JP6847477B1 - Electrolyzed water production equipment and method for producing electrolyzed water using this - Google Patents

Electrolyzed water production equipment and method for producing electrolyzed water using this Download PDF

Info

Publication number
JP6847477B1
JP6847477B1 JP2020007862A JP2020007862A JP6847477B1 JP 6847477 B1 JP6847477 B1 JP 6847477B1 JP 2020007862 A JP2020007862 A JP 2020007862A JP 2020007862 A JP2020007862 A JP 2020007862A JP 6847477 B1 JP6847477 B1 JP 6847477B1
Authority
JP
Japan
Prior art keywords
electrolyzed
water
electrolyzed water
electrolytic cell
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007862A
Other languages
Japanese (ja)
Other versions
JP2021112730A (en
Inventor
孝吉 花岡
孝吉 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO-REDOX LABORATORY INC.
Original Assignee
BIO-REDOX LABORATORY INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO-REDOX LABORATORY INC. filed Critical BIO-REDOX LABORATORY INC.
Priority to JP2020007862A priority Critical patent/JP6847477B1/en
Application granted granted Critical
Publication of JP6847477B1 publication Critical patent/JP6847477B1/en
Publication of JP2021112730A publication Critical patent/JP2021112730A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】電解原水に電解質を添加することなく電解が可能であり、且つ飲用に適した中性域の電解水を製造することができ、且つ電解により発生する酸素ガス及び水素ガスを電解水内に高濃度で溶存させることができる電解水製造装置及び該電解水製造装置を用いる電解水の製造方法を提供する。【解決手段】電解原水を固体高分子電解質膜を用いて電解するとともに、当該固体高分子電解質膜に電流を供給する複極板と固体高分子電解質膜とを、ガス拡散能を有する給電体で電気的に接続し、さらには、電解槽の陽極側と陰極側とに順次電解原水を流通させて電解することにより、電解質を添加することなく、且つ飲用に適した中性域の電解水が得られ、さらには当該電解水に酸素ガス及び水素ガスを高濃度で溶存させることができる。【選択図】 図2PROBLEM TO BE SOLVED: To electrolyze electrolyzed raw water without adding an electrolyte, to produce electrolyzed water in a neutral region suitable for drinking, and to transfer oxygen gas and hydrogen gas generated by electrolysis into the electrolyzed water. Provided is an electrolyzed water producing apparatus capable of being dissolved in a high concentration, and a method for producing electrolyzed water using the electrolyzed water producing apparatus. SOLUTION: An electrolyzed raw water is electrolyzed using a solid polymer electrolyte membrane, and a dipole plate for supplying a current to the solid polymer electrolyte membrane and a solid polymer electrolyte membrane are formed by a feeding body having a gas diffusing ability. By electrically connecting and further flowing electrolytic raw water sequentially to the anode side and the cathode side of the electrolytic tank to electrolyze, the electrolyzed water in the neutral region suitable for drinking can be obtained without adding an electrolyte. Further, oxygen gas and hydrogen gas can be dissolved in the electrolyzed water at a high concentration. [Selection diagram] Fig. 2

Description

本発明は、固体高分子電解質膜を電解質として水の電気分解を行う電解水製造装置及び該電解水製造装置を用いる電解水の製造方法に関する。詳細には、固体高分子電解質膜に電解原水(電解前の水)を供給しつつ、固体高分子電解質膜を電解質として水の電解を行い、発生した酸素ガス及び水素ガスを電解水に溶存させる電解水製造装置及び該電解水製造装置を用いる電解水の製造方法に関する。 The present invention relates to an electrolyzed water producing apparatus that electrolyzes water using a solid polymer electrolyte membrane as an electrolyte, and a method for producing electrolyzed water using the electrolyzed water producing apparatus. Specifically, while supplying electrolyzed raw water (water before electrolysis) to the solid polymer electrolyte membrane, water is electrolyzed using the solid polymer electrolyte membrane as an electrolyte, and the generated oxygen gas and hydrogen gas are dissolved in the electrolyzed water. The present invention relates to an electrolyzed water producing apparatus and a method for producing electrolyzed water using the electrolyzed water producing apparatus.

一般に、電解水製造装置には、一対の電極間に隔膜を有する隔膜式電解槽が利用されている。隔膜式電解槽の隔膜には、荷電膜であるイオン交換膜、非荷電膜である中性膜等が用いられる。隔膜式電解槽の陽極側(陽極室)では酸性の電解水が、陰極側(陰極室)ではアルカリ性の電解水がそれぞれ生成する。隔膜式電解槽を用いた装置を使用する場合、通常、陽極側電解水(陽極水)と陰極側電解水(陰極水)とは別々に採取される。 Generally, a diaphragm type electrolytic cell having a diaphragm between a pair of electrodes is used in the electrolyzed water production apparatus. As the diaphragm of the diaphragm type electrolytic cell, an ion exchange membrane which is a charged membrane, a neutral membrane which is an uncharged membrane, and the like are used. Acidic electrolyzed water is generated on the anode side (anode chamber) of the diaphragm type electrolytic cell, and alkaline electrolyzed water is generated on the cathode side (cathode chamber). When an apparatus using a diaphragm type electrolytic cell is used, the anode side electrolyzed water (anode water) and the cathode side electrolyzed water (cathode water) are usually collected separately.

電解原水に電解質として塩化ナトリウムのような塩化物を添加して電解を行うと、陽極側には電極反応生成物である塩酸、次亜塩素酸、溶存酸素や、ヒドロキシルラジカルのような活性酸素が生成する。次亜塩素酸は、強力な塩素化反応と酸化反応を示すことから、陽極水は菌類の殺菌等に利用されている。 When chloride such as sodium chloride is added as an electrolyte to the raw water for electrolysis and electrolysis is performed, the electrode reaction products such as hydrochloric acid, hypochlorous acid, dissolved oxygen, and active oxygen such as hydroxyl radical are generated on the anode side. Generate. Since hypochlorous acid exhibits a strong chlorination reaction and an oxidation reaction, anode water is used for sterilizing fungi and the like.

一方、陰極側に生成する陰極水は飲用のアルカリイオン水として広く知られている。陰極水製造装置は医療器機等として市販されており、ミネラル水の普及とともに広く普及している。 On the other hand, the cathode water generated on the cathode side is widely known as drinking alkaline ionized water. Cathode water production equipment is commercially available as medical equipment and the like, and has become widespread with the spread of mineral water.

これらの電解水は、いくつかのパラメータによりその性質を表すことができる。パラメータとしては、pH、酸化還元電位、溶存酸素濃度、溶存水素濃度、次亜塩素酸濃度等が採用されている。これらパラメータの値は、電解原水に含まれる溶質の種類や濃度、電解水に付与された電解エネルギーの大きさ等により決定される。 The properties of these electrolyzed waters can be expressed by several parameters. As parameters, pH, oxidation-reduction potential, dissolved oxygen concentration, dissolved hydrogen concentration, hypochlorous acid concentration and the like are adopted. The values of these parameters are determined by the type and concentration of the solute contained in the electrolyzed raw water, the magnitude of the electrolyzed energy applied to the electrolyzed water, and the like.

電解水を飲用する場合、最も重要なパラメータは次亜塩素酸濃度とpHの値である。陰極水の場合は次亜塩素酸が含まれないので、pHの値のみが問題になる。強アルカリ性や強酸性の電解水は生体にとって危険であるので、中性〜弱アルカリ性(pH9.5以下)領域の電解水が飲用される。電解エネルギーが大きいと、陽極水は強酸性側に、陰極水は強アルカリ側に傾くので、通常は、電解時には余り大きな電気量は使用できない。 When drinking electrolyzed water, the most important parameters are the values of hypochlorous acid concentration and pH. In the case of cathode water, hypochlorous acid is not contained, so only the pH value matters. Since strongly alkaline or strongly acidic electrolyzed water is dangerous to the living body, electrolyzed water in the neutral to weakly alkaline (pH 9.5 or less) region is drunk. When the electrolysis energy is large, the anolyte water tends to the strongly acidic side and the cathode water tends to the strong alkaline side. Therefore, normally, a very large amount of electricity cannot be used during electrolysis.

電解時に高い電気量を用いて得られる電解水のpHを所定範囲内に保つため、従来様々な方法が用いられている。例えば、特許文献1には、陽極室で電解した後、陰極室で再度電解する電解水の製造装置が開示されている。特許文献2には、隔膜と電極とが一体化された膜−電極接合体を用いて電解水を製造する方法が開示されている。 In order to keep the pH of the electrolyzed water obtained by using a high amount of electricity during electrolysis within a predetermined range, various methods have been conventionally used. For example, Patent Document 1 discloses an apparatus for producing electrolyzed water, which is electrolyzed in an anode chamber and then electrolyzed again in a cathode chamber. Patent Document 2 discloses a method for producing electrolyzed water using a membrane-electrode assembly in which a diaphragm and an electrode are integrated.

特開2014−124601号公報Japanese Unexamined Patent Publication No. 2014-124601 特開2015−221397号公報Japanese Unexamined Patent Publication No. 2015-221397

本発明の課題は、逆浸透膜処理水やイオン交換樹脂処理水のような電気伝導度が低い精製水を電解原水として電解が可能であり、且つ飲用に適した中性域の電解水を製造することができ、且つ電解により発生する酸素ガス及び水素ガスを電解水内に高濃度で共存させて溶存させることができる電解水製造装置及び該電解水製造装置を用いる電解水の製造方法を提供することにある。
An object of the present invention is to produce electrolyzed water in a neutral region that can be electrolyzed using purified water having low electrical conductivity such as back-penetration membrane-treated water or ion-exchange resin-treated water as electrolyzed raw water and is suitable for drinking. Provided are an electrolyzed water producing apparatus capable of coexisting and dissolving oxygen gas and hydrogen gas generated by electrolysis in electrolyzed water at a high concentration, and a method for producing electrolyzed water using the electrolyzed water producing apparatus. To do.

本発明者は、上記課題を解決するために鋭意検討を行った結果、電解原水を固体高分子電解質膜を用いて電解するとともに、当該固体高分子電解質膜に電流を供給する複極板と固体高分子電解質膜とを、ガス拡散能を有する給電体で電気的に接続し、さらには、電解槽の陽極側と陰極側とに順次電解原水を流通させて電解することにより、電気伝導度が低い原水であっても電解質を添加することなく、且つ飲用に適した中性域の電解水が得られ、さらには当該電解水に酸素ガス及び水素ガスを高濃度で共存させて溶存させることができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor electrolyzes the electrolytic raw water using a solid polymer electrolyte membrane, and supplies a current to the solid polymer electrolyte membrane. By electrically connecting the polymer electrolyte membrane with a feeding body having gas diffusing ability, and further circulating electrolytic raw water sequentially to the anode side and the cathode side of the electrolytic tank for electrolysis, the electric conductivity is increased. Even if the raw water is low, it is possible to obtain electrolyzed water in the neutral range suitable for drinking without adding an electrolyte, and further, it is possible to coexist and dissolve oxygen gas and hydrogen gas in the electrolyzed water at high concentrations. We have found what we can do and have completed the present invention.

上記課題を解決する本発明は、以下に記載するものである。 The present invention that solves the above problems is described below.

〔1〕 電解原水供給手段と、前記電解原水供給手段に接続された電解槽と、前記電解槽の出口側に接続された活性炭フィルタとから成る電解水製造装置であって、
前記電解槽が、互いに平行に配設された一対の複極板を備えるとともに、
固体高分子電解質膜と前記固体高分子電解質膜の各表面に密着して形成された液透過性の電極触媒とから成る膜−電極接合体が、前記複極板間に前記複極板と平行に配設されて前記電解槽の内部が仕切られて第1電解室及び第2電解室が形成され、且つ前記第1電解室の出口側と前記第2電解室の入口側とが前記電解槽の外部で液密に接続されて成り、
前記第1電解室内及び前記第2電解室内にそれぞれ配設され、前記複極板と前記膜−電極接合体の各電極触媒とをそれぞれ電気的に接続する給電体を備えて構成されることを特徴とする電解水製造装置。
[1] An electrolyzed water production apparatus comprising an electrolytic raw water supply means, an electrolytic cell connected to the electrolytic raw water supply means, and an activated carbon filter connected to the outlet side of the electrolytic cell.
The electrolytic cell includes a pair of multi-pole plates arranged in parallel with each other, and also
A film-electrode junction composed of a solid polymer electrolyte membrane and a liquid-permeable electrode catalyst formed in close contact with each surface of the solid polymer electrolyte membrane is parallel to the dipole plate between the dipole plates. The inside of the electrolytic cell is partitioned to form a first electrolytic cell and a second electrolytic cell, and the outlet side of the first electrolytic cell and the inlet side of the second electrolytic cell are the electrolytic cells. Consisting of being liquidtightly connected to the outside of
Each of the first electrolytic chamber and the second electrolytic chamber is provided with a feeding body for electrically connecting the double electrode plate and each electrode catalyst of the membrane-electrode assembly. A featured electrolyzed water production device.

上記〔1〕の電解水製造装置は、後述する図1に記載の電解水製造装置であり、後述する図2に記載の電解槽を有している。この電解水製造装置は、第1電解室内(例えば陽極室)及び第2電解室内(例えば陰極室)に電解原水を順次供給することにより、固体高分子電解質膜へ水を供給するとともに、固体高分子電解質膜を電解質として水の電解が行われ、電解により発生したガスが第1電解室内(酸素ガス)及び第2電解室内(水素ガス)にそれぞれ供給される。第1電解室内及び第2電解室内には、ガス拡散能を有する給電体がそれぞれ配設されているため、供給されたガスは微細な気泡として電解水内に分散されて速やかに溶存されるように構成されている。なお、第1電解室を陰極室とし、第2電解室を陽極室とするように構成してもよく、これらの極性を変更可能に構成してもよい。 The electrolyzed water production apparatus according to [1] is the electrolyzed water production apparatus described in FIG. 1 described later, and has the electrolytic cell described in FIG. 2 described later. This electrolyzed water producing apparatus supplies water to the solid polymer electrolyte membrane by sequentially supplying electrolytic raw water to the first electrolytic chamber (for example, an anode chamber) and the second electrolytic chamber (for example, a cathode chamber), and at the same time, the solid height. Water is electrolyzed using the molecular electrolyte membrane as an electrolyte, and the gas generated by the electrolysis is supplied to the first electrolysis chamber (oxygen gas) and the second electrolysis chamber (hydrogen gas), respectively. Since a feeding body having a gas diffusing ability is disposed in each of the first electrolysis chamber and the second electrolysis chamber, the supplied gas is dispersed in the electrolyzed water as fine bubbles so as to be quickly dissolved. It is configured in. The first electrolytic chamber may be a cathode chamber and the second electrolytic chamber may be an anode chamber, or the polarities thereof may be changed.

〔2〕 前記給電体が金属繊維又は金属メッシュである〔1〕に記載の電解水製造装置。 [2] The electrolyzed water production apparatus according to [1], wherein the feeding body is a metal fiber or a metal mesh.

上記〔2〕の電解水製造装置は、給電体が繊維状又は三次元構造を有するメッシュ状であるため、ガス拡散能が極めて高く、且つ微細なガスの気泡を繊維又は三次元構造金属メッシュ中に滞留させて保持するため、電解水内にガスを高濃度で溶存させることができる。 In the electrolyzed water production apparatus of the above [2], since the feeding body is in the form of a fiber or a mesh having a three-dimensional structure, the gas diffusing ability is extremely high, and fine gas bubbles are formed in the fiber or the three-dimensional structure metal mesh. Since the gas is retained and retained in the electrolyzed water, the gas can be dissolved in the electrolyzed water at a high concentration.

〔3〕 前記電極触媒の材質がそれぞれ白金又はイリジウム合金である〔1〕に記載の電解水製造装置。 [3] The electrolyzed water production apparatus according to [1], wherein the material of the electrode catalyst is platinum or an iridium alloy, respectively.

上記〔3〕の電解水製造装置は、電極触媒の化学的安定性が高いため、強酸性の固体高分子電解質膜を用いることができる。 Since the electrolyzed water production apparatus of the above [3] has high chemical stability of the electrode catalyst, a strongly acidic solid polymer electrolyte membrane can be used.

〔4〕 前記電極触媒の厚みがそれぞれ1〜100μmである〔1〕に記載の電解水製造装置。 [4] The electrolyzed water production apparatus according to [1], wherein each of the electrode catalysts has a thickness of 1 to 100 μm.

上記〔4〕の電解水製造装置は、電極触媒が固体高分子電解質膜の表面に薄膜の電極触媒層が形成されている。 In the electrolyzed water production apparatus of [4] above, the electrode catalyst is a thin-film electrode catalyst layer formed on the surface of the solid polymer electrolyte membrane.

〔5〕 〔1〕に記載の電解水製造装置を用いる電解水の製造方法であって、
電解原水を電解槽の第1電解室及び第2電解室に順次送液するとともに、
電解槽に配設された複極板から給電体を通じて膜−電極接合体に通電することにより、膜−電極接合体内で水を電解し、
電解により発生した酸素ガス及び水素ガスをそれぞれ第1電解室内及び第2電解室内でその内部を流通する水に順次溶存させて電解水を得、
次いで、第2電解室から排出される前記電解水を活性炭フィルタに通じることを特徴とする電解水の製造方法。
[5] A method for producing electrolyzed water using the electrolyzed water producing apparatus according to [1].
The raw electrolysis water is sequentially sent to the first electrolysis chamber and the second electrolysis chamber of the electrolytic cell, and at the same time.
Water is electrolyzed in the membrane-electrode assembly by energizing the membrane-electrode assembly from the multi-electrode plate arranged in the electrolytic cell through the feeder.
Oxygen gas and hydrogen gas generated by electrolysis are sequentially dissolved in water circulating inside the first electrolysis chamber and the second electrolysis chamber, respectively, to obtain electrolyzed water.
Next, a method for producing electrolyzed water, which comprises passing the electrolyzed water discharged from the second electrolyzing chamber through an activated carbon filter.

上記〔5〕の電解水の製造方法は、電解原水を電解槽の第1電解室と第2電解室とに順次流通させて、固体高分子電解質膜を用いて電解することにより発生した酸素ガス及び水素ガスの両方を電解原水内に微細な気泡として分散させて溶存させる。そのため、装置内に大きな気泡が発生せず、発生した酸素ガス及び水素ガスを電解水内に高濃度で溶存させる。 In the method for producing electrolyzed water in [5] above, oxygen gas generated by sequentially circulating electrolyzed raw water to the first electrolyzing chamber and the second electrolyzing chamber of the electrolytic cell and electrolyzing using the solid polymer electrolyte membrane. Both and hydrogen gas are dispersed and dissolved in the electrolyzed raw water as fine bubbles. Therefore, large bubbles are not generated in the apparatus, and the generated oxygen gas and hydrogen gas are dissolved in the electrolyzed water at a high concentration.

〔6〕 前記電解原水の電気伝導度が0.5〜100(mS/m)である〔5〕に記載の電解水の製造方法。 [6] The method for producing electrolyzed water according to [5], wherein the electrolyzed raw water has an electric conductivity of 0.5 to 100 (mS / m).

上記〔6〕の電解水の製造方法は、電解原水として水道水のみならず、逆浸透膜処理水やイオン交換樹脂処理水のような電解質が除去された水を用いることができる。 In the method for producing electrolyzed water in [6] above, not only tap water but also water from which electrolytes have been removed, such as reverse osmosis membrane-treated water and ion exchange resin-treated water, can be used as the electrolyzed raw water.

〔7〕 電解原水100(mL)当たりの電解電気量が60〜180クーロンである〔5〕に記載の電解水の製造方法。 [7] The method for producing electrolyzed water according to [5], wherein the amount of electrolyzed electricity per 100 (mL) of raw electrolyzed water is 60 to 180 coulomb.

上記〔7〕の電解水の製造方法は、電解に供する電気量が高いため、高度に電解された電解水が得られる。
In the method for producing electrolyzed water according to the above [7], since the amount of electricity used for electrolysis is high, highly electrolyzed electrolyzed water can be obtained.

本発明の電解水製造装置は、第1電解室(陽極室)で電解した水を第2電解室に流通してさらに電解して電解水を得る。そのため、得られる電解水のpHは、電解原水のpHと実質的に変動しない。即ち、水道水を電解原水として用いる場合、飲用に適した略中性の電解水が得られる。また、陽極室側と陰極室側とでそれぞれ電解して陽極電解水と陰極電解水とを得る従来の電解水製造装置とは異なり、一方の電解室で得られた水を廃棄する必要がない。また、第1電解室(陽極室)で電解した水を第2電解室に流通してさらに電解するため、印加される電気エネルギーが高くなり、得られる電解水の性質を大きく変更することができる。
本発明の電解水製造装置は、固体高分子電解質膜を電解質として電解を行うため、電解原水に電解質を添加しなくても効率的に電解が可能である。また、膜−電極接合体を用いて電解を行うため、装置の小型化が可能である。
本発明の電解水製造装置は、電解によって発生する酸素ガス及び水素ガスが、電解室内に配置されたガス拡散能を有する給電体によって電解水に微細に拡散する。そのため、電解水内に酸素ガス及び水素ガスを多量に溶存させることができる。
In the electrolyzed water production apparatus of the present invention, the water electrolyzed in the first electrolysis chamber (anode chamber) is circulated to the second electrolysis chamber and further electrolyzed to obtain electrolyzed water. Therefore, the pH of the obtained electrolyzed water does not substantially change from the pH of the electrolyzed raw water. That is, when tap water is used as the raw electrolyzed water, substantially neutral electrolyzed water suitable for drinking can be obtained. Further, unlike the conventional electrolyzed water production apparatus which electrolyzes the anode chamber side and the cathode chamber side to obtain the anode electrolyzed water and the cathode electrolyzed water, respectively, it is not necessary to dispose of the water obtained in one of the electrolyzed chambers. .. Further, since the water electrolyzed in the first electrolysis chamber (anode chamber) is circulated to the second electrolysis chamber and further electrolyzed, the applied electric energy becomes high, and the properties of the obtained electrolyzed water can be significantly changed. ..
Since the electrolyzed water production apparatus of the present invention performs electrolysis using a solid polymer electrolyte membrane as an electrolyte, it can be efficiently electrolyzed without adding an electrolyte to the electrolyzed raw water. Further, since electrolysis is performed using a membrane-electrode assembly, the device can be miniaturized.
In the electrolyzed water producing apparatus of the present invention, oxygen gas and hydrogen gas generated by electrolysis are finely diffused into the electrolyzed water by a feeding body having a gas diffusing ability arranged in the electrolysis chamber. Therefore, a large amount of oxygen gas and hydrogen gas can be dissolved in the electrolyzed water.

本発明の電解水製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the electrolyzed water production apparatus of this invention. 本発明の電解水製造装置に用いる電解槽の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the electrolytic cell used for the electrolyzed water production apparatus of this invention.

(1)装置の構成
先ず、本発明の電解水製造装置(以下、「本装置」ともいう)の構成について説明する。図1は、本装置の一構成例を示す概略構成図である。図2は、本装置に用いる電解槽50の一例を示す概略構成図である。
(1) Configuration of the apparatus First, the configuration of the electrolyzed water production apparatus of the present invention (hereinafter, also referred to as “the apparatus”) will be described. FIG. 1 is a schematic configuration diagram showing a configuration example of the present device. FIG. 2 is a schematic configuration diagram showing an example of the electrolytic cell 50 used in this apparatus.

図1中、100は電解水製造装置である。筐体11内には、電解原水貯蔵容器13が配設されている。電解原水貯蔵容器13の底部には、ポンプ15を介装する配管17の一端が接続されており、配管17の他端は電解槽50の入口に接続されている。電解槽50の出口側には、配管21の一端が接続されており、配管17の他端は活性炭フィルタ23の入口側に接続されている。活性炭フィルタ23の出口側には電解水の取出口が形成されている。25は電解水受水容器であり、29は電解原水貯蔵容器13の上部を覆う蓋である。ポンプ15及び電解槽50は、制御部27によって制御される。 In FIG. 1, 100 is an electrolyzed water production apparatus. An electrolytic raw water storage container 13 is arranged in the housing 11. One end of the pipe 17 that interposeds the pump 15 is connected to the bottom of the electrolytic raw water storage container 13, and the other end of the pipe 17 is connected to the inlet of the electrolytic cell 50. One end of the pipe 21 is connected to the outlet side of the electrolytic cell 50, and the other end of the pipe 17 is connected to the inlet side of the activated carbon filter 23. An outlet for electrolyzed water is formed on the outlet side of the activated carbon filter 23. Reference numeral 25 denotes an electrolyzed water receiving container, and 29 is a lid covering the upper part of the electrolyzed raw water storage container 13. The pump 15 and the electrolytic cell 50 are controlled by the control unit 27.

図2中、50は電解槽である。電解槽50は中空の箱状に形成されており、その対向する内壁には、一対の複極板31及び33がそれぞれ互いに平行に配設されている。複極板31及び33は、不図示の制御部を介して電源に接続されている。電解槽50の内部は、膜−電極接合体(以下、MEAということがある)40によって仕切られて、複極板31側に第1電解室(陽極室)60が形成され、複極板33側に第2電解室(陰極室)70が形成されている。MEA40は、固体高分子電解質膜45の一表面に電極触媒41が密着して形成されており、反対側の表面には電極触媒43が密着して形成されている。第1電解室60側に形成された複極板31と電極触媒41とは、第1電解室60内に配設された給電体35によって電気的に接続されている。第2電解室70側に形成された複極板33と電極触媒43とは、第2電解室70内に配設された給電体37によって電気的に接続されている。第1電解室60の出口側と第2電解室70の入口側とは、電解槽50外で流通管19によって液密に接続されている。
In FIG. 2, 50 is an electrolytic cell. The electrolytic cell 50 is formed in a hollow box shape, and a pair of double electrode plates 31 and 33 are arranged in parallel with each other on the facing inner walls thereof. The multi-pole plates 31 and 33 are connected to a power source via a control unit (not shown). The inside of the electrolytic cell 50 is partitioned by a membrane-electrode assembly (hereinafter sometimes referred to as MEA) 40, and a first electrolytic cell (anode chamber) 60 is formed on the side of the double electrode plate 31, and the double electrode plate 33 is formed. A second electrolytic cell (cathode chamber) 70 is formed on the side. In the MEA 40, the electrode catalyst 41 is formed in close contact with one surface of the solid polymer electrolyte membrane 45, and the electrode catalyst 43 is formed in close contact with the surface on the opposite side. The double electrode plate 31 formed on the side of the first electrolytic chamber 60 and the electrode catalyst 41 are electrically connected by a feeding body 35 arranged in the first electrolytic chamber 60. The double electrode plate 33 formed on the side of the second electrolytic chamber 70 and the electrode catalyst 43 are electrically connected by a feeding body 37 arranged in the second electrolytic chamber 70. The outlet side of the first electrolytic cell 60 and the inlet side of the second electrolytic cell 70 are liquidtightly connected by a distribution pipe 19 outside the electrolytic cell 50.

筐体11、電解原水貯蔵容器13、配管17、21、流通管19、電解水受水容器25、及び蓋29は、それぞれ管内樹脂コーティングを施したステンレス、アルミニウム、樹脂等の公知の材質で構成することができる。ポンプ15についても、公知の構成を採用すれば良い。 The housing 11, the electrolyzed raw water storage container 13, the pipes 17, 21, the flow pipe 19, the electrolyzed water receiving container 25, and the lid 29 are each made of known materials such as stainless steel, aluminum, and resin coated with resin in the pipe. can do. As for the pump 15, a known configuration may be adopted.

電解槽50を構成する複極板31、33は、銅、銀、白金、白金合金、チタン等の公知の電極材料で構成することができる。 The double electrode plates 31 and 33 constituting the electrolytic cell 50 can be made of known electrode materials such as copper, silver, platinum, platinum alloy, and titanium.

MEA40を構成する固体高分子電解質膜45は、陽イオン交換樹脂膜や陰イオン交換樹脂膜が用いられる。好ましくは、スルホン酸基を有するフッ素樹脂系の陽イオン交換樹脂膜が用いられる。固体高分子電解質膜45の厚みは、10〜1000(μm)であり、50〜500(μm)であることが好ましく、100〜300(μm)であることがより好ましい。そのような高分子膜としては、市販品を用いることができる。 As the solid polymer electrolyte membrane 45 constituting the MEA 40, a cation exchange resin membrane or an anion exchange resin membrane is used. Preferably, a fluororesin-based cation exchange resin film having a sulfonic acid group is used. The thickness of the solid polymer electrolyte membrane 45 is 10 to 1000 (μm), preferably 50 to 500 (μm), and more preferably 100 to 300 (μm). As such a polymer film, a commercially available product can be used.

電極触媒41、43としては、白金やイリジウムの薄膜が用いられる。電極触媒の厚みは1〜100(μm)であり、5〜50(μm)であることが好ましく、10〜30(μm)であることがより好ましい。
電極触媒41、43は、固体高分子電解質膜45の表面にめっきやスパッタリング等を施すことにより、固体高分子電解質膜45の表面に密着して形成することができる。固体高分子電解質膜45は、電極触媒41、43によって完全に被覆されてはおらず、少なくとも酸素ガス及び水素ガスの透過を可能とする程度の微細な細孔が形成されている。
As the electrode catalysts 41 and 43, thin films of platinum or iridium are used. The thickness of the electrode catalyst is 1 to 100 (μm), preferably 5 to 50 (μm), and more preferably 10 to 30 (μm).
The electrode catalysts 41 and 43 can be formed in close contact with the surface of the solid polymer electrolyte membrane 45 by subjecting the surface of the solid polymer electrolyte membrane 45 to plating, sputtering, or the like. The solid polymer electrolyte membrane 45 is not completely covered with the electrode catalysts 41 and 43, and at least fine pores that allow the permeation of oxygen gas and hydrogen gas are formed.

第1電解室60及び第2電解室70内に配設される給電体35、37は、第1電解室60及び第2電解室70内を電解原水(電解水)が流通できるように、且つMEA40内で発生した酸素ガス及び水素ガスを効率的に拡散できるように、通液性の多孔質構造又は三次元構造の金属メッシュを有していることが好ましい。このような構造を有することにより、電解により発生した酸素ガスや水素ガスを吸着して保持することにより気泡の移動を抑制し、微細な気泡が合一することを抑制できる。即ち、電解により発生した酸素ガスや水素ガスが電解水に溶解しきらずに、電解水の外に拡散することを抑制できる。 The feeding bodies 35 and 37 arranged in the first electrolytic chamber 60 and the second electrolytic chamber 70 allow the electrolytic raw water (electrolyzed water) to flow in the first electrolytic chamber 60 and the second electrolytic chamber 70, and It is preferable to have a metal mesh having a liquid-permeable porous structure or a three-dimensional structure so that oxygen gas and hydrogen gas generated in the MEA 40 can be efficiently diffused. By having such a structure, it is possible to suppress the movement of bubbles by adsorbing and holding oxygen gas and hydrogen gas generated by electrolysis, and to suppress the coalescence of fine bubbles. That is, it is possible to prevent the oxygen gas and hydrogen gas generated by electrolysis from being completely dissolved in the electrolyzed water and diffusing out of the electrolyzed water.

具体的には、金属メッシュや金属繊維であることが好ましい。金属メッシュや金属繊維の線径(繊維径)としては、0.1〜1000(μm)であることが好ましく、10〜300(μm)であることがより好ましい。 Specifically, it is preferably a metal mesh or a metal fiber. The wire diameter (fiber diameter) of the metal mesh or metal fiber is preferably 0.1 to 1000 (μm), more preferably 10 to 300 (μm).

金属の材質としては、白金、白金合金、チタン、ステンレスが好ましい。 As the metal material, platinum, platinum alloy, titanium, and stainless steel are preferable.

給電体35、37は、第1電解室60及び第2電解室70内に略均一に配設されていることが好ましい。給電体35、37を第1電解室60及び第2電解室70内に略均一に配設することにより、複極板から電極触媒に給電するに当たって、電極触媒の一点に集中的に給電されることを抑制するとともに、給電体と電極触媒との接触抵抗を低減して、MEAの寿命を向上できる。ここで略均一とは、第1電解室及び第2電解室の内部の液流通方向と直交する方向に均等に10分割した際に、給電体の存在量が10質量%以上相違しないことを意味する。 It is preferable that the feeding bodies 35 and 37 are substantially uniformly arranged in the first electrolytic chamber 60 and the second electrolytic chamber 70. By arranging the feeding bodies 35 and 37 substantially uniformly in the first electrolytic chamber 60 and the second electrolytic chamber 70, the feeding is concentrated to one point of the electrode catalyst when the feeding power is supplied from the double electrode plate to the electrode catalyst. This can be suppressed, and the contact resistance between the feeding body and the electrode catalyst can be reduced to improve the life of the MEA. Here, substantially uniform means that the abundance of the feeder does not differ by 10% by mass or more when evenly divided into 10 in the direction orthogonal to the liquid flow direction inside the first electrolytic chamber and the second electrolytic chamber. To do.

複極板31、33と、電極触媒41、43との間隔は、それぞれ1.0〜3.0(mm)が好ましく、1.0〜2.0(mm)が特に好ましい。 The distance between the double electrode plates 31 and 33 and the electrode catalysts 41 and 43 is preferably 1.0 to 3.0 (mm), and particularly preferably 1.0 to 2.0 (mm).

活性炭フィルタ23としては、活性炭等を吸着剤とする公知のフィルタを用いることができる。
As the activated carbon filter 23, a known filter using activated carbon or the like as an adsorbent can be used.

(2)本装置の動作
次に、図1に記載の電解水製造装置100を用いて電解水を製造する方法について説明する。図2中の矢印は、装置内における水の流れ方向を示す。
(2) Operation of this apparatus Next, a method of producing electrolyzed water using the electrolyzed water producing apparatus 100 shown in FIG. 1 will be described. The arrows in FIG. 2 indicate the direction of water flow in the device.

電解水製造装置100の筐体11内には、電解原水貯蔵容器13が配設されている。ここに、蓋29を外して電解原水(電解される前の水)を供給する。電解原水貯蔵容器13内に貯蔵された電解原水は、制御部27によって制御されるポンプ15の駆動により配管17を通って電解槽50の陽極側である第1電解室60に送られる。第1電解室60に送られた電解原水は、MEA40の固体高分子電解質膜45に一部の水分を供給する。MEA40内では電解原水の電解が行われる。具体的には、制御部27によって複極板31に供給された電流が給電体35を介してMEA40に供給される。MEA40内では水が電解される。 An electrolyzed raw water storage container 13 is arranged in the housing 11 of the electrolyzed water producing apparatus 100. Here, the lid 29 is removed and electrolyzed raw water (water before being electrolyzed) is supplied. The electrolytic raw water stored in the electrolytic raw water storage container 13 is sent to the first electrolytic cell 60 on the anode side of the electrolytic cell 50 through the pipe 17 by the drive of the pump 15 controlled by the control unit 27. The electrolytic raw water sent to the first electrolytic chamber 60 supplies a part of water to the solid polymer electrolyte membrane 45 of the MEA 40. Electrolysis of the electrolyzed raw water is performed in the MEA40. Specifically, the current supplied to the multi-pole plate 31 by the control unit 27 is supplied to the MEA 40 via the feeding body 35. Water is electrolyzed in the MEA40.

電解の際、MEA40の陽極側では以下の電解が行われる。
2HO → O + 4H + 4e ・・・式(1)
また、塩化物電解質が溶解している場合、陽極では以下のように次亜塩素酸が生成される。

Figure 0006847477
電解の際、MEA40の陰極側では以下の電解が行われる。
2HO + 2e → H + 2OH ・・・式(3) At the time of electrolysis, the following electrolysis is performed on the anode side of MEA40.
2H 2 O → O 2 + 4H + + 4e - ··· Equation (1)
When the chloride electrolyte is dissolved, hypochlorous acid is produced at the anode as follows.
Figure 0006847477
At the time of electrolysis, the following electrolysis is performed on the cathode side of MEA40.
2H 2 O + 2e → H 2 + 2OH ・ ・ ・ Equation (3)

電解により発生した酸素ガスは、電極触媒41を透過して第1電解室60内に供給される。この際、酸素ガスは微細な気泡であるが、給電体35の存在により、酸素ガスが微細な気泡の状態で維持される。酸素ガスは、第1電解室60内を流れる電解水(電解原水)に分散して溶解する。この電解水は、全量が流通管19を通って、第2電解室70内に供給される。電解によって発生した水素ガスは、電極触媒43を透過して第2電解室70内に供給される。この際、水素ガスは微細な気泡の状態であるが、給電体37の存在によって、水素ガスが微細な気泡の状態で維持される。水素ガスは、第2電解室70内を流れる電解水に分散して溶解する。第2電解室70から排出された電解水は、配管21を通って活性炭フィルタ23を通って電解水受水容器25に供給される。 The oxygen gas generated by electrolysis passes through the electrode catalyst 41 and is supplied into the first electrolysis chamber 60. At this time, the oxygen gas is fine bubbles, but the presence of the feeding body 35 keeps the oxygen gas in the state of fine bubbles. The oxygen gas is dispersed and dissolved in the electrolyzed water (electrolyzed raw water) flowing in the first electrolysis chamber 60. The entire amount of this electrolyzed water is supplied into the second electrolyzed chamber 70 through the distribution pipe 19. The hydrogen gas generated by electrolysis passes through the electrode catalyst 43 and is supplied into the second electrolysis chamber 70. At this time, the hydrogen gas is in the state of fine bubbles, but the presence of the feeding body 37 keeps the hydrogen gas in the state of fine bubbles. The hydrogen gas is dispersed and dissolved in the electrolyzed water flowing in the second electrolysis chamber 70. The electrolyzed water discharged from the second electrolyzed chamber 70 is supplied to the electrolyzed water receiving container 25 through the activated carbon filter 23 through the pipe 21.

電解原水に印加する電流は、毎分0.1(L)の流速を有する電解原水に対して0.5〜10(A)が好ましく、1.0〜3.0(A)が特に好ましい。0.5(A)未満の場合は、電解水中の溶存酸素量及び溶存水素量を電解原水よりも十分に高くすることができない。10(A)を超える場合、大電流が流れるため、MEAの疲労が高まり極端に電解効率が落ちる傾向がある。また、電解原水100(mL)当たりの電解電気量が30〜600クーロンであることが好ましく、60〜180クーロンであることがより好ましい。 The current applied to the electrolytic raw water is preferably 0.5 to 10 (A), particularly preferably 1.0 to 3.0 (A), with respect to the electrolytic raw water having a flow rate of 0.1 (L) per minute. If it is less than 0.5 (A), the amount of dissolved oxygen and the amount of dissolved hydrogen in the electrolyzed water cannot be made sufficiently higher than that in the electrolyzed raw water. If it exceeds 10 (A), a large current flows, so that the fatigue of MEA increases and the electrolysis efficiency tends to drop extremely. Further, the amount of electrolyzed electricity per 100 (mL) of raw electrolyzed water is preferably 30 to 600 couron, more preferably 60 to 180 couron.

電解槽50に供給される電解原水の流量は0.1〜10(L/min)が好ましく、0.2〜1(L/min)が特に好ましい。 The flow rate of the electrolytic raw water supplied to the electrolytic cell 50 is preferably 0.1 to 10 (L / min), particularly preferably 0.2 to 1 (L / min).

本装置100における電解原水の供給は、電解原水貯蔵容器に替えて水道の蛇口に接続することにより行うことができる。この場合、本装置内における水道水及びこれを電解して得られる電解水の移送は、水道の水圧により行うことができるため、ポンプ15を省略できる。 The supply of the electrolytic raw water in the apparatus 100 can be performed by connecting to a tap of the water supply instead of the electrolytic raw water storage container. In this case, since the tap water and the electrolyzed water obtained by electrolyzing the tap water in the apparatus can be transferred by the water pressure of the tap water, the pump 15 can be omitted.

電解原水の電気伝導度は0.5〜100(mS/m)であることが好ましく、0.5〜20(mS/m)であることがより好ましい。また、本装置は、電解質が添加されていなくても効率的に電解を行う事ができるため、水道水であることが好ましい。電解質を添加する場合は、塩化物イオンを含まない電解質を用いることが好ましい。 The electrical conductivity of the electrolytic raw water is preferably 0.5 to 100 (mS / m), more preferably 0.5 to 20 (mS / m). Further, since this device can efficiently perform electrolysis even if no electrolyte is added, tap water is preferable. When adding an electrolyte, it is preferable to use an electrolyte that does not contain chloride ions.

以下、実施例及び比較例を参照して、本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

〔実施例1〕
図1、2に記載の装置を構成した。固体高分子電解質膜としては、膜厚182(μm)のスルホン酸基を有するフッ素系高分子膜、電極触媒としては、陽極側は12.5(μm)のイリジウム、陰極側は12.5(μm)の白金を用いた。
水温24(℃)における電気伝導度15.0(mS/m)の電解原水(水道水)を1200(ml)の電解原水貯蔵容器13に入れ、ポンプ15を用いて電解槽50内に圧送するとともに、電流2(A)、電圧2.4(V)で電解を開始した。なお、電解原水の流速は毎分230(mL)とした。得られた電解水の生成直後の物理化学的パラメータを計測した。計測項目は、pH、酸化還元電位ORP(mv)、溶存酸素OD(ppm)、溶存水素DH(ppm)、電気伝導度EC(mS/m)、遊離塩素濃度FC(ppm)、解離指数pKwである。結果は表1に示した。
[Example 1]
The apparatus shown in FIGS. 1 and 2 was configured. The solid polymer electrolyte membrane is a fluoropolymer membrane having a sulfonic acid group with a thickness of 182 (μm), and the electrode catalyst is 12.5 (μm) iridium on the anode side and 12.5 (μm) on the cathode side. μm) of platinum was used.
Electrolyzed raw water (tap water) having an electrical conductivity of 15.0 (mS / m) at a water temperature of 24 (° C.) is placed in a 1200 (ml) electrolytic raw water storage container 13 and pumped into an electrolytic cell 50 using a pump 15. At the same time, electrolysis was started at a current of 2 (A) and a voltage of 2.4 (V). The flow rate of the electrolytic raw water was 230 (mL) per minute. The physicochemical parameters immediately after the formation of the obtained electrolyzed water were measured. The measurement items are pH, oxidation-reduction potential ORP (mv), dissolved oxygen OD (ppm), dissolved hydrogen DH (ppm), electrical conductivity EC (mS / m), free chlorine concentration FC (ppm), and dissociation index pKw. is there. The results are shown in Table 1.

〔実施例2〕
水道水を逆浸透膜(RO膜)装置を用いて処理して得た、水温24(℃)における電気伝導度0.51(mS/m)の水を電解原水とし、電解条件を電流2(A)、電圧2.8(V)に変更した他は実施例1と同様に電解水を得た。
[Example 2]
Water having an electrical conductivity of 0.51 (mS / m) at a water temperature of 24 (° C.) obtained by treating tap water using a reverse osmosis membrane (RO membrane) device is used as electrolyzed raw water, and the electrolyzed condition is current 2 ( Electrolyzed water was obtained in the same manner as in Example 1 except that the voltage was changed to 2.8 (V) in A).

〔実施例3〕
電解原水を電気伝導度92.9(mS/m)のフランス産ミネラルウォーター(ヴィッテル、登録商標)に変更し、電解条件を電流2(A)、電圧1.9(V)に変更した他は実施例1と同様に電解水を得た。
[Example 3]
Except for changing the electrolyzed raw water to French mineral water (Vittel, registered trademark) with electrical conductivity of 92.9 (mS / m) and changing the electrolyzing conditions to current 2 (A) and voltage 1.9 (V). Electrolyzed water was obtained in the same manner as in Example 1.

〔比較例1〕
実施例1の装置から活性炭フィルタ23を省略した他は実施例1と同様に電解水を得た。
[Comparative Example 1]
Electrolyzed water was obtained in the same manner as in Example 1 except that the activated carbon filter 23 was omitted from the apparatus of Example 1.

〔参考例1〕
実施例1と同様に電解水を得た。また、実施例1の装置から給電体35、37を省略した場合についても比較した。
[Reference Example 1]
Electrolyzed water was obtained in the same manner as in Example 1. Further, the case where the feeding bodies 35 and 37 were omitted from the apparatus of the first embodiment was also compared.

Figure 0006847477
Figure 0006847477

100・・・電解水製造装置
11・・・筐体
13・・・電解原水貯蔵容器
15・・・ポンプ
17、21・・・配管
19・・・流通管
23・・・活性炭フィルタ
25・・・電解水受水容器
27・・・制御部
29・・・蓋
31、33・・・複極板
35、37・・・給電体
40・・・膜−電極接合体
41、43・・・電極触媒
45・・・固体高分子電解質膜
60・・・陽極室
70・・・陰極室

100 ... Electrolyzed water production equipment 11 ... Housing 13 ... Electrolyzed raw water storage container 15 ... Pumps 17, 21 ... Piping 19 ... Flow pipe 23 ... Activated charcoal filter 25 ... Electrolyzed water receiving container 27 ... Control unit 29 ... Lid 31, 33 ... Multipole plate 35, 37 ... Feeding body 40 ... Membrane-electrode assembly 41, 43 ... Electrode catalyst 45 ... Solid polymer electrolyte membrane 60 ... Anode chamber 70 ... Cathode chamber

Claims (5)

電解原水供給手段と、前記電解原水供給手段に接続された電解槽と、前記電解槽の出口側に接続された活性炭フィルタとから成る電解水製造装置であって、
前記電解槽が、中空の箱状に形成されて成り、その対向する内壁に密着して互いに平行に配設された一対の複極板を備えるとともに、
固体高分子電解質膜と前記固体高分子電解質膜の各表面に密着して形成された液透過性の電極触媒とから成る膜−電極接合体が、前記複極板間に前記複極板と平行に配設されて前記電解槽の内部が仕切られて、前記複極板と前記膜−電極接合体との間にそれぞれ第1電解室及び第2電解室が形成され、且つ前記第1電解室の出口側と前記第2電解室の入口側とが前記電解槽の外部で液密に接続されて成り、
前記第1電解室内及び前記第2電解室内にそれぞれ略均一に配設され、前記複極板と前記膜−電極接合体の各電極触媒とをそれぞれ電気的に接続する通液性の給電体であって、線径10〜300(μm)の三次元構造の金属メッシュを備えて構成され、
前記電極触媒の厚みがそれぞれ1〜100(μm)であり、
前記複極板と、前記電極触媒との間隔がそれぞれ1.0〜3.0(mm)であることを特徴とする電解水製造装置。
An electrolyzed water producing apparatus including an electrolyzed raw water supply means, an electrolytic cell connected to the electrolytic raw water supply means, and an activated carbon filter connected to the outlet side of the electrolytic cell.
The electrolytic cell is formed in the shape of a hollow box, and includes a pair of multi-pole plates that are closely attached to the facing inner walls and arranged in parallel with each other.
A film-electrode junction composed of a solid polymer electrolyte membrane and a liquid-permeable electrode catalyst formed in close contact with each surface of the solid polymer electrolyte membrane is parallel to the dipole plate between the dipole plates. The inside of the electrolytic cell is partitioned, and a first electrolytic cell and a second electrolytic cell are formed between the double electrode plate and the film-electrode joint, respectively, and the first electrolytic cell is formed. The outlet side and the inlet side of the second electrolytic cell are liquidtightly connected to each other outside the electrolytic cell.
Are substantially uniformly disposed respectively in said first electrolytic chamber and said second electrolytic chamber, said double electrode plate and the film - and a respective electrode catalyst of the electrode assembly in each liquid permeability feeder for electrically connecting It is configured with a metal mesh with a three-dimensional structure with a wire diameter of 10 to 300 (μm).
The thickness of each of the electrode catalysts is 1 to 100 (μm).
An electrolyzed water producing apparatus characterized in that the distance between the double electrode plate and the electrode catalyst is 1.0 to 3.0 (mm), respectively.
前記電極触媒の材質がそれぞれ白金又はイリジウム合金である請求項1に記載の電解水製造装置。 The electrolyzed water production apparatus according to claim 1, wherein the material of the electrode catalyst is platinum or an iridium alloy, respectively. 請求項1に記載の電解水製造装置を用いる電解水の製造方法であって、
電解原水を電解槽の第1電解室及び第2電解室に順次送液するとともに、
電解槽に配設された複極板から給電体を通じて膜−電極接合体に通電することにより、膜−電極接合体内で水を電解し、
電解により発生した酸素ガス及び水素ガスをそれぞれ第1電解室内及び第2電解室内でその内部を流通する水に順次溶存させて電解水を得、
次いで、第2電解室から排出される前記電解水を活性炭フィルタに通じることを特徴とする電解水の製造方法。
A method for producing electrolyzed water using the electrolyzed water producing apparatus according to claim 1.
The raw electrolysis water is sequentially sent to the first electrolysis chamber and the second electrolysis chamber of the electrolytic cell, and at the same time.
Water is electrolyzed in the membrane-electrode assembly by energizing the membrane-electrode assembly from the multi-electrode plate arranged in the electrolytic cell through the feeder.
Oxygen gas and hydrogen gas generated by electrolysis are sequentially dissolved in water circulating inside the first electrolysis chamber and the second electrolysis chamber, respectively, to obtain electrolyzed water.
Next, a method for producing electrolyzed water, which comprises passing the electrolyzed water discharged from the second electrolyzing chamber through an activated carbon filter.
前記電解原水の電気伝導度が0.5〜100(mS/m)である請求項3に記載の電解水の製造方法。 The method for producing electrolyzed water according to claim 3 , wherein the electrolyzed raw water has an electric conductivity of 0.5 to 100 (mS / m). 電解原水100(mL)当たりの電解電気量が60〜180クーロンである請求項3に記載の電解水の製造方法。 The method for producing electrolyzed water according to claim 3 , wherein the amount of electrolyzed electricity per 100 (mL) of electrolyzed raw water is 60 to 180 coulomb.
JP2020007862A 2020-01-21 2020-01-21 Electrolyzed water production equipment and method for producing electrolyzed water using this Active JP6847477B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007862A JP6847477B1 (en) 2020-01-21 2020-01-21 Electrolyzed water production equipment and method for producing electrolyzed water using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007862A JP6847477B1 (en) 2020-01-21 2020-01-21 Electrolyzed water production equipment and method for producing electrolyzed water using this

Publications (2)

Publication Number Publication Date
JP6847477B1 true JP6847477B1 (en) 2021-03-24
JP2021112730A JP2021112730A (en) 2021-08-05

Family

ID=74879249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007862A Active JP6847477B1 (en) 2020-01-21 2020-01-21 Electrolyzed water production equipment and method for producing electrolyzed water using this

Country Status (1)

Country Link
JP (1) JP6847477B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128493A (en) * 1984-07-19 1986-02-08 Osaka Soda Co Ltd Decomposition of halogenated hydrocarbon
JP4615679B2 (en) * 2000-07-26 2011-01-19 株式会社神鋼環境ソリューション Hydrogen and oxygen supply system
JP2005307232A (en) * 2004-04-19 2005-11-04 Mitsubishi Electric Corp Water electrolyzer and driving method therefor
JP5640266B1 (en) * 2014-05-20 2014-12-17 株式会社バイオレドックス研究所 Electrolyzed water production apparatus and electrolyzed water production method using the same
JP5702885B1 (en) * 2014-10-20 2015-04-15 株式会社日本トリム Electrolyzed water generator
JP6085625B2 (en) * 2014-11-27 2017-02-22 株式会社バイオレドックス研究所 Cosmetic liquid and method for producing the same
JP6171047B1 (en) * 2016-04-26 2017-07-26 株式会社バイオレドックス研究所 Electrolyzed water production apparatus and operation method thereof
JP2018076579A (en) * 2016-11-11 2018-05-17 学校法人 工学院大学 Water electrolysis apparatus and method for producing functional water

Also Published As

Publication number Publication date
JP2021112730A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP3716042B2 (en) Acid water production method and electrolytic cell
JP5640266B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
EP2338841A1 (en) Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JPH10314740A (en) Electrolytic bath for acidic water production
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
KR101932163B1 (en) Water treatment device generating hydrogen peroxide and hypochlorite ion
JPH04191387A (en) Electrolytic ozone generating method and device
KR20130024109A (en) Electrolytically ionized water generator
JP5863143B2 (en) Method for producing oxidized water for sterilization
JP6366360B2 (en) Method for producing electrolytic reduced water containing hydrogen molecules and apparatus for producing the same
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP4249657B2 (en) Electrolyzed water generator
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
WO2022195708A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
JPH101794A (en) Electrolytic cell and electrolyzing method
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
KR101644275B1 (en) Electrolysis device and water treatment method using the device
JP4249658B2 (en) Electrolyzed water generator
JPH09239364A (en) Electrolyzer and ionic water producing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200926

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200926

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20200926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201005

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201006

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201030

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20201102

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201104

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201104

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201215

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210126

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6847477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250