JP2008259961A - Electrodeionizing apparatus and its operation method - Google Patents

Electrodeionizing apparatus and its operation method Download PDF

Info

Publication number
JP2008259961A
JP2008259961A JP2007104545A JP2007104545A JP2008259961A JP 2008259961 A JP2008259961 A JP 2008259961A JP 2007104545 A JP2007104545 A JP 2007104545A JP 2007104545 A JP2007104545 A JP 2007104545A JP 2008259961 A JP2008259961 A JP 2008259961A
Authority
JP
Japan
Prior art keywords
chamber
water
electrodeionization apparatus
concentration chamber
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104545A
Other languages
Japanese (ja)
Inventor
Hironori Kako
啓憲 加来
Kiminobu Osawa
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007104545A priority Critical patent/JP2008259961A/en
Publication of JP2008259961A publication Critical patent/JP2008259961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeionizing apparatus capable of preventing the occurrence of scales even if water in which inorganic carbonic acid or a hardness component remains is supplied to a concentration chamber and capable of being stably operated over a long period of time. <P>SOLUTION: A flow channel R1 of water W1 to be treated is connected to the desalting chamber 2 of the electrodeionizing apparatus 1 and the outlet side of the desalting chamber 2 is formed as a flow channel R2 of water W2 to be treated. A branch flow channel R3 is provided to the flow channel R2 and connected to the concentration chamber 3 to make it possible to introduce a part of the water W2 to be treated in the desalting chamber 2 into the concentration chamber 3. A water quality sensor 4 being a sensing means is provided to the flow channel R2 while a storage tank 5 of an acid or a scale inhibitor is allowed to communicate with the branch flow channel R3 through a liquid feed pump 6 being a supply means. The water quality sensor 4 and the liquid feed pump 6 are connected to a control means 7 such as a microcomputer or the like and the liquid feed pump 6 can be controlled corresponding to the output of the water quality sensor 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置及びその運転方法に関し、特に、スケール成分濃度が高い被処理水を処理する際に、濃縮室内部での炭酸カルシウムスケールの生成を防止することができる電気脱イオン装置及びその運転方法に関する。   The present invention relates to an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode to alternately form a concentration chamber and a desalting chamber, and an operating method thereof. In particular, the present invention relates to an electrodeionization apparatus capable of preventing the formation of calcium carbonate scale in the concentration chamber and an operating method thereof when treating water to be treated having a high scale component concentration.

従来、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造には、電極(陽極及び陰極)の間に複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成し、脱塩室にイオン交換樹脂、イオン交換繊維又はグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合又は複層状に充填した電気脱イオン装置が多用されている(特許文献1〜3参照)。   Conventionally, for the production of deionized water used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. A plurality of anion exchange membranes and cation exchange membranes are alternately arranged to alternately form a concentration chamber and a desalting chamber, and the anion exchanger comprising an ion exchange resin, an ion exchange fiber, or a graft exchanger in the desalting chamber In addition, an electrodeionization apparatus in which the cation exchanger and the cation exchanger are mixed or packed in multiple layers is often used (see Patent Documents 1 to 3).

電気脱イオン装置は、水解離によってHイオンとOHイオンを生成させ、脱塩室内に充填されているイオン交換体を連続して再生することによって、効率的な脱塩処理が可能であり、従来から広く用いられてきたイオン交換樹脂装置のような薬品を用いた再生処理を必要とせず、完全な連続採水が可能で、高純度の水が得られるという優れた効果を発揮する。 The electrodeionization device generates H + ions and OH ions by water dissociation and continuously regenerates the ion exchanger filled in the desalting chamber, enabling efficient desalting treatment. Thus, it does not require a regeneration treatment using chemicals such as the ion exchange resin apparatus that has been widely used so far, and complete continuous water sampling is possible, and an excellent effect that high-purity water is obtained is exhibited.

しかしながら、河川水、地下水、水道水等を電気脱イオン装置の被処理水とした場合、濃縮室内でのスケール発生やCO負荷増大による処理水導電率の低下が起こることから、これらの水を直接電気脱イオン装置の被処理水として通水することは行われていない。 However, when river water, groundwater, tap water, etc. are treated water of the electrodeionization device, the treated water conductivity decreases due to the generation of scale in the concentration chamber and increased CO 2 load. Water is not directly passed as the water to be treated in the electrodeionization apparatus.

上記の問題点のうちのCO負荷の増大については、比較的安価な脱炭酸装置を電気脱イオン装置の前処理装置として用いることにより解決できる。一方、スケールを防止するためには、電気脱イオン装置の前段に軟化装置等を設置して水中の硬度成分を完全に除去する方法があるが、軟化装置を用いた場合にはその再生が必要となり、再生不要の電気脱イオン装置を用いることによる利点が失われてしまう。 The increase in CO 2 load among the above problems can be solved by using a relatively inexpensive decarboxylation device as a pretreatment device for an electrodeionization device. On the other hand, in order to prevent scale, there is a method to completely remove the hardness component in water by installing a softening device etc. in front of the electrodeionization device. However, if a softening device is used, regeneration is necessary. Thus, the advantages of using a regeneration-free electrodeionization apparatus are lost.

このような問題点を解決するために、従来から電気脱イオン装置の前処理装置として、硬度成分及びCO濃度を低減させるために、逆浸透膜装置(RO膜装置)を設置する方法が用いられている。そして、被処理水中の硬度成分濃度が高い場合には、RO膜装置を直列に二段設置する方法が用いられている。 In order to solve such problems, a method of installing a reverse osmosis membrane device (RO membrane device) has been used as a pretreatment device for an electrodeionization device in order to reduce hardness components and CO 2 concentration. It has been. And when the hardness component density | concentration in to-be-processed water is high, the method of installing RO membrane apparatus in two steps in series is used.

しかしながら、RO膜装置は、0.5〜2MPaという高圧で運転されることから、高価な設備が必要となり、運転費用も上昇する。しかも、電気脱イオン装置の前処理装置としてRO膜装置を用いた場合でも、RO膜からわずかにリークしてくるカルシウムによって、電気脱イオン装置の濃縮室内で炭酸カルシウムスケールが発生するため、長期間安定運転を行うことはできないという問題もあった。そこで、RO膜装置を直列に2段配置してカルシウム等をさらに除去することも行われているが、経費等の点で実用的でない。このため、通常の給水条件において1段のRO膜装置で処理できる場合には、1段のRO膜装置で純水製造システムを設計せざるをえず、かかる場合には、突発的なCa濃度や炭酸濃度が増加する等の給水条件の低下や、RO膜装置の破過等に対応できず、濃縮室内でスケールが発生する懸念がある。   However, since the RO membrane device is operated at a high pressure of 0.5 to 2 MPa, expensive equipment is required and the operating cost increases. In addition, even when an RO membrane device is used as a pretreatment device for an electrodeionization device, calcium carbonate scale is generated in the concentration chamber of the electrodeionization device due to slight leakage of calcium from the RO membrane. There was also a problem that stable operation could not be performed. Thus, two stages of RO membrane devices are arranged in series to further remove calcium and the like, but this is not practical in terms of costs. For this reason, if treatment can be performed with a single-stage RO membrane device under normal water supply conditions, a pure water production system must be designed with a single-stage RO membrane device. In addition, there is a concern that scale cannot be generated in the concentration chamber because it cannot cope with a decrease in water supply conditions such as an increase in the concentration of carbon dioxide or a breakthrough of the RO membrane device.

また、特許文献4及び特許文献5には、電気脱イオン装置の濃縮室をバイポーラ膜で区画して、スケール成分となるカルシウムイオンと炭酸イオンとの会合を防止することで、電気脱イオン装置の前処理装置として必要とされていたRO膜装置を省くことができ、設備コスト、処理コストの低減を図る方法が提案されている。
特許第1782943号公報 特許第2751090号公報 特許第2699256号公報 特開2001−198577号公報 特開2002−186973号公報
In Patent Document 4 and Patent Document 5, the concentration chamber of the electrodeionization device is partitioned by a bipolar membrane to prevent association of calcium ions and carbonate ions, which are scale components, and There has been proposed a method capable of omitting the RO membrane device that has been required as a pretreatment device and reducing the equipment cost and the treatment cost.
Japanese Patent No. 1782943 Japanese Patent No. 2751090 Japanese Patent No. 2699256 JP 2001-198577 A JP 2002-186773 A

上記特許文献4に記載された電気脱イオン装置により、濃縮室のスケールは抑制されるが、濃縮室に無機炭酸(HCO、HCO 、CO )や硬度成分(カルシウム、マグネシウム)を含む水を供給すると、濃縮室内のpHが部分的に高くなっているため、濃縮室内部で炭酸塩スケール(CaCO、MgCO)が析出するおそれがあるという問題点があった。これは、濃縮室に脱塩室の処理水を供給した場合であっても、電気脱イオン装置での処理が不十分で被処理水に含まれる無機炭酸(HCO、HCO 、CO )や硬度成分(カルシウム、マグネシウム)が完全に除去されず残留した場合に生じるおそれがあり、問題となっている。そして、濃縮室でスケールができると、電気脱イオン装置の電気抵抗が上昇し電流が流れにくくなる結果、処理水質が低下したり、濃縮室の閉塞を招いたりする。特に、陽極側濃縮室は、カチオン濃度が高く、pHが高いことから、スケールが生じやすく、陽極側濃縮室への無機炭酸の流入には特に注意が必要であった。 The scale of the concentrating chamber is suppressed by the electrodeionization apparatus described in Patent Document 4, but inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) and hardness components (calcium, magnesium) are contained in the concentrating chamber. When water containing) is supplied, since the pH in the concentration chamber is partially increased, carbonate scale (CaCO 3 , MgCO 3 ) may be precipitated in the concentration chamber. This is because even when the treatment water of the demineralization chamber is supplied to the concentration chamber, the treatment with the electrodeionization apparatus is insufficient and the inorganic carbonic acid (H 2 CO 3 , HCO 3 , This may be a problem when CO 3 ) and hardness components (calcium and magnesium) are not completely removed and remain. And if the scale is made in the concentrating chamber, the electric resistance of the electrodeionization device is increased and it becomes difficult for the current to flow. As a result, the quality of the treated water is lowered or the concentrating chamber is blocked. In particular, the anode-side concentrating chamber has a high cation concentration and a high pH, so scale is likely to occur, and special attention is required for the inflow of inorganic carbonic acid into the anode-side concentrating chamber.

しかしながら、濃縮室への給水負荷の上昇、RO膜の劣化、pH調整トラブルにより脱炭酸が十分行われない等の前処理工程の管理不備等が原因で、電気脱イオン装置の給水条件(許容濃度)を超える無機炭酸、硬度成分が供給された場合に、除去しきれない成分が処理水中に残留し濃縮室に導入されることがあるのが現状であった。   However, the water supply conditions (allowable concentration) of the electrodeionization device are due to poor control of the pretreatment process such as an increase in water supply load to the concentrating chamber, deterioration of the RO membrane, and insufficient decarboxylation due to pH adjustment problems. ), When the amount of inorganic carbonic acid and hardness component exceeding is supplied, components that cannot be removed may remain in the treated water and be introduced into the concentration chamber.

本発明は、上記従来の問題点を解決し、濃縮室に無機炭酸や硬度成分が残留した水が供給されてもスケールの発生を防止することが可能で、長期間安定的にかつ安価で効率良く運転可能な電気脱イオン装置、及びその運転方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems and can prevent the generation of scale even if inorganic carbonic acid or water with a hardness component remaining is supplied to the concentrating chamber. It is an object of the present invention to provide an electrodeionization apparatus that can be operated well and an operation method thereof.

上記課題を解決するために、第一に本発明は、陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、前記脱塩室の処理水の水質を測定する検知手段と、前記濃縮室の供給水に酸又はスケール防止剤を添加する添加手段と、前記検知手段の出力値に基づき前記添加手段を制御する制御手段とを備えることを特徴とする電気脱イオン装置を提供する(請求項1)。   In order to solve the above problems, first, the present invention alternately forms a concentration chamber and a desalting chamber by alternately arranging a plurality of anion exchange membranes and cation exchange membranes between a cathode and an anode. In the electrodeionization apparatus, the detection means for measuring the quality of the treated water in the demineralization chamber, the addition means for adding an acid or a scale inhibitor to the feed water of the concentration chamber, and the output value of the detection means And a control means for controlling the addition means based on the above. (Claim 1)

上記発明(請求項1)によれば、検知手段により脱塩室の処理水の水質を監視し、検知手段の出力値により、水質が低下したのを検知したら濃縮室に無機炭酸、硬度成分が供給される可能性が生じたと判断し、添加手段により濃縮室の供給水に酸を添加してpHを低くすることで炭酸塩スケールの析出を防止し、又は濃縮室にスケール防止剤を導入し炭酸塩スケールの析出を防止することができる。   According to the above invention (invention 1), the quality of the treated water in the desalination chamber is monitored by the detection means, and if it is detected that the water quality has been lowered by the output value of the detection means, the concentration of inorganic carbonic acid and the hardness component is present in the concentration chamber. It is judged that the possibility of being supplied has occurred, and by adding acid to the supply water of the concentration chamber by adding means, the pH is lowered to prevent precipitation of carbonate scale, or a scale inhibitor is introduced into the concentration chamber. Precipitation of carbonate scale can be prevented.

第二に本発明は、陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、前記陰極と前記陽極との間の電気抵抗を測定する検知手段と、前記濃縮室の供給水に酸又はスケール防止剤を添加する添加手段と、前記検知手段の出力値に基づき前記添加手段を制御する制御手段とを備えることを特徴とする電気脱イオン装置を提供する(請求項2)。   Second, the present invention relates to an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode to alternately form a concentration chamber and a desalting chamber. Detecting means for measuring an electrical resistance between the cathode and the anode; an adding means for adding an acid or a scale inhibitor to the feed water of the concentration chamber; and the adding means based on an output value of the detecting means. An electrodeionization apparatus comprising a control means for controlling is provided (claim 2).

上記発明(請求項2)によれば、検知手段により陰極と陽極との間の電気抵抗を監視し、検知手段の出力値により電気抵抗の上昇を検知したらスケールが発生し始めたと判断して、添加手段により濃縮室の供給水に酸を添加してpHを低くすることで炭酸塩スケールを溶解し、又は濃縮室にスケール防止剤を導入し炭酸塩スケールの析出を防止することができる。   According to the above invention (invention 2), the electrical resistance between the cathode and the anode is monitored by the detection means, and it is determined that a scale has started to occur when an increase in electrical resistance is detected by the output value of the detection means, The carbonate scale can be dissolved by adding acid to the feed water of the concentration chamber to lower the pH by adding means, or precipitation of carbonate scale can be prevented by introducing a scale inhibitor into the concentration chamber.

上記発明(請求項1,2)においては、前記脱塩室の流出水の一部を前記濃縮室の流入側へ供給する流路を設けるのが好ましい(請求項3)。かかる発明(請求項3)によれば、水道水のようにカルシウム濃度の高い水を処理する場合であっても、脱イオン水の一部を濃縮室に導入することで、濃縮室の循環水を脱イオン水で希釈してカルシウム濃度を低減することができ、これによりスケールの発生を一層防止することができる。また、検知手段によりスケール化傾向を一層正確に判断することができる。   In the said invention (invention 1,2), it is preferable to provide the flow path which supplies a part of effluent of the said desalination chamber to the inflow side of the said concentration chamber (invention 3). According to this invention (invention 3), even when water having a high calcium concentration such as tap water is treated, a part of deionized water is introduced into the concentrating chamber, so that the circulating water in the concentrating chamber can be obtained. Can be diluted with deionized water to reduce the calcium concentration, thereby further preventing the generation of scale. Moreover, the scaling tendency can be determined more accurately by the detecting means.

上記発明(請求項1〜3)においては、前記濃縮室にバイポーラ膜を設けて、前記濃縮室が区画されているのが好ましい(請求項4)。特にかかる発明(請求項4)においては、前記バイポーラ膜が、前記バイポーラ膜のアニオン交換層面が陽極側に位置し、カチオン交換層面が陰極側に位置するようにして前記濃縮室に設けられているのが好ましい(請求項5)。   In the said invention (Invention 1-3), it is preferable to provide the said concentration chamber by providing a bipolar membrane in the said concentration chamber (Invention 4). Particularly in such an invention (invention 4), the bipolar membrane is provided in the concentration chamber such that the anion exchange layer surface of the bipolar membrane is located on the anode side and the cation exchange layer surface is located on the cathode side. (Claim 5).

上記発明(請求項4,5)によれば、電気脱イオン装置の濃縮室内でスケール成分となるカルシウムイオン(Ca2+)と無機炭酸イオン(CO 2−等)との会合を防止することで、スケールを抑制することができ、しかもこの際、陽極側の濃縮室は、pHが上昇してスケールが生じやすいので、添加手段により濃縮室の供給水に酸を添加し、又は濃縮室にスケール防止剤を導入することにより炭酸塩スケールの析出を防止することができる。 According to the above inventions (Inventions 4 and 5), by preventing association of calcium ions (Ca 2+ ) and inorganic carbonate ions (CO 3 2− etc.) which are scale components in the concentration chamber of the electrodeionization apparatus. In this case, since the pH of the anode-side concentrating chamber is likely to increase due to an increase in pH, acid is added to the water supplied to the concentrating chamber by an adding means, or the scale is added to the concentrating chamber. By introducing an inhibitor, precipitation of carbonate scale can be prevented.

第三に本発明は、陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置の運転方法であって、前記脱塩室の処理水の水質を測定し、前記処理水の水質があらかじめ定めておいた水質より低下したら、前記濃縮室の供給水に酸又はスケール防止剤を添加することを特徴とする電気脱イオン装置の運転方法を提供する(請求項6)。   Thirdly, the present invention relates to an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode to alternately form a concentration chamber and a desalting chamber. In the operation method, the quality of the treated water in the desalination chamber is measured, and when the quality of the treated water is lower than a predetermined quality, an acid or a scale inhibitor is added to the supply water in the concentration chamber. An operation method of the electrodeionization apparatus is provided (claim 6).

上記発明(請求項6)によれば、検知手段により脱塩室の処理水の水質を監視し、検知手段の出力値により、水質が低下したのを検知したら濃縮室に無機炭酸、硬度成分が供給される可能性が生じたと判断し、添加手段により濃縮室の供給水に酸を添加してpHを低くすることで炭酸塩スケールの析出を防止し、又は濃縮室にスケール防止剤を導入し炭酸塩スケールの析出を防止することができる。   According to the above invention (invention 6), the quality of the treated water in the desalination chamber is monitored by the detection means, and when it is detected by the output value of the detection means that the water quality has decreased, the concentration chamber contains inorganic carbonic acid and a hardness component. It is judged that the possibility of being supplied has occurred, and by adding acid to the supply water of the concentration chamber by adding means, the pH is lowered to prevent precipitation of carbonate scale, or a scale inhibitor is introduced into the concentration chamber. Precipitation of carbonate scale can be prevented.

第四に本発明は、陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置の運転方法であって、前記陰極と陽極との間の電気抵抗を測定し、前記電気抵抗があらかじめ定めておいた抵抗より小さくなったら、前記濃縮室の供給水に酸またはスケール防止剤を添加することを特徴とする電気脱イオン装置の運転方法を提供する(請求項7)。   Fourthly, the present invention provides an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode to alternately form a concentration chamber and a desalting chamber. In the operation method, an electrical resistance between the cathode and the anode is measured, and when the electrical resistance becomes smaller than a predetermined resistance, an acid or a scale inhibitor is added to the supply water of the concentration chamber. An operation method of the electrodeionization apparatus is provided (claim 7).

上記発明(請求項7)によれば、検知手段により陰極と陽極との間の電気抵抗を監視し、検知手段の出力値により電気抵抗の上昇を検知したらスケールが発生し始めたと判断して、添加手段により濃縮室の供給水に酸を添加してpHを低くすることで炭酸塩スケールを溶解し、又は濃縮室にスケール防止剤を導入し炭酸塩スケールの析出を防止することができる。   According to the above invention (invention 7), the electrical resistance between the cathode and the anode is monitored by the detection means, and it is determined that a scale has started to occur when an increase in electrical resistance is detected by the output value of the detection means, The carbonate scale can be dissolved by adding acid to the feed water of the concentration chamber to lower the pH by adding means, or precipitation of carbonate scale can be prevented by introducing a scale inhibitor into the concentration chamber.

第五に本発明は、上記発明(請求項1〜5)に係る電気脱イオン装置を備えることを特徴とする純水製造システムを提供する(請求項8)。   Fifthly, the present invention provides a pure water production system comprising the electrodeionization apparatus according to the above invention (Inventions 1 to 5) (Invention 8).

本発明の電気脱イオン装置によれば、検知手段により濃縮室のスケール化傾向を探知して、スケールが生じやすくなったら添加手段により濃縮室の供給水に酸を添加してpHを低くすることで炭酸塩スケールの析出を防止し、又は濃縮室にスケール防止剤を導入し炭酸塩スケールの析出を防止することができる。   According to the electrodeionization apparatus of the present invention, the detection unit detects the tendency of the concentration chamber to scale, and when the scale is likely to be generated, the addition unit adds acid to the supply water of the concentration chamber to lower the pH. Thus, precipitation of carbonate scale can be prevented, or precipitation of carbonate scale can be prevented by introducing a scale inhibitor into the concentration chamber.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は、本発明の第1の実施形態による電気脱イオン装置のシステム構成を示すフロー図であり、図2は、この電気脱イオン装置の脱塩室及び濃縮室への水の流れを示す概略図であり、図3は、脱塩室及び濃縮室を示す拡大図であり、図4は、脱塩室及び濃縮室のイオンの流れを示す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flowchart showing the system configuration of an electrodeionization apparatus according to the first embodiment of the present invention, and FIG. 2 shows the flow of water to the demineralization chamber and the concentration chamber of the electrodeionization apparatus. FIG. 3 is a schematic view, FIG. 3 is an enlarged view showing a desalting chamber and a concentration chamber, and FIG. 4 is a cross-sectional view showing the flow of ions in the desalting chamber and the concentration chamber.

本実施形態では、電気脱イオン装置1は、脱塩室2と濃縮室3とを備え、脱塩室2には被処理水W1の流路R1が接続される一方、脱塩室2の出口側は処理水W2の流路R2となっている。この流路R2は分岐していて、この分岐流路R3が濃縮室3に接続しており、脱塩室2の脱イオン水(処理水)W2の一部が濃縮室2に導入可能となっている。そして、濃縮室2の循環水を脱イオン水で希釈してカルシウム濃度を低減させた上で、流路R4から濃縮水W3を排出する。   In the present embodiment, the electrodeionization apparatus 1 includes a demineralization chamber 2 and a concentration chamber 3, and the demineralization chamber 2 is connected to the flow path R <b> 1 of the treated water W <b> 1, while the outlet of the demineralization chamber 2. The side is a flow path R2 of the treated water W2. This flow path R2 is branched, and this branch flow path R3 is connected to the concentration chamber 3, so that a part of deionized water (treated water) W2 in the demineralization chamber 2 can be introduced into the concentration chamber 2. ing. And after diluting the circulating water of the concentration chamber 2 with deionized water to reduce the calcium concentration, the concentrated water W3 is discharged from the flow path R4.

このようなシステム構成において、流路R2には検知手段たる水質センサ4が設けられている一方、分岐流路R3には酸又はスケール防止剤の貯槽5が供給手段たる送液ポンプ6を介して連通されている。そして、この水質センサ4及び送液ポンプ6は、マイクロコンピュータ等の制御手段7に接続されていて、水質センサ4の出力に応じて送液ポンプ6を制御可能となっている。水質センサ4としては、比抵抗計(導電率計)、IC計、硬度系等を用いることができる。   In such a system configuration, the flow path R2 is provided with a water quality sensor 4 serving as detection means, while the branch flow path R3 is provided with an acid or scale inhibitor storage tank 5 via a liquid feed pump 6 serving as supply means. It is communicated. The water quality sensor 4 and the liquid feed pump 6 are connected to a control means 7 such as a microcomputer so that the liquid feed pump 6 can be controlled according to the output of the water quality sensor 4. As the water quality sensor 4, a specific resistance meter (conductivity meter), an IC meter, a hardness system, or the like can be used.

上述したようなシステムを備えた電気脱イオン装置1は、具体的には図3に示すような構成を有する。すなわち、電気脱イオン装置1は、電極(陽極11,陰極12)の間に複数のアニオン交換膜(A膜)13及びカチオン交換膜(C膜)14を交互に配列して濃縮室3と脱塩室2とを交互に形成し、脱塩室2にはイオン交換樹脂19が充填されている。なお、図3において、17は陽極室、18は陰極室である。   The electrodeionization apparatus 1 provided with the system as described above specifically has a configuration as shown in FIG. That is, the electrodeionization apparatus 1 includes a plurality of anion exchange membranes (A membranes) 13 and cation exchange membranes (C membranes) 14 arranged alternately between the electrodes (anode 11 and cathode 12) and desorbed from the concentration chamber 3. The salt chambers 2 are alternately formed, and the desalting chamber 2 is filled with an ion exchange resin 19. In FIG. 3, 17 is an anode chamber and 18 is a cathode chamber.

そして、本実施形態においては、濃縮室3内にバイポーラ膜20を設けて区画することで濃縮室3内に陰極側区画室15Aと陽極側区画室15Bとを形成している。このバイポーラ膜20は、陽極11側にバイポーラ膜20のアニオン交換層面20B側が位置し、陰極12側にバイポーラ膜20のカチオン交換層面20A側が位置するようにして濃縮室3内に設置されている。   In the present embodiment, the bipolar membrane 20 is provided in the concentrating chamber 3 to partition the concentrating chamber 3, thereby forming the cathode-side compartment 15 A and the anode-side compartment 15 B. The bipolar membrane 20 is installed in the concentration chamber 3 so that the anion exchange layer surface 20B side of the bipolar membrane 20 is located on the anode 11 side and the cation exchange layer surface 20A side of the bipolar membrane 20 is located on the cathode 12 side.

なお、本発明で用いるバイポーラ膜20としては、陰イオン交換層と陽イオン交換層とを有し、水電解効率が高いものであれば良く、特に制限はない。また、場合によっては、陰イオン交換膜と陽イオン交換膜とを重ね合わせて用いることも含む。   The bipolar membrane 20 used in the present invention is not particularly limited as long as it has an anion exchange layer and a cation exchange layer and has high water electrolysis efficiency. Moreover, depending on the case, it may include using an anion exchange membrane and a cation exchange membrane in an overlapping manner.

このような電気脱イオン装置1において、陰極側区画室15A及び陽極側区画室15Bには、イオン交換体、特にアニオン交換樹脂とカチオン交換樹脂との混合樹脂21が充填されているのが好ましい。この混合樹脂21におけるアニオン交換樹脂とカチオン交換樹脂との比率は、特に制限はないが、アニオン交換樹脂/カチオン交換樹脂が10/90〜90/10、特に30/70〜70/30であるのが好ましい。これにより陰極側区画室15Aでは、バイポーラ膜20の界面における水解離によって発生した水素イオンの移動が促進される一方、陽極側区画室15Bでは、バイポーラ膜20の界面における水解離によって発生した水酸化物イオンの移動が促進される。この結果、電流が流れやすく、電圧の上昇を抑制することが可能となっている。   In such an electrodeionization apparatus 1, it is preferable that the cathode side compartment 15A and the anode side compartment 15B are filled with an ion exchanger, in particular, a mixed resin 21 of an anion exchange resin and a cation exchange resin. The ratio of the anion exchange resin to the cation exchange resin in the mixed resin 21 is not particularly limited, but the anion exchange resin / cation exchange resin is 10/90 to 90/10, particularly 30/70 to 70/30. Is preferred. Thereby, in the cathode side compartment 15A, the movement of hydrogen ions generated by water dissociation at the interface of the bipolar film 20 is promoted, while in the anode side compartment 15B, hydroxylation generated by water dissociation at the interface of the bipolar film 20 is promoted. The movement of object ions is promoted. As a result, current can easily flow and voltage rise can be suppressed.

次に上述したような電気脱イオン装置1の動作について説明する。
図1に示すように、まず流路R1から被処理水W1を電気脱イオン装置1の脱塩室2に供給する。この電気脱イオン装置1では、脱塩室2で被処理水W1からカルシウム、マグネシウム、炭酸水素イオン等のイオン性の不純物が除去された処理水(脱イオン水)W2が、流路R2からサブシステム等に供給される。また、この処理水W2の一部は、流路R2から分岐流路R3を経由して、電気脱イオン装置1の濃縮室3に供給される。
Next, the operation of the above-described electrodeionization apparatus 1 will be described.
As shown in FIG. 1, first, the water to be treated W1 is supplied from the flow path R1 to the demineralization chamber 2 of the electrodeionization apparatus 1. In this electrodeionization apparatus 1, treated water (deionized water) W2 from which ionic impurities such as calcium, magnesium and hydrogen carbonate ions have been removed from the treated water W1 in the desalting chamber 2 is sub-flowed from the flow path R2. Supplied to the system etc. A part of the treated water W2 is supplied from the flow path R2 to the concentration chamber 3 of the electrodeionization apparatus 1 via the branch flow path R3.

図4には、電気脱イオン装置1内でのイオンの流れが模式的に示されている。すなわち、電気脱イオン装置1の濃縮室3では、脱塩室2のアニオン交換膜13側から炭酸水素イオン(HCO )等のアニオンが透過してくるとともにカチオン交換膜14側からカルシウムイオン(Ca2+)等のカチオンが透過してくる。 FIG. 4 schematically shows the flow of ions in the electrodeionization apparatus 1. That is, in the concentration chamber 3 of the electrodeionization apparatus 1, anions such as hydrogen carbonate ions (HCO 3 ) permeate from the anion exchange membrane 13 side of the desalting chamber 2 and calcium ions (from the cation exchange membrane 14 side). Cations such as Ca 2+ ) permeate.

このとき本実施形態においては、濃縮室3がバイポーラ膜20で区画されているので、アニオン交換膜13を透過してきた炭酸水素イオン(HCO )等のアニオンはバイポーラ膜20を透過できず、一方、カチオン交換膜14を透過してきたカルシウムイオン(Ca2+)等のカチオンもこれを透過できない。このため、濃縮室3内での炭酸カルシウムスケールの発生が防止される。なお、説明の便宜上、図4においては、混合樹脂21については省略してある。 At this time, in this embodiment, since the concentration chamber 3 is partitioned by the bipolar membrane 20, anions such as hydrogen carbonate ions (HCO 3 ) that have permeated the anion exchange membrane 13 cannot permeate the bipolar membrane 20. On the other hand, cations such as calcium ions (Ca 2+ ) that have permeated the cation exchange membrane 14 cannot permeate. For this reason, generation | occurrence | production of the calcium carbonate scale in the concentration chamber 3 is prevented. For convenience of explanation, the mixed resin 21 is omitted in FIG.

このとき、バイポーラ膜20内では理論水電解電圧(0.83V)以上の電圧を印加することによって水解離が発生するため、電流が流れる。このため、バイポーラ膜20を濃縮室3内に設置することで電気脱イオン装置1の脱イオン性能が損なわれることはない。   At this time, in the bipolar membrane 20, water dissociation occurs by applying a voltage equal to or higher than the theoretical water electrolysis voltage (0.83 V), so that a current flows. For this reason, installing the bipolar membrane 20 in the concentration chamber 3 does not impair the deionization performance of the electrodeionization apparatus 1.

このような作用により、陽極側区画室15B内は、バイポーラ膜20の界面での水解離で発生した水酸化物イオン(OH)が供給されることによりアルカル性(高pH)になっている。また、カチオン交換膜14を透過してきたカルシウムイオン(Ca2+)やナトリウムイオン(Na)も存在している。したがって、脱塩室2を透過した脱イオン水(処理水W2)中に無機炭酸(HCO、HCO 、CO )が残留していると、陽極側区画室15B内でスケールが発生しやすくなる。 By such an action, the inside of the anode side compartment 15B becomes alkalic (high pH) by supplying hydroxide ions (OH ) generated by water dissociation at the interface of the bipolar membrane 20. . There are also calcium ions (Ca 2+ ) and sodium ions (Na + ) that have permeated through the cation exchange membrane 14. Therefore, if inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) remains in the deionized water (treated water W2) that has passed through the desalting chamber 2, a scale is formed in the anode compartment 15B. Is likely to occur.

そこで、本実施形態においては、処理水W2の流路R2に水質センサ4を設け、無機炭酸(HCO、HCO 、CO )又は硬度成分(カルシウム、マグネシウム)の処理水W2中の残留を比抵抗値、無機炭酸濃度、カルシウムイオン濃度等で監視する。これらの項目は、水質センサ4としてそれぞれ所望とする検出物用のセンサを設けることで、オンライン分析計での連続モニタリングが可能である。 Therefore, in the present embodiment, the water quality sensor 4 is provided in the flow path R2 of the treated water W2, and the treated water W2 of inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) or a hardness component (calcium, magnesium). Residue inside is monitored by specific resistance value, inorganic carbonate concentration, calcium ion concentration, etc. These items can be continuously monitored by an on-line analyzer by providing a sensor for a desired detection object as the water quality sensor 4.

そして、水質センサ4において、例えば、比抵抗値が1MΩ・cm未満となった場合、制御手段7は水質が低下したと判断して、送液ポンプ6を駆動し貯槽5から酸又はスケール防止剤を分岐流路R3に供給する。   In the water quality sensor 4, for example, when the specific resistance value is less than 1 MΩ · cm, the control means 7 determines that the water quality has decreased, and drives the liquid feed pump 6 to drive the acid or scale inhibitor from the storage tank 5. Is supplied to the branch flow path R3.

このとき、酸を添加する場合には、分岐流路R3を流通する濃縮室3への供給水のpHが濃縮室3の入口でpH=3.0〜5.0となるように調整するのが好ましい。これにより、濃縮室3、特に陽極側区画室15Bでの炭酸塩スケールの析出を防止し、又はスケールが析出した場合にはこれを溶解除去することができる。また、スケール防止剤を添加する場合には、炭酸塩スケールの析出を防止することができる。   At this time, when the acid is added, the pH of the water supplied to the concentration chamber 3 flowing through the branch flow path R3 is adjusted to be pH = 3.0 to 5.0 at the inlet of the concentration chamber 3. Is preferred. Thereby, precipitation of carbonate scale in the concentration chamber 3, particularly the anode-side compartment 15B can be prevented, or when scale is deposited, it can be dissolved and removed. Moreover, when adding a scale inhibitor, precipitation of carbonate scale can be prevented.

なお、添加する酸としては、塩酸、硫酸、硝酸等を用いることができるが、塩酸、硝酸等は電極反応で有害ガスを発生するおそれがあり、さらに塩酸等のハロゲン酸は充填樹脂の酸化劣化を促進するおそれがあるため、硫酸が好適である。また、スケール防止剤としては、リン酸系、ポリマー系などの市販のスケール防止剤を用いることができる。   In addition, hydrochloric acid, sulfuric acid, nitric acid, etc. can be used as the acid to be added. However, hydrochloric acid, nitric acid, etc. may generate harmful gases in the electrode reaction, and halogen acids such as hydrochloric acid may cause oxidative degradation of the filled resin. Sulfuric acid is preferred because of the risk of promoting Moreover, as a scale inhibitor, commercially available scale inhibitors such as phosphoric acid type and polymer type can be used.

そして、例えば比抵抗値が1MΩ・cm以上となったら送液ポンプ6を停止する制御を行う。このように制御することにより、電気脱イオン装置1の連続採水を止めることなく運転することができる。さらに、酸を添加する場合、定期的に薬品洗浄を行っていることと同じような効果が得られるため、電気脱イオン装置1を停止してのメンテナンスを行う必要がない、もしくはメンテナンスの頻度を著しく低減することができる、という効果も奏する。   For example, when the specific resistance value is 1 MΩ · cm or more, control is performed to stop the liquid feed pump 6. By controlling in this way, it is possible to operate without stopping the continuous water collection of the electrodeionization apparatus 1. Further, when adding acid, the same effect as that of chemical cleaning is obtained regularly, so that it is not necessary to perform maintenance after stopping the electrodeionization apparatus 1 or the frequency of maintenance is reduced. There is also an effect that it can be remarkably reduced.

上述したような第1の実施形態による電気脱イオン装置は、例えば図5に示すような一次純水製造システムとして適用可能である。   The electrodeionization apparatus according to the first embodiment as described above can be applied as a primary pure water production system as shown in FIG. 5, for example.

図5において、一次純水製造システムは、市水が供給される活性炭装置31と、この活性炭装置31の透過水を処理する逆浸透膜(RO膜)装置32と、このRO膜装置32を透過したRO処理水を処理する脱気膜33と、この脱気膜33で得られる脱気水を脱塩室35において処理して処理水(脱イオン水)W2を製造する電気脱イオン装置34とを備える。この電気脱イオン装置34は、基本的には前述した第1の実施形態で説明したような構成を有する。   In FIG. 5, the primary pure water production system includes an activated carbon device 31 to which city water is supplied, a reverse osmosis membrane (RO membrane) device 32 that processes the permeated water of the activated carbon device 31, and the RO membrane device 32. A deaeration membrane 33 for treating the RO-treated water, and an electrodeionization apparatus 34 for treating the deaeration water obtained by the deaeration membrane 33 in the demineralization chamber 35 to produce treated water (deionized water) W2. Is provided. The electrodeionization device 34 basically has a configuration as described in the first embodiment.

この電気脱イオン装置34の脱塩室35は、流路r2を経由してサブシステム等に連通している。また、流路r2から分岐した分岐流路r3が、図示しない陽極室及び陰極室に連通しているとともに、濃縮室36に連通している。   The demineralization chamber 35 of the electrodeionization device 34 communicates with a subsystem or the like via a flow path r2. A branch channel r3 branched from the channel r2 communicates with an anode chamber and a cathode chamber (not shown) and also communicates with the concentration chamber 36.

このようなシステム構成において、流路r2には、水質センサとしての比抵抗計37が設けられており、分岐流路r3には、硫酸の貯槽38が供給手段たる送液ポンプ39を介して連通されている。そして、この比抵抗計37は、マイクロコンピュータ等の制御手段40に接続していて、比抵抗計37で計測している比抵抗値が1MΩ・cm未満となったら水質が低下したと判断して、送液ポンプ39を駆動し、比抵抗値が1MΩ・cm以上となったら停止する制御を行う。なお、図5中において、41は脱気膜33の真空ポンプである。   In such a system configuration, a specific resistance meter 37 as a water quality sensor is provided in the flow path r2, and a sulfuric acid storage tank 38 communicates with the branch flow path r3 via a liquid feed pump 39 as supply means. Has been. The specific resistance meter 37 is connected to a control means 40 such as a microcomputer, and when the specific resistance value measured by the specific resistance meter 37 is less than 1 MΩ · cm, it is determined that the water quality has deteriorated. Then, the liquid feed pump 39 is driven and stopped when the specific resistance value becomes 1 MΩ · cm or more. In FIG. 5, reference numeral 41 denotes a vacuum pump for the deaeration membrane 33.

次に、このような構成を有する一次純水製造システムの作用について説明する。
まず、流路r1の起端部から市水を活性炭装置31に供給して微粒子、残留塩素等を吸着除去し、この活性炭装置31の処理水をRO膜装置32に供給して、処理水に含まれるカルシウム、シリカ等を除去する。なお、図示していないが、RO膜装置32から排出される濃縮水を、別個に設けた他のRO膜装置に供給し、その処理水をRO膜装置32の供給水に合流させてもよい。
Next, the operation of the primary pure water production system having such a configuration will be described.
First, city water is supplied to the activated carbon device 31 from the starting end of the flow path r1 to adsorb and remove fine particles, residual chlorine, etc., and the treated water of the activated carbon device 31 is supplied to the RO membrane device 32 to be treated water. Remove calcium, silica, etc. contained. Although not shown, the concentrated water discharged from the RO membrane device 32 may be supplied to another RO membrane device provided separately, and the treated water may be merged with the supply water of the RO membrane device 32. .

そして、このRO膜装置32で処理したRO処理水を脱気膜33に供給し、RO処理水に含まれている炭酸イオン等を二酸化炭素として除去した後、得られた脱気水を電気脱イオン装置34の脱塩室35に供給する。なお、図示していないが、炭酸イオンを除去しやすくするため、RO処理水に硫酸、塩酸等を添加してpHを下げた後に脱気を行ってもよい。   Then, the RO-treated water treated by the RO membrane device 32 is supplied to the deaeration membrane 33, and after removing carbonate ions and the like contained in the RO-treated water as carbon dioxide, the obtained deaerated water is subjected to electrodeposition. It is supplied to the desalting chamber 35 of the ion device 34. Although not shown, deaeration may be performed after adding sulfuric acid, hydrochloric acid or the like to the RO-treated water to lower the pH in order to facilitate removal of carbonate ions.

この電気脱イオン装置34では、被処理水(脱気水)W1は、脱塩室35でカルシウムイオン、マグネシウムイオン、炭酸水素イオン等のイオン性の不純物が除去された処理水(脱イオン水)W2として流路r2からサブシステム等に供給されたり、そのまま使用されたりする。   In this electric deionization apparatus 34, the water to be treated (degassed water) W1 is treated water (deionized water) from which ionic impurities such as calcium ions, magnesium ions, and bicarbonate ions have been removed in the desalting chamber 35. W2 is supplied to the subsystem or the like from the flow path r2 or used as it is.

また、この処理水W2の一部は、分岐流路r3から電気脱イオン装置34の濃縮室36に供給され、この濃縮室36からの濃縮水W3が活性炭装置31の前段にまで環流される。   A part of the treated water W2 is supplied from the branch channel r3 to the concentration chamber 36 of the electrodeionization device 34, and the concentrated water W3 from the concentration chamber 36 is circulated to the front stage of the activated carbon device 31.

そして、電気脱イオン装置34では、前述したように、図4に示すようなイオンの流れを生じる。ここで、処理水W2の流路r2に比抵抗計37を設けることにより、処理水W2中に無機炭酸(HCO、HCO 、CO )又は硬度成分(カルシウム、マグネシウム)等が増加して比抵抗値が1MΩ・cm未満となったら水質が低下したと判断して、送液ポンプ39を駆動して硫酸を供給する。このとき分岐流路r3を流通する濃縮室36への供給水のpHが濃縮室36の入口でpH=3.0〜5.0となるように硫酸を添加するのが好ましい。これにより炭酸塩スケールの析出を防止し、あるいはスケールが析出した場合にはこれを溶解除去することができる。そして、比抵抗値が1MΩ・cm以上となったら送液ポンプ39を停止して硫酸の供給を止める制御を行えばよい。 And in the electrodeionization apparatus 34, as mentioned above, the flow of ion as shown in FIG. 4 is produced. Here, by providing a specific resistance meter 37 in the flow path r2 of the treated water W2, inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) or a hardness component (calcium, magnesium) or the like is contained in the treated water W2. When the specific resistance value becomes less than 1 MΩ · cm, it is determined that the water quality has decreased, and the liquid feeding pump 39 is driven to supply sulfuric acid. At this time, it is preferable to add sulfuric acid so that the pH of the water supplied to the concentration chamber 36 flowing through the branch flow path r3 is pH = 3.0 to 5.0 at the inlet of the concentration chamber 36. Thereby, precipitation of carbonate scale can be prevented, or when scale is deposited, it can be dissolved and removed. Then, when the specific resistance value is 1 MΩ · cm or more, the liquid feed pump 39 may be stopped to stop the supply of sulfuric acid.

これにより、電気脱イオン装置34の処理水W2の水質が低下したとしても濃縮室36、特に陽極側区画室15Bにおける炭酸カルシウム等の発生を抑制することができる。   Thereby, even if the water quality of the treated water W2 of the electrodeionization apparatus 34 is deteriorated, generation of calcium carbonate or the like in the concentration chamber 36, particularly the anode side compartment 15B, can be suppressed.

次に本発明の第2の実施形態について図6に基づいて説明する。なお、本実施形態の電気脱イオン装置は、基本的には前記第1の実施形態と同じ構成を有するので、同一の構成には同一の符号を付し、その詳細な説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In addition, since the electrodeionization apparatus of this embodiment has the same structure as the said 1st Embodiment fundamentally, the same code | symbol is attached | subjected to the same structure and the detailed description is abbreviate | omitted.

本実施形態では、流路R2には水質センサ4を設ける代わりに、電気脱イオン装置1の陰極と陽極との間の電気抵抗を測定する電気抵抗検出器8が設けられており、この電気抵抗検出器8及び送液ポンプ6がマイクロコンピュータ等の制御手段7に接続されていて、電気抵抗検出器8の出力に応じて送液ポンプ6の制御が可能となっている。   In this embodiment, instead of providing the water quality sensor 4 in the flow path R2, an electric resistance detector 8 for measuring the electric resistance between the cathode and the anode of the electrodeionization apparatus 1 is provided. The detector 8 and the liquid feed pump 6 are connected to a control means 7 such as a microcomputer, and the liquid feed pump 6 can be controlled according to the output of the electric resistance detector 8.

次に上述したような電気脱イオン装置の動作について説明する。
まず流路R1から被処理水W1を電気脱イオン装置1の脱塩室2に供給する。この電気脱イオン装置1では、被処理水W1は脱塩室2でカルシウム、マグネシウム、炭酸水素イオン等のイオン性の不純物が除去された処理水(脱イオン水)W2として流路R2からサブシステム等に供給される。また、この処理水W2の一部は、流路R2から分岐した分岐流路R3を経由して、電気脱イオン装置1の濃縮室3に供給される。
Next, the operation of the above-described electrodeionization apparatus will be described.
First, the water to be treated W1 is supplied from the flow path R1 to the demineralization chamber 2 of the electrodeionization apparatus 1. In this electric deionization apparatus 1, the water to be treated W1 is treated as a treated water (deionized water) W2 from which ionic impurities such as calcium, magnesium, hydrogen carbonate ions have been removed in the demineralization chamber 2 from the flow path R2. Etc. A part of the treated water W2 is supplied to the concentrating chamber 3 of the electrodeionization apparatus 1 via a branch channel R3 branched from the channel R2.

このとき、電気脱イオン装置1では、前述した第1の実施形態と同様に図4に示すようなイオンの流れが生じている。このため、陽極側区画室15B内は、バイポーラ膜20の界面での水解離で発生した水酸化物イオン(OH)が供給されることによりアルカル性(高pH)となっている。また、カチオン交換膜14を透過してきたカルシウムイオン(Ca2+)やナトリウムイオン(Na)も存在している。このように、脱塩室2を透過した脱イオン水(処理水)W2中に無機炭酸(HCO、HCO 、CO )が残留していると、陽極側区画室15B内でスケールが発生しやすくなる。 At this time, in the electrodeionization apparatus 1, an ion flow as shown in FIG. 4 is generated as in the first embodiment described above. For this reason, the inside of the anode-side compartment 15B is alkalic (high pH) by being supplied with hydroxide ions (OH ) generated by water dissociation at the interface of the bipolar membrane 20. There are also calcium ions (Ca 2+ ) and sodium ions (Na + ) that have permeated through the cation exchange membrane 14. Thus, if inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) remains in the deionized water (treated water) W2 that has passed through the desalting chamber 2, the inside of the anode-side compartment 15B It becomes easy to generate scale.

そして、スケールが析出した場合、析出箇所のイオンの移動が阻害され、結果として、電流の流れが滞る。そのため、定電流運転を行っていた場合、電圧上昇が起こり、定電圧運転を行っていた場合、電流低下が起こる。したがって、電気脱イオン装置1の電気抵抗の増大によりスケール析出を検出することができる。   And when a scale precipitates, the movement of the ion of a precipitation location is inhibited, As a result, the flow of an electric current stagnates. Therefore, when a constant current operation is performed, a voltage increase occurs, and when a constant voltage operation is performed, a current decrease occurs. Therefore, scale deposition can be detected by increasing the electrical resistance of the electrodeionization apparatus 1.

そこで、本実施形態においては、電気脱イオン装置1の陰極と陽極との間の電気抵抗を測定する電気抵抗検出器8を設け、無機炭酸(HCO、HCO 、CO )又は硬度成分(カルシウム、マグネシウム)の上昇により、濃縮室3内でスケールが析出し、不可逆的に電気抵抗が増大したら(例えば、電気抵抗の増大が1日以上継続した場合)、制御手段7はスケールが発生したと判断して、送液ポンプ6を駆動することで貯槽5から酸又はスケール防止剤を分岐流路R3に供給する。このとき酸を添加する場合には、分岐流路R3を流通する濃縮室3への供給水のpHが濃縮室3の入口でpH=3.0〜5.0となるように調整するのが好ましい。これにより炭酸塩スケールの析出を防止し、あるいはスケールが析出した場合にはこれを溶解除去することができる。また、スケール防止剤を添加する場合には、炭酸塩スケールの析出を防止することができる。この酸及びスケール防止剤としては、前述した第1の実施形態と同じものを用いることができる。そして、例えば電気抵抗が1Ω以下となったら送液ポンプ6を停止する制御を行う。 Therefore, in the present embodiment, an electric resistance detector 8 for measuring the electric resistance between the cathode and the anode of the electrodeionization apparatus 1 is provided, and inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) is provided. Alternatively, when the scale component is deposited in the concentration chamber 3 due to an increase in the hardness component (calcium, magnesium) and the electrical resistance increases irreversibly (for example, when the increase in electrical resistance continues for one day or more), the control means 7 It is determined that scale has occurred, and the liquid feed pump 6 is driven to supply acid or scale inhibitor from the storage tank 5 to the branch flow path R3. When adding acid at this time, the pH of the water supplied to the concentrating chamber 3 flowing through the branch flow path R3 is adjusted so that pH = 3.0 to 5.0 at the inlet of the concentrating chamber 3. preferable. Thereby, precipitation of carbonate scale can be prevented, or when scale is deposited, it can be dissolved and removed. Moreover, when adding a scale inhibitor, precipitation of carbonate scale can be prevented. As the acid and the scale inhibitor, the same ones as in the first embodiment described above can be used. For example, when the electric resistance becomes 1Ω or less, control is performed to stop the liquid feed pump 6.

このようにして制御することで、電気脱イオン装置1の連続採水を止めることなく運転することができる。さらに、酸を添加する場合、定期的に薬品洗浄を行っていることになるため、電気脱イオン装置1を停止してのメンテナンスを行う必要がない、又はメンテナンスの頻度を著しく低減することができる、という効果も奏する。   By controlling in this way, it is possible to operate without stopping the continuous water collection of the electrodeionization apparatus 1. Furthermore, when adding an acid, since chemical cleaning is performed periodically, it is not necessary to perform maintenance after stopping the electrodeionization apparatus 1 or the frequency of maintenance can be significantly reduced. Also has the effect of.

以上、本発明の電気脱イオン装置について添付図面を参照して説明してきたが、本発明は前記第1及び第2の実施形態に限らず種々の変形実施が可能である。   As mentioned above, although the electrodeionization apparatus of this invention has been demonstrated with reference to an accompanying drawing, this invention is not restricted to the said 1st and 2nd embodiment, A various deformation | transformation implementation is possible.

例えば、前記実施形態においては、電気抵抗の増大に基づいて制御したが、濃縮室3内部の流路が塞がれるまでスケールが成長すると通水差圧が増大するので、通水差圧が増大したら水質が低下したとみなして、酸又はスケール防止剤の添加を制御してもよい。また、第2の実施形態の電気脱イオン装置を図5に示すようなシステムに適用することも可能である。   For example, in the above embodiment, control is performed based on an increase in electrical resistance. However, if the scale grows until the flow path inside the concentrating chamber 3 is blocked, the water flow differential pressure increases, so the water flow differential pressure increases. Then, it may be considered that the water quality has deteriorated, and the addition of the acid or the scale inhibitor may be controlled. The electrodeionization apparatus of the second embodiment can also be applied to a system as shown in FIG.

さらに、電気脱イオン装置1としては、濃縮室3にバイポーラ膜20を配置したものに限定せずに適用可能である。   Furthermore, the electrodeionization apparatus 1 can be applied without being limited to the one in which the bipolar membrane 20 is disposed in the concentration chamber 3.

以下、実施例及び比較例に基づき、本発明をさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to the following Example at all.

なお、以下の実施例及び比較例で用いた試験装置としては、電気脱イオン装置(栗田工業社製,製品名:クリテノンSH型、処理水量420L/hr)を使用した。
また、試験用の被処理水として、市水を逆浸透膜装置(日東電工社製,製品名:ES−20)で処理した以下の水質のものを用意した。
被処理水:給水Ca濃度1.03ppm(CaCO換算)
給水Mg濃度0.21ppm(CaCO換算)
給水CO濃度4.07ppm(CaCO換算)
In addition, as a test apparatus used in the following Examples and Comparative Examples, an electrodeionization apparatus (manufactured by Kurita Kogyo Co., Ltd., product name: Critenon SH type, treated water amount 420 L / hr) was used.
Moreover, the following water quality | type which processed the city water with the reverse osmosis membrane apparatus (The product made from Nitto Denko Corporation, product name: ES-20) was prepared as to-be-processed water for a test.
Water to be treated: Feed water Ca concentration 1.03ppm (CaCO 3 conversion)
Feed water Mg concentration 0.21ppm (CaCO 3 conversion)
Feed water CO 2 concentration 4.07 ppm (CaCO 3 conversion)

[実施例1]
電気脱イオン装置のイオン交換膜及び脱塩室に充填するイオン交換樹脂として以下のものを用い、図3に示すように濃縮室3にバイポーラ膜20を配置した電気脱イオン装置を用いて、図5に示すようなシステム構成の装置で下記表1に示す条件で通水を行った。この際、電気脱イオン装置34の負荷を上げる目的でRO膜装置32の前段に塩素濃度が0.1ppmとなるように次亜塩素酸ナトリウム水溶液を添加し、RO膜装置32を劣化させながら、定電流設定(3.8A)で運転を行った。
[Example 1]
The following is used as an ion exchange membrane and an ion exchange resin filled in a demineralization chamber of an electrodeionization device, and an electrodeionization device in which a bipolar membrane 20 is arranged in the concentration chamber 3 as shown in FIG. Water was passed under the conditions shown in Table 1 below with the apparatus having the system configuration as shown in FIG. At this time, for the purpose of increasing the load of the electrodeionization device 34, an aqueous sodium hypochlorite solution is added to the front stage of the RO membrane device 32 so that the chlorine concentration becomes 0.1 ppm, and the RO membrane device 32 is deteriorated, Operation was performed at a constant current setting (3.8 A).

アニオン交換膜:アシプレックスA501SB(旭化成工業社製)
カチオン交換膜:アシプレックスK501SB(旭化成工業社製)
バイポーラ膜 :ネオセプタBP−1(アストム社製)
イオン交換体 :アニオン交換樹脂(三菱化学社製,SA10A)とカチオン交換樹脂(三菱化学社製,SK1B)とを体積混合比率6:4で混合したもの
Anion exchange membrane: Aciplex A501SB (Asahi Kasei Kogyo Co., Ltd.)
Cation exchange membrane: Aciplex K501SB (Asahi Kasei Kogyo Co., Ltd.)
Bipolar membrane: Neoceptor BP-1 (manufactured by Astom)
Ion exchanger: Anion exchange resin (Mitsubishi Chemical Corporation, SA10A) and cation exchange resin (Mitsubishi Chemical Corporation, SK1B) mixed at a volume mixing ratio of 6: 4

上記運転においては、濃縮室36及び電極室(図示せず)には脱塩室35の処理水W2を供給し、処理水W2の比抵抗値を比抵抗計37で連続測定し、処理水の比抵抗が1MΩ・cmを下回ったら濃縮室36に硫酸(62.5%濃度)を、濃縮室入口濃度で0.5〜1.0%となるように注入量を制御した。   In the above operation, the treated water W2 of the desalting chamber 35 is supplied to the concentrating chamber 36 and the electrode chamber (not shown), the specific resistance value of the treated water W2 is continuously measured by the specific resistance meter 37, and the treated water is measured. When the specific resistance was less than 1 MΩ · cm, the amount of sulfuric acid (62.5% concentration) injected into the concentrating chamber 36 was controlled so that the concentration at the inlet of the concentrating chamber was 0.5 to 1.0%.

この一次純水製造システムを1週間、1月及び3月運転した後の印加電圧、濃縮室入口電導率、入口全硬度成分濃度及び処理水比抵抗値を測定した。結果を脱塩室流量及び濃縮室流量とともに表1に示す。   The applied voltage, concentration chamber inlet conductivity, inlet total hardness component concentration, and treated water specific resistance value were measured after operating this primary pure water production system for one week in January and March. The results are shown in Table 1 together with the desalination chamber flow rate and the concentration chamber flow rate.

Figure 2008259961
Figure 2008259961

[比較例1]
図5に示すようなシステム構成において、比抵抗計37、硫酸の貯槽38及び送液ポンプ39を設けずに、硫酸を注入しない以外は前記実施例1と同様に電気脱イオン装置34の定電流設定(3.8A)で運転を行った。
結果を表2に示す。
[Comparative Example 1]
In the system configuration as shown in FIG. 5, the constant current of the electrodeionization device 34 is the same as in the first embodiment except that the specific resistance meter 37, the sulfuric acid storage tank 38 and the liquid feed pump 39 are not provided and sulfuric acid is not injected. Operation was performed with the setting (3.8 A).
The results are shown in Table 2.

Figure 2008259961
Figure 2008259961

表1及び表2より明らかなように、実施例1の電気脱イオン装置34では、3ヶ月間安定して運転することができたのに対し、比較例1の電気脱イオン装置34では、運転開始1週間後から電圧の上昇が起こり、最終的に運転不能となった。これは、比較例1の電気脱イオン装置34では、RO膜装置32の性能の低下に伴い電気脱イオン装置34の給水の水質が低下し、脱塩室35の処理水W2、すなわち濃縮室36の給水中の無機炭酸(HCO、HCO 、CO )や硬度成分(カルシウム、マグネシウム)の濃度が増加して、陽極側区画室15Bにスケールが発生したためであると考えられる。 As apparent from Tables 1 and 2, the electrodeionization apparatus 34 of Example 1 was able to operate stably for three months, while the electrodeionization apparatus 34 of Comparative Example 1 was operated. One week after the start, the voltage increased and eventually became inoperable. This is because, in the electrodeionization apparatus 34 of Comparative Example 1, the quality of the feed water of the electrodeionization apparatus 34 is lowered with the decrease in the performance of the RO membrane apparatus 32, and the treated water W <b> 2 of the demineralization chamber 35, i. This is probably because the concentration of inorganic carbonic acid (H 2 CO 3 , HCO 3 , CO 3 ) and hardness components (calcium, magnesium) in the feed water increased and scale was generated in the anode compartment 15B. .

本発明の第1の実施形態による電気脱イオン装置を示すシステム図である。1 is a system diagram showing an electrodeionization apparatus according to a first embodiment of the present invention. 前記実施形態の電気脱イオン装置の水の流れを示す概略図である。It is the schematic which shows the flow of the water of the electrodeionization apparatus of the said embodiment. 前記実施形態の電気脱イオン装置の脱塩室及び濃縮室を示す断面図である。It is sectional drawing which shows the demineralization chamber and the concentration chamber of the electrodeionization apparatus of the said embodiment. 前記実施形態の電気脱イオン装置の脱塩室及び濃縮室イオンの流れを示す断面図である。It is sectional drawing which shows the flow of the demineralization chamber and the concentration chamber ion of the electrodeionization apparatus of the said embodiment. 前記実施形態の電気脱イオン装置を用いた一次純水製造システムを示すフロー図である。It is a flowchart which shows the primary pure water manufacturing system using the electrodeionization apparatus of the said embodiment. 本発明の第2の実施形態による電気脱イオン装置を示すシステム図である。It is a system diagram which shows the electrodeionization apparatus by the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…電気脱イオン装置
2…脱塩室
3…濃縮室
4…水質センサ(検知手段)
5…酸又はスケール防止剤の貯槽
7…制御手段
11…陽極
12…陰極
13…アニオン交換膜(A膜)
14…カチオン交換膜(C膜)
15A…陰極側区画室
15B…陽極側区画室
20…バイポーラ膜
20A…カチオン交換層面
20B…アニオン交換層面
37…比抵抗計(水質センサ)
38…硫酸の貯槽(酸又はスケール防止剤の貯槽)
W2…処理水
R3…分岐流路(流路)
DESCRIPTION OF SYMBOLS 1 ... Electrodeionization apparatus 2 ... Desalination chamber 3 ... Concentration chamber 4 ... Water quality sensor (detection means)
5 ... Acid or scale storage tank 7 ... Control means 11 ... Anode 12 ... Cathode 13 ... Anion exchange membrane (A membrane)
14 ... Cation exchange membrane (C membrane)
15A ... Cathode side compartment 15B ... Anode side compartment 20 ... Bipolar membrane 20A ... Cation exchange layer surface 20B ... Anion exchange layer surface 37 ... Specific resistance meter (water quality sensor)
38 ... Sulfuric acid tank (acid or scale inhibitor tank)
W2 ... treated water R3 ... branch channel (channel)

Claims (8)

陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、
前記脱塩室の処理水の水質を測定する検知手段と、
前記濃縮室の供給水に酸又はスケール防止剤を添加する添加手段と、
前記検知手段の出力値に基づき前記添加手段を制御する制御手段と
を備えることを特徴とする電気脱イオン装置。
In the electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between the cathode and the anode to alternately form a concentration chamber and a desalting chamber,
Detection means for measuring the quality of treated water in the desalination chamber;
An adding means for adding an acid or a scale inhibitor to the feed water of the concentrating chamber;
An electrodeionization apparatus comprising: control means for controlling the addition means based on an output value of the detection means.
陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、
前記陰極と陽極との間の電気抵抗を測定する検知手段と、
前記濃縮室の供給水に酸又はスケール防止剤を添加する添加手段と、
前記検知手段の出力値に基づき前記添加手段を制御する制御手段と
を備えることを特徴とする電気脱イオン装置。
In the electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between the cathode and the anode to alternately form a concentration chamber and a desalting chamber,
Sensing means for measuring the electrical resistance between the cathode and anode;
An adding means for adding an acid or a scale inhibitor to the feed water of the concentrating chamber;
An electrodeionization apparatus comprising: control means for controlling the addition means based on an output value of the detection means.
前記脱塩室の流出水の一部を前記濃縮室の流入側へ供給する流路を設けたことを特徴とする請求項1又は2に記載の電気脱イオン装置。   The electrodeionization apparatus according to claim 1 or 2, further comprising a flow path for supplying a part of the effluent water of the demineralization chamber to the inflow side of the concentration chamber. 前記濃縮室にバイポーラ膜を設けて、前記濃縮室が区画されていることを特徴とする請求項1〜3のいずれかに記載の電気脱イオン装置。   The electrodeionization apparatus according to any one of claims 1 to 3, wherein the concentration chamber is partitioned by providing a bipolar membrane in the concentration chamber. 前記バイポーラ膜が、前記バイポーラ膜のアニオン交換層面が陽極側に位置し、カチオン交換層面が陰極側に位置するようにして前記濃縮室に設けられていることを特徴とする請求項4に記載の電気脱イオン装置。   5. The bipolar membrane according to claim 4, wherein the bipolar membrane is provided in the concentration chamber such that the anion exchange layer surface of the bipolar membrane is located on the anode side and the cation exchange layer surface is located on the cathode side. Electrodeionizer. 陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置の運転方法であって、
前記脱塩室の処理水の水質を測定し、前記処理水の水質があらかじめ設定しておいた水質より低下したら、前記濃縮室の供給水に酸又はスケール防止剤を添加することを特徴とする電気脱イオン装置の運転方法。
An operation method of an electrodeionization apparatus, wherein a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode to alternately form a concentration chamber and a desalting chamber,
The quality of the treated water in the desalination chamber is measured, and if the quality of the treated water is lower than a preset water quality, an acid or a scale inhibitor is added to the supply water in the concentration chamber. Operation method of the electrodeionization apparatus.
陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置の運転方法であって、
前記陰極と前記陽極との間の電気抵抗を測定し、前記電気抵抗があらかじめ定めておいた抵抗より小さくなったら、前記濃縮室の供給水に酸又はスケール防止剤を添加することを特徴とする電気脱イオン装置の運転方法。
An operation method of an electrodeionization apparatus, wherein a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode and an anode to alternately form a concentration chamber and a desalting chamber,
The electrical resistance between the cathode and the anode is measured, and when the electrical resistance becomes smaller than a predetermined resistance, an acid or a scale inhibitor is added to the supply water of the concentration chamber. Operation method of the electrodeionization apparatus.
請求項1〜5のいずれかに記載の電気脱イオン装置を備えることを特徴とする純水製造システム。   A pure water production system comprising the electrodeionization apparatus according to claim 1.
JP2007104545A 2007-04-12 2007-04-12 Electrodeionizing apparatus and its operation method Pending JP2008259961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104545A JP2008259961A (en) 2007-04-12 2007-04-12 Electrodeionizing apparatus and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104545A JP2008259961A (en) 2007-04-12 2007-04-12 Electrodeionizing apparatus and its operation method

Publications (1)

Publication Number Publication Date
JP2008259961A true JP2008259961A (en) 2008-10-30

Family

ID=39982858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104545A Pending JP2008259961A (en) 2007-04-12 2007-04-12 Electrodeionizing apparatus and its operation method

Country Status (1)

Country Link
JP (1) JP2008259961A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269288A (en) * 2009-05-25 2010-12-02 Astom:Kk Method for producing organic acid
WO2011083443A2 (en) * 2010-01-11 2011-07-14 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
US8496853B2 (en) 2010-12-21 2013-07-30 Ecolab Usa Inc. Corrosion inhibition of hypochlorite solutions
US8557178B2 (en) 2010-12-21 2013-10-15 Ecolab Usa Inc. Corrosion inhibition of hypochlorite solutions in saturated wipes
US8603392B2 (en) 2010-12-21 2013-12-10 Ecolab Usa Inc. Electrolyzed water system
WO2014155660A1 (en) * 2013-03-29 2014-10-02 三菱重工メカトロシステムズ株式会社 Water reclamation system and desalination treatment device, and water reclamation method
CN104507873A (en) * 2012-08-03 2015-04-08 三菱重工机电系统株式会社 Desalination treatment device, and operation method for desalination treatment device
CN113402090A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Household water purifying device
JP7356200B2 (en) 2021-03-29 2023-10-04 株式会社アストム Electrodialysis method using bipolar membrane
WO2024053676A1 (en) * 2022-09-07 2024-03-14 住友大阪セメント株式会社 Bipolar membrane electrodialyzer and method for operating same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269288A (en) * 2009-05-25 2010-12-02 Astom:Kk Method for producing organic acid
WO2011083443A2 (en) * 2010-01-11 2011-07-14 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
WO2011083443A3 (en) * 2010-01-11 2011-12-08 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
US8496853B2 (en) 2010-12-21 2013-07-30 Ecolab Usa Inc. Corrosion inhibition of hypochlorite solutions
US8557178B2 (en) 2010-12-21 2013-10-15 Ecolab Usa Inc. Corrosion inhibition of hypochlorite solutions in saturated wipes
US8603392B2 (en) 2010-12-21 2013-12-10 Ecolab Usa Inc. Electrolyzed water system
CN108178253A (en) * 2012-08-03 2018-06-19 三菱日立电力系统环保株式会社 The operation method of desalting processing device and desalting processing device
CN104507873A (en) * 2012-08-03 2015-04-08 三菱重工机电系统株式会社 Desalination treatment device, and operation method for desalination treatment device
WO2014155660A1 (en) * 2013-03-29 2014-10-02 三菱重工メカトロシステムズ株式会社 Water reclamation system and desalination treatment device, and water reclamation method
JPWO2014155660A1 (en) * 2013-03-29 2017-02-16 三菱日立パワーシステムズ環境ソリューション株式会社 Water regeneration system, desalination apparatus, and water regeneration method
CN105050963A (en) * 2013-03-29 2015-11-11 三菱重工机电系统株式会社 Water reclamation system and desalination treatment device, and water reclamation method
CN113402090A (en) * 2020-03-16 2021-09-17 佛山市云米电器科技有限公司 Household water purifying device
JP7356200B2 (en) 2021-03-29 2023-10-04 株式会社アストム Electrodialysis method using bipolar membrane
WO2024053676A1 (en) * 2022-09-07 2024-03-14 住友大阪セメント株式会社 Bipolar membrane electrodialyzer and method for operating same

Similar Documents

Publication Publication Date Title
JP2008259961A (en) Electrodeionizing apparatus and its operation method
JP4978098B2 (en) Electrodeionization equipment
JP3826690B2 (en) Electrodeionization device and pure water production device
JP4648307B2 (en) Continuous electrodeionization apparatus and method
TWI710529B (en) Ultrapure water production device and operation method of ultrapure water production device
KR20150113118A (en) Rechargeable electrochemical cells
JP2004358440A (en) Operation method of electric deionized water manufacturing apparatus, and electric deionized water manufacturing apparatus
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
WO2018096929A1 (en) Method for producing ultrapure water and system for producing ultrapure water
JP2007307561A (en) High-purity water producing apparatus and method
JP5196110B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JP3137831B2 (en) Membrane processing equipment
JP2020146619A (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water, and method for producing pure water
JP2008036473A (en) Electric deionizer
JP4505965B2 (en) Pure water production method
US20230183115A1 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
CN112424128B (en) Pure water production system and pure water production method
JP4624066B2 (en) Operation method of electric deionized water production apparatus and electric deionized water production apparatus
JP2008030005A (en) Electric deionizer
JP5382282B2 (en) Pure water production equipment
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP2008030004A (en) Electric deionizer
JP3674475B2 (en) Pure water production method