JP2007307502A - Method for generating electrolytic water and electrolytic water generator - Google Patents

Method for generating electrolytic water and electrolytic water generator Download PDF

Info

Publication number
JP2007307502A
JP2007307502A JP2006140576A JP2006140576A JP2007307502A JP 2007307502 A JP2007307502 A JP 2007307502A JP 2006140576 A JP2006140576 A JP 2006140576A JP 2006140576 A JP2006140576 A JP 2006140576A JP 2007307502 A JP2007307502 A JP 2007307502A
Authority
JP
Japan
Prior art keywords
water
cathode
anode
chamber
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006140576A
Other languages
Japanese (ja)
Other versions
JP4641003B2 (en
Inventor
Yukiaki Matsuo
至明 松尾
Kokichi Hanaoka
幸吉 花岡
Ichiro Shoda
一郎 庄田
Norihiko Toda
紀彦 戸田
Toshiharu Ishikawa
俊治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006140576A priority Critical patent/JP4641003B2/en
Publication of JP2007307502A publication Critical patent/JP2007307502A/en
Application granted granted Critical
Publication of JP4641003B2 publication Critical patent/JP4641003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for generating electrolytic water and an electrolytic water generator which can provide electrolytic water safely even at a general home while removing toxic substances existing in raw water and keeping a useful component without depending on the conventional high-voltage electrolysis system or zero-gap electrodes. <P>SOLUTION: The method for generating electrolytic water comprises the steps of: introducing raw water into both of an anode chamber 12 and a cathode chamber 13 which are formed by dividing an electrolytic cell 1 by a diaphragm 11; and electrolyzing the introduced raw water by causing a predetermined current to flow between an anode 14 and a cathode 15 which are arranged respectively in the anode chamber 12 and the cathode chamber 13, to obtain at least one of cathode water and anode water, wherein the water treated by a reverse osmosis membrane is introduced into one of the anode chamber 12 and the cathode chamber 13 of the electrolytic cell 1 as raw water and highly-ionized water having the electric conductivity higher than that of the water treated by the reverse osmosis membrane is introduced into the other of the anode chamber and the cathode chamber as raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解槽内に供給された原水が電気分解されて例えばアルカリイオン水のような陰極水や例えば酸性水のような陽極水などの電解水の生成方法および電解水の生成器に関する。   The present invention relates to a method for producing electrolyzed water such as cathodic water such as alkaline ionized water or anode water such as acidic water, and a generator of electrolyzed water after the raw water supplied into the electrolytic cell is electrolyzed.

従来から、原水を電気分解して得られる陰極水や陽極水等の電解水が知られているが、例えば陰極水は飲用に用いられることが多く、水道水などの原水を電解を行う電解槽に流入する前に、活性炭や中空糸などを使ったフィルターを用いて浄化している。   Conventionally, electrolyzed water such as cathodic water and anodized water obtained by electrolyzing raw water is known. For example, cathodic water is often used for drinking, and an electrolytic cell that electrolyzes raw water such as tap water. Before flowing into the plant, it is purified with a filter using activated carbon or hollow fiber.

ところが、近頃、原水として用いられる水道水中にはウィルスやトリハロメタン・硝酸性窒素・亜硝酸性窒素,ダイオキシン,環境ホルモン、ヒ素、水銀、鉛などの有害物か含まれていることが問題となり、これらは現状のフィルター構成では除去しきれないという問題があった。   However, recently, tap water used as raw water has been problematic in that it contains harmful substances such as viruses, trihalomethanes, nitrate nitrogen, nitrite nitrogen, dioxins, environmental hormones, arsenic, mercury, and lead. However, there was a problem that the current filter configuration could not be removed.

そこで、これらの有害物を除去するための手段として逆浸透膜などを使用して除去することが考えられ、例えば、特開2000−06147号公報、特開平11−192485号公報、特開平11−057722号公報、特開平07−284772号公報などに、逆浸透膜により処理した原水を利用した電解水の生成器や、電解後に逆浸透膜を使用する装置などが提示されている。   Therefore, it is conceivable to use a reverse osmosis membrane or the like as a means for removing these harmful substances. For example, JP 2000-06147 A, JP 11-192485 A, and JP 11-11 A. Japanese Patent No. 057722, Japanese Patent Application Laid-Open No. 07-284772, etc. present a generator of electrolyzed water using raw water treated with a reverse osmosis membrane, a device using a reverse osmosis membrane after electrolysis, and the like.

ところが、逆浸透膜を通水した後に電解槽に入水するタイプは、水に溶け込んでいる不純物を取り除いた純水に近い水溶液を使用して電解を行うことになり、陰極水のように飲用目的とした電解水においては、生体に必要な微量成分まで除去する結果となり、薬事法上で謳われている効能効果の発現に疑問が残ってしまう。   However, the type that enters the electrolytic cell after passing through the reverse osmosis membrane performs electrolysis using an aqueous solution close to pure water from which impurities dissolved in water are removed, and is intended for drinking like cathodic water. In the electrolyzed water, the trace amount component necessary for the living body is removed, and there remains a question about the manifestation of the efficacy effect sought in the Pharmaceutical Affairs Law.

また、仮に効能効果が立証されたとしても、飲料水本来の微量成分摂取の目的が果たせないこととなり、製品化には不向きであると考えられた。逆浸透膜を使用するこれらの逆浸透膜を使用することによって、水中に含まれるイオン成分も除去されてしまい、水の電気伝導度が低下してしまうため、電圧を印加しても電流が流れにくく電解しづらい問題があった。そのため、規定されたpHが得られにくく陰極水生成器としての製品化が困難であった。   In addition, even if the efficacy effect was proved, the purpose of ingesting the minor components inherent in drinking water could not be fulfilled, and it was considered unsuitable for commercialization. By using these reverse osmosis membranes, the ionic components contained in the water are also removed, and the electrical conductivity of the water decreases, so that current flows even when voltage is applied. There was a problem that it was difficult to electrolyze. Therefore, it is difficult to obtain a specified pH, and it is difficult to produce a cathode water generator.

更に、低い電気伝導度の水を用いて電解する場合は、電解電圧を高くして電解を行うか、電極間を限りなく近づけたゼロギャップ電極などを使用する必要があった。しかし、高電圧を印加すると電解熱が発生して高温になるなどの危険性が発生して、家庭で用いるには不適当であった。   Furthermore, when electrolysis is performed using water having low electrical conductivity, it is necessary to perform electrolysis by increasing the electrolysis voltage, or to use a zero gap electrode or the like in which the electrodes are brought as close as possible. However, when a high voltage is applied, there is a risk that electrolytic heat is generated and the temperature becomes high, which is inappropriate for use at home.

一方、逆浸透膜通水後に電解質を添加して原水の電気伝導度を高くし、電解する方法においては、主に試験などの検証を行う場合に、そのプロセス上で阻害要因が極力無い状態が望ましいという必要性があり、電解質の選定や供給に手間が掛かり、特定機器の製品でしか存在しえないと考えられる。殊に、原水の中に含まれている微量な有用成分まで取り除くことになり、現在陰極水の効能効果の作用機序がはっきりとしていない中で、カルシウムなども取り除くこと、その効能効果が有効であるかが疑問となる。現在、陰極水で効能効果の因子となっている活性水素や溶存水素の因子においても、他の微量成分との相関関係が必要と考えられる。   On the other hand, in the method of electrolyzing by adding an electrolyte after passing through a reverse osmosis membrane to increase the electric conductivity of raw water and conducting verification mainly in tests, there is no state where there are as many obstacles as possible in the process. There is a need for this, and it takes time to select and supply electrolytes. In particular, trace amounts of useful components contained in the raw water will be removed, and while the action mechanism of the effect of cathodic water is not clear at present, it is effective to remove calcium, etc. I wonder if there is. At present, the active hydrogen and dissolved hydrogen factors, which are the efficacy effect factors in cathodic water, are considered to require correlation with other trace components.

更にまた、逆浸透膜通水後に生成された処理水に電解質を添加して電気伝導度を高くし、電解する方法においては、主に試験などの検証を行う場合に、そのプロセス上で阻害要因が極力無い状態が望ましいために必要性があり、電解質の選定や供給の手間が掛かり、特定機器の製品でしか存在し得ないと考えられる。
特開2000−06147号公報 特開平11−192485号公報 特開平11−057722号公報 特開平07−284772号公報
Furthermore, in the method of electrolyzing by adding an electrolyte to the treated water generated after passing through the reverse osmosis membrane to increase the electrical conductivity, and in the case of mainly conducting verifications such as tests, it is an impediment to the process. This is necessary because it is desirable that there is as little as possible, and it takes time and labor to select and supply electrolytes.
JP 2000-06147 A Japanese Patent Laid-Open No. 11-192485 JP-A-11-057722 Japanese Unexamined Patent Publication No. 07-284772

本発明は前記課題を解決するためになされたものであり、従来の高電圧電解方式やゼロギャップ電極に頼ることなく、また有用成分を残しながら、原水中に存在している有害物質を取り除き、一般家庭においても安全に電解水を得ることができる電解水の生成方法および生成器を提供することを課題とする。   The present invention has been made to solve the above-mentioned problems, without relying on the conventional high voltage electrolysis method and zero gap electrode, and while removing useful substances while removing useful substances, It is an object of the present invention to provide an electrolyzed water generation method and a generator capable of safely obtaining electrolyzed water even in general households.

前記課題を解決するためになされた本発明である電解水の製造方法は、電解槽を隔膜で仕切って形成した陽極室と陰極室とに原水を導入するとともに前記陽極室と陰極室とにそれぞれ配置した陽極と陰極とに所定の電流を流して電解することにより陰極水または陽極水の少なくとも一方を得る電解水の生成方法において、前記電解槽を形成する陽極室または陰極室の一方に原水として逆浸透膜による処理水を導入するとともにもう一方に原水として前記逆浸透膜の処理水よりも高い電気伝導度を有する高イオン水を導入することを特徴とする。   The method for producing electrolyzed water according to the present invention, which has been made to solve the above problems, introduces raw water into an anode chamber and a cathode chamber formed by partitioning an electrolytic cell with a diaphragm, and into the anode chamber and the cathode chamber, respectively. In a method for producing electrolyzed water in which at least one of cathodic water or anodic water is obtained by electrolysis by flowing a predetermined current through the arranged anode and cathode, raw water is provided in one of the anode chamber or the cathode chamber forming the electrolytic cell. Treated water by a reverse osmosis membrane is introduced, and high ionic water having higher electrical conductivity than the treated water of the reverse osmosis membrane is introduced as raw water on the other side.

特に、前記発明において、前記高イオン水が前記逆浸透膜による濃縮水、または原水或いは濃縮水に電解質を添加してなるものであるとよい。   In particular, in the invention, the high ionic water is preferably formed by adding an electrolyte to the concentrated water by the reverse osmosis membrane, or raw water or concentrated water.

また、本発明である電解水の生成器は、電解槽を隔膜で仕切って形成した陽極室および陰極室に陽極と陰極とをそれぞれ配置し、前記陽極室および陰極室に原水の導入口と電解により生成した電解水の流出口をそれぞれ有する電解水生成器であって、前記陽極室と陰極室とに形成された原水の導入口の一方に処理水を導入するとともにもう一方の原水の導入口に濃縮水を導入するための逆浸透膜による浄水器を有することを特徴とする。   The electrolyzed water generator according to the present invention includes an anode chamber and a cathode chamber formed by partitioning an electrolytic cell with a diaphragm, and an anode and a cathode, respectively, and an inlet and an electrolyzer for raw water are placed in the anode chamber and the cathode chamber, respectively. The electrolyzed water generators each having an outlet for electrolyzed water produced by the step of introducing treated water into one of the inlets of raw water formed in the anode chamber and the cathode chamber and the other inlet for raw water It has the water purifier by the reverse osmosis membrane for introduce | transducing concentrated water into.

或いは、電解槽を隔膜で仕切って形成した陽極室および陰極室に陽極と陰極とをそれぞれ配置し、前記陽極室および陰極室に原水の導入口と電解により生成した電解水の流出口をそれぞれ有する電解水生成器において、前記陽極室と陰極室とに形成された原水の導入口の一方に処理水を導入するための逆浸透膜による浄水器を有するもの、更には、前記原水または濃縮水の導入口の一方に電解質を導入するための電解質添加装置を有するものであってもよい。   Alternatively, an anode and a cathode chamber are respectively formed in an anode chamber and a cathode chamber formed by partitioning an electrolytic cell with a diaphragm, and the anode chamber and the cathode chamber have an inlet for raw water and an outlet for electrolyzed water generated by electrolysis, respectively. An electrolyzed water generator having a water purifier with a reverse osmosis membrane for introducing treated water into one of the raw water inlets formed in the anode chamber and the cathode chamber, and further, the raw water or concentrated water You may have an electrolyte addition apparatus for introduce | transducing electrolyte into one of the inlets.

ところで、従来から電解に使用する金属電極は電子伝導体として電子のやり取りを行うことで、水または溶け込んでいる物質の分解生成をつかさどっている。水電解を行う場合には、通常下記の反応式によって行われる。
陰極(水素発生) 2H2O → H2↑+2OH-+2e-
陽極(酸素発生) 2H2O → O2↑+4H++4e-
そして、電極表面で行われる電子のやり取りは、陰極と陽極でそのエネルギー収支が等価でならなければならないが、陰極室と陽極室の電気伝導度が不均一の場合に、電子のやり取りがバランスを崩した状態に陥り、結果として電解電流が得られないと考えられていた。
Conventionally, metal electrodes used for electrolysis have been responsible for the decomposition and generation of water or dissolved substances by exchanging electrons as electron conductors. When performing water electrolysis, it is normally performed by the following reaction formula.
Cathode (hydrogen generation) 2H 2 O → H 2 ↑ + 2OH + 2e
Anode (oxygen generation) 2H 2 O → O 2 ↑ + 4H + + 4e
The exchange of electrons performed on the electrode surface must have the same energy balance between the cathode and the anode. However, when the electrical conductivity of the cathode and anode chambers is not uniform, the exchange of electrons is balanced. It was thought that the electrolysis current could not be obtained as a result of falling into a collapsed state.

そこで、図1に示したような貯水式の電解槽を用いて、陰極室と陽極室の電気伝導度が不均一な下記条件下で電解電流を測定した結果、不均一な濃度にも関わらず電解電流を得られることが判明した。   Therefore, as a result of measuring the electrolysis current under the following conditions in which the electrical conductivity of the cathode chamber and the anode chamber is nonuniform using the water storage type electrolytic cell as shown in FIG. It has been found that an electrolytic current can be obtained.

尚、測定は電極として不活性電極である白金コーティングされたチタン電極を用い、隔膜にはポリエステル不織布の中性膜を用い、試料水は、水道水および芳香族ポリアミド系複合膜を用いたルーズ逆浸透膜を用いた逆浸透膜処理水、逆浸透膜濃縮水を使用して、電解電源は直流安定化電源を用いて行った。
各水溶液の電気伝導度を表1に、測定結果を表2に示す。
The measurement uses a platinum-coated titanium electrode as an inert electrode, a neutral membrane of polyester nonwoven fabric as the diaphragm, and the sample water as a loose reverse using tap water and an aromatic polyamide composite membrane. A reverse osmosis membrane treated water using a osmosis membrane and a reverse osmosis membrane concentrated water were used, and an electrolytic power source was a DC stabilized power source.
The electrical conductivity of each aqueous solution is shown in Table 1, and the measurement results are shown in Table 2.

また、食塩水を使用して、片側に添加した場合と添加しない水溶液を用いて電解を行った。
使用水は逆浸透膜で処理した水を使用して、食塩添加したもの(電気伝導度 80mS/m)と添加していないもの(電気伝導度 0.62mS/m)を用意した。測定結果を表3に示す。
In addition, electrolysis was performed using a saline solution and an aqueous solution not added to one side.
The water used was water treated with a reverse osmosis membrane, and prepared with salt added (electric conductivity 80 mS / m) and not added (electric conductivity 0.62 mS / m). Table 3 shows the measurement results.

次に、流水下で逆浸透膜を使用した水溶液を用いて電解を行った結果を表4に示す。
尚、使用した電極は不活性電極である白金コーティングされたチタン電極を用い、隔膜にはイオン交換膜(アルサンセップG―3)を用い、電解槽を用いて、逆浸透膜での処理水(電気伝導度 0.8mS/m)を毎分1.2リットルの流水下で陰極室側入水口へ導入し、逆浸透膜での濃縮水(電気伝導度 18.4mS/m)を陽極室側入水口へ導入して、下記条件化で電解電流を測定した。
Next, Table 4 shows the results of electrolysis using an aqueous solution using a reverse osmosis membrane under running water.
The electrode used was a platinum-coated titanium electrode, which is an inert electrode, an ion exchange membrane (Arsansep G-3) was used for the diaphragm, an electrolytic cell was used, and the treated water in the reverse osmosis membrane (electrical) Conductivity 0.8 mS / m) is introduced into the cathode chamber side inlet under running water of 1.2 liters per minute, and concentrated water (electrical conductivity 18.4 mS / m) at the reverse osmosis membrane enters the anode chamber side. After introducing into the water inlet, the electrolysis current was measured under the following conditions.

通常、電気伝導度の高い水溶液の場合は、溶液のインピーダンスが低いために、反応熱の発生が低いと考えられるが、本測定結果においては逆の結果が生じており、電気伝導度の高い水すなわち塩濃度の高い水溶液が、電子のやり取りを行うためのトリガー的な役割を果たすことで、塩濃度の希薄な水溶液が強制的に分解生成を始めると考えられる。但し、イオン交換膜を使用する場合は、イオン種によって選択性が強まるために、条件によって電解電流が低くなることが考えられた。   Usually, in the case of an aqueous solution with high electrical conductivity, the generation of reaction heat is considered to be low because the impedance of the solution is low, but in this measurement result, the opposite result occurs, and water with high electrical conductivity is present. That is, it is considered that the aqueous solution having a high salt concentration plays a trigger role for exchanging electrons, so that the aqueous solution having a low salt concentration forcibly starts to be decomposed. However, when an ion exchange membrane is used, it is considered that the electrolysis current is lowered depending on conditions because the selectivity increases depending on the ion species.

即ち、陰極室における金属イオンなどの電解質濃度が低い場合は、
2H++2e- → H2
の反応が主に起こると考えられ、
2H20 → H2↑+20H-+2e-
の反応によって陰極室の水溶液がアルカリ性を示す。
That is, when the electrolyte concentration such as metal ions in the cathode chamber is low,
2H + + 2e - → H 2
The reaction is considered to occur mainly,
2H 2 0 → H 2 ↑ + 20H + 2e
As a result of this reaction, the aqueous solution in the cathode chamber is alkaline.

逆に、陽極室における電解質濃度が高い場合は、
例えば、ハロゲンの場合に、
2Cl-→Cl2+2e-
の反応などが考えられ、水に含まれるイオン種の生成分解反応が主たる反応と考えられる(但し、濃度依存的な面も考慮されるために断定はできない)。
同時に、
2H20 → 02↑+4H++4e-
などの反応も起こり、水溶液が酸性を示す。
そして、上記の反応の電子収支が、陰極と陽極において等価であるように電解反応を行っていると考えられる。
Conversely, if the electrolyte concentration in the anode chamber is high,
For example, in the case of halogen,
2Cl → Cl 2 + 2e
It is considered that the main reaction is the formation and decomposition reaction of ionic species contained in water (however, it cannot be determined because the concentration-dependent aspect is also considered).
at the same time,
2H 2 0 → 0 2 ↑ + 4H + + 4e
Such reactions also occur, and the aqueous solution shows acidity.
And it is thought that the electrolytic reaction is performed so that the electron balance of said reaction is equivalent in a cathode and an anode.

尚、水中に溶け込んでいる電解質の濃度差を電解槽に流入する方法には、逆浸透膜を使用して処理した水と濃縮水を流入する他に、電解質をポンプ添加するなどして、電気伝導度を高くして片側に流入することでその条件を作ることが出来ることは言うまでもない。   In addition, in order to flow the concentration difference of the electrolyte dissolved in the water into the electrolytic cell, in addition to flowing the water treated with the reverse osmosis membrane and the concentrated water, the electrolyte is pumped, etc. It goes without saying that the condition can be created by increasing the conductivity and flowing into one side.

また、電極間にある隔膜はポリエステルなどの中性膜やイオン交換膜を使用して、電解時に電気浸透する有用イオン成分のみを片側に引き寄せることが可能であり、逆浸透膜を使用する場合に反対側の廃液は循環経路を設けて、再利用することができることは言うまでもない。陰極水の場合は、逆浸透膜によって除去された有用成分を再度電解することによって、陰極側に集まるために、有害物質を取り除いた水で有用な成分を含んだ陰極水が生成できる。このため、従来から知られている陰極水としての効能効果が維持されることになる。   In addition, neutral membranes such as polyester and ion exchange membranes can be used as the diaphragm between the electrodes, and only useful ion components that are electroosmotic during electrolysis can be drawn to one side. When using reverse osmosis membranes, It goes without saying that the waste liquid on the opposite side can be reused by providing a circulation path. In the case of cathodic water, the useful components removed by the reverse osmosis membrane are electrolyzed again so that they gather on the cathode side, so that cathodic water containing useful components can be generated with water from which harmful substances have been removed. For this reason, the effect effect as a cathode water known conventionally is maintained.

本発明によれば、例えば陰極水では、通常、陰極側の水を例えばアルカリイオン水として飲用に用いるが、陽極側の水は飲用として使用しない。そこで、陰極側だけに処理水を流入して、陽極側はその濃縮水を使用することによって、電解したときに電気浸透する有用成分のみを通過させる構造を持たせることによって、従来の陰極水生成器の構造を変更することなく、フィルター性能をアップすることが可能となった。   According to the present invention, for example, in cathode water, water on the cathode side is usually used for drinking as, for example, alkaline ionized water, but water on the anode side is not used for drinking. Therefore, by supplying treated water only to the cathode side, and using the concentrated water on the anode side, it is possible to generate conventional cathode water by providing a structure that allows only the useful components that are electroosmotic to pass through when electrolyzed. The filter performance can be improved without changing the structure of the vessel.

特に、通常の場合に原水として用いられる水道水に含まれているウイルスやトリハロメタン・硝酸性窒素・亜硝酸性窒素、ダイオキシン、環境ホルモン、ヒ素、水銀、鉛などの有害成分は逆浸透膜によって除去することが可能になり、従来使用されている活性炭や中空糸などのマイクロフィルターの物理ろ過以下の不純物を除去することが出来る。   In particular, harmful substances such as viruses, trihalomethane, nitrate nitrogen, nitrite nitrogen, dioxin, environmental hormones, arsenic, mercury, and lead contained in tap water used as raw water in normal cases are removed by a reverse osmosis membrane. It is possible to remove impurities below the physical filtration of microfilters such as activated carbon and hollow fibers that are conventionally used.

更に、陰極側に処理水を導入することによって、高濃度のカルシウムやマグネシウムが流入されないため、電極表面で析出されるスケールが低減される。それによって従来行っていた、逆極性による電解洗浄の頻度が減少することにより、ポール変換時における白金溶出が抑えられるため、結果として電極の寿命が延命されることにもなり、電解時に陽極側に濃縮水を使用する場合には、カルシウムなどの有用成分のみを陰極側に引き寄せることが可能となり、陰極水としての水質も維持できる。   Furthermore, by introducing treated water to the cathode side, high concentrations of calcium and magnesium are not introduced, so that the scale deposited on the electrode surface is reduced. As a result, the frequency of electrolytic cleaning due to reverse polarity, which has been performed in the past, is reduced, so that platinum elution is suppressed during pole conversion. When concentrated water is used, only useful components such as calcium can be drawn to the cathode side, and the water quality as cathode water can be maintained.

以下、本発明を実施するための形態につき図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

図2は、陰極水生成器をモデルとした本発明の実施形態に係る電解水の生成器についての好ましい実施施形態の概略を示すものであり 電解槽1を例えばイオン交換膜(アルサンセップG−3)からなる隔膜11で仕切って形成した陽極室12と陰極室13とに不活性電極である白金コーティングされたチタン電極からなる陽極14と陰極15とがそれぞれ配置されており、陽極室14と陰極室15とに原水の導入口16,17と電解により生成した電解水の流出口18,19をそれぞれ有している。   FIG. 2 shows an outline of a preferred embodiment of an electrolyzed water generator according to an embodiment of the present invention using a cathodic water generator as a model. The electrolyzer 1 is, for example, an ion exchange membrane (Alsan Sep G-3). The anode chamber 12 and the cathode 15 made of platinum-coated titanium electrodes, which are inert electrodes, are respectively arranged in the anode chamber 12 and the cathode chamber 13 which are formed by partitioning with the diaphragm 11 made of The chamber 15 has raw water inlets 16 and 17 and electrolytic water outlets 18 and 19 generated by electrolysis, respectively.

また、図中、符号2は芳香族ポリアミド系複合膜を用いたルーズ逆浸透膜による浄水器であり、入水口21の上流にプレフィルタ3を有するとともに処理水出口22が加圧タンク(貯水タンク)4、ポストフィルタ5、止水弁6および流量センサー7を介して前記電解槽1の陰極室13に設けられた原水の導入口17に接続されている。   In the figure, reference numeral 2 denotes a water purifier using a loose reverse osmosis membrane using an aromatic polyamide composite membrane, having a pre-filter 3 upstream of the water inlet 21 and a treated water outlet 22 being a pressurized tank (water storage tank). 4) The raw water inlet 17 provided in the cathode chamber 13 of the electrolytic cell 1 is connected via the post filter 5, the water stop valve 6 and the flow sensor 7.

そして、前記浄水器2の濃縮水取出口23が前記電解槽1の陽極室12に設けられた原水の導入口16に接続されている。   The concentrated water outlet 23 of the water purifier 2 is connected to the raw water inlet 16 provided in the anode chamber 12 of the electrolytic cell 1.

更に詳細に説明すると、浄水器2に導入される原水(水道水)は初めにプレフィルター(活性炭フィルタなど)3によって、残留塩素や異物などが除去される。そのため、浄水器2に装備されている逆浸透膜の負荷が軽減されて逆浸透膜の性能を維持することができ、寿命を延命させることが可能となる。   More specifically, the raw water (tap water) introduced into the water purifier 2 is first removed of residual chlorine and foreign matters by a pre-filter (activated carbon filter or the like) 3. Therefore, the load of the reverse osmosis membrane equipped in the water purifier 2 can be reduced, the performance of the reverse osmosis membrane can be maintained, and the life can be extended.

また、逆浸透膜を用いるには膜に対して浸透圧を加えるために、加圧ポンプを使用して通常0.4〜4Mpa程度の加圧下に処理されるが、本実施形態では逆浸透膜として低圧・高い阻止性能を有する芳香族ポリアミド系複合膜を用いたルーズ逆浸透膜を採用することにより通常の水道水圧力である0.3〜1Mpa程度で使用可能であり、特別な加圧ポンプを必要とせず、経済的であるとともに小型に形成でき、家庭などでの使用にも何ら問題がない。   Moreover, in order to apply a reverse osmosis membrane, in order to apply an osmotic pressure with respect to a membrane, it is processed under the pressurization of about 0.4-4 Mpa normally using a pressure pump. By using a loose reverse osmosis membrane using an aromatic polyamide composite membrane with low pressure and high blocking performance, it can be used at a normal tap water pressure of about 0.3 to 1 Mpa, and is a special pressure pump It is economical and can be made compact, and there is no problem for use at home.

更に、浄水器2では逆浸透膜を通過した処理水と、膜通過時に水中に含まれていた不純物を取り除き集合した濃縮水に分離され、濃縮水はそのまま電解槽1における陽極室12側の入水口16に導入されて逆浸透膜が処理している時のみ流通し、陽極室12の陽極側出口18またその先の配管(図示せず)は、常に開放状態である。   Further, the water purifier 2 is separated into treated water that has passed through the reverse osmosis membrane and concentrated water that has been collected by removing impurities contained in the water when passing through the membrane. Only when the reverse osmosis membrane is being treated after being introduced into the water port 16, the anode side outlet 18 of the anode chamber 12 and the pipe (not shown) beyond the anode chamber 12 are always open.

また、逆浸透膜は、ろ過処理水量が通常のフィルターに比べて少ない為、実際の使用環境に対応させるためには貯水タンク(加圧タンク)4を設ける場合が一般的であり、使用していない時間に処理水を貯めるため、本実施形態では水栓6が閉じている時には逆浸透膜で処理された水が貯水タンク4に貯水される。貯水タンク4に溜まった処理水は、止水弁6が開いたときに貯水タンクに溜まっていた処理水がポストフィルター5を通過して、臭い等の除去を行い流量センサー7に導入され、流量センサー7に処理水が一定量以上通水された場合、電解槽1において電極14,15に電圧を印加して電解を行い、隔膜板11で仕切られた陰極室13では陰極水が生成され、陽極室12では陽極水が生成される。このとき隔膜板11はイオン交換膜の作用により陰イオンの通過を阻止して、カルシウムなどの陽イオンのみを通過させることによって、従来の陰極水と同等な水質を維持して不純物の少ないものを提供することができる。   In addition, since the reverse osmosis membrane has a smaller amount of filtered water than a normal filter, a water storage tank (pressurized tank) 4 is generally provided and used in order to cope with the actual use environment. In this embodiment, the treated water is stored in the water storage tank 4 when the faucet 6 is closed in order to store the treated water during a period of no time. The treated water collected in the water storage tank 4 passes through the post filter 5 when the water stop valve 6 is opened, passes through the post filter 5, removes odors, and is introduced into the flow sensor 7. When a certain amount or more of treated water is passed through the sensor 7, electrolysis is performed by applying a voltage to the electrodes 14 and 15 in the electrolytic cell 1, and cathode water is generated in the cathode chamber 13 partitioned by the diaphragm plate 11, Anode water is produced in the anode chamber 12. At this time, the diaphragm plate 11 prevents the passage of anions by the action of the ion exchange membrane and allows only cations such as calcium to pass through, thereby maintaining the water quality equivalent to that of the conventional cathode water and having less impurities. Can be provided.

尚、原水(水道水)と処理水の配管経路にシャットオフバルブなどを使って、ある一定圧力に達した場合に、原水の止水や通水を制御することはいうまでもない。   Needless to say, when a certain pressure is reached by using a shutoff valve or the like in the piping path of the raw water (tap water) and the treated water, the water stoppage and water flow are controlled.

次に、本実施形態である電解水の生成器を用いて実施して得た電解水につき以下の表5および表6にその性状を示す。   Next, the properties of electrolyzed water obtained by using the electrolyzed water generator according to this embodiment are shown in Tables 5 and 6 below.

使用した原水は相模原市上水(pH7.62、電気伝導度15.01mS/m、水温18.9℃、硝酸性窒素2.3mg/L、カルシウム硬度25mg/L)を用い、逆浸透膜で処理した透過処理水および濃縮水の水質は以下の表5に示す通りである。   The raw water used was Sagamihara City water (pH 7.62, electric conductivity 15.01 mS / m, water temperature 18.9 ° C., nitrate nitrogen 2.3 mg / L, calcium hardness 25 mg / L), and a reverse osmosis membrane. The quality of the treated permeated water and concentrated water is as shown in Table 5 below.

以上の測定結果から、不純物が少なく、安全なアルカリ水(陰極水)を得ることができた。   From the above measurement results, safe alkaline water (cathode water) with few impurities could be obtained.

また、図3は本発明の異なる実施形態を示すものであり、全体の構成は前記図1に示した本発明の実施形態とほぼ同様であるが電解質を供給するための電解補助液槽8とポンプ9を備えた点が異なり、逆浸透膜を備えた浄水器2からの濃縮水に電解質を加えて陰極室13へ導入するものである。陽極室において得られた強酸性電解水(陽極水)の性状を表9に示す。   FIG. 3 shows a different embodiment of the present invention. The overall configuration is substantially the same as that of the embodiment of the present invention shown in FIG. 1, but an electrolysis auxiliary liquid tank 8 for supplying an electrolyte and The difference is that a pump 9 is provided, and an electrolyte is added to the concentrated water from the water purifier 2 provided with a reverse osmosis membrane and introduced into the cathode chamber 13. Table 9 shows the properties of the strongly acidic electrolyzed water (anode water) obtained in the anode chamber.

尚本実施形態に使用した原水は相模原市上水(pH7.22、電気伝導度15.34mS/m、水温17.2℃、硝酸性窒素2.3mg/L、カルシウム硬度25mg/L)を用い、逆浸透膜で処理した透過処理水および濃縮水の水質は以下の表8に示した通りである。   The raw water used in this embodiment is Sagamihara City water (pH 7.22, electric conductivity 15.34 mS / m, water temperature 17.2 ° C., nitrate nitrogen 2.3 mg / L, calcium hardness 25 mg / L). The quality of the permeated treated water and the concentrated water treated with the reverse osmosis membrane is as shown in Table 8 below.

以上の測定結果から、不純物が少なく、安全な強酸性水を得ることができた。   From the above measurement results, it was possible to obtain safe strongly acidic water with few impurities.

本発明の原理を説明するための概略図である。It is the schematic for demonstrating the principle of this invention. 本発明の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of this invention. 本発明の異なる実施形態を示すブロック図である。It is a block diagram which shows different embodiment of this invention.

符号の説明Explanation of symbols

1 電解槽、2 浄水器、3プレフィルタ、4 加圧タンク、5 ポストフィルタ、6 導入口、7 流量センサー、8 電解補助液槽、 9 ポンプ、11 隔膜、12 陽極室、13 陰極室、14 陽極、15 陰極、16 導入口、17 導入口、18 流出口、19流出口、21 入水口、22 処理水出口
DESCRIPTION OF SYMBOLS 1 Electrolysis tank, 2 Water purifier, 3 Pre filter, 4 Pressure tank, 5 Post filter, 6 Inlet, 7 Flow rate sensor, 8 Electrolysis auxiliary liquid tank, 9 Pump, 11 Diaphragm, 12 Anode room, 13 Cathode room, 14 Anode, 15 cathode, 16 inlet, 17 inlet, 18 outlet, 19 outlet, 21 inlet, 22 treated water outlet

Claims (7)

電解槽を隔膜で仕切って形成した陽極室と陰極室とに原水を導入するとともに前記陽極室と陰極室とにそれぞれ配置した陽極と陰極とに所定の電流を流して電解することにより陰極水または陽極水の少なくとも一方を得る電解水の生成方法において、前記電解槽を形成する陽極室または陰極室の一方に原水として逆浸透膜による処理水を導入するとともにもう一方に原水として前記逆浸透膜の処理水よりも高い電気伝導度を有する高イオン水を導入することを特徴とする電解水の生成方法。   The raw water is introduced into the anode chamber and the cathode chamber formed by partitioning the electrolytic cell with a diaphragm, and the cathode water or the cathode water is electrolyzed by flowing a predetermined current through the anode and the cathode respectively disposed in the anode chamber and the cathode chamber. In the method for producing electrolyzed water to obtain at least one of anode water, treated water by a reverse osmosis membrane is introduced as raw water into one of an anode chamber or a cathode chamber forming the electrolytic cell, and the reverse osmosis membrane as raw water is introduced into the other. A method for producing electrolyzed water, characterized by introducing high ionic water having higher electrical conductivity than treated water. 前記高イオン水が前記逆浸透膜による濃縮水である請求項1記載の電解水の生成方法。   The method for producing electrolyzed water according to claim 1, wherein the high ionic water is concentrated water by the reverse osmosis membrane. 前記高イオン水が前記逆浸透膜による濃縮水に電解質を添加してなる請求項1記載の電解水の生成方法。   The method for producing electrolyzed water according to claim 1, wherein the high ionic water is obtained by adding an electrolyte to the concentrated water by the reverse osmosis membrane. 前記高イオン水が水に電解質を添加してなる請求項1記載の電解水の生成方法。   The method for producing electrolyzed water according to claim 1, wherein the high ionic water is obtained by adding an electrolyte to water. 電解槽を隔膜で仕切って形成した陽極室および陰極室に陽極と陰極とをそれぞれ配置し、前記陽極室および陰極室に原水の導入口と電解により生成した電解水の流出口をそれぞれ有する電解水生成器であって、前記陽極室と陰極室とに形成された原水の導入口の一方に処理水を導入するとともにもう一方の原水の導入口に濃縮水を導入するための逆浸透膜による浄水器を有することを特徴とする電解水の生成器。   Electrolyzed water in which an anode and a cathode are respectively formed in an anode chamber and a cathode chamber formed by partitioning an electrolytic cell with a diaphragm, and each of the anode chamber and the cathode chamber has an inlet for raw water and an outlet for electrolyzed water generated by electrolysis A water purifier using a reverse osmosis membrane for introducing treated water into one of the raw water inlets formed in the anode chamber and the cathode chamber and introducing concentrated water into the other raw water inlet. A generator of electrolyzed water, characterized by comprising a vessel. 電解槽を隔膜で仕切って形成した陽極室および陰極室に陽極と陰極とをそれぞれ配置し、前記陽極室および陰極室に原水の導入口と電解により生成した電解水の流出口をそれぞれ有する電解水生成器であって、前記陽極室と陰極室とに形成された原水の導入口の一方にに処理水を導入するための逆浸透膜による浄水器を有することを特徴とする電解水の生成器。   Electrolyzed water having an anode chamber and a cathode chamber formed by partitioning an electrolytic cell with a diaphragm, respectively, and having an inlet for raw water and an outlet for electrolyzed water generated by electrolysis in the anode chamber and the cathode chamber, respectively An electrolyzed water generator comprising a water purifier using a reverse osmosis membrane for introducing treated water into one of raw water inlets formed in the anode chamber and the cathode chamber. . 前記原水の導入口の一方に電解質を導入するための電解質添加装置を有する請求項5または6記載の電解水の生成器。
The electrolyzed water generator according to claim 5 or 6, further comprising an electrolyte adding device for introducing an electrolyte into one of the raw water inlets.
JP2006140576A 2006-05-19 2006-05-19 Electrolyzed water generation method and electrolyzed water generator Expired - Fee Related JP4641003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140576A JP4641003B2 (en) 2006-05-19 2006-05-19 Electrolyzed water generation method and electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140576A JP4641003B2 (en) 2006-05-19 2006-05-19 Electrolyzed water generation method and electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2007307502A true JP2007307502A (en) 2007-11-29
JP4641003B2 JP4641003B2 (en) 2011-03-02

Family

ID=38840834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140576A Expired - Fee Related JP4641003B2 (en) 2006-05-19 2006-05-19 Electrolyzed water generation method and electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4641003B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110019285A (en) * 2009-08-19 2011-02-25 웅진코웨이주식회사 Water ionizer
JP2011508662A (en) * 2007-12-21 2011-03-17 コンパニ・ジェルベ・ダノン Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof
WO2012063587A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Water treatment apparatus
JP2012176410A (en) * 2012-06-21 2012-09-13 Panasonic Corp Electrolytic water generating device
JP2014200778A (en) * 2013-04-10 2014-10-27 至明 松尾 Antioxidative drinking water
WO2016047257A1 (en) * 2014-09-26 2016-03-31 株式会社日本トリム Electrolyzed water-generating device and apparatus provided with same for manufacturing water to prepare dialysate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171485A (en) * 1981-04-14 1982-10-22 Kobe Steel Ltd Desalination of brine
JPH06285467A (en) * 1993-04-06 1994-10-11 Brother Ind Ltd Water conditioning machine
JPH07241560A (en) * 1994-03-08 1995-09-19 Shinko Pantec Co Ltd Pure water making method and apparatus
JPH07284772A (en) * 1994-04-20 1995-10-31 Hoshizaki Electric Co Ltd Apparatus for producing electrolytic water
JPH09210951A (en) * 1995-11-27 1997-08-15 Matsushita Electric Works Ltd Washing method for oxidative/reductive potential sensor
JPH09234468A (en) * 1995-12-25 1997-09-09 Matsushita Electric Works Ltd Electrolyzed water producer
JPH105760A (en) * 1996-06-20 1998-01-13 Kurita Water Ind Ltd Desalination device
JPH10180256A (en) * 1996-12-26 1998-07-07 Noriaki Tanaka Electrolytic strongly acidic water, its production and endotoxin inactivator consisting of the strongly acidic water
JPH11244853A (en) * 1998-03-06 1999-09-14 Kurita Water Ind Ltd Production of pure water
JP2001187324A (en) * 1999-12-28 2001-07-10 Nkk Corp Washing method of membrane filter device, and water treating device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171485A (en) * 1981-04-14 1982-10-22 Kobe Steel Ltd Desalination of brine
JPH06285467A (en) * 1993-04-06 1994-10-11 Brother Ind Ltd Water conditioning machine
JPH07241560A (en) * 1994-03-08 1995-09-19 Shinko Pantec Co Ltd Pure water making method and apparatus
JPH07284772A (en) * 1994-04-20 1995-10-31 Hoshizaki Electric Co Ltd Apparatus for producing electrolytic water
JPH09210951A (en) * 1995-11-27 1997-08-15 Matsushita Electric Works Ltd Washing method for oxidative/reductive potential sensor
JPH09234468A (en) * 1995-12-25 1997-09-09 Matsushita Electric Works Ltd Electrolyzed water producer
JPH105760A (en) * 1996-06-20 1998-01-13 Kurita Water Ind Ltd Desalination device
JPH10180256A (en) * 1996-12-26 1998-07-07 Noriaki Tanaka Electrolytic strongly acidic water, its production and endotoxin inactivator consisting of the strongly acidic water
JPH11244853A (en) * 1998-03-06 1999-09-14 Kurita Water Ind Ltd Production of pure water
JP2001187324A (en) * 1999-12-28 2001-07-10 Nkk Corp Washing method of membrane filter device, and water treating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508662A (en) * 2007-12-21 2011-03-17 コンパニ・ジェルベ・ダノン Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof
KR20110019285A (en) * 2009-08-19 2011-02-25 웅진코웨이주식회사 Water ionizer
KR101586302B1 (en) 2009-08-19 2016-01-18 코웨이 주식회사 Water ionizer
WO2012063587A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Water treatment apparatus
JP2012101176A (en) * 2010-11-10 2012-05-31 Panasonic Corp Water treatment apparatus
JP2012176410A (en) * 2012-06-21 2012-09-13 Panasonic Corp Electrolytic water generating device
JP2014200778A (en) * 2013-04-10 2014-10-27 至明 松尾 Antioxidative drinking water
WO2016047257A1 (en) * 2014-09-26 2016-03-31 株式会社日本トリム Electrolyzed water-generating device and apparatus provided with same for manufacturing water to prepare dialysate
JPWO2016047257A1 (en) * 2014-09-26 2017-07-06 株式会社日本トリム Electrolyzed water generating apparatus and dialysate preparation water production apparatus provided with the same

Also Published As

Publication number Publication date
JP4641003B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
WO2014006740A1 (en) Device for producing water for preparing dialysate
US20110198236A1 (en) Apparatus and method for producing hydrogen-dissolved drinking water
WO2017006837A1 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
TW201812104A (en) Method for producing hydrogen water
JP4929430B2 (en) Electrolyzed water production apparatus and electrolyzed water production method
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
JP2020142209A (en) Hydrogen addition method and hydrogen addition device
WO2015087536A1 (en) Method for producing oxidized water for sterilization use without adding electrolyte
WO2016047257A1 (en) Electrolyzed water-generating device and apparatus provided with same for manufacturing water to prepare dialysate
JP5188717B2 (en) Electrolytic hypochlorite water production equipment
JP2008178845A5 (en)
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2014015646A (en) Electrolytic treatment water generator and method for generating electrolytic treatment water
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JP2008100174A (en) Daily life water feed method and arrangement
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
KR101644275B1 (en) Electrolysis device and water treatment method using the device
JP2004249221A (en) Desalinizing method of seawater or the like using alkali ionized water generator and apparatus therefor
JP4249658B2 (en) Electrolyzed water generator
EP4026607A1 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
WO2023238731A1 (en) Water treatment device
KR101108142B1 (en) Clean water system for functional water
EP4026606A1 (en) Wastewater treatment method and wastewater treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees