JP4181170B2 - Drinking electrolyzed water and method for producing the same - Google Patents
Drinking electrolyzed water and method for producing the same Download PDFInfo
- Publication number
- JP4181170B2 JP4181170B2 JP2005373304A JP2005373304A JP4181170B2 JP 4181170 B2 JP4181170 B2 JP 4181170B2 JP 2005373304 A JP2005373304 A JP 2005373304A JP 2005373304 A JP2005373304 A JP 2005373304A JP 4181170 B2 JP4181170 B2 JP 4181170B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- electrolyzed
- electrolysis
- mol
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 133
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 230000035622 drinking Effects 0.000 title description 15
- 238000005868 electrolysis reaction Methods 0.000 claims description 46
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 42
- 239000000460 chlorine Substances 0.000 claims description 42
- 229910052801 chlorine Inorganic materials 0.000 claims description 41
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 40
- 239000011780 sodium chloride Substances 0.000 claims description 15
- 239000000243 solution Substances 0.000 description 16
- 230000002378 acidificating effect Effects 0.000 description 14
- 239000008399 tap water Substances 0.000 description 8
- 235000020679 tap water Nutrition 0.000 description 8
- 238000010494 dissociation reaction Methods 0.000 description 7
- 230000005593 dissociations Effects 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 229940021013 electrolyte solution Drugs 0.000 description 7
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000012047 saturated solution Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- -1 tap water Chemical compound 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 235000005487 catechin Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 229950001002 cianidanol Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Non-Alcoholic Beverages (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Water Treatment By Sorption (AREA)
Description
本発明は、飲用電解水及びその製造方法に関し、詳細には無隔膜電解槽で電解した後、フィルターで混合電解水に含まれる遊離塩素を除去することにより得られる飲用電解水及びその製造方法に関する。 The present invention relates to potable electrolyzed water and a method for producing the same, and more particularly to potable electrolyzed water obtained by removing free chlorine contained in mixed electrolyzed water with a filter after electrolysis in a diaphragm electrolyzer and a method for producing the same. .
隔膜としてイオン交換樹脂を膜状にした荷電膜やマイクロポーラス構造を有する非荷電膜を介して白金あるいは白金合金等からなる不活性電極を配置した電解槽を用いてアルカリ金属の塩化物の希薄電解質水溶液を電解し、陽極側で電解生成されるpHの低い陽極電解水(酸性水)を取出し、これを殺菌や消毒に利用する技術は既に良く知られている。 A dilute electrolyte of alkali metal chloride using an electrolytic cell in which an inert electrode made of platinum or a platinum alloy is disposed through a charged membrane made of ion exchange resin as a diaphragm or an uncharged membrane having a microporous structure. A technique for electrolyzing an aqueous solution, taking out an anodic electrolyzed water (acidic water) having a low pH generated electrolytically on the anode side, and utilizing it for sterilization and disinfection is already well known.
陽極側で生成される陽極電解水はその中に次亜塩素酸を含む遊離塩素が生成されていることから、次亜塩素酸の強力な酸化作用と塩素化作用を利用し、殺菌や消毒に利用されるもので、この様な利用方法は医療機関等で普及している。また酸性水中に微量に含まれるオゾンや溶存酸素は肉芽生成促進作用を有することから、外科治療の補助としての利用も研究されている。 Since the anodic electrolyzed water produced on the anode side contains free chlorine containing hypochlorous acid, it uses the strong oxidation and chlorination effects of hypochlorous acid for sterilization and disinfection. Such usage is widely used in medical institutions. In addition, ozone and dissolved oxygen contained in trace amounts in acidic water have a granulation-promoting action, so their use as an aid for surgical treatment is also being studied.
陰極側で生成される陰極電解水(アルカリ水)は、希薄電解質溶液の代りに水道水を用いてこれを電解することにより得られ、従来飲用等に利用されている。 Cathodic electrolyzed water (alkaline water) produced on the cathode side is obtained by electrolyzing tap water instead of the dilute electrolyte solution, and has been conventionally used for drinking.
水道水などの塩素を含む原水の電解においては、陽極側で強酸化剤の次亜塩素酸が生成する。そのため、アルカリ水を飲用とする場合には、隔膜を備えた電解槽でアルカリ水と酸性水が混合しないように電解を行い、アルカリ水だけが取り出されて利用されている(特許文献1〜3参照)。 In the electrolysis of raw water containing chlorine such as tap water, strong oxidant hypochlorous acid is generated on the anode side. Therefore, when drinking alkaline water, it electrolyzes so that alkaline water and acidic water may not mix with the electrolytic tank provided with the diaphragm, and only alkaline water is taken out and utilized (patent documents 1-3). reference).
隔膜を備えた電解槽では酸性水とアルカリ水が別々に生成し、陽極側で生成する酸性水は酸性を、陰極側で生成するアルカリ水はアルカリ性を示す。そのため、アルカリ水を飲用の目的で利用する場合には、電解時の電解電流を低く調整してpHの上昇を抑制したり、電解原水のpHを予め酸性に調整しておくことなどが行われている(特許文献4参照)。飲用に供するアルカリ水を飲用に適したpHにすることは、飲用電解水の製造において極めて重要である。 In an electrolytic cell equipped with a diaphragm, acidic water and alkaline water are produced separately, acidic water produced on the anode side is acidic, and alkaline water produced on the cathode side is alkaline. For this reason, when alkaline water is used for drinking purposes, the electrolysis current during electrolysis is adjusted to a low level to prevent an increase in pH, or the pH of the electrolyzed raw water is adjusted to be acidic in advance. (See Patent Document 4). It is extremely important in the production of drinking electrolyzed water that the alkaline water used for drinking is brought to a pH suitable for drinking.
電解時に電解原水に印加する電解エネルギーが高いほどアルカリ水の効果も高くなると期待されるが、アルカリ水のpHが高くなり飲用に適さないものとなる。 The higher the electrolysis energy applied to the electrolyzed raw water during electrolysis, the higher the effect of alkaline water is expected. However, the pH of alkaline water becomes high and it is not suitable for drinking.
図2は、電解前後の希薄電解質水溶液にNaClを溶解させたときの溶液のイオン強度Iとイオン積pKwの関係を示すグラフである。 Figure 2 is a graph showing the relationship between the ionic strength I and the ionic product pK w of the solution when dissolved NaCl to dilute aqueous electrolyte solution before and after electrolysis.
ここで、aは純水、bは2mMのNaCl溶液を1A/Lで60秒電解して得られるアルカリ水、cは2mMのNaCl溶液を60秒電解したアルカリ水と酸性水との混合電解水のイオン強度とpKwの関係を示す曲線である。 Here, a is pure water, b is alkaline water obtained by electrolysis of 2 mM NaCl solution at 1 A / L for 60 seconds, c is mixed electrolyzed water of alkaline water and acidic water obtained by electrolysis of 2 mM NaCl solution for 60 seconds. is a curve showing the relationship between the ionic strength and pK w.
溶液のイオン強度は、下記式により定義される。 The ionic strength of the solution is defined by the following formula.
但し、Ciはイオン種iのモル濃度、ziはイオン種iの電荷数である。 Where C i is the molar concentration of ionic species i, and z i is the number of charges of ionic species i.
また、溶液の水のイオン積(pKw)は、水の解離定数Kwから、下式により求められる。 Further, the ionic product (pK w ) of the water of the solution is obtained from the dissociation constant K w of water by the following equation.
pKw=−log〔H+〕〔OH-〕
図2から明らかなように、いずれの溶液についてもイオン積pKwはイオン強度0.4mol/L付近で最小値を示す。イオン強度が0.4mol/Lを超えると、pKwの値はイオン強度が増加するに従って増加する。
pK w = −log [H + ] [OH − ]
As is apparent from FIG. 2, the ionic product pK w shows a minimum value in the vicinity of an ionic strength of 0.4 mol / L for any solution. When the ionic strength exceeds 0.4 mol / L, the value of pK w increases as the ionic strength increases.
電解前後のイオン積を比較すると、電解後の電解質水溶液の方が全領域においてイオン積の値が低くなっている。即ち、水の解離が増加している。また、電解電流が大きくなるほどイオン積の値は低くなる。 Comparing the ion product before and after electrolysis, the value of the ion product is lower in the entire region of the electrolyte aqueous solution after electrolysis. That is, water dissociation is increasing. In addition, the value of the ion product decreases as the electrolytic current increases.
図1中、A、B、Cは各溶液の飽和点を示す。電解質水溶液の飽和点を比較すると、電解時の電解電流が大きくなるほど低いイオン強度で飽和点に到達することが知られている。電解質水溶液の飽和点での陽イオンの濃度と陰イオンの濃度の積は、特に溶解度積(pKsp)として定義される。 In FIG. 1, A, B, and C show the saturation point of each solution. Comparing the saturation points of aqueous electrolyte solutions, it is known that the saturation point is reached with lower ionic strength as the electrolytic current during electrolysis increases. The product of the cation concentration and the anion concentration at the saturation point of the aqueous electrolyte solution is specifically defined as the solubility product (pK sp ).
なお、イオン積pKwは、電解質水溶液のイオン強度から、デバイ−ヒュッケル(Debye-Huckel)の式や、デービス(Davies)の式を用いて算出することができる。これらの式を用いて算出したイオン積は、実測値とよく一致することが知られている。 The ionic product pK w can be calculated from the ionic strength of the electrolyte aqueous solution by using the Debye-Huckel equation or the Davis equation. It is known that the ion product calculated using these formulas agrees well with the actual measurement value.
一例として、Daviesの式を用いて電解質水溶液のイオン積を算出する場合について説明する。Daviesの式は、下記式で表される。 As an example, the case where the ion product of the aqueous electrolyte solution is calculated using the Davies equation will be described. The Davies formula is expressed by the following formula.
但し、γzは電荷数zを有するイオン種の活量係数、Aは1.825×106(εT)-3/2で表される定数(εは溶媒の誘電率、Tは絶対温度)、zはイオン種の電荷数、Iはイオン強度を示す。 However, gamma z is the activity coefficient of the ionic species having a charge number z, A is 1.825 × 10 6 (εT) represented by constants -3/2 (epsilon is the dielectric constant of the solvent, T is the absolute temperature), z Is the charge number of the ionic species, and I is the ionic strength.
水の解離定数Kwは、イオン強度0における水の解離定数K0 wと、水の活量aH2O及び活量係数γzを用いた下記式で表される。 The water dissociation constant K w is expressed by the following equation using the water dissociation constant K 0 w at an ionic strength of 0, the water activity a H2O and the activity coefficient γ z .
Kw=K0 waH2O/γz=K0 w/γz
なお、aH2Oは1に近似され、25℃における水のイオン積K0 wは10-14であるので、25℃における電解質水溶液のイオン積は、
Kw=10-14/γz
25℃において、飽和NaCl水溶液(図2における飽和点A)の濃度は6.194mol/Lであるので、I=C=6.194mol/LをDaviesの式にあてはめると、
γz=3.837
従って、イオン積pKwの値は14.584と算出できる。
Since a H2O is approximate to 1 and the ionic product K 0 w of water at 25 ° C. is 10 −14 , the ionic product of the aqueous electrolyte solution at 25 ° C. is
K w = 10 -14 / γ z
Since the concentration of the saturated NaCl aqueous solution (saturation point A in FIG. 2) is 6.194 mol / L at 25 ° C., when I = C = 6.194 mol / L is applied to the Davies equation,
γ z = 3.837
Therefore, the value of the ion product pK w can be calculated as 14.584.
このように、水道水などの塩素イオンを含有する電解原水を電解して飲用の電解水を製造する場合には、陽極で発生する次亜塩素酸を含む遊離塩素の混入を防ぐため、隔膜を備えた電解槽で電解して得られたアルカリ水のみが取り出されて利用され、遊離塩素を含む酸性水については廃棄されている。また、得られるアルカリ水のpHを中性付近に保つため、電解は通常所定範囲内の電解電流値で行なわれている。 In this way, when electrolyzing raw electrolytic water containing chlorine ions such as tap water to produce drinking electrolyzed water, a diaphragm is used in order to prevent contamination of free chlorine containing hypochlorous acid generated at the anode. Only alkaline water obtained by electrolysis in the electrolyzer provided is taken out and used, and acidic water containing free chlorine is discarded. Moreover, in order to keep the pH of the alkaline water obtained in the vicinity of neutrality, electrolysis is usually performed at an electrolysis current value within a predetermined range.
本発明の目的は、従来飲用のアルカリ水にはpH調整なしでは使用できなかったような高い電解電流で電解し、その製造課程において酸性水を廃棄する必要のない、解離度が高く、従って低濃度(イオン強度0.4mol/L以下)で特に溶質の溶解度を高めることのできる電解水を提供することにある。 The object of the present invention is to electrolyze with a high electrolysis current that could not be used without conventional pH adjustment for drinking alkaline water, and has a high degree of dissociation, so that acidic water does not need to be discarded in the production process, and therefore low An object of the present invention is to provide electrolyzed water capable of increasing the solubility of a solute particularly at a concentration (ionic strength 0.4 mol / L or less).
本発明者は、無隔膜電解槽を使用して塩素を含む電解原水を電解した後、酸性水とアルカリ水とを分離することなく活性炭等で形成されたフィルターに流通させて遊離塩素を除去することにより、電解電流を従来より高く設定してもpHが中性付近に保たれ、酸性水を廃棄する必要のない飲用電解水が得られることを見出し本発明を完成するに到った。 The present inventor electrolyzes electrolyzed raw water containing chlorine using a non-diaphragm electrolytic cell, and then removes free chlorine by circulating it through a filter formed of activated carbon or the like without separating acidic water and alkaline water. As a result, it was found that even when the electrolysis current was set higher than before, the pH was kept in the vicinity of neutrality, and it was found that potable electrolyzed water without the need to discard acidic water was obtained, and the present invention was completed.
上記目的を達成する本発明は、以下に記載するものである。 The present invention for achieving the above object is described below.
〔1〕 イオン強度が0.05mol/L以下、遊離塩素の濃度が0.5mg/L以下、25℃の飽和塩化ナトリウム溶液における塩化ナトリウムの溶解度積が25(mol/L)2以下、pH6.0〜9.0である飲用電解水。 [1] Ionic strength is 0.05 mol / L or less, free chlorine concentration is 0.5 mg / L or less, the solubility product of sodium chloride in a saturated sodium chloride solution at 25 ° C. is 25 (mol / L) 2 or less, pH 6.0 to Drinking electrolyzed water that is 9.0.
〔2〕 イオン強度が0.0005〜0.05mol/L、合計塩素濃度が5mg/L以上の電解原水を流量0.5〜5L/minで無隔膜電解槽に供給し、電解電流1〜20A/Lで連続的に電解した後、得られた電解混合水を遊離塩素除去フィルターに流通させることにより電解時に生成した遊離塩素を除去する〔1〕に記載の飲用電解水の製造方法。 [2] Electrolyzed raw water having an ionic strength of 0.0005 to 0.05 mol / L and a total chlorine concentration of 5 mg / L or more is supplied to a non-diaphragm electrolyzer at a flow rate of 0.5 to 5 L / min, and continuously at an electrolysis current of 1 to 20 A / L. The method for producing potable electrolyzed water according to [1], wherein after the electrolysis, the obtained electrolyzed mixed water is passed through a free chlorine removing filter to remove free chlorine produced during electrolysis.
本発明の飲用電解水は、無隔膜電解槽で電解原水を電解した後、陽極側に生成した遊離塩素をフィルターにより吸着除去して得られる混合電解水である。酸性水とアルカリ水を混合して利用するため、得られる電解水のpHが中性で、従来の製造方法に比較して高い電解電流で電解することが可能である。更に、従来廃棄されていた酸性水を廃棄する必要がないため、電解原水を無駄なく使用できる。この電解水は、飲用に適した、解離度が高く、低濃度(イオン強度0.4mol/L以下)で溶質の溶解度を高めることのできる電解水で、特にイオン強度が0.05mol/L以下の難溶性化合物の溶解に適している。 The potable electrolyzed water of the present invention is a mixed electrolyzed water obtained by electrolyzing raw electrolytic water in a diaphragmless electrolyzer and then adsorbing and removing free chlorine generated on the anode side with a filter. Since acidic water and alkaline water are mixed and used, the pH of the resulting electrolyzed water is neutral, and electrolysis can be performed at a higher electrolysis current than in the conventional production method. Furthermore, since it is not necessary to discard the acid water that has been conventionally discarded, the electrolyzed raw water can be used without waste. This electrolyzed water is suitable for drinking, has a high degree of dissociation, and can increase the solubility of the solute at a low concentration (ionic strength 0.4 mol / L or less), especially difficult to have an ionic strength of 0.05 mol / L or less. Suitable for dissolving soluble compounds.
本発明の電解水の製造方法においては、0.05mol/L以下のイオン強度の電解原水を電解しているので、電解により発生するOCl-の発生量が少ない。このため、流路後段に配設したフィルターの消耗が少なく、長期間の使用に耐える。これに対し、高いイオン強度の原水を電解する場合はOCl-の発生が多く、フィルターは短期間で消耗する。 In the method for producing electrolyzed water according to the present invention, since electrolyzed raw water having an ionic strength of 0.05 mol / L or less is electrolyzed, the amount of OCl − generated by electrolysis is small. For this reason, there is little consumption of the filter arrange | positioned in the back | latter stage of a flow path, and it endures long-term use. In contrast, when electrolyzing raw water OCl high ionic strength - the generation number, the filter is exhausted in a short period of time.
本発明の飲用電解水は、以下の条件(a)〜(d)を満たす混合電解水である。
(a)イオン強度が0.05mol/L以下
(b)遊離塩素の濃度が0.5mg/L以下
(c)25℃の飽和塩化ナトリウム溶液における塩化ナトリウムの溶解度積が25(mol/L)2以下
(d)pH6.0〜9.0
The drinking electrolyzed water of the present invention is a mixed electrolyzed water that satisfies the following conditions (a) to (d).
(A) Ionic strength is 0.05 mol / L or less (b) Free chlorine concentration is 0.5 mg / L or less (c) The solubility product of sodium chloride in a saturated sodium chloride solution at 25 ° C. is 25 (mol / L) 2 or less ( d) pH 6.0-9.0
本発明の飲用電解水のイオン強度は、水溶性無機電解質の合計で0.05mol/L以下とする。好ましいイオン強度の値は、0.01mol/L以下である。 The ionic strength of the drinking electrolyzed water of the present invention is 0.05 mol / L or less in total for the water-soluble inorganic electrolyte. A preferable ionic strength value is 0.01 mol / L or less.
本発明の飲用電解水は、酸性水とアルカリ水を混合して利用することにより、酸や塩基を使用してpHの調整を行うことなくpHが6.0〜9.0の範囲内に保たれるものである。 The potable electrolyzed water of the present invention is a mixture of acidic water and alkaline water that is used to maintain the pH within the range of 6.0 to 9.0 without adjusting the pH using an acid or base. is there.
更に、本発明の飲用電解水は、25℃の飽和塩化ナトリウム溶液における塩化ナトリウムの溶解度積を25(mol/L)2以下、好ましくは16(mol/L)2以下とする。この溶解度積の値は、電解電流1A/L以上で電解を行った場合にのみ達成される値である。 Furthermore, in the electrolyzed drinking water of the present invention, the solubility product of sodium chloride in a saturated sodium chloride solution at 25 ° C. is 25 (mol / L) 2 or less, preferably 16 (mol / L) 2 or less. This solubility product value is achieved only when electrolysis is performed at an electrolysis current of 1 A / L or more.
上述したように、電解水に塩化ナトリウム等の強電解質を溶解させ飽和溶液を調製した場合には、その飽和溶液の溶解度積及びイオン強度は、電解時の電解電流により異なった値を示す。従って、一定温度下で電解水に塩化ナトリウム等を溶解させて飽和溶液を調整し、その溶解度積又はイオン強度の値を測定することにより電解の程度、従って電解水の解離の程度を推測することが可能である。 As described above, when a saturated solution is prepared by dissolving a strong electrolyte such as sodium chloride in electrolyzed water, the solubility product and ionic strength of the saturated solution show different values depending on the electrolysis current during electrolysis. Therefore, estimate the degree of electrolysis and therefore the degree of dissociation of electrolyzed water by preparing a saturated solution by dissolving sodium chloride etc. in electrolyzed water at a constant temperature and measuring the solubility product or ionic strength value. Is possible.
水道水を電解して得られる電解水の残留塩素には遊離塩素と結合塩素があるが、本発明においては遊離塩素はHOCl、OCl-を示す。結合塩素であるクロラミンは、遊離塩素には含まない。 Residual chlorine obtained by electrolyzing tap water includes free chlorine and combined chlorine. In the present invention, free chlorine represents HOCl and OCl − . Chloramine, which is bound chlorine, is not included in free chlorine.
以下、本発明の飲用電解水の製造方法につき図1を用いて説明する。 Hereinafter, the method for producing potable electrolyzed water of the present invention will be described with reference to FIG.
図1は、本発明の飲用電解水の製造に使用する製造装置の一例を示す概略斜視図である。 FIG. 1 is a schematic perspective view showing an example of a manufacturing apparatus used for manufacturing potable electrolyzed water of the present invention.
図1中、1は電解水製造装置で、電解原水は流量センサー3を介装した電解原水供給管5を通って連続流通型無隔膜電解槽7に送られる。
In FIG. 1, reference numeral 1 denotes an electrolyzed water production apparatus, and the electrolyzed raw water is sent to a continuous flow
無隔膜電解槽7に供給される電解原水の流量は0.5〜5L/min程度とするが、好ましくは2〜4L/minである。
The flow rate of the electrolyzed raw water supplied to the
電解原水には、通常水道水や電解質として塩化ナトリウムが添加された水が使用され、Cl-、HCl、OCl-、HOCl等の形態で塩素が含まれる。電解により遊離塩素の生成が問題となるのは、合計塩素濃度が5mg/L以上、特に20mg/L以上、とりわけ50mg/L以上の電解原水を電解する場合である。遊離塩素濃度が0.5mg/L以下の混合電解水を得るため、電解原水の合計塩素濃度は200mg/L以下とすることが好ましく、100mg/L以下とすることがより好ましい。 The electrolyzed raw water is usually tap water or water to which sodium chloride is added as an electrolyte, and contains chlorine in the form of Cl − , HCl, OCl − , HOCl or the like. The generation of free chlorine by electrolysis becomes a problem when electrolyzed raw water having a total chlorine concentration of 5 mg / L or more, particularly 20 mg / L or more, especially 50 mg / L or more. In order to obtain mixed electrolyzed water having a free chlorine concentration of 0.5 mg / L or less, the total chlorine concentration of the electrolyzed raw water is preferably 200 mg / L or less, and more preferably 100 mg / L or less.
電解原水の水溶性無機塩等のイオン強度は、各水溶性無機電解質の合計で0.0005mol/L以上0.05mol/L以下とする。電解原水のイオン強度は、0.01mol/L以下であることが好ましく、特に0.005mol/L以下であることが望ましい。 The ionic strength of the water-soluble inorganic salt, etc. of the electrolyzed raw water is 0.0005 mol / L or more and 0.05 mol / L or less in total for each water-soluble inorganic electrolyte. The ionic strength of the electrolyzed raw water is preferably 0.01 mol / L or less, and particularly preferably 0.005 mol / L or less.
無隔膜電解槽7は、その内部に互いに対向する少なくとも一対の電極を有している。前記電極は所定間隔離間されて配設され、各電極間の間隔は0.5〜10mm、好ましくは1〜5mmである。
The non-diaphragm
前記電極は電気化学的に不活性な金属材料で形成されている。電極材料としては、白金、白金合金等が好ましい。 The electrode is made of an electrochemically inactive metal material. As the electrode material, platinum, a platinum alloy or the like is preferable.
図1中、破線で示される9は電解電源で、そのプラス端子及びマイナス端子と、前記電極とはそれぞれ不図示の配線により接続されている。電解電源9に供給される電圧は、電解電源9に接続されたトランス11により変圧された後直流に変えられる。電解電源9と流量計3は、不図示の制御部と接続され、流量計3で計測した電解原水の流量に応じて電解電源9から前記電極に供給される電力が制御される。
In FIG. 1, 9 shown by a broken line is an electrolytic power source, and its plus terminal and minus terminal are connected to the electrode by wirings (not shown). The voltage supplied to the electrolysis power supply 9 is transformed into direct current after being transformed by the
前記電解原水供給管5を通って無隔膜電解槽7に送られる電解質水溶液は、無隔膜電解槽7内で電気分解される。
The aqueous electrolyte solution sent to the diaphragm membrane
使用する電解電流は、1〜20A/Lとするが、1〜10A/Lが好ましく、特に2〜6A/Lが好ましい。電解電流が1A/L未満の場合は、電解水中の溶存酸素量及び溶存水素量を電解原水よりも高くすることができない。20A/Lを超えると、電極材料の消耗が著しくなり、長期間の使用に耐え難くなる。 The electrolytic current used is 1 to 20 A / L, preferably 1 to 10 A / L, and particularly preferably 2 to 6 A / L. When the electrolysis current is less than 1 A / L, the dissolved oxygen amount and dissolved hydrogen amount in the electrolyzed water cannot be made higher than the electrolyzed raw water. If it exceeds 20 A / L, the electrode material will be significantly consumed, making it difficult to withstand long-term use.
上記のようにして電気分解することにより、電解槽7内で電解中に生成する陽極側電解水と陰極側電解水とは自然に混合にされる。両電解水が混合した混合電解水は、混合電解水取出し管13を通って吸着槽15内に送られる。吸着槽15内には円筒状に形成された遊離塩素除去フィルター17が配設され、混合電解水が円筒状フィルター17の外周面から内周面へ向かって移動するうちに、混合電解水に含まれる次亜塩素酸等の遊離塩素がフィルター17に吸着除去される。
By electrolysis as described above, the anode-side electrolyzed water and the cathode-side electrolyzed water generated during electrolysis in the
フィルター17には、遊離塩素を除去できる公知の材料を使用でき、例えば、活性炭、活性炭素繊維、ゼオライト等を挙げることができる。
For the
フィルター17を通過した混合電解水は、吸着槽17の上部に取り付けられているタブレット添加塔19、電解水供給管21を通って外部に供給される。
The mixed electrolyzed water that has passed through the
タブレット添加塔19には所望により、アスコルビン酸、カテキン等を含む錠剤等を投入しておき、これらの成分を電解水に溶出させることができる。
If necessary, tablets containing ascorbic acid, catechin, and the like can be put into the
なお、上記説明においては、電解槽7内に配設する電極は少なくとも一対としたが、2以上の電極対を電解槽に配備し、電解効率を高めることが望ましい。
In the above description, at least a pair of electrodes are provided in the
また、上記各電極に印加する電力の極性は所定時間間隔で互いに切り換えてもよい。印加する電力の極性を所定時間毎に切り換えることにより、陰極側電解水と陽極側電解水とが少なくとも1対の電極において交互に生成されるので、陽極側電解水と陰極側電解水とが効率よく混合される。極性の切替え時間間隔は、3〜10回/hrが好ましく、4〜6回/hrがより好ましい。電力の極性を切替えることにより電極にスケールが付着することを有効に防止する。 The polarities of the power applied to the electrodes may be switched with each other at a predetermined time interval. By switching the polarity of the applied power every predetermined time, the cathode side electrolyzed water and the anode side electrolyzed water are alternately generated in at least one pair of electrodes, so that the anode side electrolyzed water and the cathode side electrolyzed water are efficient. Well mixed. The polarity switching time interval is preferably 3 to 10 times / hr, and more preferably 4 to 6 times / hr. By switching the polarity of electric power, it is possible to effectively prevent the scale from adhering to the electrode.
上記説明においては、陽極側電解水と陰極側電解水とを混合した混合電解水を無隔膜電解槽から取り出した後フィルターに流通させたが、これに限られず、隔膜を備えた電解槽で電解して陽極側電解水と陰極側電解水とを別々に取り出して陽極側電解水のみフィルターに流通させ、その後混合しても良い。 In the above description, the mixed electrolyzed water in which the anode side electrolyzed water and the cathode side electrolyzed water are mixed is taken out from the non-diaphragm electrolyzer and then circulated through the filter. Then, the anode side electrolyzed water and the cathode side electrolyzed water may be taken out separately, and only the anode side electrolyzed water may be circulated through the filter and then mixed.
電解装置の電解槽は特に制限が無く、電解槽の大きさ、電解槽中に隔膜の有無等に関係なく何れの形式のものでも利用できる。 The electrolytic cell of the electrolysis apparatus is not particularly limited, and any type can be used regardless of the size of the electrolytic cell, the presence or absence of a diaphragm in the electrolytic cell, and the like.
実施例1
図1に示す電解水製造装置を用いて水道水を電解し、混合電解水を製造した。但し、電解槽の内部空間は5cm×9cm×0.5cmの直方体であり、電解槽内に50mm×90mmの板状に形成した電極5枚を1.0mm間隔に挿入して陽極と陰極を交互に配備した。この電解槽に水道水(合計塩素濃度15mg/L)を4L/minの流量で供給し、電解電流3.5A/Lで電解し電解水を得た。フィルター17には活性炭を使用した。
Example 1
Tap water was electrolyzed using the electrolyzed water production apparatus shown in FIG. 1 to produce mixed electrolyzed water. However, the internal space of the electrolytic cell is a rectangular parallelepiped of 5 cm × 9 cm × 0.5 cm, and the anode and the cathode are alternately inserted by inserting five electrodes formed in a plate shape of 50 mm × 90 mm into the electrolytic cell at intervals of 1.0 mm. Deployed. Tap water (
水道水と得られた混合電解水のpH、イオン強度、遊離塩素の濃度と、これらを用いて25℃の飽和NaCl溶液を調製したときの飽和NaCl溶液のイオン強度及び飽和NaCl溶液におけるNaClの溶解度積の値を表1に示す。 The pH, ionic strength, free chlorine concentration of tap water and the resulting mixed electrolyzed water, and the ionic strength of the saturated NaCl solution and the solubility of NaCl in the saturated NaCl solution when a saturated NaCl solution at 25 ° C was prepared using them. The product values are shown in Table 1.
実施例2
精製水に2mMのNaClを溶解した電解原水(合計塩素濃度71mg/L)を使用した以外は実施例1と同様にして混合電解水を製造した。
Example 2
Mixed electrolyzed water was produced in the same manner as in Example 1 except that electrolyzed raw water (total chlorine concentration 71 mg / L) in which 2 mM NaCl was dissolved in purified water was used.
電解原水と得られた混合電解水のpH、イオン強度、遊離塩素の濃度と、これらを用いて25℃の飽和NaCl溶液を調製したときの飽和NaCl溶液のイオン強度及び飽和NaCl溶液におけるNaClの溶解度積の値を表2に示す。 The pH, ionic strength, and free chlorine concentration of the electrolyzed raw water and the resulting mixed electrolytic water, and the ionic strength of the saturated NaCl solution and the solubility of NaCl in the saturated NaCl solution when using these to prepare a saturated NaCl solution at 25 ° C Table 2 shows product values.
1 電解水製造装置
3 流量センサー
5 電解原水供給管
7 無隔膜電解槽
9 電解電源
11 トランス
13 電解水取出し管
15 吸着塔
17 遊離塩素除去フィルター
19 タブレット添加塔
21 電解水供給管
DESCRIPTION OF SYMBOLS 1 Electrolyzed
Claims (2)
Electrolyzed raw water with an ionic strength of 0.0005 to 0.05 mol / L and a total chlorine concentration of 5 mg / L or more was supplied to the diaphragm electrolyzer at a flow rate of 0.5 to 5 L / min, and electrolysis was continuously performed at an electrolysis current of 1 to 20 A / L. After that, free chlorine generated at the time of electrolysis is removed by circulating the obtained electrolytic mixed water through a free chlorine removal filter , ionic strength is 0.05 mol / L or less, free chlorine concentration is 0.5 mg / L or less, 25 ° C A method for producing potable electrolyzed water in which the solubility product of sodium chloride in a saturated sodium chloride solution is 25 (mol / L) 2 or less and pH 6.0 to 9.0 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005373304A JP4181170B2 (en) | 2005-12-26 | 2005-12-26 | Drinking electrolyzed water and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005373304A JP4181170B2 (en) | 2005-12-26 | 2005-12-26 | Drinking electrolyzed water and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007167829A JP2007167829A (en) | 2007-07-05 |
JP4181170B2 true JP4181170B2 (en) | 2008-11-12 |
Family
ID=38295087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005373304A Expired - Fee Related JP4181170B2 (en) | 2005-12-26 | 2005-12-26 | Drinking electrolyzed water and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4181170B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4597263B1 (en) * | 2010-05-06 | 2010-12-15 | 株式会社ハッピー・パスポート | Electrolyzed water production apparatus and electrolyzed water production method using the same |
JP4751994B1 (en) * | 2010-11-24 | 2011-08-17 | 関 和則 | Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell |
US12116300B1 (en) | 2023-10-04 | 2024-10-15 | NT Liquid Systems, LLC | Systems, methods, and apparatus for generating functional hydrogen water |
-
2005
- 2005-12-26 JP JP2005373304A patent/JP4181170B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007167829A (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3785219B2 (en) | Method for producing acidic water and alkaline water | |
JP3913923B2 (en) | Water treatment method and water treatment apparatus | |
JP3716042B2 (en) | Acid water production method and electrolytic cell | |
US10071920B2 (en) | Electrolyzed water-manufacturing apparatus and electrolyzed water-manufacturing method using same | |
US20100310672A1 (en) | Disinfectant based on aqueous; hypochlorous acid (hoci)-containing solutions; method for the production thereof and use thereof | |
EP1602629A1 (en) | Process for producing mixed electrolytic water | |
JP2002336856A (en) | Electrolytic water making apparatus and method of making electrolytic water | |
JP5764474B2 (en) | Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method | |
EP0838434A2 (en) | Electrolytic treatment of aqueous salt solutions | |
US20010022273A1 (en) | Electrochemical treatment of water and aqueous salt solutions | |
JP4929430B2 (en) | Electrolyzed water production apparatus and electrolyzed water production method | |
JP2007007502A (en) | Manufacturing method of low sodium chloride electrolytic water and manufacturing device thereof | |
JP2002301476A (en) | Ascorbylglucosamine electrolyzed water and method for making the same | |
KR100761099B1 (en) | An apparatus and method for manufacturing reducing hydrogen water using brown's gas, and an apparatus and method for manufacturing for reducing hydrogen drinking water using brown's gas | |
JP4181170B2 (en) | Drinking electrolyzed water and method for producing the same | |
JPH11151493A (en) | Electrolyzer and electrolyzing method | |
KR20060007369A (en) | High electric field electrolysis cell | |
JP2004261656A (en) | Manufacturing method for mixed electrolytic water | |
JP6847477B1 (en) | Electrolyzed water production equipment and method for producing electrolyzed water using this | |
JP4130763B2 (en) | Generation method of non-oxidizing strong acid water | |
WO1998012144A1 (en) | Electrolytic treatment of aqueous salt solutions | |
EP4026607A1 (en) | Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution | |
US20240174533A1 (en) | Electrolyzed water production apparatus, and electrolyzed water production method using same | |
KR100658409B1 (en) | Electrolyzed water of anode side and process for production thereof | |
JPH11319831A (en) | Production of electrolytic function water and its apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4181170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |