JP3674475B2 - Pure water production method - Google Patents

Pure water production method Download PDF

Info

Publication number
JP3674475B2
JP3674475B2 JP2000240053A JP2000240053A JP3674475B2 JP 3674475 B2 JP3674475 B2 JP 3674475B2 JP 2000240053 A JP2000240053 A JP 2000240053A JP 2000240053 A JP2000240053 A JP 2000240053A JP 3674475 B2 JP3674475 B2 JP 3674475B2
Authority
JP
Japan
Prior art keywords
water
membrane
pure water
treated
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000240053A
Other languages
Japanese (ja)
Other versions
JP2002045857A (en
Inventor
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000240053A priority Critical patent/JP3674475B2/en
Publication of JP2002045857A publication Critical patent/JP2002045857A/en
Application granted granted Critical
Publication of JP3674475B2 publication Critical patent/JP3674475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、液晶、製薬、食品、電力等の分野の各種産業、民生用、又は研究設備で利用される純水を製造する方法に係り、特に、電気脱イオン装置を用いた純水の製造方法において、薬剤を用いることなく電気脱イオン装置の炭酸ガス(CO)負荷量を軽減して高水質の処理水を得るための純水の製造方法に関する。
【0002】
【従来の技術】
従来、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造には、図2に示す如く、電極(陽極11,陰極12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填した電気脱イオン装置が多用されている。なお、図2において、17は陽極室、18は陰極室である。
【0003】
電気脱イオン装置は、水解離によってHイオンとOHイオンを生成させ、脱塩室内に充填されているイオン交換体を連続して再生することによって、効率的な脱塩処理が可能であり、従来から広く用いられてきたイオン交換樹脂装置のような薬品を用いた再生処理を必要とせず、完全な連続採水が可能で、高純度の水が得られるという優れた効果を発揮する。
【0004】
図3は、このような電気脱イオン装置を組み込んだ一般的な純水製造装置を示す系統図であり、市水等の原水は、活性炭装置1及び逆浸透(RO)膜装置2で処理された後、電気脱イオン装置3で処理される。ここで、RO膜装置2は電気脱イオン装置3の有機物、硬度成分、塩類の負荷を軽減させるために設けられている。
【0005】
ところで、電気脱イオン装置で、シリカ、ホウ素、炭酸ガス(CO)などの弱電解物質を除去するためには、下記のようなイオン化反応を脱塩室内で生起させ、イオンを発生させる必要がある。
CO+OH→HCO (pKa=6.35)
SiO+OH→HSiO (pKa=9.86)
BO+OH→B(OH) (pKa=9.24)
【0006】
従って、このような弱電解物質が供給水中に高濃度で含まれる場合、これをイオン化するために、電気脱イオン装置の印加電圧を上げて水解離でOHイオンを多量に発生させる必要があることから、多大の電気量が必要となる。このため、従来においては、図4(a)に示す如く、RO膜装置2の入口でアルカリ(NaOH)を注入してpHを8.3付近のアルカリ性とすることにより、COを重炭酸イオンに変えてRO膜装置2で除去する方法や、図4(b)に示す如く、RO膜装置2の前段で必要に応じて酸を添加してpH5.5以下とし脱気装置4でCOを除去する方法などにより、電気脱イオン装置3のCO負荷を軽減させる方法が採用されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の方法は、脱COのために、酸、アルカリといった薬剤が必要となり、薬剤を必要としない電気脱イオン装置を採用することの利点が損なわれることから、好ましい方法とは言えない。
【0008】
本発明は上記従来の問題を解決し、電気脱イオン装置を組み込んだ純水の製造方法において、薬剤を用いることなく電気脱イオン装置のCO負荷を軽減して高水質の処理水を得ることができる純水の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の純水の製造方法は、炭酸ガスと重炭酸イオンとを含む被処理水を、酸、アルカリといった薬剤を用いることなく電気脱イオン処理して純水を製造する方法において、該被処理水を逆浸透膜処理して重炭酸イオンを除去し、得られた透過水を脱気処理して炭酸ガスを除去し、脱気処理水を電気脱イオン処理する純水の製造方法であって、酸消費量(pH4.8)が20mg/L(CaCO 換算)以上でpH6.5以上の被処理水を逆浸透膜処理して、pH6.2以下の透過水を得ることを特徴とする。
【0011】
本発明では、薬剤を使用することなく、被処理水中に含まれる酸消費量(pH4.8)成分をRO膜装置で除去することにより、pHの低い透過水を得る。この低pHの透過水を脱気装置で処理することによりCOを効率的に除去し、電気脱イオン装置のCO負荷を軽減することができる。
【0012】
なお、本発明では、被処理水の性状を酸消費量(pH4.8)で規定しているが、図5に示す一般的に純水製造装置の原水として用いられる市水等のpHと(酸消費量(pH4.8)(CaCO換算)/CO(CO換算))の存在比率との関係からも明らかなように、これはCO濃度で規定することもできる。例えば、pH7で、酸消費量(pH4.8)20mg/L(CaCO換算)以上の水であれば、酸消費量(pH4.8)/CO=5であるので、CO濃度は4(=20÷5)ppm(CO換算)以上である。
【0013】
しかも、本発明では、RO膜装置による処理で低pHとされた水をRO膜装置の後段で脱気処理することにより、図4(b)に示す如く、RO膜装置の前段で脱気処理する場合に比べてCOの除去性能を30〜50%も向上させることができる。これは、脱気装置の前段においてRO膜装置で処理されるため、脱気装置に導入される水の導電率が低く、共存物質が少ないために、脱気装置において、脱気性能の低下を引き起こすことなく、COを効率的に除去することができると考えられる。
【0014】
特に、脱気装置として膜脱気装置を用いた場合には、RO膜装置の前段にこれを設置する場合に比べて、RO膜装置の後段に設置することにより長期に亘って脱気性能を安定させることができる。
【0015】
これは、RO膜装置により塩類やTOC成分が除去され、これらの汚染物質に起因する膜脱気装置のスライム付着障害等が軽減されるためであり、この場合、膜汚染を有効に防止して脱気性能を長期間安定させるために、膜脱気装置に導入される水はTOC200μg/L以下であるか或いは導電率20μS/cm以下であることが好ましい。
【0016】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0017】
図1は本発明の純水の製造方法の実施の形態を示す系統図である。
【0018】
この方法では、市水等の原水を活性炭装置1、RO膜装置2、脱気装置4及び電気脱イオン装置3に順次通水する。このような処理において、RO膜装置2において、酸消費量(pH4.8)が20mg/L(CaCO換算)以上でpH6.5以上の被処理水を処理して、pH6.2以下の透過水を得る。
【0019】
RO膜装置2において、このようなpH及び酸消費量(pH4.8)成分の水を処理して酸消費量(pH4.8)成分を除去することによりpHを下げることができる。このような酸消費量(pH4.8)成分の除去によるpH低減効果を得るために、RO膜装置に導入される被処理水の酸消費量(pH4.8)は20g/L(CaCO換算)以上であることが必要であり、特に25g/L(CaCO換算)以上であることが好ましい。この酸消費量(pH4.8)が過度に高いとRO膜装置でのCaCOスケール発生及び脱気装置のCO除去負荷が高くなるから、一般的には50mg/L(CaCO換算)以下である。また、この程度の酸消費量(pH4.8)の水は通常pH6.5以上、特に6.5〜8.0程度である。
【0020】
このように酸消費量(pH4.8)20mg/L(CaCO換算)以上でpH6.5以上の水は、市水や工水を除濁することにより調達することができる。
【0021】
本発明においては、RO膜装置2において、このような水を処理してpH6.2以下の透過水を得る。また、脱気装置4として膜脱気装置を用いた場合には、前述の如く、膜脱気装置の脱気性能の長期安定化のために、RO膜装置2の透過水はTOC濃度200μg/L以下、特に100μg/L以下であるか、導電率20μS/cm以下、特に10μS/cm以下であることが好ましい。なお、この水は、TOC濃度及び導電率が共に上記上限値以下であることが好ましいことは言うまでもない。
【0022】
RO膜装置2における処理により、上記pH、TOC濃度、導電率の透過水を得るためには、RO膜装置2における処理において、次のような条件ないし手段を採用するのが有効である。
▲1▼ RO膜装置の給水電気伝導率は300μS/cm以下である。
▲2▼ RO膜装置の給水TOC濃度は2mg/L(C換算)以下である。
▲3▼ RO膜モジュールはPA(ポリアミド)系の複合膜が好ましい。
【0023】
なお、本発明において、脱気装置としては、膜脱気装置に限らず、脱炭酸塔、真空脱気塔等を用いることもできるが、小型で保守管理が容易な点から膜脱気装置を用いるのが好適である。
【0024】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0025】
実施例1
図1に示す方法で本発明に従って、下記水質の水を150L/hrの処理量で処理した。
[原水水質]
酸消費量(pH4.8):25mg/L(CaCO換算)
pH :7.0
電気伝導率 :200μS/cm
【0026】
各装置の仕様は次の通りである。

Figure 0003674475
RO膜装置の水回収率は70%、電気脱イオン装置の水回収率は85%とし、電気脱イオン装置の通水SVは75hr−1とした。
【0027】
このときのRO膜装置の被処理水及び透過水の水質、電気脱イオン装置入口水(膜脱気装置の処理水)の水質、得られた最終処理水(電気脱イオン装置の脱イオン水)の水質は表1に示す通りであった。
【0028】
この純水製造装置の運転を10ヶ月間継続して行い、膜脱気装置におけるCO除去率の経時変化を調べたところ、図6に示す如く、CO除去率90%で安定に処理を行うことができた。
【0029】
比較例1
実施例1において、RO膜装置における処理条件のうち、RO膜装置被処理水のpHをNaOHによりpH8.3に変えることにより、表1に示す水質の透過水を得たこと以外は同様にして処理を行ったところ、各部の水質は表1に示す通りであり、実施例1に比べて劣るものであった。
【0030】
【表1】
Figure 0003674475
【0031】
比較例2
活性炭装置、RO膜装置、脱気装置及び電気脱イオン装置として実施例1で用いたものと同様の装置を用い、これらを図4(b)に示すように組み立て、脱気装置4の入口でHClを添加してpH5.5に調整して順次原水を通水して処理を行ったこと以外は実施例1と同様にして処理した。このときの膜脱気装置のCO除去率の経時変化を調べたところ、図6に示す如く、CO除去率は運転開始初期においても約85%(電気脱イオン装置の入口水のCO濃度は750μg/L)で実施例1の場合よりも劣るものであり、しかも、経時による膜汚染で脱気性能が大幅に低下することが認められた。
【0032】
【発明の効果】
以上詳述した通り、本発明の純水の製造方法によれば、電気脱イオン装置を用いる純水の製造において、薬剤を用いることなく電気脱イオン装置のCO負荷を軽減して高水質の処理水を得ることができる。
【0033】
特に、請求項3の方法によれば、膜脱気装置における脱気性能を高く維持して、高水質の処理水を長期に亘り安定に得ることができる。
【図面の簡単な説明】
【図1】本発明の純水の製造方法の実施の形態を説明する系統図である。
【図2】電気脱イオン装置の一般的な構成を示す模式的な断面図である。
【図3】従来の一般的な純水製造装置を示す系統図である。
【図4】従来の純水の製造方法を示す系統図である。
【図5】pHと(酸消費量(pH4.8)/CO)比との関係を示すグラフである。
【図6】実施例1及び比較例2における膜脱気装置のCO除去率の経時変化を示すグラフである。
【符号の説明】
1 活性炭装置
2 RO膜装置
3 電気脱イオン装置
4 脱気装置
10 イオン交換体
11 陽極
12 陰極
13 アニオン交換膜
14 カチオン交換膜
15 濃縮室
16 脱塩室
17 陽極室
18 陰極室[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing pure water used in various industries such as semiconductors, liquid crystals, pharmaceuticals, foods, and electric power, for consumer use, and for research facilities, and in particular, pure water using an electrodeionization device. The method for producing pure water for reducing the amount of carbon dioxide (CO 2 ) load of the electrodeionization apparatus without using a chemical agent to obtain high quality treated water.
[0002]
[Prior art]
Conventionally, in the manufacture of deionized water used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. or consumer use or research facilities, as shown in FIG. A plurality of anion exchange membranes 13 and cation exchange membranes 14 are alternately arranged between the anode 11 and the cathode 12) to alternately form a concentration chamber 15 and a desalting chamber 16, and an ion exchange resin, An electrodeionization apparatus in which an anion exchanger made of an ion exchange fiber or a graft exchanger or the like and a cation exchanger are mixed or filled in a multilayer form is widely used. In FIG. 2, 17 is an anode chamber and 18 is a cathode chamber.
[0003]
The electrodeionization device generates H + ions and OH ions by water dissociation and continuously regenerates the ion exchanger filled in the desalting chamber, enabling efficient desalting treatment. Thus, it does not require a regeneration treatment using chemicals such as the ion exchange resin apparatus that has been widely used so far, and complete continuous water sampling is possible, and an excellent effect that high-purity water is obtained is exhibited.
[0004]
FIG. 3 is a system diagram showing a general pure water production apparatus incorporating such an electrodeionization apparatus. Raw water such as city water is treated by an activated carbon device 1 and a reverse osmosis (RO) membrane device 2. Then, it is processed by the electrodeionization apparatus 3. Here, the RO membrane device 2 is provided in order to reduce the load of organic substances, hardness components, and salts of the electrodeionization device 3.
[0005]
By the way, in order to remove weak electrolytic substances such as silica, boron and carbon dioxide (CO 2 ) with an electrodeionization apparatus, it is necessary to generate an ion by causing the following ionization reaction to occur in the demineralization chamber. is there.
CO 2 + OH → HCO 3 (pKa = 6.35)
SiO 2 + OH → HSiO 3 (pKa = 9.86)
H 3 BO 3 + OH → B (OH) 4 (pKa = 9.24)
[0006]
Therefore, when such a weak electrolytic substance is contained in the feed water at a high concentration, in order to ionize this, it is necessary to increase the applied voltage of the electrodeionization apparatus and generate a large amount of OH ions by water dissociation. Therefore, a large amount of electricity is required. Therefore, conventionally, as shown in FIG. 4 (a), by alkaline near 8.3 pH by injecting an alkali (NaOH) at the inlet of the RO membrane apparatus 2, the CO 2 bicarbonate a method of removing by RO membrane apparatus 2 in place of the FIG. 4 as shown in (b), RO membrane device acid optionally in 2 in the preceding stage is added to a pH5.5 following degassing apparatus 4 with CO 2 A method of reducing the CO 2 load of the electrodeionization apparatus 3 by a method of removing the ion is adopted.
[0007]
[Problems to be solved by the invention]
However, the above conventional method requires a chemical such as acid or alkali for de-CO 2 , and the advantage of adopting an electrodeionization apparatus that does not require a chemical is impaired. Absent.
[0008]
The present invention solves the above-mentioned conventional problems, and obtains high-quality treated water by reducing the CO 2 load of the electrodeionization apparatus without using chemicals in the method for producing pure water incorporating the electrodeionization apparatus. An object of the present invention is to provide a method for producing pure water that can be used.
[0009]
[Means for Solving the Problems]
The method for producing pure water of the present invention is a method for producing pure water by subjecting water to be treated containing carbon dioxide gas and bicarbonate ions to electrodeionization treatment without using chemicals such as acid and alkali. A method for producing pure water in which water is subjected to reverse osmosis membrane treatment to remove bicarbonate ions, the permeated water obtained is degassed to remove carbon dioxide gas, and the degassed water is subjected to electrodeionization treatment. The permeated water having a pH of 6.2 or less is obtained by subjecting the water to be treated having an acid consumption (pH 4.8) of 20 mg / L (CaCO 3 conversion) or more to pH 6.5 or more by reverse osmosis membrane treatment. .
[0011]
In the present invention, permeated water having a low pH is obtained by removing the acid consumption (pH 4.8) component contained in the water to be treated by the RO membrane device without using a chemical. By treating this low pH permeated water with a deaeration device, CO 2 can be efficiently removed, and the CO 2 load of the electrodeionization device can be reduced.
[0012]
In addition, in this invention, although the property of to-be-processed water is prescribed | regulated with the amount of acid consumption (pH 4.8), generally pH of city water etc. which are used as raw water of the pure water manufacturing apparatus shown in FIG. As is clear from the relationship with the existence ratio of acid consumption (pH 4.8) (CaCO 3 conversion) / CO 2 (CO 2 conversion), this can also be defined by the CO 2 concentration. For example, in the case of water having an acid consumption (pH 4.8) of 20 mg / L (CaCO 3 equivalent) or more at pH 7, since the acid consumption (pH 4.8) / CO 2 = 5, the CO 2 concentration is 4 (= 20 ÷ 5) ppm (CO 2 equivalent) or more.
[0013]
In addition, in the present invention, the water that has been lowered in pH by the treatment with the RO membrane device is deaerated at the subsequent stage of the RO membrane device, so that the deaerated treatment is performed at the front stage of the RO membrane device as shown in FIG. Compared to the case, the CO 2 removal performance can be improved by 30 to 50%. This is because the RO membrane device is processed before the deaeration device, so the conductivity of the water introduced into the deaeration device is low and there are few coexisting substances. It is believed that CO 2 can be efficiently removed without causing it.
[0014]
In particular, when a membrane deaeration device is used as the deaeration device, the deaeration performance can be improved over a long period of time by installing it at the subsequent stage of the RO membrane device, compared with the case where it is installed at the previous stage of the RO membrane device. It can be stabilized.
[0015]
This is because salts and TOC components are removed by the RO membrane device, and the slime adhesion failure of the membrane deaerator caused by these contaminants is reduced. In this case, membrane contamination is effectively prevented. In order to stabilize the deaeration performance for a long period of time, it is preferable that the water introduced into the membrane deaerator is TOC 200 μg / L or less or conductivity 20 μS / cm or less.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is a system diagram showing an embodiment of a method for producing pure water according to the present invention.
[0018]
In this method, raw water such as city water is sequentially passed through the activated carbon device 1, the RO membrane device 2, the deaeration device 4, and the electrodeionization device 3. In such treatment, the RO membrane device 2 treats water to be treated having an acid consumption (pH 4.8) of 20 mg / L (CaCO 3 conversion) or more and a pH of 6.5 or more, and a permeation of pH 6.2 or less. Get water.
[0019]
In the RO membrane device 2, the pH can be lowered by treating the water of such pH and acid consumption (pH 4.8) components to remove the acid consumption (pH 4.8) components. To obtain a pH reduction effect by such acid consumption (pH 4.8) component removal, acid consumption of water to be treated is introduced into the RO membrane apparatus (pH 4.8) is 20 m g / L (CaCO 3 conversion) is required to be higher than that, and particularly preferably 25 m g / L (CaCO 3 conversion) or more. If this acid consumption (pH 4.8) is excessively high, the CaCO 3 scale generation in the RO membrane device and the CO 2 removal load of the deaeration device become high, so generally 50 mg / L or less (CaCO 3 conversion) or less It is. Moreover, the water of this amount of acid consumption (pH 4.8) is usually pH 6.5 or more, particularly about 6.5 to 8.0.
[0020]
In this way, water with an acid consumption (pH 4.8) of 20 mg / L (CaCO 3 equivalent) or more and a pH of 6.5 or more can be procured by removing the city water and industrial water.
[0021]
In the present invention, the RO membrane device 2 treats such water to obtain permeated water having a pH of 6.2 or lower. Further, when a membrane deaerator is used as the deaerator 4, the permeated water of the RO membrane device 2 has a TOC concentration of 200 μg / in order to stabilize the deaeration performance of the membrane deaerator as described above. It is preferred that it is not more than L, particularly not more than 100 μg / L, or not more than 20 μS / cm, particularly not more than 10 μS / cm. In addition, it cannot be overemphasized that it is preferable that both this TOC density | concentration and electrical conductivity are below the said upper limit for this water.
[0022]
In order to obtain permeated water having the above pH, TOC concentration, and conductivity by the treatment in the RO membrane device 2, it is effective to adopt the following conditions or means in the treatment in the RO membrane device 2.
(1) The water supply electrical conductivity of the RO membrane device is 300 μS / cm or less.
(2) The feed water TOC concentration of the RO membrane device is 2 mg / L (C conversion) or less.
(3) The RO membrane module is preferably a PA (polyamide) based composite membrane.
[0023]
In the present invention, the degassing device is not limited to the membrane degassing device, and a decarboxylation tower, a vacuum degassing tower, and the like can be used. However, the membrane degassing device is small and easy to maintain. It is preferred to use.
[0024]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0025]
Example 1
According to the present invention, water having the following water quality was treated at a treatment amount of 150 L / hr by the method shown in FIG.
[Raw water quality]
Acid consumption (pH 4.8): 25 mg / L (CaCO 3 conversion)
pH: 7.0
Electrical conductivity: 200 μS / cm
[0026]
The specifications of each device are as follows.
Figure 0003674475
The water recovery rate of the RO membrane device was 70%, the water recovery rate of the electrodeionization device was 85%, and the water flow SV of the electrodeionization device was 75 hr- 1 .
[0027]
Water quality of RO membrane device treated water and permeated water, water quality of electrode deionizer inlet water (treated water of membrane degasser), final treated water obtained (deionized water of electrodeionizer) The water quality was as shown in Table 1.
[0028]
The operation of this pure water production apparatus was continued for 10 months, and the change over time of the CO 2 removal rate in the membrane deaerator was examined. As shown in FIG. 6, the treatment was stably performed at a CO 2 removal rate of 90%. Could be done.
[0029]
Comparative Example 1
In Example 1, among the processing conditions in the RO membrane device, the pH of the RO membrane device treated water was changed to pH 8.3 with NaOH to obtain the same water quality permeated water as shown in Table 1. When the treatment was performed, the water quality of each part was as shown in Table 1, which was inferior to Example 1.
[0030]
[Table 1]
Figure 0003674475
[0031]
Comparative Example 2
As the activated carbon device, the RO membrane device, the deaeration device, and the electrodeionization device, the same devices as those used in Example 1 were used, and these were assembled as shown in FIG. The treatment was performed in the same manner as in Example 1 except that HCl was added to adjust the pH to 5.5 and the raw water was sequentially passed through. When the time-dependent change of the CO 2 removal rate of the membrane deaerator at this time was examined, as shown in FIG. 6, the CO 2 removal rate was about 85% even at the beginning of the operation (CO 2 water in the inlet of the electrodeionization device). The concentration was 750 μg / L), which was inferior to that in Example 1. Further, it was confirmed that the deaeration performance was significantly lowered due to membrane contamination over time.
[0032]
【The invention's effect】
As described in detail above, according to the manufacturing method of the pure water of the present invention, electricity in the production of pure water using a deionizer, to reduce the CO 2 loading of electrodeionization apparatus without using a drug high quality Treated water can be obtained.
[0033]
In particular, according to the method of claim 3, the deaeration performance in the membrane deaerator can be maintained high, and high quality treated water can be obtained stably over a long period of time.
[Brief description of the drawings]
FIG. 1 is a system diagram illustrating an embodiment of a method for producing pure water according to the present invention.
FIG. 2 is a schematic cross-sectional view showing a general configuration of an electrodeionization apparatus.
FIG. 3 is a system diagram showing a conventional general pure water production apparatus.
FIG. 4 is a system diagram showing a conventional method for producing pure water.
FIG. 5 is a graph showing the relationship between pH and (acid consumption (pH 4.8) / CO 2 ) ratio.
6 is a graph showing a change with time of the CO 2 removal rate of the membrane deaerator in Example 1 and Comparative Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Activated carbon device 2 RO membrane device 3 Electrodeionization device 4 Deaeration device 10 Ion exchanger 11 Anode 12 Cathode 13 Anion exchange membrane 14 Cation exchange membrane 15 Concentration chamber 16 Desalination chamber 17 Anode chamber 18 Cathode chamber

Claims (2)

炭酸ガスと重炭酸イオンとを含む被処理水を、酸、アルカリといった薬剤を用いることなく電気脱イオン処理して純水を製造する方法において、
該被処理水を逆浸透膜処理して重炭酸イオンを除去し、得られた透過水を脱気処理して炭酸ガスを除去し、脱気処理水を電気脱イオン処理する純水の製造方法であって、
酸消費量(pH4.8)が20mg/L(CaCO 換算)以上でpH6.5以上の被処理水を逆浸透膜処理して、pH6.2以下の透過水を得ることを特徴とする純水の製造方法。
In a method for producing pure water by subjecting water to be treated containing carbon dioxide gas and bicarbonate ions to electrodeionization treatment without using chemicals such as acid and alkali,
A method for producing pure water, wherein the treated water is treated with a reverse osmosis membrane to remove bicarbonate ions, the permeated water obtained is degassed to remove carbon dioxide gas, and the degassed water is subjected to electrodeionization treatment Because
Pure water characterized in that a permeated water having a pH of 6.2 or lower is obtained by subjecting water to be treated having an acid consumption (pH 4.8) of 20 mg / L (CaCO 3 equivalent) or higher and a pH of 6.5 or higher to reverse osmosis membrane treatment. Water production method.
請求項1において、脱気処理は膜脱気装置による処理であり、該膜脱気装置に導入される水がTOC200μg/L以下であるか若しくは導電率20μS/cm以下であることを特徴とする純水の製造方法。Oite to claim 1, deaeration process is treatment with membrane degasifier, characterized in that water introduced into the membrane degasser is less TOC200μg / L or less whether or conductivity of 20 [mu] S / cm A method for producing pure water.
JP2000240053A 2000-08-08 2000-08-08 Pure water production method Expired - Fee Related JP3674475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240053A JP3674475B2 (en) 2000-08-08 2000-08-08 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240053A JP3674475B2 (en) 2000-08-08 2000-08-08 Pure water production method

Publications (2)

Publication Number Publication Date
JP2002045857A JP2002045857A (en) 2002-02-12
JP3674475B2 true JP3674475B2 (en) 2005-07-20

Family

ID=18731482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240053A Expired - Fee Related JP3674475B2 (en) 2000-08-08 2000-08-08 Pure water production method

Country Status (1)

Country Link
JP (1) JP3674475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987993A (en) * 2015-05-27 2016-10-05 庞浩辉 Automatic integrated device integrating water purifier and water quality detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4250922B2 (en) * 2002-07-29 2009-04-08 栗田工業株式会社 Ultrapure water production system
JP5382282B2 (en) * 2006-04-26 2014-01-08 栗田工業株式会社 Pure water production equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987993A (en) * 2015-05-27 2016-10-05 庞浩辉 Automatic integrated device integrating water purifier and water quality detector

Also Published As

Publication number Publication date
JP2002045857A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP4648307B2 (en) Continuous electrodeionization apparatus and method
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JP3969221B2 (en) Method and apparatus for producing deionized water
JPH11244853A (en) Production of pure water
JP2008259961A (en) Electrodeionizing apparatus and its operation method
JP6161954B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2004000919A (en) Apparatus for producing desalted water
WO2009082008A1 (en) Process and apparatus for removal of hydrogen peroxide, process and apparatus for production of ozonized water, and method and apparatus for washing
JP2007307561A (en) High-purity water producing apparatus and method
JP3137831B2 (en) Membrane processing equipment
JP3656458B2 (en) Pure water production method
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JP5196110B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JP2000015257A (en) Apparatus and method for making high purity water
JP2003266097A (en) Ultrapure water making apparatus
JPH0649190B2 (en) High-purity water manufacturing equipment
JP3674475B2 (en) Pure water production method
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JP4505965B2 (en) Pure water production method
JP4599668B2 (en) Operation method of electrodeionization equipment
JPH11114576A (en) Deionized water producing device
JP2003001258A (en) Electrolytic deionizing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Ref document number: 3674475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees