JP5188717B2 - Electrolytic hypochlorite water production equipment - Google Patents

Electrolytic hypochlorite water production equipment Download PDF

Info

Publication number
JP5188717B2
JP5188717B2 JP2007016139A JP2007016139A JP5188717B2 JP 5188717 B2 JP5188717 B2 JP 5188717B2 JP 2007016139 A JP2007016139 A JP 2007016139A JP 2007016139 A JP2007016139 A JP 2007016139A JP 5188717 B2 JP5188717 B2 JP 5188717B2
Authority
JP
Japan
Prior art keywords
water
hypochlorous
reverse osmosis
electrolytic
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016139A
Other languages
Japanese (ja)
Other versions
JP2008178845A (en
JP2008178845A5 (en
Inventor
教信 佐野
紳一郎 星
Original Assignee
壽化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 壽化工機株式会社 filed Critical 壽化工機株式会社
Priority to JP2007016139A priority Critical patent/JP5188717B2/en
Publication of JP2008178845A publication Critical patent/JP2008178845A/en
Publication of JP2008178845A5 publication Critical patent/JP2008178845A5/ja
Application granted granted Critical
Publication of JP5188717B2 publication Critical patent/JP5188717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電解次亜塩素水製造装置に関し、詳細には、食塩水の電気分解によって次亜塩素水を生成する電解次亜塩素水製造装置に関する。   The present invention relates to an electrolytic hypochlorous water production apparatus, and more particularly, to an electrolytic hypochlorous water production apparatus that generates hypochlorous water by electrolysis of brine.

従来より、原水に食塩を添加し、電気分解によって次亜塩素酸含有水溶液(以下、次亜塩素水と呼ぶ。)を生成する電解次亜塩素水製造装置が知られている。この装置は、一対の電極を有する電解槽と、食塩水を貯留する食塩水槽とを備えている。そして、電解槽内に原水が投入され、さらに食塩水槽内の食塩水が添加され、前記一対の電極に電圧が印加される。すると、食塩水の電気分解が起こるので、陽極で塩素(Cl)が発生し、その塩素が水と反応して次亜塩素酸(HClO)となり、さらに水に溶解して次亜塩素水となる。この次亜塩素水は、強い酸化力と殺菌力を有することから、例えば、医療機器や、食品工場の製造ライン等の殺菌に利用されている。 2. Description of the Related Art Conventionally, an apparatus for producing electrolytic hypochlorous water that adds sodium chloride to raw water and generates an aqueous solution containing hypochlorous acid (hereinafter referred to as hypochlorous water) by electrolysis is known. This apparatus includes an electrolytic cell having a pair of electrodes and a saline solution tank for storing a saline solution. And raw | natural water is thrown in in an electrolytic vessel, the salt solution in a salt solution tank is further added, and a voltage is applied to a pair of said electrode. Then, since the electrolysis of the saline solution occurs, chlorine (Cl 2 ) is generated at the anode, and the chlorine reacts with water to become hypochlorous acid (HClO), which is further dissolved in water and hypochlorite water and Become. Since this hypochlorous water has strong oxidizing power and sterilizing power, it is used, for example, for sterilizing medical equipment, production lines of food factories, and the like.

ところで、電解槽では、上記反応の他に、水に含まれる各種イオンとの副反応が起きている。陰極では、上記反応によって生成する水酸化物イオンと炭酸水素イオンとの反応によって炭酸イオンが生成する。そして、その炭酸イオンに水道水に含まれるカルシウムイオンが結合することによって、不溶性の炭酸カルシウムが生成する。さらに、電解が進むとアルカリ度が高くなるので、マグネシウムイオンやカルシウムイオンがさらに水酸化物イオンと反応して、水酸化マグネシウムや、水酸化カルシウムを生成する。そして、これらカルシウムやマグネシウムの化合物は電極に付着する。他方、陽極では、水道水中のシリカ(SiO)濃度が高い場合には、電極周りに生成した酸性水との反応によって、シリカスケールが電極に析出する。つまり、電解槽を長期間使用すると、電極にスケールが付着するため、電解効率が低下するという障害が生じる。 By the way, in the electrolytic cell, in addition to the above reaction, side reactions with various ions contained in water occur. At the cathode, carbonate ions are generated by the reaction of hydroxide ions and hydrogen carbonate ions generated by the above reaction. And the calcium ion contained in tap water couple | bonds with the carbonate ion, and insoluble calcium carbonate produces | generates. Furthermore, since the alkalinity increases as electrolysis proceeds, magnesium ions and calcium ions further react with hydroxide ions to produce magnesium hydroxide and calcium hydroxide. These calcium and magnesium compounds adhere to the electrode. On the other hand, in the anode, when the silica (SiO 2 ) concentration in tap water is high, silica scale is deposited on the electrode by reaction with acidic water generated around the electrode. That is, when the electrolytic cell is used for a long period of time, scales adhere to the electrodes, which causes a problem that the electrolytic efficiency is lowered.

そこで、電極の極性を切換えることによって、スケールを除去することができる浴槽用殺菌処理装置が知られている(例えば、特許文献1参照)。この装置のように、電解槽の電極の極性を転換することによって、酸性、アルカリ性が逆転するので、それまで電極に付着していたスケール成分が溶解し、電解効率を復帰させることができる効果がある。
実開平2−108794号公報
Then, the sterilization apparatus for bathtubs which can remove a scale by switching the polarity of an electrode is known (for example, refer patent document 1). By changing the polarity of the electrode of the electrolytic cell as in this device, the acidity and alkalinity are reversed, so that the scale component that has been attached to the electrode is dissolved and the electrolytic efficiency can be restored. is there.
Japanese Utility Model Publication No. 2-108794

しかしながら、特許文献1に記載の浴槽用殺菌処理装置のように、電解次亜塩素水製造装置の電解槽の電極の極性を転換したとしても、水道水の水質は一定ではなく、電極に付着するスケール量が大きく変動するため、電極の極性切替を同一条件で継続して行うことができないという問題点があった。さらに、電極の極性を切換える瞬間に、電気二重層の充電効果により大量の電流が流れるため、電極にかかる負荷が増大し、電極寿命が短くなるという問題点もあった。   However, even if the polarity of the electrode of the electrolytic bath of the electrolytic hypochlorous water production apparatus is changed as in the sterilization treatment apparatus for bathtubs described in Patent Document 1, the quality of tap water is not constant and adheres to the electrode. Since the scale amount fluctuates greatly, there is a problem that the polarity switching of the electrodes cannot be continuously performed under the same conditions. Furthermore, since a large amount of current flows due to the charging effect of the electric double layer at the moment of switching the polarity of the electrode, there is a problem that the load applied to the electrode increases and the electrode life is shortened.

