JPH11244853A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH11244853A
JPH11244853A JP10055206A JP5520698A JPH11244853A JP H11244853 A JPH11244853 A JP H11244853A JP 10055206 A JP10055206 A JP 10055206A JP 5520698 A JP5520698 A JP 5520698A JP H11244853 A JPH11244853 A JP H11244853A
Authority
JP
Japan
Prior art keywords
water
treated
concentrated
cedi
permeated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10055206A
Other languages
Japanese (ja)
Other versions
JP3575271B2 (en
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP05520698A priority Critical patent/JP3575271B2/en
Publication of JPH11244853A publication Critical patent/JPH11244853A/en
Application granted granted Critical
Publication of JP3575271B2 publication Critical patent/JP3575271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain treated water of high quality by controlling feed water to a specified pH, passing the water through a first reverse osmosis membrane separator of a low desalting rate, deaerating the first permeated water thus obtd., then passing the treated water through a second reverse osmosis membrane separator, and supplying the second permeated water to a purifying device to obtain pure water. SOLUTION: The feed water is first treated in a device 1 to remove suspended substances, and then concentrated water from a RO device 4 and an acid are added to the water to control the pH to 4 to 5 to prevent gelation of silica in a RO device 2. The concentrated water in the RO device 2 is discharged to the outside of the system, while the permeated water is deaerated in a deaerating device 3. To the deaerated water, concentrated water from a pure water device (CEDI) 6 and an alkali are added to control the pH to 7 to 11. The water after pH control is supplied to a RO device 4 to remove silica as well as to remove a carbonic acid component to obtain a permeated water of high quality. The permeated water from the RO device 4 is supplied to a treated water room 6A of the CEDI 6, while a part of the concentrated water is supplied to a concentrated water room 6B. Thus, pure water is obtd. from the treated water room 6A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原水を逆浸透膜分
離装置(RO装置)と連続電気再生式純水装置(CED
I)とで処理して純水を製造する方法に係り、特に、R
O装置とCEDIとを組み合わせて純水を製造するに当
り、水回収率を高めると共に、得られる純水の水質を向
上させる純水の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse osmosis membrane separation apparatus (RO apparatus) for raw water and a continuous electric regeneration type pure water apparatus (CED).
I) and the method for producing pure water.
The present invention relates to a method for producing pure water, which increases the water recovery rate and improves the quality of pure water obtained when producing pure water by combining an O apparatus and CEDI.

【0002】[0002]

【従来の技術】従来、半導体、レンズ、液晶等の洗浄用
水、医薬用水等に用いられる純水の製造には、図3に示
す如く、複数のアニオン交換膜21及びカチオン交換膜
22を交互に配列して濃縮水室23と処理水室24とを
交互に形成し、処理水室24にアニオン交換樹脂とカチ
オン交換樹脂とを混合して充填した連続電気再生式純水
装置(CEDI)が多用されている。CEDIは効果的
な脱イオン処理が可能であり、イオン交換樹脂のように
再生を必要とせず、完全な連続採水が可能で、極めて高
純度の水が得られるという優れた特長を有する。
2. Description of the Related Art Conventionally, for the production of pure water used for cleaning water for semiconductors, lenses, liquid crystals and the like, and medical water, a plurality of anion exchange membranes 21 and cation exchange membranes 22 are alternately arranged as shown in FIG. A continuous electric regeneration type pure water device (CEDI) in which concentrated water chambers 23 and treated water chambers 24 are alternately formed and mixed with an anion exchange resin and a cation exchange resin in the treated water chamber 24 and filled are used frequently. Have been. CEDI has an excellent feature that it can perform an effective deionization treatment, does not require regeneration like an ion-exchange resin, can completely continuously sample water, and can obtain water of extremely high purity.

【0003】CEDIでは、処理水室24に流入した供
給水(被処理水)中のイオンが親和力、濃度及び移動度
に基づいて陽極25と陰極26の電位の傾きの方向に樹
脂20中を移動し、更に、処理水室24と濃縮水室23
とを仕切るカチオン交換膜22又はアニオン交換膜21
を横切って移動し、すべての室において電荷の中和が保
たれるようになる。そして、イオン交換膜21、22の
半浸透特性及び電位の傾きの方向性により、供給水中の
イオンは処理水室24では減少し、隣りの濃縮水室23
では濃縮されることになる。このため、処理水室24か
ら純水(脱イオン水)が回収される。なお、27は陽極
室、28は陰極室である。
In CEDI, ions in feed water (water to be treated) flowing into a treated water chamber 24 move in the resin 20 in the direction of the gradient of the potential of the anode 25 and the cathode 26 based on affinity, concentration and mobility. And the treated water chamber 24 and the concentrated water chamber 23
Exchange membrane 22 or anion exchange membrane 21 that separates
And charge neutralization is maintained in all chambers. Then, due to the semi-osmotic characteristics of the ion exchange membranes 21 and 22 and the directionality of the gradient of the potential, the ions in the supply water are reduced in the treated water chamber 24 and the adjacent concentrated water chamber 23
Then it will be concentrated. Therefore, pure water (deionized water) is recovered from the treated water chamber 24. In addition, 27 is an anode room and 28 is a cathode room.

【0004】 従来、このようなCEDIの前処理手
段として、逆浸透膜分離装置(RO装置)を設けること
がある。RO装置を配設することにより、原水中の電解
質、TOC成分を効率的に除去することができ、CED
Iにおける負荷を低減し、高純度の処理水を得ることが
できるようになる。
Conventionally, a reverse osmosis membrane separation device (RO device) is sometimes provided as a pretreatment means for such CEDI. By disposing the RO device, the electrolyte and TOC components in the raw water can be efficiently removed, and the CED
The load on I can be reduced, and high-purity treated water can be obtained.

【0005】 このようにRO装置を設ける場合にお
いて、CEDIの脱イオン効率を高めて高水質の処理水
を効率的に製造することを目的として、特開平9−29
0271号公報には、高脱塩率RO装置と低脱塩率RO
装置とを組み合わせて処理すること、例えば、図2に示
す如く、原水を高脱塩率RO装置11に通水しその透過
水をCEDI12の処理水室12Aへ給水し、濃縮水を
低脱塩率RO装置13に通水し、その透過水をCEDI
12の濃縮水室12Bへ給水することが提案されてい
る。この特開平9−290271号公報記載の技術は、
CEDIの濃縮水としては、塩類濃度がある程度高い方
が電流効率が高く、脱イオン効率が向上するとの知見に
基いてなされたものである。
[0005] In the case where the RO apparatus is provided as described above, Japanese Patent Application Laid-Open No. 9-29 aims to increase the deionization efficiency of CEDI and efficiently produce high-quality treated water.
No. 0271 discloses a high desalination rate RO apparatus and a low desalination rate RO apparatus.
For example, as shown in FIG. 2, raw water is passed through a high desalination ratio RO device 11 and the permeated water is supplied to a treated water chamber 12A of the CEDI 12, and the concentrated water is subjected to low desalination, as shown in FIG. Through the RO device 13 and the permeated water
It has been proposed to supply water to twelve concentrated water chambers 12B. The technology described in Japanese Patent Application Laid-Open No. 9-290271
The CEDI concentrated water is based on the finding that the higher the salt concentration to some extent, the higher the current efficiency and the higher the deionization efficiency.

【0006】[0006]

【発明が解決しようとする課題】上記のRO装置とC
EDIとの組み合わせによる純水の製造法においては、
高水質の処理水を得るためには、前処理装置として再生
処理が必要なイオン交換樹脂塔を設置したり、後段にや
はり再生処理が必要な混床式イオン交換樹脂塔を設置す
る必要があるといった不具合がある。また、Caやシリ
カ等によるスケール化の問題から水回収率を高くするこ
とができないといった問題もあった。例えば、RO装置
では濃縮水のシリカ濃度は100〜120ppm以下と
なるように水回収率が設定され、通常の場合、水回収率
は70〜80%である。また、CEDIにおいても水回
収率は70〜80%程度とされている。従来において
は、CEDIの濃縮水をRO装置の給水として返送する
ことにより、システム全体の水回収率を70〜80%に
高めているが、十分に満足し得る水回収率とは言えな
い。
The above RO device and C
In the method of producing pure water in combination with EDI,
In order to obtain high-quality treated water, it is necessary to install an ion-exchange resin tower that requires regeneration treatment as a pretreatment device, or install a mixed-bed ion-exchange resin tower that also requires regeneration treatment at the subsequent stage. There is such a problem. There is also a problem that the water recovery rate cannot be increased due to the problem of scaling due to Ca or silica. For example, in the RO apparatus, the water recovery rate is set so that the silica concentration of the concentrated water is 100 to 120 ppm or less, and the water recovery rate is usually 70 to 80%. Further, the water recovery rate of CEDI is also set at about 70 to 80%. Conventionally, the concentrated water of CEDI is returned as feed water to the RO device to increase the water recovery rate of the entire system to 70 to 80%, but it cannot be said that the water recovery rate is sufficiently satisfactory.

【0007】また、CEDIによる脱塩では、原水中の
カチオンとアニオンとのバランスがくずれると、多い方
のイオンが処理水中に残留する恐れがあるが、原水中に
炭酸(CO2)があると、このバランスをくずす原因と
なり、炭酸の存在がCEDIの処理水の水質を左右する
ことになることから、CO2に起因する水質低下の問題
もある。
In the desalination using CEDI, if the balance between the cations and anions in the raw water is lost, more ions may remain in the treated water, but if there is carbonic acid (CO 2 ) in the raw water. , cause collapsing this balance, the presence of carbonate since it will affect the quality of the treated water CEDI, there is also a problem of quality degradation due to CO 2.

【0008】上記の特開平9−290271号公報記
載の技術でも、シリカ及び炭酸の除去や水回収率の向上
について特に考慮されておらず、低脱塩率RO装置13
からシリカが流出し、これがCEDI12の負荷とな
り、処理水水質の低下やCEDI12における電流量の
増大につながっている。また、炭酸に起因する水質低下
の問題もある。
The technique described in Japanese Patent Application Laid-Open No. 9-290271 does not take into account the removal of silica and carbonic acid and the improvement of the water recovery rate.
Silica flows out of the system, and this becomes a load on the CEDI 12, which leads to a decrease in the quality of the treated water and an increase in the amount of current in the CEDI 12. There is also a problem of water quality deterioration caused by carbonic acid.

【0009】この低脱塩率RO装置13からのシリカの
流出を防止するために、第2段目のRO装置として、低
脱塩率RO装置ではなく、通常の脱塩率のRO装置を使
用することも考えられるが、この場合には、シリカが第
2段目のRO装置において更に濃縮されることになり、
シリカのゲル化によるスケール障害の問題がある。ま
た、CaCO3スケールの問題もある。
In order to prevent the silica from flowing out of the low-desalting-ratio RO apparatus 13, a RO apparatus having a normal desalting rate is used instead of the low-desalting-ratio RO apparatus as the second-stage RO apparatus. However, in this case, the silica will be further concentrated in the second-stage RO apparatus,
There is a problem of scale hindrance due to gelation of silica. There is also the problem of CaCO 3 scale.

【0010】本発明は上記従来の問題点を解決し、スケ
ール障害を引き起こすことなく水回収率を高め、炭酸に
よる水質の低下やシルカのリークを防止して高水質の処
理水を得ることができる純水の製造方法を提供すること
を目的とする。
[0010] The present invention solves the above-mentioned conventional problems, increases the water recovery rate without causing scale disturbance, prevents water quality deterioration due to carbonic acid, and prevents leakage of silker, thereby obtaining high quality treated water. An object is to provide a method for producing pure water.

【0011】[0011]

【課題を解決するための手段】本発明の純水の製造方法
は、原水をpH4〜5に調整した後、低脱塩率の第1の
逆浸透膜分離装置(第1RO装置)に通水して第1の透
過水と第1の濃縮水とを得、該第1の透過水を脱気処理
した後pH7〜11に調整し、次いで第2の逆浸透膜分
離装置(第2RO装置)に通水して第2の透過水と第2
の濃縮水とを得、該第2の透過水を連続電気再生式純水
装置(CEDI)の処理水室に給水して該処理水室から
純水を得ることを特徴とする。
According to the method for producing pure water of the present invention, after adjusting the pH of raw water to pH 4 to 5, the water is passed through a first reverse osmosis membrane separation device (first RO device) having a low desalination ratio. To obtain a first permeated water and a first concentrated water, degassing the first permeated water, adjusting the pH to 7 to 11, and then a second reverse osmosis membrane separation device (second RO device) Through the second permeate and the second
And the second permeated water is supplied to a treated water chamber of a continuous electric regeneration water purifier (CEDI) to obtain pure water from the treated water chamber.

【0012】本発明では第1RO装置への給水をpH4
〜5に調整することにより、シリカのゲル化を防止し
て、シリカ濃度200mg/L程度までシリカの析出を
抑制することができる。従って、第1RO装置では、シ
リカはスケールとならずに低脱塩率のRO膜を通過す
る。この低脱塩率の第1RO装置は、Caイオンを除去
するものであり、他の塩類は必ずしも除去されなくても
良い。この第1RO装置は低脱塩率であるため、高い水
回収率で低圧力で運転でき、膜フラックスの低下も少な
い。
In the present invention, the water supply to the first RO device is adjusted to pH 4
By adjusting the value to 55, gelation of silica can be prevented, and precipitation of silica can be suppressed up to a silica concentration of about 200 mg / L. Therefore, in the first RO device, the silica passes through the low desalting rate RO membrane without being scaled. The first RO device having a low desalting rate removes Ca ions, and other salts do not necessarily have to be removed. Since the first RO apparatus has a low desalination rate, it can be operated at a low water pressure with a high water recovery rate, and the decrease in membrane flux is small.

【0013】この第1RO装置の透過水は脱気工程へ送
られる。
[0013] The permeated water of the first RO device is sent to a deaeration step.

【0014】脱気工程では、系内のpHが5以下である
ことから、水中の炭酸はCO2の状態となっており、容
易に除去される。
In the degassing step, since the pH in the system is 5 or less, the carbonic acid in the water is in the state of CO 2 and is easily removed.

【0015】そして、第1RO装置におけるCaイオン
の除去と、この脱気工程におけるCO2の除去とで後段
のCaCO3スケールを防止することができる。
The removal of Ca ions in the first RO device and the removal of CO 2 in this deaeration step can prevent the subsequent stage of CaCO 3 scale.

【0016】脱気処理水は次いでpH7〜11に調整さ
れた後、第2RO装置に導入される。このように第2R
O装置への給水をアルカリ性とすることにより、シリカ
のリークやスケール障害を防止することができる。即
ち、シリカはゲル化することでRO膜を目詰まりさせる
等のスケール障害をもたらすが、アルカリ性ではシリカ
はイオン化するためゲル化せず、スケール障害を引き起
こすことがない。このイオン化したシリカはRO膜を目
詰まりさせることなく、RO膜で排除されるため、透過
水側へのシリカのリークは抑制される。また、水中に残
留する炭酸も(重)炭酸イオンとなり、他のイオンと共
にRO膜で排除され、透過水側へのリークは抑制され
る。従って、第2RO装置において、水回収率を高めて
もスケール障害を引き起こすことがなく、また、スケー
ル化成分が高度に除去された高水質の透過水を得ること
ができる。
The degassed water is then adjusted to a pH of 7 to 11, and then introduced into the second RO device. Thus, the second R
By making the water supply to the O device alkaline, it is possible to prevent silica leakage and scale disturbance. That is, the silica gel causes a scale hindrance such as clogging of the RO film. However, in the case of alkalinity, the silica is ionized and does not gel and does not cause a scale hindrance. Since the ionized silica is eliminated by the RO film without clogging the RO film, the leakage of silica to the permeated water side is suppressed. In addition, carbonic acid remaining in water also becomes (bi) carbonate ion, is eliminated by the RO membrane together with other ions, and leakage to the permeated water side is suppressed. Therefore, in the second RO device, even if the water recovery rate is increased, no scale disturbance is caused, and high-quality permeated water from which scaled components are highly removed can be obtained.

【0017】CEDIでは、その前段までの工程で、C
aイオン、シリカ、炭酸イオン等のスケールの原因とな
る物質が除去されているため、CEDIにおけるスケー
ルの発生が防止でき、CEDIを安定して長時間運転で
きる。特に、炭酸は脱気による除去と、アルカリ性下の
第2RO装置での処理による排除によって可能な限り除
去されるので、CEDIへの(重)炭酸イオンの流入が
極めて少ない。このため、前述のCO2に起因するCE
DI処理水の水質低下の問題はなく、安定して良好な水
質を得ることができる。
In the CEDI, up to the previous step, C
Since scale-causing substances such as a ions, silica, and carbonate ions are removed, generation of scale in CEDI can be prevented, and CEDI can be operated stably for a long time. In particular, since carbonic acid is removed as much as possible by removal by degassing and removal by treatment in a second RO apparatus under alkaline conditions, the flow of (bi) carbonate ions into CEDI is extremely small. For this reason, the CE caused by the aforementioned CO 2
There is no problem of deterioration in the water quality of the DI treated water, and good water quality can be obtained stably.

【0018】[0018]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1は本発明の実施の形態の一例を示す系
統図である。
FIG. 1 is a system diagram showing an example of an embodiment of the present invention.

【0020】本発明において、原水としては、工水、市
水、井水等、通常の純水製造用原水として使われる水が
使用でき、また、超純水を使用する半導体製造工程から
の排水を常法に従って生物処理、RO処理、イオン交換
処理したものを原水とすることもできる。
In the present invention, as the raw water, water used as ordinary raw water for producing pure water, such as industrial water, city water, and well water, can be used, and wastewater from a semiconductor manufacturing process using ultrapure water can be used. Is subjected to biological treatment, RO treatment, and ion exchange treatment according to a conventional method to obtain raw water.

【0021】原水はまず、原水中の濁質や、不溶化可能
な溶存物質を除去するために除濁装置1で処理するのが
好ましく、この場合、除濁装置1としては凝集沈澱、濾
過、除濁用膜分離(例えば、精密濾過(MF)膜や限外
濾過(UF)膜)などが使用できる。除濁装置1を設け
ることで後段の負荷を軽減し、処理水質を向上させるこ
とができる。
Raw water is preferably first treated with a turbidity removing device 1 in order to remove turbidity in the raw water and dissolved substances that can be insolubilized. A turbidity membrane separation (for example, microfiltration (MF) membrane or ultrafiltration (UF) membrane) can be used. By providing the turbidity removing device 1, the load at the subsequent stage can be reduced, and the quality of treated water can be improved.

【0022】除濁処理した原水は、次いで、後段の第2
RO装置4の濃縮水と共に、HCl、H2SO4等の酸が
添加されpH4〜5に調整される。第1RO装置2の給
水をpH4〜5に調整することにより、第1RO装置2
でのシリカのゲル化を防止して、シリカスケールを防止
することができる。即ち、従来においては、シリカスケ
ールの面から、シリカ濃度100〜120ppm以下で
運転されているが、pH4〜5とすることで、シリカ濃
度200ppm程度までシリカスケールを防止すること
ができ、水回収率を大幅に高め、90%以上の水回収率
での運転が可能となる。
The raw water subjected to turbidity treatment is then subjected to the second stage
An acid such as HCl or H 2 SO 4 is added together with the concentrated water of the RO device 4 to adjust the pH to 4 to 5. By adjusting the feed water of the first RO device 2 to pH 4-5, the first RO device 2
The gelation of silica at the step can be prevented, and the silica scale can be prevented. That is, conventionally, from the viewpoint of the silica scale, the operation is performed at a silica concentration of 100 to 120 ppm or less. However, by setting the pH to 4 to 5, the silica scale can be prevented up to a silica concentration of about 200 ppm, and the water recovery rate can be reduced. And the operation with a water recovery rate of 90% or more becomes possible.

【0023】本発明においては、第1RO装置2とし
て、低脱塩率のRO膜、好ましくは、NaCl除去率が
85〜95%程度のRO膜を装着したRO装置(以下
「ルーズRO装置」と称す場合がある。)を用いる。こ
のようなルーズRO装置であればシリカ除去率は低い
が、Ca2+は99%以上除去することができる。
In the present invention, as the first RO device 2, a RO film having a low desalting rate, preferably an RO film having a NaCl removal rate of about 85 to 95% (hereinafter referred to as a "loose RO apparatus"). May be called.) With such a loose RO apparatus, the silica removal rate is low, but Ca 2+ can be removed by 99% or more.

【0024】また、ルーズRO装置であれば低圧力で運
転することができ、膜フラックスの低下も少ないという
利点もある。
In addition, a loose RO apparatus can be operated at a low pressure, and has the advantage that the decrease in film flux is small.

【0025】この第1のルーズRO装置2の濃縮水は系
外へ排出され、透過水は脱気装置3で脱気処理される。
The concentrated water in the first loose RO device 2 is discharged out of the system, and the permeated water is deaerated in a deaerator 3.

【0026】脱気装置3では、給水のpHが5以下の酸
性であるため、水中の炭酸成分はCO2の状態となって
おり、効率的に除去される。また、同時に水中の溶存酸
素を除去することもできる。この脱気装置3としては、
脱炭酸(空気接触法)装置、N2脱気装置、真空脱気装
置、膜脱気装置など通常の脱気装置を用いることができ
る。
In the deaerator 3, since the pH of the feedwater is acidic at 5 or less, the carbonic acid component in the water is in a CO 2 state and is efficiently removed. In addition, dissolved oxygen in water can be removed at the same time. As the deaerator 3,
Decarboxylation (air contact method) apparatus, N 2 deaerator, vacuum degasser, it is possible to use a conventional deaerator such as a membrane degasifier.

【0027】脱気装置3からの脱気処理水は、後段のC
EDI6の濃縮水と共に、NaOH、KOH等のアルカ
リが注入されpH7〜11に調整される。この調整pH
値は、シリカのイオン化の面からは高い程望ましいが、
高すぎると第2RO装置4のRO膜の劣化の問題が生じ
るため、調整pH値は特に8〜10.5、とりわけ9.
5〜10が好ましい。
The deaerated water from the deaerator 3 is supplied to the C
An alkali such as NaOH or KOH is injected together with the concentrated water of EDI6 to adjust the pH to 7-11. This adjusted pH
The value is preferably higher from the viewpoint of ionization of silica,
If the temperature is too high, the problem of deterioration of the RO film of the second RO device 4 occurs, so the adjusted pH value is particularly 8 to 10.5, especially 9.
5 to 10 are preferred.

【0028】このようにpH調整された水が給水される
第2RO装置4のRO膜としては、好ましくはNaCl
除去率が99%以上の高脱塩率のRO膜、例えばポリア
ミド系又は酢酸セルロース系等のRO膜を用いる。
The RO film of the second RO device 4 to which the water whose pH has been adjusted as described above is supplied is preferably made of NaCl.
An RO film with a high desalination rate of 99% or more, for example, an RO film of polyamide type or cellulose acetate type is used.

【0029】この第2RO装置4では、前述の如く、ア
ルカリ性条件下で運転を行うために、シリカスケールの
恐れがない。また、第1のルーズRO装置2でCa2+
除去され、脱気装置3でCO2 が除去されているため、
CaCO3スケールの恐れもなく、水回収率を高くする
ことができ、一般的には80〜90%の水回収率で運転
することができる。この第2RO装置4では、イオン化
したシリカが除去されると共に、残留する炭酸成分も
(重)炭酸イオンとなって他のイオンと共に除去される
ため、高水質の透過水が得られる。
As described above, since the second RO device 4 is operated under alkaline conditions, there is no fear of silica scale. Also, since Ca 2+ is removed by the first loose RO device 2 and CO 2 is removed by the deaerator 3,
The water recovery rate can be increased without fear of CaCO 3 scale, and the operation can generally be performed at a water recovery rate of 80 to 90%. In the second RO device 4, the ionized silica is removed, and the remaining carbonic acid component also becomes (bi) carbonate ion and is removed together with other ions, so that high-quality permeated water is obtained.

【0030】この第2RO装置4の透過水は後段のCE
DI6の処理水室6Aに供給され、また、濃縮水の一部
はCEDI6の濃縮水室6Bに供給され、残部は第1の
ルーズRO装置2へ給水される。
The permeated water of the second RO device 4 is supplied to the subsequent CE
The DI 6 is supplied to the treated water chamber 6A, a part of the concentrated water is supplied to the concentrated water chamber 6B of the CEDI 6, and the remainder is supplied to the first loose RO device 2.

【0031】本実施例では、第2RO装置4の透過水を
紫外線照射酸化装置(以下「UV酸化装置」と称す。)
5で処理した後、CEDI6に供給する。このようにU
V酸化装置5で処理することにより、より高水質の処理
水を得ることができ、好ましい。
In the present embodiment, the permeated water of the second RO unit 4 is irradiated with an ultraviolet ray oxidizing device (hereinafter referred to as "UV oxidizing device").
After processing in step 5, feed to CEDI6. Thus U
By treating with the V oxidizer 5, treated water with higher water quality can be obtained, which is preferable.

【0032】即ち、RO装置2,4、脱気装置3、CE
DI6のみでは、原水中のTOCを微量まで除去するこ
とができないが、図1に示す如く、UV酸化装置5を設
けることで、原水中のTOCをUV酸化分解により低分
子化してイオン化し、これを後段のCEDI6で容易に
分離することができ、より一層水質を高めることができ
る。
That is, RO devices 2 and 4, deaerator 3, CE
The DI6 alone cannot remove a very small amount of TOC in raw water, but as shown in FIG. 1, by providing a UV oxidizer 5, TOC in raw water is decomposed into small molecules by UV oxidative decomposition and ionized. Can be easily separated by the subsequent CEDI 6, and the water quality can be further improved.

【0033】UV酸化装置を設ける場合、その設置場所
には特に制限はなく、任意の箇所に設置することができ
るが、特に、CEDIの直前に設けるのが、UV酸化分
解でイオン化させたTOC成分を速やかに除去できる点
で好ましい。
When a UV oxidizing device is provided, there is no particular limitation on the place of the UV oxidizing device, and it can be installed at any position. In particular, the TOC component ionized by UV oxidative decomposition is provided immediately before CEDI. Is preferred in that it can be quickly removed.

【0034】なお、UV酸化装置5としては、酸化能力
の高い180〜220nm、特に180〜190nmの
低波長のUVを照射できるものを用いるのが好ましい。
It is preferable that the UV oxidizing apparatus 5 be capable of irradiating UV having a high oxidizing ability at a low wavelength of 180 to 220 nm, particularly 180 to 190 nm.

【0035】UV酸化装置5の処理水はCEDI6の処
理水室6Aに供給される。
The treated water of the UV oxidizer 5 is supplied to the treated water chamber 6A of the CEDI 6.

【0036】CEDI6としては、図3に示す如く、ア
ニオン交換膜21とカチオン交換膜22により濃縮水室
23及び処理水室24と陽極室27及び陰極室28とが
隔成され、処理水室24に、或いは、処理水室24と濃
縮水室23とにカチオン交換樹脂とアニオン交換樹脂と
の混床が充填された、一般的な市販のCEDIを用いる
ことができる。
As shown in FIG. 3, the concentrated water chamber 23 and the treated water chamber 24 are separated from the CEDI 6 by the anion exchange membrane 21 and the cation exchange membrane 22, and the anode chamber 27 and the cathode chamber 28. Alternatively, a general commercially available CEDI in which a mixed bed of a cation exchange resin and an anion exchange resin is filled in the treated water chamber 24 and the concentrated water chamber 23 can be used.

【0037】CEDI6では、前述の原理で脱イオン処
理がなされ、処理水室6Aから純水が得られ、濃縮水室
6Bからは濃縮水が排出される。なお、CEDI6の電
極室(陽極室、陰極室)には第2RO装置4の濃縮水が
給水される。
In the CEDI 6, deionization is performed according to the principle described above, pure water is obtained from the treated water chamber 6A, and concentrated water is discharged from the concentrated water chamber 6B. The electrode chamber (anode chamber, cathode chamber) of the CEDI 6 is supplied with the concentrated water of the second RO device 4.

【0038】処理水室6Aからの純水は系外へ排出さ
れ、使用場所へ送給される。
The pure water from the treated water chamber 6A is discharged out of the system and sent to the place of use.

【0039】一方、濃縮水室6Bからの濃縮水は第2R
O装置4の前段に返送され、第2RO装置4に給水され
る。
On the other hand, the concentrated water from the concentrated water chamber 6B is supplied to the second R
The water is returned to the preceding stage of the O device 4 and supplied to the second RO device 4.

【0040】本発明においては、CEDI6の前段まで
に、原水中のCa2+イオン、シリカ、炭酸イオン等のス
ケールの原因となる物質が高度に除去されており、CE
DI6におけるスケールの発生が防止され、CEDI6
自体も85〜95%程度の高水回収率で、長期に亘り安
定して運転することができる。特に、炭酸は脱気による
除去と、アルカリ性下の第2RO装置における排除によ
って高度に除去されるため、CEDI6への(重)炭酸
イオンの流入が極めて少なく、前述のCO2 に起因する
イオンバランスのずれからくるCEDI処理水の水質低
下はなく、安定して良好な水質の処理水を得ることがで
きる。
In the present invention, substances causing scale, such as Ca 2+ ions, silica, and carbonate ions, in the raw water have been highly removed by the preceding stage of CEDI6.
The occurrence of scale in DI6 is prevented and CEDI6
The device itself can operate stably for a long period of time with a high water recovery rate of about 85 to 95%. In particular, carbonic acid is highly removed by the removal by degassing and the elimination in the second RO device under alkaline conditions, so that the inflow of (bi) carbonate ions into CEDI 6 is extremely small, and the ion balance caused by the aforementioned CO 2 is reduced. There is no decrease in the water quality of the CEDI treated water due to the displacement, and the treated water with good water quality can be obtained stably.

【0041】また、前述の如く、第2RO装置4はアル
カリ性下で処理されるため、このCEDI6の濃縮水を
返送して給水しても、スケール障害等を引き起こすこと
なく、安定に処理を行うことができる。
As described above, since the second RO device 4 is processed under alkaline conditions, even if the concentrated water of CEDI 6 is returned and supplied, it is possible to perform the processing stably without causing scale disturbance or the like. Can be.

【0042】図1に示される実施の形態では、系外へ排
出される水は、第1のルーズRO装置2の濃縮水のみで
あり、システム全体としての水回収率を、従来の70〜
80%から、90%以上の高水回収率とすることができ
る上に、高水質の処理水を得ることができる。
In the embodiment shown in FIG. 1, the only water discharged to the outside of the system is the concentrated water of the first loose RO device 2.
A high water recovery rate of 80% to 90% or more can be obtained, and high-quality treated water can be obtained.

【0043】[0043]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0044】実施例1 図1に示す方法により市水を処理して純水の製造を行っ
た。ただし、UV酸化装置5は設けず、第2RO装置4
の透過水は直接CEDI6に給水した。
Example 1 City water was treated by the method shown in FIG. 1 to produce pure water. However, the UV oxidation device 5 is not provided, and the second RO device 4
Was directly supplied to CEDI6.

【0045】まず、市水270L/hrを除濁装置(外
圧型中空糸UF膜分離装置)1で処理した後、後段の第
2RO装置4の濃縮水10L/hrと共に、HClでp
H4に調整し、第1のルーズRO装置2に通水した。こ
の第1のルーズRO装置2としては、日東電工社製「N
TR−729HF」(ポリアミド系合成複合膜、NaC
l除去率90%)1本(4インチ)を装填したものを用
い、給水圧10kg/cm2、水回収率90%で運転し
た。
First, 270 L / hr of city water is treated by a turbidity removing device (external pressure type hollow fiber UF membrane separation device) 1, and then concentrated with 10 L / hr of concentrated water of a second RO device 4 at the subsequent stage using HCl.
The water was adjusted to H4 and passed through the first loose RO device 2. As the first loose RO device 2, "N" manufactured by Nitto Denko Corporation
TR-729HF "(polyamide-based synthetic composite membrane, NaC
(1 removal rate: 90%) Using one (4 inches) loaded, operation was performed at a water supply pressure of 10 kg / cm 2 and a water recovery rate of 90%.

【0046】第1のルーズRO装置2の濃縮水は系外へ
排出し、透過水は脱気装置3に供給した。脱気装置3と
しては、膜脱気装置(ヘキストジャパン製:Liq−C
EL,2インチ1本)を用い、真空度40Torr,N
2量1L/minで処理した。
The concentrated water in the first loose RO device 2 was discharged out of the system, and the permeated water was supplied to the deaerator 3. As the deaerator 3, a membrane deaerator (manufactured by Hoechst Japan: Liq-C)
EL, 2 inch 1 pc.), Vacuum degree 40 Torr, N
Two volumes were treated at 1 L / min.

【0047】次いで、脱気処理水250L/hrを後段
のCEDI6の濃縮水40L/hrと共に、NaOHを
添加してpH9.5に調整した後、第2RO装置4に通
水した。
Next, 250 L / hr of degassed water was adjusted to pH 9.5 by adding NaOH together with 40 L / hr of the concentrated water of CEDI 6 at the subsequent stage, and then passed through the second RO device 4.

【0048】第2RO装置4としては、RO膜として日
東電工社製「NTR−759HR」(ポリアミド系合成
複合膜、NaCl除去率99.5%)1本(4インチ)
を装填したものを用い、給水圧12kg/cm2、水回
収率83%で処理を行った。この第2RO装置4の透過
水240L/hrはCEDI(栗田工業(株)製「ピュ
アエースPA240」)6の処理水室6Aに給水し、濃
縮水のうちの40L/hrはCEDI6の濃縮水室6B
に通水した。
As the second RO device 4, a single (4 inch) RO film “NTR-759HR” (manufactured by Nitto Denko Corporation) (polyamide-based synthetic composite film, NaCl removal rate 99.5%)
Was treated at a water supply pressure of 12 kg / cm 2 and a water recovery rate of 83%. 240 L / hr of permeated water of the second RO device 4 is supplied to the treated water chamber 6A of CEDI (“Pure Ace PA240” manufactured by Kurita Kogyo Co., Ltd.) 6, and 40 L / hr of the concentrated water is concentrated water chamber of CEDI6. 6B
Water.

【0049】得られた処理水(CEDI6からの純水)
の水質及び水回収率を調べ、結果を表1に示した。
The obtained treated water (pure water from CEDI6)
Was examined for water quality and water recovery, and the results are shown in Table 1.

【0050】実施例2 実施例1において、185nmのUVを照射するUV酸
化装置5を設け第2RO装置4の透過水を、このUV酸
化装置5で0.2KWH/m3の条件で処理したこと以
外は同様にして処理を行い、得られた処理水の水質及び
水回収率を調べ、結果を表1に示した。
Example 2 In Example 1, a UV oxidizing device 5 for irradiating UV of 185 nm was provided, and the permeated water of the second RO device 4 was treated with the UV oxidizing device 5 under the condition of 0.2 KWH / m 3. Other than the above, the treatment was carried out in the same manner, and the quality and water recovery of the obtained treated water were examined. The results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】比較例1 実施例1において、脱気装置を設けなかったこと以外は
同様にして処理を行ったところ、10〜12回でCaC
3のスケースが発生し、第2RO装置の透過水量の低
下、差圧の上昇を生じた。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the deaerator was not provided.
O 3 skewing occurred, causing a decrease in the amount of permeated water of the second RO device and an increase in the differential pressure.

【0053】比較例2 実施例1において、第1のルーズRO装置2の入口側で
pH調整を行わず、pH7.0で処理したこと以外は同
様にして処理を行ったところ、5〜7回でCaCO3
スケースが発生し、第2RO装置の透過水量の低下、差
圧の上昇を生じた。
Comparative Example 2 The procedure of Example 1 was repeated, except that the pH was not adjusted on the inlet side of the first loose RO apparatus 2 but the pH was adjusted to 7.0, and the same procedure was performed 5 to 7 times. As a result, a scourge of CaCO 3 was generated, resulting in a decrease in the amount of permeated water of the second RO device and an increase in the differential pressure.

【0054】比較例3 実施例1において、第2RO装置4の入口側でpH調整
を行わず、pH6.9で処理したこと以外は同様にして
処理を行ったところ、20〜25日で第2RO装置にシ
リカスケールが発生し、透過水量の低下を生じた。
Comparative Example 3 The procedure of Example 1 was repeated, except that the pH was not adjusted on the inlet side of the second RO device 4 and the process was carried out at pH 6.9. Silica scale was generated in the apparatus, and the amount of permeated water was reduced.

【0055】[0055]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、RO装置とCEDIとを組み合わせて純
水を製造する場合の水回収率を、従来法に比べて10〜
20%も向上させることができる上に、高水質の処理水
を得ることができる。
As described in detail above, according to the method for producing pure water of the present invention, the water recovery rate when producing pure water by combining an RO device and CEDI is 10 to 10 times that of the conventional method.
In addition to being able to improve by as much as 20%, high quality treated water can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す系統図であ
る。
FIG. 1 is a system diagram showing an example of an embodiment of the present invention.

【図2】従来例を示す系統図である。FIG. 2 is a system diagram showing a conventional example.

【図3】CEDIの構造を示す概略的な構成図である。FIG. 3 is a schematic configuration diagram showing the structure of CEDI.

【符号の説明】[Explanation of symbols]

1 除濁装置 2 第1のルーズRO装置 3 脱気装置 4 第2RO装置 5 UV酸化装置 6 CEDI 6A 処理水室 6B 濃縮水室 11 高脱塩率RO装置 12 CEDI 12A 処理水室 12B 濃縮水室 13 低脱塩率RO装置 20 イオン交換樹脂 21 アニオン交換膜 22 カチオン交換膜 23 濃縮水室 24 処理水室 25 陽極 26 陰極 27 陽極室 28 陰極室 REFERENCE SIGNS LIST 1 turbidity device 2 first loose RO device 3 deaerator 4 second RO device 5 UV oxidation device 6 CEDI 6A treated water room 6B concentrated water room 11 high desalination ratio RO device 12 CEDI 12A treated water room 12B concentrated water room 13 Low Desalination RO Device 20 Ion Exchange Resin 21 Anion Exchange Membrane 22 Cation Exchange Membrane 23 Concentrated Water Room 24 Treated Water Room 25 Anode 26 Cathode 27 Anode Room 28 Cathode Room

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年3月12日[Submission date] March 12, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0052】比較例1 実施例1において、脱気装置を設けなかったこと以外は
同様にして処理を行ったところ、10〜12でCaC
3のスケーが発生し、第2RO装置の透過水量の低
下、差圧の上昇を生じた。
[0052] In Comparative Example 1 Example 1, where except that no provided deaerator was treated in the same manner, CaC 10-12 days
Scale of O 3 is generated, lowering the permeate flow of the 2RO device, resulting in a rise in differential pressure.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0053[Correction target item name] 0053

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0053】比較例2 実施例1において、第1のルーズRO装置2の入口側で
pH調整を行わず、pH7.0で処理したこと以外は同
様にして処理を行ったところ、5〜7でCaCO3
スケーが発生し、第2RO装置の透過水量の低下、差
圧の上昇を生じた。
Comparative Example 2 The procedure of Example 1 was repeated, except that the pH was not adjusted on the inlet side of the first loose RO apparatus 2 but the pH was adjusted to 7.0, and the treatment was performed for 5 to 7 days. in <br/> scale of CaCO 3 occurs, decrease in permeate flow rate of the 2RO device, resulting in a rise in differential pressure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/469 C02F 1/46 103 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/469 C02F 1/46 103

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水をpH4〜5に調整した後、低脱塩
率の第1の逆浸透膜分離装置に通水して第1の透過水と
第1の濃縮水とを得、 該第1の透過水を脱気処理した後pH7〜11に調整
し、次いで第2の逆浸透膜分離装置に通水して第2の透
過水と第2の濃縮水とを得、 該第2の透過水を連続電気再生式純水装置の処理水室に
給水して該処理水室から純水を得ることを特徴とする純
水の製造方法。
1. After adjusting the pH of raw water to 4 to 5, the water is passed through a first reverse osmosis membrane separation device having a low desalination rate to obtain a first permeated water and a first concentrated water. After degassing the first permeate, the pH is adjusted to 7 to 11 and then passed through a second reverse osmosis membrane separator to obtain a second permeate and a second concentrated water. A method for producing pure water, comprising supplying permeated water to a treated water chamber of a continuous electric regeneration type pure water apparatus to obtain pure water from the treated water chamber.
JP05520698A 1998-03-06 1998-03-06 Pure water production method Expired - Fee Related JP3575271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05520698A JP3575271B2 (en) 1998-03-06 1998-03-06 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05520698A JP3575271B2 (en) 1998-03-06 1998-03-06 Pure water production method

Publications (2)

Publication Number Publication Date
JPH11244853A true JPH11244853A (en) 1999-09-14
JP3575271B2 JP3575271B2 (en) 2004-10-13

Family

ID=12992192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05520698A Expired - Fee Related JP3575271B2 (en) 1998-03-06 1998-03-06 Pure water production method

Country Status (1)

Country Link
JP (1) JP3575271B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001259A (en) * 2001-06-22 2003-01-07 Kurita Water Ind Ltd Ultrapure water producing apparatus
JP2003136065A (en) * 2001-11-05 2003-05-13 Kurita Water Ind Ltd Treatment apparatus of boiler feed water
JP2005205323A (en) * 2004-01-22 2005-08-04 Fuji Xerox Co Ltd Waste water treating method
WO2006009185A1 (en) * 2004-07-16 2006-01-26 Kurita Water Industries Ltd. Desilicating apparatus and method of desilicating
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device
JP2007268352A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Water treatment method and water treatment apparatus
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP2007307502A (en) * 2006-05-19 2007-11-29 Ichiro Shoda Method for generating electrolytic water and electrolytic water generator
SG144687A1 (en) * 2000-07-13 2008-08-28 Kurita Water Ind Ltd Electrodeionization apparatus and method of operating the same
JP2008260017A (en) * 2001-12-11 2008-10-30 Nomura Micro Sci Co Ltd Method and apparatus for producing ultrapure water
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
JP2012187472A (en) * 2011-03-09 2012-10-04 Miura Co Ltd Water treatment method and water treatment system
WO2015002014A1 (en) * 2013-07-02 2015-01-08 栗田工業株式会社 Treatment method and treatment device for wastewater containing cationic surfactant
CN104944527A (en) * 2015-06-12 2015-09-30 江苏新美星包装机械股份有限公司 Water purifying process
JP2016034636A (en) * 2014-08-01 2016-03-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Water purification system and method
CN106734629A (en) * 2017-01-16 2017-05-31 机械科学研究总院先进制造技术研究中心 A kind of station transport equipment of superplastic forming three
WO2018092831A1 (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device
WO2020045061A1 (en) * 2018-08-28 2020-03-05 野村マイクロ・サイエンス株式会社 Pure water production system and pure water production method
JP2020531245A (en) * 2017-08-21 2020-11-05 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Treatment of salt water for agriculture and beverages
KR20230081716A (en) 2020-10-05 2023-06-07 오르가노 코포레이션 Pure water production system and pure water production method
WO2024203861A1 (en) * 2023-03-24 2024-10-03 住友重機械工業株式会社 Carbonate immobilization device and carbonate immobilization method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG144687A1 (en) * 2000-07-13 2008-08-28 Kurita Water Ind Ltd Electrodeionization apparatus and method of operating the same
JP2003001259A (en) * 2001-06-22 2003-01-07 Kurita Water Ind Ltd Ultrapure water producing apparatus
JP4710176B2 (en) * 2001-06-22 2011-06-29 栗田工業株式会社 Ultrapure water production equipment
JP2003136065A (en) * 2001-11-05 2003-05-13 Kurita Water Ind Ltd Treatment apparatus of boiler feed water
JP2008260017A (en) * 2001-12-11 2008-10-30 Nomura Micro Sci Co Ltd Method and apparatus for producing ultrapure water
JP4519930B2 (en) * 2001-12-11 2010-08-04 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production apparatus
JP2007528781A (en) * 2003-03-28 2007-10-18 ケミトリート ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP4648307B2 (en) * 2003-03-28 2011-03-09 シーメンス ピーティーイー リミテッド Continuous electrodeionization apparatus and method
JP4525083B2 (en) * 2004-01-22 2010-08-18 富士ゼロックス株式会社 Wastewater treatment method
JP2005205323A (en) * 2004-01-22 2005-08-04 Fuji Xerox Co Ltd Waste water treating method
WO2006009185A1 (en) * 2004-07-16 2006-01-26 Kurita Water Industries Ltd. Desilicating apparatus and method of desilicating
JP2006051423A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Electric deionization system, electric deionization method, and pure water production device
JP2007268352A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Water treatment method and water treatment apparatus
JP4641003B2 (en) * 2006-05-19 2011-03-02 一郎 庄田 Electrolyzed water generation method and electrolyzed water generator
JP2007307502A (en) * 2006-05-19 2007-11-29 Ichiro Shoda Method for generating electrolytic water and electrolytic water generator
JP2011189298A (en) * 2010-03-16 2011-09-29 Miura Co Ltd Pure water production system
JP2012187472A (en) * 2011-03-09 2012-10-04 Miura Co Ltd Water treatment method and water treatment system
TWI593636B (en) * 2013-07-02 2017-08-01 Kurita Water Ind Ltd Drainage treatment method and processing device containing
JP2015009230A (en) * 2013-07-02 2015-01-19 栗田工業株式会社 Method and apparatus for treating cationic surfactant-containing waste water
CN105358489A (en) * 2013-07-02 2016-02-24 栗田工业株式会社 Treatment method and treatment device for wastewater containing cationic surfactant
WO2015002014A1 (en) * 2013-07-02 2015-01-08 栗田工業株式会社 Treatment method and treatment device for wastewater containing cationic surfactant
JP2016034636A (en) * 2014-08-01 2016-03-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Water purification system and method
CN104944527A (en) * 2015-06-12 2015-09-30 江苏新美星包装机械股份有限公司 Water purifying process
JP2018079447A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device
WO2018092831A1 (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device
CN106734629A (en) * 2017-01-16 2017-05-31 机械科学研究总院先进制造技术研究中心 A kind of station transport equipment of superplastic forming three
JP2020531245A (en) * 2017-08-21 2020-11-05 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Treatment of salt water for agriculture and beverages
WO2020045061A1 (en) * 2018-08-28 2020-03-05 野村マイクロ・サイエンス株式会社 Pure water production system and pure water production method
KR20210044187A (en) * 2018-08-28 2021-04-22 노무라마이크로사이엔스가부시키가이샤 Pure water production system and pure water production method
JPWO2020045061A1 (en) * 2018-08-28 2021-08-10 野村マイクロ・サイエンス株式会社 Pure water production system and pure water production method
KR20230081716A (en) 2020-10-05 2023-06-07 오르가노 코포레이션 Pure water production system and pure water production method
WO2024203861A1 (en) * 2023-03-24 2024-10-03 住友重機械工業株式会社 Carbonate immobilization device and carbonate immobilization method

Also Published As

Publication number Publication date
JP3575271B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP3575271B2 (en) Pure water production method
JP4867182B2 (en) Pure water production equipment
TWI414486B (en) Pure water manufacturing apparatus and pure water manufacturing method
JP2006255652A (en) Apparatus for producing pure water
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JP2007307561A (en) High-purity water producing apparatus and method
JP2004000919A (en) Apparatus for producing desalted water
JP3137831B2 (en) Membrane processing equipment
JP2000051665A (en) Desalination method
JP2000015257A (en) Apparatus and method for making high purity water
JP3565098B2 (en) Ultrapure water production method and apparatus
JP3656458B2 (en) Pure water production method
JP2002192152A (en) Method and apparatus for water treatment
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2006255651A (en) Pure water producing system
JPH11188359A (en) Pure water producing apparatus
JP2004167423A (en) Apparatus and method for pure water production
JPH11262771A (en) Production of pure water
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JPH11267645A (en) Production of pure water
JP2002355683A (en) Ultrapure water making method and apparatus
JP4208270B2 (en) Pure water production method
JPH11244854A (en) Production of pure water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees