除去型超純水製造装置、及びこれを用いたホウ素超高純度除去超純水の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an ultra-pure boron removal type ultra-pure water production apparatus that can be used for blank water for ultra-pure water analysis, and ultra-pure boron using the same An object of the present invention is to provide a method for producing removed ultrapure water.

上記目的に鑑み本発明は第一に、一次純水装置と、該一次純水装置から得られた一次純水を処理するサブシステムとを有する超純水製造装置の後段に電気脱イオン装置と、H型のカチオン交換樹脂を用いたイオン交換樹脂カラムとを順に備えた、ホウ素超高純度除去型超純水製造装置を提供する(発明1)。 In view of the above object, the present invention firstly provides an ultrapure water production apparatus having a primary pure water apparatus and a subsystem for treating the primary pure water obtained from the primary pure water apparatus, and an electrodeionization apparatus is installed in the subsequent stage of the ultrapure water production apparatus. , and an ion exchange resin column using an H-type cation exchange resin in this order (Invention 1).

かかる発明(発明1)によれば、ホウ素を超高純度に除去した超純水を安定的に製造することができる。これは以下のような理由による。すなわち、超純水を電気脱イオン装置で処理するとNa濃度が大幅に増加する原因について本発明者が検討した結果、電気脱イオン装置に充填するアニオン交換樹脂及びカチオン交換樹脂は、それぞれ塩型(Na形及びCl形)として体積を減少させることで、脱塩室及び濃縮室に高密度で充填しているが、電気脱イオン装置の運転とともにイオン交換樹脂、特に脱塩室の出口側のイオン交換樹脂が再生型(H形)に変換し、これに伴いNaが放出されるため処理水のNa濃度が増加することが原因であることがわかった。そこで、電気脱イオン装置の後段にH型のカチオン交換樹脂を用いたイオン交換樹脂カラムを設けてNaを除去することができ、その一方で、Naが増加したとしてもその量は微量であるためイオン交換樹脂カラムは長期間使用可能である。これらによりホウ素を超高純度で除去した超純水を安定的に供給することが可能となる。 According to this invention (Invention 1), it is possible to stably produce ultrapure water from which boron has been removed to an ultrahigh purity level. This is for the following reasons. That is, as a result of investigation by the present inventors on the cause of the significant increase in Na concentration when ultrapure water is treated with an electrodeionization apparatus, the anion exchange resin and the cation exchange resin to be filled in the electrodeionization apparatus are each salt-type ( The deionization compartment and the concentration compartment are packed at a high density by reducing the volume as Na form and Cl form). It was found that the reason for this was that the exchange resin was converted to a regenerated type (H type), and Na was released along with this, resulting in an increase in the Na concentration in the treated water. Therefore, an ion exchange resin column using an H-type cation exchange resin can be provided in the subsequent stage of the electrodeionization apparatus to remove Na. Ion exchange resin columns can be used for a long time. These make it possible to stably supply ultrapure water from which boron has been removed with ultrahigh purity.

上記発明(発明1)においては、前記電気脱イオン装置が、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に前記脱塩室を通水した脱イオン水を前記脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、前記脱塩室の入口に近い側から流出するものであることが好ましい(発明2)。 In the above invention (Invention 1), the electrodeionization apparatus comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and partitioned by the cation exchange membrane and the anion exchange membrane. desalting compartments and concentrating compartments are formed, wherein the desalting compartments and the concentrating compartments are filled with an ion exchanger, and the deionized water passed through the desalting compartments is desalted into the concentrating compartments. Preferably, the water is introduced into the concentrating chamber from the side of the chamber near the deionized water outlet, and is discharged from the side near the inlet of the demineralizing chamber (Invention 2).

かかる発明(発明2)によれば、このような構成を有する電気脱イオン装置は、脱塩室を通水した脱イオン水を濃縮室に通水することにより、脱塩水自体のイオン成分が微量であるため、濃縮室と脱塩室のイオン濃度の格差を低減することができるので、ホウ素の除去率を高くすることができる。 According to this invention (Invention 2), the electrodeionization apparatus having such a configuration passes the deionized water that has passed through the desalting chambers through the concentration chambers, thereby reducing the ionic components of the desalted water itself to a very small amount. Therefore, the difference in ion concentration between the concentrating compartment and the demineralizing compartment can be reduced, so that the boron removal rate can be increased.

上記発明(発明1,2)においては、前記H型のカチオン交換樹脂が、実質的にH型が100%のカチオン交換樹脂であることが好ましい(発明3)。 In the above inventions (inventions 1 and 2), it is preferable that the H-type cation exchange resin is substantially 100% H-type cation exchange resin (invention 3).

かかる発明(発明3)によれば、超純水を電気脱イオン装置で処理した後、H型のカチオン交換樹脂を用いたイオン交換樹脂カラムで処理するが、この際H型のカチオン交換樹脂がH型が実質的に100%のカチオン交換樹脂であるので、Naを除去するとともにそれ自身がNaを放出しないので、Naの濃度が低いホウ素を超高純度で除去した超純水を安定的に供給することが可能となる。 According to this invention (Invention 3), ultrapure water is treated with an electrodeionization apparatus and then treated with an ion exchange resin column using an H-type cation exchange resin. Since the H type is substantially 100% cation exchange resin, it removes Na and does not itself release Na, so it is possible to stably produce ultrapure water from which boron with a low concentration of Na is removed with ultrahigh purity. supply becomes possible.

また、本発明は第二に、一次純水装置と、該一次純水装置から得られた一次純水を処理するサブシステムとを有する超純水製造装置で製造される超純水を電気脱イオン装置に通水した後、H型のカチオン交換樹脂を用いたイオン交換樹脂カラムで処理する、ホウ素超高純度除去超純水の製造方法を提供する(発明4)。 Secondly, according to the present invention, an ultrapure water production apparatus having a primary pure water apparatus and a subsystem for processing the primary pure water obtained from the primary pure water apparatus is used to electrolyze ultrapure water produced by the ultrapure water production apparatus. Provided is a method for producing ultrapure boron-removed ultrapure water, in which water is passed through an ion device and then treated with an ion exchange resin column using an H-type cation exchange resin (Invention 4).

かかる発明(発明4)によれば、超純水を電気脱イオン装置で処理してホウ素を高度に除去した後、H型のカチオン交換樹脂を用いたイオン交換樹脂カラムで増加したNaを除去することができるので、ホウ素を超高純度で除去した超純水を安定的に供給することが可能となる。 According to this invention (invention 4), ultrapure water is treated with an electrodeionization device to remove boron to a high degree, and then an ion exchange resin column using an H-type cation exchange resin removes the increased Na. Therefore, it is possible to stably supply ultrapure water from which boron has been removed at an ultrahigh purity.

本発明によれば、超純水を電気脱イオン装置で処理してホウ素を高度に除去し、これに伴いNaが増加したとしても、続いてH型のカチオン交換樹脂を用いたイオン交換樹脂カラムで増加したNaを除去することができるので、ホウ素を超高純度で除去した超純水を安定的に供給することが可能となる。 According to the present invention, ultrapure water is treated with an electrodeionization apparatus to remove boron to a high degree. Therefore, it is possible to stably supply ultrapure water from which boron has been removed with ultrahigh purity.

本発明の第一実施形態によるホウ素超高純度除去型超純水製造装置を示すフロー図である。1 is a flow chart showing a boron ultrapure removal type ultrapure water production apparatus according to a first embodiment of the present invention; FIG. 前記第一実施形態のホウ素超高純度除去型超純水製造装置に用いる電気脱イオン装置の構成を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing the configuration of an electrodeionization apparatus used in the ultrapure boron removal type ultrapure water production apparatus of the first embodiment. 図2の電気脱イオン装置を示す系統図である。FIG. 3 is a system diagram showing the electrodeionization apparatus of FIG. 2; 本発明の第二実施形態によるホウ素超高純度除去型超純水製造装置を示すフロー図である。FIG. 4 is a flow diagram showing a boron ultrapure removal type ultrapure water production apparatus according to a second embodiment of the present invention.

以下、本発明の第一の実施形態によるホウ素超高純度除去型超純水製造装置について添付図面を参照して説明する。 Hereinafter, a boron ultrapure removal type ultrapure water production apparatus according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第一実施形態によるホウ素超高純度除去型超純水製造装置を示すフロー図である。図1において、ホウ素超高純度除去型超純水製造装置1は、基本的には超純水製造装置1Aに電気脱イオン装置21及びH型のカチオン交換樹脂を用いたイオン交換樹脂カラム22を順に備えた構成を有する。超純水製造装置1Aは、前処理装置2、一次純水装置3及びサブシステム(二次純水装置)4から構成され、一次純水装置3は、前処理水W1のタンク5とポンプ6と紫外線(UV)酸化装置7と再生式イオン交換装置(混床式又は4床5塔式など)8と膜式脱気装置9とを有する。 FIG. 1 is a flowchart showing a boron ultrapure removal type ultrapure water production apparatus according to a first embodiment of the present invention. In FIG. 1, the boron ultrapure removal type ultrapure water production apparatus 1 basically includes an ultrapure water production apparatus 1A with an electrodeionization device 21 and an ion exchange resin column 22 using an H-type cation exchange resin. It has a configuration in order. The ultrapure water production apparatus 1A is composed of a pretreatment device 2, a primary pure water device 3, and a subsystem (secondary pure water device) 4. The primary pure water device 3 includes a tank 5 for pretreated water W1 and a pump 6. , an ultraviolet (UV) oxidation device 7 , a regenerative ion exchange device (mixed bed type, 4-bed 5-tower type, etc.) 8 , and a membrane deaerator 9 .

サブシステム4は、上述した一次純水装置3で製造された一次純水W2を貯留するサブタンク11とこのサブタンク11から図示しないポンプを介して送給される一次純水W2を処理する紫外線酸化装置12と白金族金属触媒樹脂塔13と膜式脱気装置14と非再生型混床式イオン交換装置15と膜濾過装置としての限外濾過(UF)膜16とで構成され、限外濾過(UF)膜16で処理した超純水(二次純水)W3がユースポイント(POU)17に供給される。 The sub-system 4 includes a sub-tank 11 for storing the primary pure water W2 produced by the primary pure water apparatus 3 and an ultraviolet oxidation device for treating the primary pure water W2 supplied from the sub-tank 11 via a pump (not shown). 12, a platinum group metal catalyst resin column 13, a membrane deaerator 14, a non-regenerative mixed bed ion exchange device 15, and an ultrafiltration (UF) membrane 16 as a membrane filtration device. Ultrapure water (secondary pure water) W3 treated by the UF) membrane 16 is supplied to a point of use (POU) 17 .

上述したような超純水製造装置1Aの限外濾過(UF)膜16で処理した超純水W3の一部を電気脱イオン装置21及びH型のカチオン交換樹脂を用いたイオン交換樹脂カラム22で順に処理する。 Part of the ultrapure water W3 treated with the ultrafiltration (UF) membrane 16 of the ultrapure water production apparatus 1A as described above is passed through an electrodeionization apparatus 21 and an ion exchange resin column 22 using an H-type cation exchange resin. are processed in order.

この電気脱イオン装置21としては、図2及び図3に示すような構成を有するものを好適に用いることができる。 As the electrodeionization device 21, one having a configuration as shown in FIGS. 2 and 3 can be preferably used.

図2において、電気脱イオン装置21は、電極(陽極31、陰極32)の間に複数のアニオン交換膜33及びカチオン交換膜34を交互に配列して濃縮室35と脱塩室36とを交互に形成したものであり、脱塩室36には、イオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるイオン交換体(アニオン交換体及びカチオン交換体)が混合もしくは複層状に充填されている。また、濃縮室35と、陽極室37及び陰極室38にも、イオン交換体が充填されている。 In FIG. 2, the electrodeionization apparatus 21 alternately arranges a plurality of anion exchange membranes 33 and cation exchange membranes 34 between electrodes (anode 31 and cathode 32) to alternate between concentration compartments 35 and deionization compartments 36. The desalting chamber 36 is filled with ion exchangers (anion exchangers and cation exchangers) made of ion exchange resins, ion exchange fibers, graft exchangers, or the like in a mixed or multi-layered form. . The concentrating compartment 35, the anode compartment 37 and the cathode compartment 38 are also filled with ion exchangers.

この電気脱イオン装置21には、脱塩室36に超純水W3を通水して処理水W4を取り出す通水手段(図示せず)と、濃縮室35に濃縮水W5を通水する濃縮水通水手段(図示せず)とが設けられていて、本実施形態においては濃縮水W5を脱塩室36の処理水W4の取り出し口に近い側から濃縮室35内に導入すると共に、脱塩室36の入口に近い側から流出する、すなわち脱塩室36における超純水W3の流通方向と反対方向から濃縮水W5を濃縮室35に導入して濃縮排水W6を吐出する構成となっている。 The electrodeionization apparatus 21 includes water passage means (not shown) for passing ultrapure water W3 through the deionization chamber 36 to take out treated water W4, and concentrating means for passing concentrated water W5 through the concentration chamber 35. A water passage means (not shown) is provided, and in this embodiment, the concentrated water W5 is introduced into the concentrating chamber 35 from the side near the outlet of the treated water W4 of the desalting chamber 36, and the desalting Concentrated water W5 is introduced into the concentration chamber 35 from the side near the inlet of the salting chamber 36, that is, from the direction opposite to the flow direction of the ultrapure water W3 in the demineralization chamber 36, and concentrated waste water W6 is discharged. there is

具体的には、図3に示すように脱塩室36から得られる処理水W4の一部を濃縮室35に導入し、濃縮水W5として処理水W4を用いることで、イオン濃度が低減された濃縮水W5とすることが好ましい。 Specifically, as shown in FIG. 3, part of the treated water W4 obtained from the demineralization chamber 36 is introduced into the concentration chamber 35, and the treated water W4 is used as the concentrated water W5, thereby reducing the ion concentration. It is preferable to use the concentrated water W5.

また、H型のカチオン交換樹脂を用いたイオン交換樹脂カラム22に充填するH型のカチオン交換樹脂は、H型が実質的に100%のカチオン交換樹脂であることが好ましい。ここで本実施形態において、H型が実質的に100%のカチオン交換樹脂とは、H型が99.999%以上のカチオン交換樹脂とする。H型が99.9%であればNa濃度は1ppb=1000pptレベルであり、99.999%でNa濃度は0.01ppb=10pptレベルであり、そして、99.999%でNa濃度は0.001ppb=1pptレベルである。したがって、超純水W3のNa濃度10ppt以下であるので、H型が99.999%以上であるのが好ましい。なお、H型の比率の上限については、食塩で一度Na形にしたカチオン交換樹脂を、H型99.999%以上からさらにレベルをあげることは、電気脱イオン装置の電流による再生で1年以上通水する時間が必要となり現実的でない。 The H-type cation exchange resin packed in the ion exchange resin column 22 using the H-type cation exchange resin is preferably a cation exchange resin in which substantially 100% of the H-type is used. Here, in the present embodiment, the cation exchange resin in which the H type is substantially 100% is defined as a cation exchange resin in which the H type is 99.999% or more. If the H type is 99.9%, the Na concentration is 1 ppb = 1000 ppt level, at 99.999% the Na concentration is 0.01 ppb = 10 ppt level, and at 99.999% the Na concentration is 0.001 ppb = 1 ppt level. Therefore, since the Na concentration of the ultrapure water W3 is 10 ppt or less, it is preferable that the H type is 99.999% or more. Regarding the upper limit of the ratio of the H type, it is necessary to increase the level of the cation exchange resin, which has been converted to the Na form with salt, from 99.999% or more of the H type to 1 year or more in regeneration by the electric current of the electrodeionization apparatus. It is not practical because it takes time for the water to pass through.

次に上述したような構成を有するホウ素超高純度除去型超純水製造装置を用いたホウ素超高純度除去超純水の製造方法について説明する。まず、原水Wを凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理装置2で処理することにより、原水W中の懸濁物質やコロイド物質を除去して前処理水W1を得る。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。 Next, a method for producing ultrapure boron-removed ultrapure water using the apparatus for producing ultrapure boron-removed ultrapure water having the configuration described above will be described. First, the raw water W is treated by a pretreatment device 2 comprising a flocculation, pressure flotation (sedimentation), filtration (membrane filtration) device, etc., thereby removing suspended solids and colloidal substances in the raw water W to obtain pretreated water. Get W1. In this process, it is also possible to remove polymeric organic substances, hydrophobic organic substances, and the like.

次に、一次純水装置3は、前処理水W1中の大半の電解質、微粒子等を除去して一次純水(純水)W2を製造する。 Next, the primary pure water device 3 removes most of the electrolytes, fine particles, etc. in the pretreated water W1 to produce primary pure water (pure water) W2.

そして、この一次純水W2は、サブシステム4に供給されて、紫外線酸化装置12により一次純水W2中に含まれる微量の有機物(TOC成分)を紫外線により酸化分解し、この紫外線の照射により生じた過酸化水素を白金族金属触媒樹脂塔13で分解し、その後段の膜式脱気装置14で混入しているDO(溶存酸素)などの溶存ガスを除去する。続いて非再生型混床式イオン交換装置15で処理することで残留した炭酸イオン、有機酸類、アニオン性物質、さらには金属イオンやカチオン性物質をイオン交換によって除去する。そして、限外濾過(UF)膜16で微粒子を除去して超純水W3とし、これをユースポイント(POU)17に供給して、未使用の超純水はサブタンク11に還流する。 This primary pure water W2 is then supplied to the subsystem 4, where the ultraviolet oxidizer 12 oxidizes and decomposes trace amounts of organic matter (TOC components) contained in the primary pure water W2 with ultraviolet rays. The resulting hydrogen peroxide is decomposed in the platinum group metal catalyst resin column 13, and dissolved gases such as DO (dissolved oxygen) are removed in the membrane deaerator 14 at the subsequent stage. Subsequently, the remaining carbonate ions, organic acids, anionic substances, metal ions and cationic substances are removed by ion exchange by treatment in the non-regenerative mixed bed ion exchange device 15 . Fine particles are removed by an ultrafiltration (UF) membrane 16 to obtain ultrapure water W3, which is supplied to a point of use (POU) 17, and unused ultrapure water is returned to the subtank 11.

このようにして得られる超純水W3は、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、Na濃度10ppt以下、ホウ素濃度10ppt以下である。 The ultrapure water W3 obtained in this way has a resistivity of 18.1 MΩ cm or more, fine particles of 50 nm or more in diameter and 1000 particles/L or less, viable bacteria of 1 particle/L or less, and TOC (Total Organic Carbon). : 1 μg/L or less Total silicon: 0.1 μg/L or less Metals: 1 ng/L or less Ions: 10 ng/L or less Hydrogen peroxide: 30 μg/L or less Na concentration 10 ppt or less Boron concentration 10 ppt or less is.

そして、この超純水W3を分取して、電気脱イオン装置21で処理することにより処理水W4を得る。この処理水W4はホウ素濃度が5ppt以下にまで低減している一方、Na濃度は100ppt程度にまで増加する。そこで、H型のカチオン交換樹脂を用いたイオン交換樹脂カラム22で連続して処理することにより、Na濃度が5ppt以下にまで減少したホウ素超高純度除去超純水W7を得ることができる。 Then, this ultrapure water W3 is fractionated and treated by the electrodeionization apparatus 21 to obtain treated water W4. The boron concentration of this treated water W4 is reduced to 5 ppt or less, while the Na concentration increases to about 100 ppt. Therefore, by performing continuous treatment in the ion exchange resin column 22 using an H-type cation exchange resin, it is possible to obtain ultrapure boron-removed ultrapure water W7 in which the Na concentration has been reduced to 5 ppt or less.

以上、本発明について、上記実施形態に基づいて説明してきたが、本発明は上記実施形態に限らず種々の変形実施が可能である。例えば、一次純水装置3としては、図4に示すように前処理水W1のタンク5とポンプ6と逆浸透膜装置7Aと膜式脱気装8Aと電気脱イオン装置9Aとを備えるものとしてもよく、種々の超純水製造装置に適用可能である。 Although the present invention has been described above based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible. For example, as shown in FIG. 4, the primary pure water apparatus 3 includes a tank 5 for pretreated water W1, a pump 6, a reverse osmosis membrane apparatus 7A, a membrane degassing apparatus 8A, and an electrodeionization apparatus 9A. It can be applied to various ultrapure water production apparatuses.

以下の実施例により本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

〔実施例1〕
図1に示す装置を用い、原水Wを前処理装置2、一次純水装置3及びサブシステム4により処理して超純水W3を製造した。この超純水W3のホウ素濃度は10pptであり、Na濃度は10pptであった。
[Example 1]
Using the apparatus shown in FIG. 1, raw water W was treated by pretreatment apparatus 2, primary pure water apparatus 3 and subsystem 4 to produce ultrapure water W3. This ultrapure water W3 had a boron concentration of 10 ppt and a Na concentration of 10 ppt.

この超純水W3を図2及び図3に示すタイプの電気脱イオン装置(栗田工業社製 KCDI-UPz)21で処理した処理水W4のホウ素濃度は1pptであり、Na濃度は100pptであった。この処理水W4をH形99.9999%以上のカチオン交換樹脂を充填したイオン交換樹脂カラム22にSV=50/hで通水し、ホウ素超高純度除去超純水W7を得た。 This ultrapure water W3 was treated with an electrodeionization device (KCDI-UPz manufactured by Kurita Water Industries Ltd.) 21 of the type shown in FIGS. 2 and 3, and the treated water W4 had a boron concentration of 1 ppt and a Na concentration of 100 ppt. . This treated water W4 was passed through an ion-exchange resin column 22 filled with a cation exchange resin of 99.9999% or more H form at SV=50/h to obtain ultrapure boron-removed ultrapure water W7.

このホウ素超高純度除去超純水W7は、ホウ素濃度、Na濃度ともに1ppレベルであり、水に関する各種精密分析に好適なホウ素フリー水を得ることができた。また、H形99.9999%以上のカチオン交換樹脂を充填したイオン交換樹脂カラム22のNa負荷も10ppt程度と低いことから1~2年以上の寿命を確保可能であり、ホウ素のような頻繁なリーク管理も不要である。 This ultra-pure boron-removed ultrapure water W7 had both a boron concentration and a Na concentration of 1 pp level, and was able to obtain boron-free water suitable for various precision analyses. In addition, since the Na load of the ion exchange resin column 22 packed with a cation exchange resin having an H form of 99.9999% or more is as low as about 10 ppt, it is possible to secure a service life of 1 to 2 years or more, and it is possible to secure a life of 1 to 2 years or more. Leak management is also unnecessary.

1 ホウ素超高純度除去型超純水製造装置
1A 超純水製造装置
2 前処理装置
3 一次純水装置
4 サブシステム(二次純水装置)
21 電気脱イオン装置
22 H型のカチオン交換樹脂を用いたイオン交換樹脂カラム
W 原水
W1 前処理水
W2 一次純水
W3 超純水(二次純水)
W4 処理水
W5 濃縮水
W6 濃縮排水
W7 ホウ素超高純度除去超純水
1 Boron ultrapure removal type ultrapure water production device 1A Ultrapure water production device 2 Pretreatment device 3 Primary pure water device 4 Subsystem (secondary pure water device)
21 Electrodeionization device 22 Ion exchange resin column W using H type cation exchange resin Raw water W1 Pretreated water W2 Primary pure water W3 Ultrapure water (secondary pure water)
W4 Treated water W5 Concentrated water W6 Concentrated waste water W7 Ultra-pure boron-removed ultrapure water

Claims (3)

気脱イオン装置と、イオン交換樹脂としてH型のカチオン交換樹脂のみを用いたイオン交換樹脂カラムとを順に備え
前記電気脱イオン装置には、一次純水装置及び該一次純水装置から得られた一次純水を処理して超純水を製造するサブシステムを有する超純水製造装置とユースポイントとの間を流れる超純水の一部が供給され、
前記H型のカチオン交換樹脂が、実質的にH型が100%のカチオン交換樹脂であり、
前記一次純水装置は、紫外線(UV)酸化装置と、再生式イオン交換装置と、膜式脱気装置とを順に備え、
前記サブシステムは、紫外線酸化装置と、白金族金属触媒樹脂塔と、膜式脱気装置と、非再生型混床式イオン交換装置と、膜濾過装置とを順に備える、ホウ素超高純度除去型超純水製造装置。
An electrodeionization device and an ion exchange resin column using only an H-type cation exchange resin as an ion exchange resin are provided in this order ,
The electrodeionization device has a primary pure water device and a sub-system for processing the primary pure water obtained from the primary pure water device to produce ultrapure water. A portion of the ultrapure water flowing through the
The H-type cation exchange resin is substantially 100% H-type cation exchange resin,
The primary pure water device comprises, in order, an ultraviolet (UV) oxidation device, a regenerative ion exchange device, and a membrane degassing device,
The sub-system comprises, in order, an ultraviolet oxidizer, a platinum group metal catalyst resin tower, a membrane deaerator, a non-regenerative mixed bed ion exchange device, and a membrane filtration device. Ultrapure water production equipment.
前記電気脱イオン装置が、陰極及び陽極と、該陰極及び陽極の間に配置されたカチオン交換膜及びアニオン交換膜と、これらカチオン交換膜及びアニオン交換膜により区画形成された脱塩室及び濃縮室とを備え、前記脱塩室及び前記濃縮室にイオン交換体が充填されていて、前記濃縮室に前記脱塩室を通水した脱イオン水を前記脱塩室の脱イオン水取り出し口に近い側から該濃縮室内に導入すると共に、前記脱塩室の入口に近い側から流出するものである、請求項1に記載のホウ素超高純度除去型超純水製造装置。 The electrodeionization apparatus comprises a cathode and an anode, a cation exchange membrane and an anion exchange membrane disposed between the cathode and the anode, and a desalting chamber and a concentration chamber partitioned by the cation exchange membrane and the anion exchange membrane. wherein the deionization compartments and the concentration compartments are filled with an ion exchanger, and the deionized water passed through the deionization compartments into the concentration compartments is close to the deionized water outlet of the deionization compartments. 2. The apparatus for producing ultrapure boron-removing ultrapure water according to claim 1, wherein the water is introduced into the concentrating chamber from the side and is discharged from the side near the inlet of the demineralizing chamber. 一次純水装置及び該一次純水装置から得られた一次純水を処理して超純水を製造するサブシステムを有する超純水製造装置とユースポイントとの間を流れる超純水の一部を電気脱イオン装置に供給することと、
前記電気脱イオン装置で前記超純水の一部を処理することと、
イオン交換樹脂としてH型のカチオン交換樹脂のみを用いたイオン交換樹脂カラムで前記電気脱イオン装置で処理した処理水を処理することとを含み、
前記H型のカチオン交換樹脂が、実質的にH型が100%のカチオン交換樹脂であり、
前記一次純水装置は、紫外線(UV)酸化装置と、再生式イオン交換装置と、膜式脱気装置とを順に備え、
前記サブシステムは、紫外線酸化装置と、白金族金属触媒樹脂塔と、膜式脱気装置と、非再生型混床式イオン交換装置と、膜濾過装置とを順に備える、ホウ素超高純度除去超純水の製造方法。
Part of the ultrapure water flowing between the point of use and the ultrapure water production device having a primary pure water device and a subsystem for producing ultrapure water by processing the primary pure water obtained from the primary pure water device to an electrodeionization apparatus ; and
treating a portion of the ultrapure water with the electrodeionization device;
treating the treated water treated by the electrodeionization apparatus with an ion- exchange resin column using only an H-type cation exchange resin as the ion-exchange resin ;
The H-type cation exchange resin is substantially 100% H-type cation exchange resin,
The primary pure water device comprises, in order, an ultraviolet (UV) oxidation device, a regenerative ion exchange device, and a membrane degassing device,
The subsystem comprises, in sequence, an ultraviolet oxidation device, a platinum group metal catalyst resin tower, a membrane degasser, a non-regenerative mixed bed ion exchange device, and a membrane filtration device. A method for producing pure water.
JP2019008582A 2019-01-22 2019-01-22 Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method Active JP7192519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019008582A JP7192519B2 (en) 2019-01-22 2019-01-22 Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008582A JP7192519B2 (en) 2019-01-22 2019-01-22 Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method

Publications (2)

Publication Number Publication Date
JP2020116507A JP2020116507A (en) 2020-08-06
JP7192519B2 true JP7192519B2 (en) 2022-12-20

Family

ID=71889473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008582A Active JP7192519B2 (en) 2019-01-22 2019-01-22 Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method

Country Status (1)

Country Link
JP (1) JP7192519B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368310B2 (en) 2020-05-20 2023-10-24 オルガノ株式会社 Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
CN115771955A (en) * 2022-10-28 2023-03-10 江苏汉和日用品有限公司 Pure water preparation process for shampoo or soap

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060827A1 (en) 2007-11-06 2009-05-14 Kurita Water Industries Ltd. Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
JP2012196591A (en) 2011-03-18 2012-10-18 Kurita Water Ind Ltd Subsystem for producing ultrapure water
JP2015020131A (en) 2013-07-22 2015-02-02 栗田工業株式会社 Method and device for treating boron-containing water
JP2017131846A (en) 2016-01-28 2017-08-03 栗田工業株式会社 Apparatus for producing ultrapure water, and method for operating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755319B2 (en) * 1992-08-03 1995-06-14 荏原インフィルコ株式会社 Method and apparatus for producing ultra-ultra pure water from primary pure water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060827A1 (en) 2007-11-06 2009-05-14 Kurita Water Industries Ltd. Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members
JP2012196591A (en) 2011-03-18 2012-10-18 Kurita Water Ind Ltd Subsystem for producing ultrapure water
JP2015020131A (en) 2013-07-22 2015-02-02 栗田工業株式会社 Method and device for treating boron-containing water
JP2017131846A (en) 2016-01-28 2017-08-03 栗田工業株式会社 Apparatus for producing ultrapure water, and method for operating the same

Also Published As

Publication number Publication date
JP2020116507A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
KR100784438B1 (en) apparatus and method for continuous electrodeionization
US7699968B2 (en) Water purifying system
KR20100053571A (en) Pure water production apparatus and pure water production method
JP7192519B2 (en) Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP6863510B1 (en) Control method of ultrapure water production equipment
WO2023149415A1 (en) Pure water production apparatus and operation method for pure water production apparatus
JP4439674B2 (en) Deionized water production equipment
JP4552273B2 (en) Electrodeionization equipment
JP7183208B2 (en) Ultrapure water production device and ultrapure water production method
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP7205576B1 (en) Operation method of pure water production system
JPH1157420A (en) Water run treatment method for electric deionized water manufacturing device
JP7176586B2 (en) Control method for electrodeionization apparatus
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
US20230264981A1 (en) Management method of ultrapure water production system
KR20100051280A (en) Condensate polishing system and method thereof
KR20230126259A (en) Ultrapure Water Production Facility
JP2022089406A (en) Electric deionized water production apparatus and deionized water production method
JP2022089407A (en) Electric type deionized water manufacturing apparatus and deionized water manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150