本発明は、上述の課題を解決するためになされたものであり、電極の極性転換を行うことなく、電極にスケールが付着することを防止できる電解次亜塩素水製造装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrolytic hypochlorous water production apparatus capable of preventing scale from adhering to an electrode without changing the polarity of the electrode. And

上記目的を達成するために、請求項1に係る発明の電解次亜塩素水製造装置は、原水を供給する水供給手段と、当該水供給手段から供給される前記原水を逆浸透膜でろ過するろ過手段と、当該ろ過手段で処理されたろ過水に食塩水を混合する食塩水混合手段と、当該食塩水混合手段によって食塩水が混合された混合水を電気分解して次亜塩素酸を生成する電解手段と、当該電解手段で生成された前記次亜塩素酸が溶解する次亜塩素水に、前記ろ過手段によって濃縮された逆浸透濃縮水を混合する濃縮水混合手段と
を備えている。
In order to achieve the above object, an electrolytic hypochlorous water production device according to the first aspect of the present invention filters water supply means for supplying raw water and the raw water supplied from the water supply means with a reverse osmosis membrane. A hypochlorous acid is generated by electrolyzing the filtering means, the saline mixing means for mixing the saline with the filtered water treated by the filtering means, and the mixed water in which the saline is mixed by the saline mixing means Electrolyzing means, and concentrated water mixing means for mixing reverse osmosis concentrated water concentrated by the filtering means with hypochlorous acid in which the hypochlorous acid produced by the electrolyzing means is dissolved.

また、請求項2に係る発明の電解次亜塩素水製造装置は、請求項1に記載の発明の構成に加え、前記水供給手段から供給される前記原水の一部を取水して、前記次亜塩素水に混合する原水混合手段を備えている。   In addition to the configuration of the invention according to claim 1, the electrolytic hypochlorite water production apparatus of the invention according to claim 2 takes part of the raw water supplied from the water supply means, Raw water mixing means for mixing with chlorine water is provided.

請求項1に係る発明の電解次亜塩素水製造装置では、水供給手段から供給された原水は、ろ過手段の逆浸透膜によってろ過される。そして、逆浸透膜を透過し、イオンが除去されたろ過水に対して、食塩水が食塩水混合手段によって混合される。さらに、食塩水が混合された混合水は電解手段によって電解される。これにより、次亜塩素酸が生成されて、その次亜塩素酸が水に溶解して次亜塩素水が生成される。ここで、電解される混合水は、イオンが予め除去されているので、極性転換をしなくても電極にスケールが付着することを防止でき、電解効率を安定して維持することができる。さらに、逆浸透膜で濃縮された濃縮水は、濃縮水混合手段によって生成した次亜塩素水に混合される。これにより、濃縮水を全く廃棄しないので、無駄なく次亜塩素水を生成することができる。   In the electrolytic hypochlorous water production apparatus according to the first aspect of the present invention, the raw water supplied from the water supply means is filtered by the reverse osmosis membrane of the filtration means. And the salt solution is mixed with the salt water mixing means with respect to the filtrate which permeate | transmitted the reverse osmosis membrane and the ion was removed. Further, the mixed water mixed with the saline is electrolyzed by the electrolysis means. Thereby, hypochlorous acid is produced | generated, the hypochlorous acid melt | dissolves in water, and hypochlorous water is produced | generated. Here, since ions are previously removed from the mixed water to be electrolyzed, it is possible to prevent the scale from adhering to the electrode even if the polarity is not changed, and the electrolysis efficiency can be stably maintained. Further, the concentrated water concentrated by the reverse osmosis membrane is mixed with hypochlorous water generated by the concentrated water mixing means. Thereby, since concentrated water is not discarded at all, hypochlorous water can be produced without waste.

また、請求項2に係る発明の電解次亜塩素水製造装置では、請求項1に記載の発明の効果に加え、原水の一部を生成した次亜塩素水に混合することによって、次亜塩素水を低濃度に希釈することができるので、医療機器や、食品工場の製造ライン等の殺菌に安全に使用することができる。   Further, in the electrolytic hypochlorous water production apparatus of the invention according to claim 2, in addition to the effect of the invention of claim 1, hypochlorous acid is obtained by mixing a part of raw water with the produced hypochlorous water. Since water can be diluted to a low concentration, it can be safely used for sterilization of medical equipment, production lines of food factories, and the like.

以下、本発明の一実施形態である電解次亜塩素水製造装置1について、図面を参照して説明する。図1は、電解次亜塩素水製造装置1の構成図であり、図2は、比較試験の結果を示す表であり、図3は、比較試験における電解電流の変化を示すグラフである。   Hereinafter, an electrolytic hypochlorous water production apparatus 1 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an electrolytic hypochlorous water production apparatus 1, FIG. 2 is a table showing the results of a comparative test, and FIG. 3 is a graph showing a change in electrolytic current in the comparative test.

なお、本実施形態の電解次亜塩素水製造装置1は、水道水に食塩水を添加して電解することによって次亜塩素水を生成できる装置である。そして、電解処理を行う電解槽7に設けられた一対の陽極31と陰極32とにスケールが付着することを防止できるとともに、次亜塩素水を効率良く安定して生成できる点に特徴を有するものである。   In addition, the electrolytic hypochlorous water manufacturing apparatus 1 of this embodiment is an apparatus which can produce | generate hypochlorous water by adding salt water to tap water and electrolyzing. And, it is possible to prevent scale from adhering to the pair of anode 31 and cathode 32 provided in the electrolytic cell 7 for performing the electrolytic treatment, and is characterized in that hypochlorous water can be generated efficiently and stably. It is.

はじめに、電解次亜塩素水製造装置1の概略構成について説明する。図1に示すように、電解次亜塩素水製造装置1は、蛇口2から供給される水道水の残留塩素等を除去する活性炭カラム5と、該活性炭カラム5で前処理された水道水を逆浸透膜に透過させてろ過する逆浸透膜モジュール6と、該逆浸透膜モジュール6の透過水に食塩水を混合した混合水を電解して次亜塩素酸水を生成する電解槽7と、透過水に混合する食塩水を貯留する食塩水槽8とを主体に構成されている。そして、電解槽7で生成された次亜塩素水に、逆浸透膜モジュール6の濃縮水が混合され、さらに蛇口2から供給された水道水の一部によって希釈され、医療機器や、食品工場の製造ライン等の殺菌に利用される。   First, a schematic configuration of the electrolytic hypochlorous water production apparatus 1 will be described. As shown in FIG. 1, the electrolytic hypochlorous water production apparatus 1 reverses the activated carbon column 5 that removes residual chlorine and the like of tap water supplied from the tap 2, and tap water pretreated by the activated carbon column 5. A reverse osmosis membrane module 6 that permeates through the osmosis membrane and filters; an electrolytic tank 7 that electrolyzes mixed water obtained by mixing saline with permeate of the reverse osmosis membrane module 6 to generate hypochlorous acid water; It is mainly composed of a salt solution tank 8 for storing a salt solution mixed with water. Then, the hypochlorite water generated in the electrolytic cell 7 is mixed with the concentrated water of the reverse osmosis membrane module 6 and further diluted with a part of the tap water supplied from the faucet 2, for medical equipment and food factory Used for sterilization of production lines.

次に、配管構成について説明する。蛇口2と活性炭カラム5との間には、第1水道水供給管10が接続され、活性炭カラム5と逆浸透膜モジュール6の流入口(図示外)との間には、第2水道水供給管11が接続されている。さらに、逆浸透膜モジュール6の流出口(図示外)と電解槽7の流入口(図示外)との間には、透過水供給管12が接続され、電解槽7の流出口(図示外)には、次亜塩素水供給管13が接続されている。そして、その次亜塩素水供給管13の下流側一端部が、電解次亜塩素水製造装置1の供給口(図示外)に接続されている。また、第1水道水供給管10の途中に設けられた分岐部21と、次亜塩素水供給管13の途中に設けられた混合部23との間には、第1水道水供給管10を流れる水道水の一部をバイパスして、次亜塩素水供給管13を流れる次亜塩素水に混合させるバイパス管14が接続されている。 Next, the piping configuration will be described. A first tap water supply pipe 10 is connected between the faucet 2 and the activated carbon column 5, and a second tap water supply is provided between the activated carbon column 5 and the inlet (not shown) of the reverse osmosis membrane module 6. A tube 11 is connected. Further, a permeate supply pipe 12 is connected between the outlet (not shown) of the reverse osmosis membrane module 6 and the inlet (not shown) of the electrolytic cell 7, and the outlet (not shown) of the electrolytic cell 7. A hypochlorous water supply pipe 13 is connected to the. Then, the downstream end portion of the hypochlorous water supply pipe 13 is connected to the electrolytic hypochlorous water production apparatus 1 of the supply port (not shown). In addition, the first tap water supply pipe 10 is provided between the branch part 21 provided in the middle of the first tap water supply pipe 10 and the mixing part 23 provided in the middle of the hypochlorous water supply pipe 13. A bypass pipe 14 is connected to bypass a part of the flowing tap water and mix the hypochlorous water supply pipe 13 with the flowing hypochlorous water.

さらに、逆浸透膜モジュール6の濃縮水排出口(図示外)と、次亜塩素水供給管13の混合部23よりも上流側に設けられた混合部22との間には、逆浸透膜モジュール6の濃縮水排出口から排出される濃縮水を、次亜塩素水供給管13を流れる次亜塩素水に混合させる濃縮水供給管15が接続されている。また、食塩水槽8の流出口(図示外)と透過水供給管12の途中に設けられた混合部24との間には、食塩水槽8内の食塩水を供給する食塩水供給管16が接続され、該食塩水供給管16の途中には、食塩水槽8内の食塩水を、透過水供給管12に向かって吐出するためのポンプ25が設けられている。なお、分岐部21は、1つの入口と、2つの出口を有する周知の三方弁である。さらに、混合部22,23は、2つの入口と、1つの出口を有する周知の三方弁である。   Furthermore, a reverse osmosis membrane module is provided between the concentrated water discharge port (not shown) of the reverse osmosis membrane module 6 and the mixing portion 22 provided upstream of the mixing portion 23 of the hypochlorous water supply pipe 13. A concentrated water supply pipe 15 for mixing the concentrated water discharged from the 6 concentrated water discharge port with the hypochlorous water flowing through the hypochlorous water supply pipe 13 is connected. Further, between the outlet (not shown) of the saline tank 8 and the mixing unit 24 provided in the middle of the permeate supply pipe 12, a saline supply pipe 16 for supplying the saline in the saline tank 8 is connected. In the middle of the saline solution supply pipe 16, a pump 25 is provided for discharging the saline solution in the saline solution tank 8 toward the permeate supply tube 12. Note that the branch portion 21 is a known three-way valve having one inlet and two outlets. Furthermore, the mixing parts 22 and 23 are known three-way valves having two inlets and one outlet.

次に、活性炭カラム5について説明する。この活性炭カラム5は、筒状のカラム内に活性炭フィルター(図示外)が封入されたもので、カラム内に流入した水道水中に含まれる残留塩素、有機物、色素、濁度、臭気、油分等を吸着するものである。この活性炭カラム5によって、特に水道水中の残留塩素が除去されることによって、後述する逆浸透膜モジュール6に収納された逆浸透膜の劣化を防ぐことができる。つまり、逆浸透膜モジュール6の逆浸透膜を保護するものである。   Next, the activated carbon column 5 will be described. This activated carbon column 5 is a cylindrical column in which an activated carbon filter (not shown) is sealed, and contains residual chlorine, organic matter, pigment, turbidity, odor, oil, etc. contained in tap water flowing into the column. Adsorb. The activated carbon column 5 removes residual chlorine in tap water in particular, thereby preventing deterioration of the reverse osmosis membrane housed in the reverse osmosis membrane module 6 described later. That is, the reverse osmosis membrane of the reverse osmosis membrane module 6 is protected.

次に、逆浸透膜モジュール6について説明する。この逆浸透膜モジュール6は、逆浸透膜(RO膜)を用いて水道水中のイオン成分を除去し、純水を製造する装置である。この装置に使用される逆浸透膜は、水道圧のみで水道水を透過させることができる低圧膜の逆浸透膜が適用される。そして、この逆浸透膜モジュール6では、その水道圧のみで、水道水中の各種イオン(Ca2+、Mg2+)を約90%以上除去することができる。なお、逆浸透膜モジュール6には、逆浸透膜を透過できなかったイオン、塩類等の不純物が濃縮された濃縮水が連続的に排出される濃縮水排出口(図示外)が設けられている。そして、その濃縮水排出口から排出された濃縮水は、濃縮水供給管15を介して次亜塩素水供給管13を流れる次亜塩素水に混合されるようになっている。 Next, the reverse osmosis membrane module 6 will be described. This reverse osmosis membrane module 6 is an apparatus for producing pure water by removing ion components in tap water using a reverse osmosis membrane (RO membrane). As the reverse osmosis membrane used in this apparatus, a reverse osmosis membrane of a low pressure membrane that allows permeation of tap water only by tap pressure is applied. The reverse osmosis membrane module 6 can remove about 90% or more of various ions (Ca 2+ , Mg 2+ ) in tap water only by the tap pressure. The reverse osmosis membrane module 6 is provided with a concentrated water discharge port (not shown) through which concentrated water enriched with impurities such as ions and salts that could not pass through the reverse osmosis membrane is continuously discharged. . The concentrated water discharged from the concentrated water discharge port is mixed with hypochlorous water flowing through the hypochlorous water supply pipe 13 via the concentrated water supply pipe 15.

次に、電解槽7について説明する。電解槽7には、逆浸透膜モジュール6で処理された透過水が透過水供給管12を介して供給される。さらに、食塩水槽8に貯留された食塩水が、食塩水供給管16、混合部24、透過水供給管12を介して流入する。そして、この電解槽7には、一対の陽極31と陰極32とが設けられているので、該一対の電極間に電圧が印加されると、食塩水の電気分解が起こる。この食塩水の電気分解では、以下の反応が起こり、次亜塩素酸(HClO)が生成する。
・陽極(+) 2Cl → Cl+2e
Cl+2HO → 2HClO+H
・陰極(−) 2HO+2e→ H↑+OH
こうして得られた次亜塩素酸は、水に溶解して次亜塩素水となって、次亜塩素水供給管13に流れるようになっている。
Next, the electrolytic cell 7 will be described. The permeated water treated by the reverse osmosis membrane module 6 is supplied to the electrolytic cell 7 through the permeated water supply pipe 12. Further, the saline stored in the saline tank 8 flows through the saline supply pipe 16, the mixing unit 24, and the permeate supply pipe 12. And since this electrolytic cell 7 is provided with a pair of anode 31 and cathode 32, when a voltage is applied between this pair of electrodes, the electrolysis of salt water will occur. In the electrolysis of the saline solution, the following reaction occurs, and hypochlorous acid (HClO) is generated.
・ Anode (+) 2Cl → Cl 2 + 2e
Cl 2 + 2H 2 O → 2HClO + H 2
・ Cathode (−) 2H 2 O + 2e → H 2 ↑ + OH
The hypochlorous acid obtained in this way is dissolved in water to form hypochlorous water and flows to the hypochlorous water supply pipe 13.

次に、食塩水槽8について説明する。食塩水槽8には、食塩濃度が20%の食塩水が予め貯留される。なお、食塩水は、純水に食塩(NaCl)を溶解させたものが好ましい。そして、ポンプ25を駆動させることによって、食塩水槽8の食塩水が食塩水供給管16に引き込まれ、透過水供給管12に向かって流れるようになっている。   Next, the salt solution tank 8 will be described. A saline solution having a salt concentration of 20% is stored in the salt solution tank 8 in advance. Note that the salt solution is preferably one in which salt (NaCl) is dissolved in pure water. Then, by driving the pump 25, the saline in the saline tank 8 is drawn into the saline supply pipe 16 and flows toward the permeate supply pipe 12.

次に、上記構成からなる電解次亜塩素水製造装置1の次亜塩素水の生成工程について説明する。図1に示すように、まず、蛇口2をひねると、水道水が通常の水道圧で流出する。そして、蛇口2から流出した水道水は、第1水道水供給管10を流れ、分岐部21においてその一部がバイパス管14を流れ、残りが活性炭カラム5に流入する。つまり、活性炭カラム5に流入する水道水は、次亜塩素水を生成するために利用され、バイパス管14に流れた水道水は、後で生成した次亜塩素水を希釈するために利用される。   Next, the production | generation process of the hypochlorous water of the electrolytic hypochlorous water manufacturing apparatus 1 which consists of the said structure is demonstrated. As shown in FIG. 1, first, when the faucet 2 is twisted, tap water flows out at a normal tap pressure. And the tap water which flowed out from the faucet 2 flows through the first tap water supply pipe 10, a part of which flows through the bypass pipe 14 at the branch portion 21, and the rest flows into the activated carbon column 5. That is, the tap water flowing into the activated carbon column 5 is used to generate hypochlorous water, and the tap water flowing to the bypass pipe 14 is used to dilute the hypochlorous water generated later. .

そして、活性炭カラム5に流入した水道水は、活性炭フィルターを通過することによって、水道水に含まれる残留塩素、有機物、色素、濁度、臭気、油分等が除去される。さらに、活性炭カラム5の流出口から流出した水道水は、第2水道水供給管11を流れ、逆浸透膜モジュール6の流入口から流入する。   And the tap water which flowed into the activated carbon column 5 passes an activated carbon filter, and the residual chlorine, organic substance, pigment | dye, turbidity, odor, oil content, etc. which are contained in tap water are removed. Further, the tap water flowing out from the outlet of the activated carbon column 5 flows through the second tap water supply pipe 11 and flows in from the inlet of the reverse osmosis membrane module 6.

次いで、逆浸透膜モジュール6に流入した水道水は、逆浸透膜を透過する。逆浸透膜では、水道水に含まれる各種イオン(Ca2+、Mg2+)が約90%以上除去される。そして、逆浸透膜を透過した透過水は、逆浸透膜モジュール6の流出口から透過水供給管12に向かって流出する。他方、逆浸透膜を透過できなかった各種イオン、塩類等の不純物は濃縮されるので、濃縮水排出口から濃縮水として濃縮水供給管15に向かって連続的に流出される。 Next, the tap water flowing into the reverse osmosis membrane module 6 passes through the reverse osmosis membrane. In the reverse osmosis membrane, about 90% or more of various ions (Ca 2+ , Mg 2+ ) contained in tap water are removed. Then, the permeated water that has permeated through the reverse osmosis membrane flows out from the outlet of the reverse osmosis membrane module 6 toward the permeated water supply pipe 12. On the other hand, impurities such as various ions and salts that could not permeate the reverse osmosis membrane are concentrated, so that they are continuously discharged from the concentrated water outlet toward the concentrated water supply pipe 15 as concentrated water.

ところで、透過水供給管12を流れた透過水は、電解槽7に流入する。さらに、ポンプ25が駆動する。すると、食塩水槽8内に貯留する食塩水が食塩水供給管16に引き込まれ、透過水供給管12の混合部24から透過水に混合される。詳細には、食塩濃度が20%の食塩水が混合されることによって、食塩濃度が約2〜10%の混合水となるように調整される。こうして、電解槽7には、透過水と食塩水との混合水が供給されて貯留される。次いで、電解槽7の陽極31と陰極32に電圧が印加される。すると、上記説明したように、液中には電解次亜塩素酸が生成し、水に溶解することによって次亜塩素水となる。ここで、電解槽7で電解される混合水は、逆浸透膜モジュール6でイオンやシリカ等の不純物が除去された透過水に食塩水が混合されたものである。よって、この混合水を電解しても、陰極32では、不溶性の炭酸カルシウムや、水酸化マグネシウム、水酸化カルシウムが生成しないので、陰極32にカルシウムやマグネシウムのスケールが付着しない。他方、陽極31においても、シリカスケールが付着しない。つまり、陽極31及び陰極32の何れの電極表面にもスケールが付着しないので、電解効率が長期間低下せず、次亜塩素酸を安定して生成することができる。また、従来品のように電極の極性転換の必要がないので、陽極31及び陰極32にかかる負荷を低減できる。   By the way, the permeated water that has flowed through the permeated water supply pipe 12 flows into the electrolytic cell 7. Further, the pump 25 is driven. Then, the saline stored in the saline tank 8 is drawn into the saline supply pipe 16 and mixed with the permeated water from the mixing unit 24 of the permeated water supply pipe 12. Specifically, by mixing a salt solution having a salt concentration of 20%, the salt concentration is adjusted to be about 2 to 10%. In this way, the electrolytic water 7 is supplied and stored with the mixed water of the permeated water and the saline. Next, a voltage is applied to the anode 31 and the cathode 32 of the electrolytic cell 7. Then, as explained above, electrolytic hypochlorous acid is generated in the liquid and becomes hypochlorous water by dissolving in water. Here, the mixed water electrolyzed in the electrolytic cell 7 is a mixture of salt water and permeated water from which impurities such as ions and silica are removed by the reverse osmosis membrane module 6. Therefore, even if this mixed water is electrolyzed, insoluble calcium carbonate, magnesium hydroxide, or calcium hydroxide is not generated at the cathode 32, and therefore scales of calcium and magnesium do not adhere to the cathode 32. On the other hand, no silica scale is attached to the anode 31. That is, since no scale adheres to any electrode surface of the anode 31 and the cathode 32, the electrolysis efficiency does not decrease for a long time, and hypochlorous acid can be stably generated. Moreover, since it is not necessary to change the polarity of the electrodes as in the conventional product, the load on the anode 31 and the cathode 32 can be reduced.

次いで、電解槽7で生成した次亜塩素水は、次亜塩素水供給管13を流れる。そして、混合部22において、濃縮水供給管15から供給された濃縮水が混合される。つまり、電解処理の障害となるイオンやシリカ等の不純物を、逆浸透膜モジュール6で濃縮水として一端除去し、電解処理が済んだ後で、次亜塩素水に戻すことが行われる。よって、電解槽7では、スケール発生の原因となる不純物がほとんどない状態の混合水を電解できるとともに、従来は廃棄していた逆浸透処理の濃縮水を捨てずに済むことができる。さらに、濃縮水を次亜塩素水に再度戻すため、逆浸透膜モジュール6では、透過水の回収率を高くする必要もない。これにより、逆浸透膜の負荷が小さくなるとともに、膜面の汚染を少なくできるので、逆浸透膜の寿命を長くすることができる。   Next, hypochlorous water generated in the electrolytic cell 7 flows through the hypochlorous water supply pipe 13. And in the mixing part 22, the concentrated water supplied from the concentrated water supply pipe 15 is mixed. That is, impurities such as ions and silica that hinder the electrolytic treatment are once removed as concentrated water by the reverse osmosis membrane module 6 and are returned to hypochlorous water after the electrolytic treatment is completed. Therefore, in the electrolytic cell 7, it is possible to electrolyze mixed water in a state where there is almost no impurities that cause scale generation, and it is possible to dispense with discarding the concentrated water of the reverse osmosis treatment that has been conventionally discarded. Further, since the concentrated water is returned to the hypochlorous water again, the reverse osmosis membrane module 6 does not need to increase the permeate recovery rate. This reduces the load on the reverse osmosis membrane and reduces the contamination of the membrane surface, so that the lifetime of the reverse osmosis membrane can be extended.

さらに、バイパス管14に流れた水道水は、混合部23から次亜塩素水供給管15に流入する。つまり、電解槽7で生成した高濃度の次亜塩素水に水道水を混合して適宜希釈できるので、安全で低濃度の次亜塩素水を効率良く生成することができる。また、次亜塩素水に対する水道水の混合比率を調整することによって、次亜塩素水の塩素濃度を調整することができるので、用途によって塩素濃度の異なった次亜塩素水を使い分けることができる。   Further, the tap water that has flowed into the bypass pipe 14 flows into the hypochlorous water supply pipe 15 from the mixing section 23. That is, since tap water can be mixed and appropriately diluted with high-concentration hypochlorous water generated in the electrolytic cell 7, safe and low-concentration hypochlorous water can be efficiently generated. Moreover, since the chlorine concentration of hypochlorous water can be adjusted by adjusting the mixing ratio of the tap water with respect to hypochlorous water, the hypochlorous water from which the chlorine concentration differs according to a use can be used properly.

次に、電解次亜塩素水製造装置1の電解効果を実証するための比較試験について説明する。まず、試験条件について説明する。この比較試験では、本発明品である電解次亜塩素水製造装置1と、比較品である従来の電解次亜塩素水製造装置とを用意した。なお、従来品は、上記説明した電解次亜塩素水製造装置1と同じ活性炭カラム5と、陽極31及び陰極32を備える電解槽7と、該電解槽7に供給する食塩水を貯留する食塩水槽8とを備え、電解槽7で生成された次亜塩素水に、活性炭カラム5で処理する前の水道水の一部を混合して希釈したものを殺菌水として外部に供給するものである。そして、陽極31及び陰極32の極性を所定時間毎に転換することによって、陽極31及び陰極32に付着するスケールを液中に溶解させる極性転換法を採用するものである。   Next, a comparative test for demonstrating the electrolytic effect of the electrolytic hypochlorous water production apparatus 1 will be described. First, test conditions will be described. In this comparative test, an electrolytic hypochlorous water production apparatus 1 as a product of the present invention and a conventional electrolytic hypochlorous water production apparatus as a comparative product were prepared. The conventional product is the same activated carbon column 5 as the electrolytic hypochlorous water production apparatus 1 described above, an electrolytic cell 7 provided with an anode 31 and a cathode 32, and a saline solution tank for storing a saline solution supplied to the electrolytic cell 7. 8, the hypochlorite water produced in the electrolytic cell 7 is mixed with a part of tap water before being treated with the activated carbon column 5 and diluted to be supplied to the outside as sterilizing water. And the polarity conversion method which dissolves the scale adhering to the anode 31 and the cathode 32 in a liquid by changing the polarity of the anode 31 and the cathode 32 for every predetermined time is employ | adopted.

電解条件は以下の通りである。
・電解液食塩濃度:4%(電解槽7に貯留された混合水の食塩濃度が4%となるように、食塩水槽8の食塩水で調整した。)
・電解電圧:5V(陽極31及び陰極32間に印加する電圧値)
・電解電流:23A
・電解液流量:2.5L/min
・原水の水質:pH6.5、導電率:200μS/cm、Ca硬度:200mg/lasCaCO
・透過水の水質:pH5.7、導電率:10μS/cm、Ca硬度:1mg/lasCaCO
The electrolysis conditions are as follows.
Electrolyte salt concentration: 4% (Adjusted with the saline solution in the saline solution tank 8 so that the salt concentration of the mixed water stored in the electrolytic cell 7 was 4%.)
Electrolytic voltage: 5 V (voltage value applied between the anode 31 and the cathode 32)
・ Electrolytic current: 23A
・ Electrolyte flow rate: 2.5 L / min
Raw water quality: pH 6.5, conductivity: 200 μS / cm, Ca hardness: 200 mg / lasCaCO 3
-Water quality of permeate: pH 5.7, conductivity: 10 μS / cm, Ca hardness: 1 mg / lasCaCO 3

なお、従来品では、陽極31及び陰極32の極性転換を8時間毎に行い、陽極31及び陰極32に付着するスケールを溶解させながら電解処理を継続した。また、本発明品及び従来品の何れの電解槽7においても、NaCl消費量が100mg/hとなるまで比較試験を継続した。そして、次亜塩素酸の生成量を評価するため、試験後の液中の生成塩素濃度をそれぞれ測定した。なお、塩素濃度は、チオ硫酸ナトリウムによる一般的な滴定法によって測定した。また、電解電流とは、電解により生じた電流のことをいう。なお、従来品及び本発明品ともに試験開始時の電解電流を23Aに設定した。   In the conventional product, the polarity of the anode 31 and the cathode 32 was changed every 8 hours, and the electrolytic treatment was continued while dissolving the scale attached to the anode 31 and the cathode 32. Moreover, in any electrolytic cell 7 of the product of the present invention and the conventional product, the comparative test was continued until the NaCl consumption reached 100 mg / h. And in order to evaluate the production amount of hypochlorous acid, the production | generation chlorine concentration in the liquid after a test was measured, respectively. The chlorine concentration was measured by a general titration method using sodium thiosulfate. The electrolytic current means a current generated by electrolysis. Note that the electrolysis current at the start of the test was set to 23 A for both the conventional product and the present invention product.

比較試験の結果について説明する。まず、生成塩素濃度について説明する。図2に示すように、本発明品及び従来品のNaCl消費量が同じであるにも関わらず、従来品の生成塩素濃度が4600mg/lであったのに対し、本発明品の生成塩素濃度は4700mg/lであった。つまり、本発明品は、従来品よりも次亜塩素酸を多く生成することがわかった。   The result of the comparative test will be described. First, the generated chlorine concentration will be described. As shown in FIG. 2, the chlorine concentration of the conventional product was 4600 mg / l in spite of the NaCl consumption of the present product and the conventional product being the same, whereas the product chlorine concentration of the present product was 4600 mg / l. Was 4700 mg / l. That is, it was found that the product of the present invention produces more hypochlorous acid than the conventional product.

次いで、電解電流の変化について説明する。図3に示すように、従来品では、電解が進行するにつれて陽極31及び陰極32の各表面にスケールが徐々に付着した。これに伴って電解電流は徐々に低下し、試験開始から8時間後には、電解電流が約20Aまで低下した。そして、その8時間経過時に極性転換が実行されると、各電極表面に付着していたスケールが液中に溶解した。さらに、その電極の極性転換が実行される瞬間、電気二重層の充電効果によって電極間に大量の電流が流れたため、電解電流は一時的に23A付近まで上昇した。しかしながら、その後は、極性転換した陽極31及び陰極32の表面に再びスケールが付着しはじめ、これに伴って電解電流も前記と同様に低下し、前回の極性転換時から8時間経過後には復帰時よりも約3A低下した。そして、前回の極性転換時から8時間経過後に再度極性転換が実行されると、前回と同様に電解電流は一時的に一気に上昇したが再び低下した。そして、電解電流は、8時間毎に一時的に復帰したが、その復帰する程度は徐々に弱くなり、次第に低下傾向を示した。つまり、従来品では、陽極31及び陰極32間には8時間毎に大きな電流が流れるため、陽極31及び陰極32に過大な負荷がかかって電解効率が低下し、電解電流が徐々に低下したものと推測される。   Next, changes in the electrolytic current will be described. As shown in FIG. 3, in the conventional product, scale gradually adhered to the surfaces of the anode 31 and the cathode 32 as the electrolysis progressed. Along with this, the electrolysis current gradually decreased, and the electrolysis current decreased to about 20 A after 8 hours from the start of the test. And when polarity change was performed when 8 hours passed, the scale adhering to each electrode surface melt | dissolved in the liquid. Furthermore, at the moment when the polarity of the electrode was changed, a large amount of current flowed between the electrodes due to the charging effect of the electric double layer, so that the electrolysis current temporarily increased to around 23 A. However, after that, the scale begins to adhere again to the surfaces of the anode 31 and the cathode 32 whose polarity has been changed, and accordingly, the electrolysis current also decreases in the same manner as described above, and at the time of recovery after 8 hours from the previous polarity change. About 3A lower than the above. And when polarity change was performed again after 8 hours passed from the time of the last polarity change, the electrolysis current rose temporarily at once, but fell again like the last time. And although the electrolysis current returned temporarily every 8 hours, the degree of the recovery gradually weakened and gradually showed a decreasing tendency. That is, in the conventional product, since a large current flows between the anode 31 and the cathode 32 every 8 hours, an excessive load is applied to the anode 31 and the cathode 32, the electrolysis efficiency is lowered, and the electrolysis current is gradually lowered. It is guessed.

他方、本発明品では、逆浸透膜モジュール6の逆浸透水に食塩水を混合した混合水を電解槽7で電解しているので、陽極31及び陰極32にはスケールがほとんど付着せず、電解電流は23Aのままほとんど変化がなかった。この陰極32にカルシウムスケールがほとんど付着しなかった理由は、逆浸透水のCa硬度を測定したところ、1mg/lasCaCOであったため、液中のカルシウムイオンがほとんど存在しなかったためと推測される。また、導電率が10μS/cmであったことから、液中のイオンのほとんどが逆浸透膜モジュール6で除去されたからと推測される。また、陽極31においてもシリカスケールが付着しなかったのは、逆浸透によってシリカがほとんど除去されたからと推測される。 On the other hand, in the product of the present invention, since the mixed water obtained by mixing the reverse osmosis water of the reverse osmosis membrane module 6 with the saline is electrolyzed in the electrolytic cell 7, the scale is hardly attached to the anode 31 and the cathode 32, and the electrolysis is performed. The current remained almost unchanged at 23A. The reason why the calcium scale hardly adhered to the cathode 32 is presumed to be that there was almost no calcium ion in the liquid because the Ca hardness of the reverse osmosis water measured was 1 mg / lasCaCO 3 . In addition, since the conductivity was 10 μS / cm, it is presumed that most of the ions in the liquid were removed by the reverse osmosis membrane module 6. In addition, it is presumed that the silica scale did not adhere to the anode 31 because the silica was almost removed by reverse osmosis.

以上の結果より、従来品では、陽極31及び陰極32に電解電流が極性転換毎に大量に流れるので、陽極31及び陰極32に負荷がかり、電解効率の低下を招いたものと推測される。また、極性転換毎に電解電流は一時的に上昇するものの、陽極31及び陰極32にはスケールが付着してしまうので電解効率が低下し、電解次亜塩素酸の生成能力が低下したものと推測される。これに比して、本発明品は、電解槽7で電解される混合水の各種イオン等の不純物濃度(例えば、カルシウムイオン濃度、シリカ濃度)が非常に低くなっているので、陽極31及び陰極32にスケールが付着することを防止できる。これにより、電解槽7における電解効率が低下しないので、電解次亜塩素酸の生成能力を維持できたものと推測される。また、従来品のように、電極の極性転換を行う手間が要らないので、電解処理を容易に継続することができる。さらに、電極の極性転換をしないことから、陽極31及び陰極32に負荷がかからないので、電極寿命を長くすることができる。したがって、図2に示すように、本発明品は、従来品に比べて、安定した電解処理を長期間継続して実行でき、電解次亜塩素酸の生成量を増加させることができる。 From the above result, in the conventional product, the electrolysis current to the anode 31 and the cathode 32 flows through a large amount for each polarity conversion, the load to the anode 31 and cathode 32 are borrowed either is presumed that led to decrease in the electrolysis efficiency . In addition, although the electrolysis current temporarily rises every time the polarity is changed, the scales adhere to the anode 31 and the cathode 32, so that the electrolysis efficiency is reduced and the ability to produce electrolytic hypochlorous acid is reduced. Is done. In contrast, the product of the present invention has a very low impurity concentration (for example, calcium ion concentration, silica concentration) such as various ions of mixed water electrolyzed in the electrolytic cell 7, so that the anode 31 and the cathode It is possible to prevent the scale from adhering to 32. Thereby, since the electrolysis efficiency in the electrolytic cell 7 does not fall, it is estimated that the production | generation capability of electrolytic hypochlorous acid was able to be maintained. In addition, unlike the conventional product, since there is no need to change the polarity of the electrodes, the electrolytic treatment can be easily continued. Further, since the polarity of the electrode is not changed, no load is applied to the anode 31 and the cathode 32, so that the electrode life can be extended. Therefore, as shown in FIG. 2, the product of the present invention can continuously perform a stable electrolytic treatment for a long period of time, and can increase the amount of electrolytic hypochlorous acid produced, as compared with the conventional product.

なお、以上の説明において、図1に示す第1水道水供給管10、第2水道水供給管11が本発明の「水供給手段」に相当し、逆浸透膜モジュール6が本発明の「ろ過手段」に相当し、食塩水槽8、食塩水供給管16、ポンプ25、混合部24が本発明の「食塩水混合手段」に相当し、一対の陽極31及び陰極32を備えた電解槽7が本発明の「電解手段」に相当し、濃縮水供給管15、混合部22が本発明の「濃縮水混合手段」に相当し、バイパス管14、混合部23が本発明の「原水混合手段」に相当する。   In the above description, the first tap water supply pipe 10 and the second tap water supply pipe 11 shown in FIG. 1 correspond to the “water supply means” of the present invention, and the reverse osmosis membrane module 6 corresponds to the “filtration” of the present invention. The salt water tank 8, the salt water supply pipe 16, the pump 25, and the mixing unit 24 correspond to the “saline water mixing means” of the present invention, and the electrolytic cell 7 including the pair of the anode 31 and the cathode 32 is provided. The concentrated water supply pipe 15 and the mixing unit 22 correspond to the “concentrated water mixing unit” of the present invention, and the bypass pipe 14 and the mixing unit 23 correspond to the “raw water mixing unit” of the present invention. It corresponds to.

以上説明したように、本実施形態の電解次亜塩素水製造装置1では、水道水を逆浸透膜で先に処理し、その透過水に食塩水を混合して電解槽7で電解することによって、電解槽7の陽極31及び陰極32にスケールが付着することを防止し、電解効率を維持することができる。これにより、逆浸透処理をしない従来品に比べ、電解次亜塩素酸の生成量を増加することができる。さらに、逆浸透膜モジュール6で生成する濃縮水は、電解槽7から供給される次亜塩素水に再び混合されるので、従来は廃棄していた逆浸透処理の濃縮水を捨てずに済むことができる。また、濃縮水を次亜塩素水に再度戻すため、逆浸透膜モジュール6では、透過水の回収率を高くする必要もない。これにより、逆浸透膜の負荷が小さくなるとともに、膜面の汚染を少なくできるので、逆浸透膜の寿命を長くすることができる。また、水道水から流出する水道水の一部をバイパス管14に流すことによって、逆浸透膜にかかる負荷を低減できる。また、水道水をバイパス管14に分岐させることによって、高濃度の次亜塩素水に水道水を混合して適宜希釈できるので、安全で低濃度の次亜塩素水を効率良く生成することができる。 As described above, in the electrolytic hypochlorous water production apparatus 1 of the present embodiment, tap water is first treated with a reverse osmosis membrane, and the permeated water is mixed with saline and electrolyzed in the electrolytic cell 7. The scale can be prevented from adhering to the anode 31 and the cathode 32 of the electrolytic cell 7, and the electrolysis efficiency can be maintained. Thereby, compared with the conventional product which does not perform reverse osmosis processing, the production amount of electrolytic hypochlorous acid can be increased. Furthermore, since the concentrated water produced by the reverse osmosis membrane module 6 is mixed again with the hypochlorous water supplied from the electrolytic cell 7, it is not necessary to throw away the concentrated water of the reverse osmosis treatment that has been conventionally discarded. Can do. Further, because Star back again concentrated water hypochlorous water, the reverse osmosis membrane module 6, there is no need to increase the recovery rate of the permeate. This reduces the load on the reverse osmosis membrane and reduces the contamination of the membrane surface, so that the lifetime of the reverse osmosis membrane can be extended. Moreover, the load concerning a reverse osmosis membrane can be reduced by flowing a part of the tap water which flows out out of a tap water to the bypass pipe 14. FIG. Further, by diverting tap water to the bypass pipe 14, tap water can be mixed with high-concentration hypochlorous water and appropriately diluted, so that safe and low-concentration hypochlorous water can be efficiently generated. .

なお、本発明の電解次亜塩素水製造装置は、上記実施形態に限らず、各種の変形が可能なことはいうまでもない。例えば、上記実施形態では、原水として水道水を使用したが、井戸水にも適用可能である。井戸水はポンプで汲み上げられるが、そのポンプの吐出圧のみで、逆浸透膜モジュール6の逆浸透膜を透過できるようにすればよい。   Needless to say, the electrolytic hypochlorous water production apparatus of the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the said embodiment, although tap water was used as raw | natural water, it is applicable also to well water. Well water is pumped up by a pump, and it is only necessary to allow the reverse osmosis membrane of the reverse osmosis membrane module 6 to pass through only the discharge pressure of the pump.

本発明の電解次亜塩素水製造装置は、医療機器や、食品工場のライン、手指の洗浄等を殺菌する殺菌水を使用する目的で利用可能である。   The electrolytic hypochlorous water production apparatus of the present invention can be used for the purpose of using sterilized water for sterilizing medical equipment, food factory lines, finger washing, and the like.

電解次亜塩素水製造装置1の構成を示すブロック図である。It is a block diagram which shows the structure of the electrolytic hypochlorous water manufacturing apparatus. 比較試験の結果を示す表である。It is a table | surface which shows the result of a comparative test. 比較試験における電解電流の変化を示すグラフである。It is a graph which shows the change of the electrolysis current in a comparative test.

1 電解次亜塩素水製造装置
5 活性炭カラム
6 逆浸透膜モジュール
7 電解槽
8 食塩水槽
10 第1水道水供給管
11 第2水道水供給管
12 透過水供給管
14 バイパス管
15 濃縮水供給管
16 食塩水供給管
22 混合部
23 混合部
24 混合部
31 陽極
32 陰極
DESCRIPTION OF SYMBOLS 1 Electrolytic hypochlorous water manufacturing apparatus 5 Activated carbon column 6 Reverse osmosis membrane module 7 Electrolysis tank 8 Saline tank 10 1st tap water supply pipe 11 2nd tap water supply pipe 12 Permeated water supply pipe 14 Bypass pipe 15 Concentrated water supply pipe 16 Saline supply pipe 22 Mixing unit 23 Mixing unit 24 Mixing unit 31 Anode 32 Cathode

Claims (2)

原水を供給する水供給手段と、
当該水供給手段から供給される前記原水を逆浸透膜でろ過するろ過手段と、
当該ろ過手段で処理されたろ過水に食塩水を混合する食塩水混合手段と、
当該食塩水混合手段によって食塩水が混合された混合水を電気分解して次亜塩素酸を生成する電解手段と、
当該電解手段で生成された前記次亜塩素酸が溶解する次亜塩素水に、前記ろ過手段によって濃縮された逆浸透濃縮水を混合する濃縮水混合手段と
を備えたことを特徴とする電解次亜塩素水製造装置。
Water supply means for supplying raw water;
Filtration means for filtering the raw water supplied from the water supply means with a reverse osmosis membrane;
A saline mixing means for mixing saline with the filtrate treated by the filtering means;
Electrolysis means for electrolyzing the mixed water mixed with the saline by the saline mixing means to generate hypochlorous acid,
Concentrated water mixing means for mixing reverse osmosis concentrated water concentrated by the filtration means with hypochlorous acid in which the hypochlorous acid produced by the electrolysis means is dissolved. Chlorine water production equipment.
前記水供給手段から供給される前記原水の一部を取水して、前記次亜塩素水に混合する原水混合手段を備えたことを特徴とする請求項1に記載の電解次亜塩素水製造装置。   2. The apparatus for producing electrolytic hypochlorous water according to claim 1, further comprising raw water mixing means for taking a part of the raw water supplied from the water supply means and mixing it with the hypochlorous water. .
JP2007016139A 2007-01-26 2007-01-26 Electrolytic hypochlorite water production equipment Expired - Fee Related JP5188717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016139A JP5188717B2 (en) 2007-01-26 2007-01-26 Electrolytic hypochlorite water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016139A JP5188717B2 (en) 2007-01-26 2007-01-26 Electrolytic hypochlorite water production equipment

Publications (3)

Publication Number Publication Date
JP2008178845A JP2008178845A (en) 2008-08-07
JP2008178845A5 JP2008178845A5 (en) 2010-02-18
JP5188717B2 true JP5188717B2 (en) 2013-04-24

Family

ID=39723151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016139A Expired - Fee Related JP5188717B2 (en) 2007-01-26 2007-01-26 Electrolytic hypochlorite water production equipment

Country Status (1)

Country Link
JP (1) JP5188717B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046942B1 (en) 2008-10-13 2011-07-06 (주) 테크윈 Water treatment method using electrolysis
JP5551927B2 (en) * 2008-12-11 2014-07-16 株式会社ウオーターテクノカサイ Cooling method of heat exchanger
JP5335741B2 (en) * 2010-08-12 2013-11-06 株式会社テックコーポレーション Drinking electrolyzed water device using bottled water as raw water
CN104556533B (en) * 2013-10-15 2017-04-19 中国石油化工股份有限公司 Treatment method for reverse osmosis concentrated water
CN103755082B (en) * 2014-01-21 2015-07-01 西安西热水务环保有限公司 System and method for resource recovery of regenerated wastewater of ion exchange resin
CN111704282A (en) * 2020-06-28 2020-09-25 佛山市顺德区美的洗涤电器制造有限公司 Water treatment system, water purifier, control method, and computer-readable storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285467A (en) * 1993-04-06 1994-10-11 Brother Ind Ltd Water conditioning machine
JP2004298832A (en) * 2003-04-01 2004-10-28 Asahi Glass Engineering Co Ltd Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP2006035004A (en) * 2004-07-22 2006-02-09 Kyowa Exeo Corp Drinking water making method and spring water treatment apparatus

Also Published As

Publication number Publication date
JP2008178845A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP5188717B2 (en) Electrolytic hypochlorite water production equipment
JP2008100180A (en) Water treatment apparatus
WO2014006740A1 (en) Device for producing water for preparing dialysate
CN104556481A (en) Treatment system and method for preparing high-hardness underground water into domestic drinking water
JP2008178845A5 (en)
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
JP2007007502A (en) Manufacturing method of low sodium chloride electrolytic water and manufacturing device thereof
KR100675375B1 (en) Management system of water for sea-fish nursery
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
WO2016047257A1 (en) Electrolyzed water-generating device and apparatus provided with same for manufacturing water to prepare dialysate
JP2011050843A (en) Method of and system for desalinating water to be treated
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
WO2014007340A1 (en) Device for generating electrolytically treated water, and method for generating electrolytically treated water
JP2007289838A (en) Electrolytic water generator
JP6650586B2 (en) Electrolyzed water generator
WO2017138047A1 (en) Water treatment apparatus
WO2021045107A1 (en) Wastewater treatment method and wastewater treatment apparatus
KR102406930B1 (en) Recirculating and filtering-reverse electrodialysis system for sea water treatment
JP2010064028A (en) Water treatment apparatus
WO2021045191A1 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
EP0885849A1 (en) Method for sterilising water and device for realising the same
EP4066924A1 (en) Self-cleaning decentralized water treatment unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5188717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees