JP2014015646A - Electrolytic treatment water generator and method for generating electrolytic treatment water - Google Patents

Electrolytic treatment water generator and method for generating electrolytic treatment water Download PDF

Info

Publication number
JP2014015646A
JP2014015646A JP2012152673A JP2012152673A JP2014015646A JP 2014015646 A JP2014015646 A JP 2014015646A JP 2012152673 A JP2012152673 A JP 2012152673A JP 2012152673 A JP2012152673 A JP 2012152673A JP 2014015646 A JP2014015646 A JP 2014015646A
Authority
JP
Japan
Prior art keywords
electrolysis chamber
electrode
water
changing
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012152673A
Other languages
Japanese (ja)
Inventor
Masayuki Ukon
雅幸 右近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Benten Inc
Original Assignee
Nidec Corp
Benten Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp, Benten Inc filed Critical Nidec Corp
Priority to JP2012152673A priority Critical patent/JP2014015646A/en
Priority to PCT/JP2013/068398 priority patent/WO2014007340A1/en
Publication of JP2014015646A publication Critical patent/JP2014015646A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration in the function of a water quality sensor.SOLUTION: The electrolytic treatment water generator comprises: a first electrolytic chamber 314; a second electrolytic chamber 315; an ion permeable diaphragm 311; a first electrode 312; a second electrode 313; a DC power source 32; a first feed part 141 of selectively feeding either service water having a low electrolyte concentration or an electrolyte aqueous solution to the first electrolytic chamber; a connection changing part 33 of changing the connection between the first electrolytic chamber and a first duct 351 and the connection between the first electrolytic chamber and a drainage 353; and a water quality sensor 34 provided on the first duct, and practices: a step of changing the connection between the first electrolytic chamber and the first duct to the connection between the first electrolytic chamber and the drainage in a state where treatment water is exhausted from the first electrolytic chamber; a step of changing the voltage to be applied to reverse voltage; a step of changing the voltage to be applied to normal voltage; and a step of changing the connection between the first electrolytic chamber and the first duct after the detection of the exhaust of the treatment water from the first electrolytic chamber.

Description

本発明は、電解質水溶液を電気分解して電解処理水を生成する技術に関連する。   The present invention relates to a technique for electrolyzing an electrolytic aqueous solution to generate electrolytically treated water.

従来より、様々な分野で電解質水溶液を電気分解して得られる電解処理水が利用されている。原水にカルシウムイオンやマグネシウムイオン等が存在すると、電極に同じ極性の電圧を印加し続けた際に、特に陰極側に、カルシウム化合物やマグネシウム化合物が析出し、電気分解を妨げる。そこで、電極に逆極性の電圧を印加して、定期的に電極から析出物を除去する洗浄が行われる。   Conventionally, electrolytically treated water obtained by electrolyzing an aqueous electrolyte solution has been used in various fields. If calcium ions, magnesium ions, etc. are present in the raw water, when a voltage of the same polarity is continuously applied to the electrodes, calcium compounds and magnesium compounds are deposited, particularly on the cathode side, preventing electrolysis. Therefore, cleaning is performed by periodically applying a voltage of reverse polarity to the electrode to remove precipitates from the electrode.

特開平9−150154号公報に開示のイオン水生成器では、水道水を電気分解して酸性水およびアルカリ性水が生成される。逆極性の電圧を印加して電極を洗浄する際には、吐水口から水は吐出されない。特開平6−346266号公報に開示の食塩水の電気分解方法では、極めて短時間の間、両電極に印加される直流電圧の極性が逆転する。特開平9−113477号公報の従来技術には、原水を電気分解して陽極水と陰極水とを得る強電解水生成装置において、ORPセンサが吐水に接触する。ORPセンサでは、比較電極としてAg/AgCl、指示電極としてPtが用いられる。   In the ionic water generator disclosed in JP-A-9-150154, tap water is electrolyzed to generate acidic water and alkaline water. When applying a reverse polarity voltage to clean the electrode, water is not discharged from the water outlet. In the saline electrolysis method disclosed in JP-A-6-346266, the polarity of the DC voltage applied to both electrodes is reversed for a very short time. In the prior art disclosed in Japanese Patent Application Laid-Open No. 9-113477, an ORP sensor is in contact with discharged water in a strongly electrolyzed water generating apparatus that electrolyzes raw water to obtain anode water and cathode water. In the ORP sensor, Ag / AgCl is used as a comparison electrode, and Pt is used as an indicator electrode.

特開2008−100180号公報に開示される水処理装置では、逆浸透膜にて透過水が得られる。逆浸透膜は強酸性水にて洗浄される。強酸性水は、透過水に食塩水を添加して電気分解することにより得られる。
特開平9−150154号公報 特開平6−346266号公報 特開平9−113477号公報 特開2008−100180号公報
In the water treatment device disclosed in Japanese Patent Application Laid-Open No. 2008-100180, permeated water is obtained with a reverse osmosis membrane. The reverse osmosis membrane is washed with strongly acidic water. Strongly acidic water is obtained by adding saline to permeated water and electrolyzing it.
JP-A-9-150154 JP-A-6-346266 JP-A-9-113477 JP 2008-100180 A

ところで、特開平9−113477号公報に開示される強電解水生成装置では、仮に、電極を洗浄するために逆極性の電圧を印加すると、ORPセンサに流入する電解処理水の液性が、酸性とアルカリ性との間で逆転する。この場合、ORPセンサは、構造が単純であるため、正確な測定ができなくなる。   By the way, in the strong electrolyzed water generating apparatus disclosed in JP-A-9-113477, if a reverse polarity voltage is applied to clean the electrodes, the liquidity of the electrolyzed water flowing into the ORP sensor becomes acidic. Reversal between and alkaline. In this case, since the ORP sensor has a simple structure, accurate measurement cannot be performed.

本発明は、電解処理水生成装置において、水質センサの機能低下の防止を目的とする。   An object of the present invention is to prevent deterioration of the function of a water quality sensor in an electrolyzed water generation apparatus.

本発明の例示的な一の実施形態に係る電解処理水生成装置は、第1電解室と、第2電解室と、前記第1電解室と前記第2電解室との間に配置されるイオン透過性隔膜と、前記第1電解室内の液中に配置される第1電極と、前記第2電解室内の液中に配置される第2電極と、前記第1電極と前記第2電極との間に通常電圧および逆電圧の一方を選択的に印加する直流電源と、前記第1電解室に電解質水溶液を供給する、または、前記電解質水溶液よりも電解質濃度が低く、前記電解質水溶液の生成に利用される用水および前記電解質水溶液の一方を選択的に供給する第1供給部と、前記第2電解室に前記電解質水溶液を供給する第2供給部と、第1流路と、前記第2電解室に接続される第2流路と、前記第1電解室と前記第1流路との接続と、前記第1電解室と排水路との接続とを切り替える接続切替部と、前記第1流路上に設けられ、酸性またはアルカリ性の液体のみを測定可能に設定された水質センサと、制御部と、を備え、前記制御部の制御により、a)前記第1電解室と前記第1流路とを接続し、前記第1電解室に前記電解質水溶液を供給し、前記第1電極と前記第2電極との間に前記通常電圧を印加することにより、前記第1電解室から処理水が排出される状態から、前記第1電解室と前記第1流路との接続を、前記第1電解室と前記排水路との接続へと切り替える工程と、b)前記a)工程の後に、前記第1電極と前記第2電極との間に印加する電圧を前記逆電圧に変更する工程と、c)前記b)工程の後に、前記第1電極と前記第2電極との間に印加する電圧を前記通常電圧に変更する工程と、d)前記c)工程の後に、前記第1電解室から排出される液体が、前記処理水に変化したか否かを監視する工程と、e)前記d)工程にて、前記第1電解室から排出される液体が、前記処理水に変化したことを検出した後に、前記第1電解室と前記排水路との接続を、前記第1電解室と前記第1流路との接続へと切り替える工程と、を実行する。   An electrolyzed water generating device according to an exemplary embodiment of the present invention includes a first electrolysis chamber, a second electrolysis chamber, and ions disposed between the first electrolysis chamber and the second electrolysis chamber. A permeable diaphragm; a first electrode disposed in the liquid in the first electrolytic chamber; a second electrode disposed in the liquid in the second electrolytic chamber; and the first electrode and the second electrode. A DC power supply that selectively applies one of a normal voltage and a reverse voltage between them, and an aqueous electrolyte solution is supplied to the first electrolysis chamber, or an electrolyte concentration is lower than that of the aqueous electrolyte solution, and is used to generate the aqueous electrolyte solution The first supply part that selectively supplies one of the water to be used and the aqueous electrolyte solution, the second supply part that supplies the aqueous electrolyte solution to the second electrolytic chamber, the first flow path, and the second electrolytic chamber A second flow path connected to the first flow path, a connection between the first electrolysis chamber and the first flow path, A connection switching unit that switches the connection between the first electrolysis chamber and the drainage channel, a water quality sensor that is provided on the first flow channel and is configured to measure only acidic or alkaline liquid, and a control unit. A) connecting the first electrolysis chamber and the first flow path, supplying the electrolyte aqueous solution to the first electrolysis chamber, and controlling the control unit to control the first electrode and the second electrode; By applying the normal voltage between the first electrolysis chamber and the first flow path from the state in which the treated water is discharged from the first electrolysis chamber, the connection between the first electrolysis chamber and the first flow path is established. A step of switching to a connection with a drainage channel, b) a step of changing a voltage applied between the first electrode and the second electrode after the step a) to the reverse voltage, and c) the step b. ) After the step, a voltage to be applied between the first electrode and the second electrode is passed through the passage. A step of changing to a voltage; d) a step of monitoring whether the liquid discharged from the first electrolysis chamber has changed to the treated water after the step c); and e) the step d). Then, after detecting that the liquid discharged from the first electrolysis chamber has changed to the treated water, the connection between the first electrolysis chamber and the drainage channel is connected to the first electrolysis chamber and the first flow. Switching to connection with the road.

本発明によれば、水質センサの機能低下を防止することができる。   According to the present invention, it is possible to prevent deterioration of the function of the water quality sensor.

図1は、水処理装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a water treatment apparatus. 図2は、電解処理水生成装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of the electrolytically treated water generating device. 図3は、水質センサの概略構造を示す図である。FIG. 3 is a diagram showing a schematic structure of the water quality sensor. 図4は、電解処理水生成装置の第1の動作例を示す図である。FIG. 4 is a diagram illustrating a first operation example of the electrolyzed water generating device. 図5は、電解処理水生成装置の第2の動作例を示す図である。FIG. 5 is a diagram illustrating a second operation example of the electrolyzed water generating device. 図6は、電解処理水生成装置の第3の動作例を示す図である。FIG. 6 is a diagram illustrating a third operation example of the electrolyzed water generating device. 図7は、電解処理水生成装置の第4の動作例を示す図である。FIG. 7 is a diagram illustrating a fourth operation example of the electrolyzed water generating device.

本明細書における「電解質水溶液」とは、電気分解を行うことができる程度の電解質を含む水であり、本実施形態では、食塩水や水道水等の塩素を含有するイオン性化合物の水溶液である。「用水」とは、電解質水溶液を生成するために電解質が加えられる水である。したがって、用水の電解質濃度は、電解質水溶液よりも低い。本実施形態では、用水は、逆浸透膜を透過させることにより得られる透過水または純水である。   The “aqueous electrolyte solution” in the present specification is water containing an electrolyte that can be electrolyzed, and in this embodiment, is an aqueous solution of an ionic compound containing chlorine such as saline or tap water. . “Water for use” is water to which an electrolyte is added to produce an aqueous electrolyte solution. Accordingly, the electrolyte concentration of the service water is lower than that of the aqueous electrolyte solution. In this embodiment, water for use is permeated water or pure water obtained by permeating through a reverse osmosis membrane.

図1は、本発明の例示的な一の実施形態に係る電解処理水生成装置を含む水処理装置1を示す図である。水処理装置1は、海水や河川水等の原水の濾過水を第1の処理水として得る装置である。水処理装置1は、電解処理水生成装置により、次亜塩素酸を含む水も第2の処理水として得る。以下、次亜塩素酸を含む電解処理水を次亜塩素酸水と呼ぶ。   FIG. 1 is a diagram showing a water treatment device 1 including an electrolytically treated water generating device according to an exemplary embodiment of the present invention. The water treatment apparatus 1 is an apparatus that obtains filtered water of raw water such as seawater and river water as first treated water. The water treatment apparatus 1 also obtains water containing hypochlorous acid as the second treated water by the electrolytically treated water generating apparatus. Hereinafter, the electrolytically treated water containing hypochlorous acid is referred to as hypochlorous acid water.

水処理装置1は、フィルタ11と、RO処理部12と、透過水貯溜部13と、供給部14と、電解装置15と、電解処理水貯溜部16と、制御部17と、を含む。供給部14および電解装置15により、電解処理水生成装置150が構成される。図1では、水処理装置1の構成要素、配管、バルブのうち、主なもののみを示している。   The water treatment device 1 includes a filter 11, an RO treatment unit 12, a permeate water storage unit 13, a supply unit 14, an electrolysis device 15, an electrolytic treatment water storage unit 16, and a control unit 17. The supply unit 14 and the electrolysis device 15 constitute an electrolyzed water generation device 150. In FIG. 1, only the main components among the components, piping, and valves of the water treatment apparatus 1 are shown.

フィルタ11にはポンプ71および開閉弁81を介して原水が流入する。フィルタ11は、原水に含まれる微細な粒子を除去する。RO処理部12は、束ねられた逆浸透膜を含む。原水は、逆浸透膜により、逆浸透膜を透過した用水である透過水と、逆浸透膜を透過しない濃縮水とに分離される。濃縮水は開閉弁82を介して排水される。透過水は三方弁83を介して透過水貯溜部13に導かれる。透過水は三方弁83により排水することも可能である。透過水貯溜部13から透過水が取水される。   Raw water flows into the filter 11 via the pump 71 and the on-off valve 81. The filter 11 removes fine particles contained in the raw water. The RO processing unit 12 includes a bundled reverse osmosis membrane. The raw water is separated by the reverse osmosis membrane into permeate which is service water that has passed through the reverse osmosis membrane and concentrated water that does not pass through the reverse osmosis membrane. The concentrated water is drained through the on-off valve 82. The permeate is guided to the permeate reservoir 13 through the three-way valve 83. The permeated water can be drained by the three-way valve 83. Permeate is taken from the permeate reservoir 13.

透過水貯溜部13の透過水は、供給部14にも導かれる。供給部14は、後述するように、透過水に電解質を付与して電解装置15に供給する。本実施形態では、電解質として、食塩が用いられる。電解装置15は、食塩水を電気分解することにより、電解処理水として次亜塩素酸水を生成する。生成された電解処理水は、電解処理水貯溜部16に貯溜される。電解処理水貯溜部16から電解処理水が取水される。電解処理水貯溜部16はポンプ72および開閉弁84を介して開閉弁81とフィルタ11との間に接続される。   The permeate stored in the permeate reservoir 13 is also guided to the supply unit 14. The supply unit 14 applies an electrolyte to the permeated water and supplies the permeated water to the electrolysis apparatus 15 as described later. In this embodiment, sodium chloride is used as the electrolyte. The electrolyzer 15 generates hypochlorous acid water as electrolyzed water by electrolyzing the saline solution. The generated electrolytically treated water is stored in the electrolytically treated water reservoir 16. Electrolyzed water is taken from the electrolyzed water reservoir 16. The electrolytically treated water reservoir 16 is connected between the on-off valve 81 and the filter 11 via a pump 72 and an on-off valve 84.

透過水および電解処理水の生成時は、制御部17の制御により、開閉弁81,82が開けられ、三方弁83はRO処理部12と透過水貯溜部13とを接続する。開閉弁84は閉じられる。ポンプ71が駆動され、透過水の生成が行われる。また、制御部17により、供給部14および電解装置15が制御され、電解処理水が生成される。逆浸透膜にバクテリアや他の物質が堆積した場合は、電解処理水を用いて洗浄が行われる。洗浄時には、制御部17の制御により、開閉弁81は閉じられ、三方弁83によりRO処理部12と排水路とが接続される。ポンプ72が駆動されると、電解処理水がRO処理部12に供給され、逆浸透膜が洗浄される。洗浄に利用された水は全て排水される。   When the permeated water and the electrolytically treated water are generated, the on / off valves 81 and 82 are opened under the control of the control unit 17, and the three-way valve 83 connects the RO processing unit 12 and the permeated water storage unit 13. The on-off valve 84 is closed. The pump 71 is driven to generate permeated water. Moreover, the supply part 14 and the electrolysis apparatus 15 are controlled by the control part 17, and electrolyzed water is produced | generated. When bacteria and other substances are deposited on the reverse osmosis membrane, washing is performed using electrolytically treated water. At the time of cleaning, the on-off valve 81 is closed under the control of the control unit 17, and the RO processing unit 12 and the drainage channel are connected by the three-way valve 83. When the pump 72 is driven, electrolytically treated water is supplied to the RO treatment unit 12 and the reverse osmosis membrane is washed. All water used for cleaning is drained.

図2は、電解処理水生成装置150の構成を示す図である。以下、電解処理水を単に「処理水」と呼ぶ。供給部14は、ポンプ21と、電解質貯溜部22と、ポンプ23と、混合部24と、を含む。ポンプ21により、透過水が透過水貯溜部13から混合部24へと導かれる。電解質貯溜部22には高濃度食塩水が貯溜される。ポンプ23により、電解質貯溜部22から混合部24に高濃度食塩水が導入される。混合部24は、透過水に高濃度食塩水を混合し、希釈された食塩水を生成する。本実施形態では、希釈食塩水は、好ましくは、0.05重量%の食塩水である。以下、希釈食塩水を「電解質水溶液」と呼ぶ。電解質水溶液の生成に用いられる用水である透過水の塩分濃度は、0.05重量%未満である。なお、電解質水溶液の電解質濃度は、0.05%以上でもよい。用水の電解質濃度は電解質水溶液の電解質濃度よりも低ければよく、0.05%以上でもよい。   FIG. 2 is a diagram illustrating a configuration of the electrolytically treated water generating device 150. Hereinafter, the electrolytically treated water is simply referred to as “treated water”. The supply unit 14 includes a pump 21, an electrolyte storage unit 22, a pump 23, and a mixing unit 24. The permeate is guided from the permeate reservoir 13 to the mixing unit 24 by the pump 21. The electrolyte reservoir 22 stores high-concentration saline. High-concentration saline is introduced from the electrolyte reservoir 22 into the mixing unit 24 by the pump 23. The mixing unit 24 mixes high-concentration saline with permeated water to generate diluted saline. In the present embodiment, the diluted saline is preferably 0.05% by weight saline. Hereinafter, the diluted saline is referred to as “electrolyte aqueous solution”. The salinity concentration of the permeated water, which is the water used for the production of the aqueous electrolyte solution, is less than 0.05% by weight. The electrolyte concentration of the aqueous electrolyte solution may be 0.05% or more. The electrolyte concentration of the service water should be lower than the electrolyte concentration of the aqueous electrolyte solution, and may be 0.05% or more.

混合部24から電解装置15に至る流路は、第1供給路251と第2供給路252とに分離する。本実施形態では、ポンプ21、電解質貯溜部22、ポンプ23、混合部24、第1供給路251等により、第1供給部141が構成される。ポンプ21、電解質貯溜部22、ポンプ23、混合部24、第2供給路252等により、第2供給部142が構成される。すなわち、第1供給部141および第2供給部142では、ポンプ21、電解質貯溜部22、ポンプ23および混合部24が共有される。もちろん、第1供給部141および第2供給部142は、個別に設けられてもよい。   The flow path from the mixing unit 24 to the electrolysis device 15 is separated into a first supply path 251 and a second supply path 252. In the present embodiment, the first supply unit 141 is configured by the pump 21, the electrolyte storage unit 22, the pump 23, the mixing unit 24, the first supply path 251 and the like. The pump 21, the electrolyte reservoir 22, the pump 23, the mixing unit 24, the second supply path 252 and the like constitute a second supply unit 142. That is, in the first supply unit 141 and the second supply unit 142, the pump 21, the electrolyte storage unit 22, the pump 23, and the mixing unit 24 are shared. Of course, the 1st supply part 141 and the 2nd supply part 142 may be provided separately.

制御部17によりポンプ23が停止すると、電解装置15には透過水が供給される。以下、透過水を単に「用水」と呼ぶ。ポンプ23が稼動すると、電解装置15には電解質水溶液が供給される。本実施形態では第1供給路251および第2供給路252に同時に用水または電解質水溶液が流れるが、第1供給部141および第2供給部142が個別に設けられる場合は、第1供給路251および第2供給路252には、独立して、用水または電解質水溶液が流れる。   When the pump 23 is stopped by the control unit 17, permeated water is supplied to the electrolysis device 15. Hereinafter, the permeated water is simply referred to as “use water”. When the pump 23 is operated, an electrolytic aqueous solution is supplied to the electrolysis device 15. In the present embodiment, the water for use or the aqueous electrolyte solution flows through the first supply path 251 and the second supply path 252 at the same time, but when the first supply section 141 and the second supply section 142 are provided separately, the first supply path 251 and In the second supply path 252, water for use or an aqueous electrolyte solution flows independently.

電解装置15は、電解槽31と、直流電源32と、三方弁33と、水質センサ34と、電流計35と、を含む。電解槽31は、イオン透過性隔膜311と、第1電極312と、第2電極313と、を含む。電解槽31は、イオン透過性隔膜311により、第1電解室314と、第2電解室315とに分けられる。すなわち、イオン透過性隔膜311は、第1電解室314と第2電解室315との間に配置される。第1電極312は、第1電解室314内の液中に配置される。第2電極313は、第2電解室315内の液中に配置される。   The electrolyzer 15 includes an electrolytic cell 31, a DC power source 32, a three-way valve 33, a water quality sensor 34, and an ammeter 35. The electrolytic cell 31 includes an ion permeable diaphragm 311, a first electrode 312, and a second electrode 313. The electrolytic cell 31 is divided into a first electrolytic chamber 314 and a second electrolytic chamber 315 by an ion permeable diaphragm 311. That is, the ion permeable diaphragm 311 is disposed between the first electrolysis chamber 314 and the second electrolysis chamber 315. The first electrode 312 is disposed in the liquid in the first electrolysis chamber 314. The second electrode 313 is disposed in the liquid in the second electrolysis chamber 315.

直流電源32は、処理水生成時に、第1電極312が陽極となるように第1電極312と第2電極との間に電圧を印加する。以下、この電圧を「通常電圧」と呼ぶ。直流電源32は、電圧切替部321を含む。電圧切替部321により、直流電源32は、第2電極313が陽極になるように第1電極312と第2電極313との間に電圧を印加することができる。以下、この電圧を「逆電圧」と呼ぶ。直流電源32は、通常電圧および逆電圧の一方を、両電極間に選択的に印加する。電流計35は、直流電源32に接続され、両電極間に流れる電流を測定する。制御部17は、電流計35にて得られた測定値を参照する測定値参照部171を含み、測定値を参照しつつ各構成要素の制御を司る。   The DC power supply 32 applies a voltage between the first electrode 312 and the second electrode so that the first electrode 312 becomes an anode when the treated water is generated. Hereinafter, this voltage is referred to as “normal voltage”. The DC power supply 32 includes a voltage switching unit 321. The voltage switching unit 321 allows the DC power supply 32 to apply a voltage between the first electrode 312 and the second electrode 313 so that the second electrode 313 becomes an anode. Hereinafter, this voltage is referred to as “reverse voltage”. The DC power supply 32 selectively applies one of a normal voltage and a reverse voltage between both electrodes. The ammeter 35 is connected to the DC power source 32 and measures the current flowing between both electrodes. The control unit 17 includes a measurement value reference unit 171 that refers to the measurement value obtained by the ammeter 35, and controls each component while referring to the measurement value.

第1供給部141の第1供給路251は、第1電解室314に接続される。第2供給部142の第2供給路252は、第2電解室315に接続される。既述のように、本実施形態では、第1供給部141および第2供給部142は、第1電解室314および第2電解室315に同時に、電解質水溶液および用水の一方を選択的に供給する。第1供給部141および第2供給部142は、第1電解室314および第2電解室315に独立して、電解質水溶液および用水の一方を選択的に供給してもよい。なお、第2供給部142は第2電解室315に電解質水溶液のみを供給してもよい。   The first supply path 251 of the first supply unit 141 is connected to the first electrolysis chamber 314. The second supply path 252 of the second supply unit 142 is connected to the second electrolysis chamber 315. As described above, in the present embodiment, the first supply unit 141 and the second supply unit 142 selectively supply one of the electrolytic aqueous solution and the water to the first electrolytic chamber 314 and the second electrolytic chamber 315 at the same time. . The first supply unit 141 and the second supply unit 142 may selectively supply one of the aqueous electrolyte solution and the irrigation water independently to the first electrolysis chamber 314 and the second electrolysis chamber 315. Note that the second supply unit 142 may supply only the aqueous electrolyte solution to the second electrolysis chamber 315.

第1電解室314は三方弁33を介して第1流路351に接続される。第1流路351は、電解処理水貯溜部16に接続される。水質センサ34は第1流路351上に配置される。水質センサ34は、第1電解室314から排出される処理液が、所望の処理液であるか確認するために利用される。第2電解室315は第2流路352に接続される。第2流路352は排水路353に接続される。三方弁33も排水路353に接続される。三方弁33は、第1電解室314と第1流路351との接続と、第1電解室314と排水路353との接続とを切り替える接続切替部である。   The first electrolysis chamber 314 is connected to the first flow path 351 through the three-way valve 33. The first flow path 351 is connected to the electrolytically treated water storage unit 16. The water quality sensor 34 is disposed on the first flow path 351. The water quality sensor 34 is used for confirming whether the processing liquid discharged from the first electrolysis chamber 314 is a desired processing liquid. The second electrolysis chamber 315 is connected to the second flow path 352. The second flow path 352 is connected to the drainage path 353. The three-way valve 33 is also connected to the drainage channel 353. The three-way valve 33 is a connection switching unit that switches a connection between the first electrolysis chamber 314 and the first flow path 351 and a connection between the first electrolysis chamber 314 and the drainage path 353.

図3は水質センサ34の概略構造を示す図である。水質センサ34は、指示電極341と、参照電極342と、電位計343と、を含む。指示電極341は、白金電極である。参照電極342は、銀上に塩化銀膜が形成された銀/塩化銀電極である。指示電極341および参照電極342は第1流路351である配管に固定され、第1流路351を流れる液体に直接的に触れる。   FIG. 3 is a diagram showing a schematic structure of the water quality sensor 34. The water quality sensor 34 includes an indicator electrode 341, a reference electrode 342, and an electrometer 343. The indicator electrode 341 is a platinum electrode. The reference electrode 342 is a silver / silver chloride electrode in which a silver chloride film is formed on silver. The indicator electrode 341 and the reference electrode 342 are fixed to a pipe that is the first flow path 351, and directly touch the liquid flowing through the first flow path 351.

水質センサ34は、酸化還元電位計である。水質センサ34は、通常の酸化還元電位計と異なり、指示電極341と参照電極342との間には、隔膜は存在せず、半透膜により参照電極の周囲に塩化カリウム水溶液は保持されない。このように、水質センサ34は安価な構造となっている。そのため、水質センサ34は、酸性またはアルカリ性の液体のみを測定可能に設定されたものとなっている。換言すれば、水質センサ34が含む演算処理用の回路は、酸性またはアルカリ性の液体のみを測定するために、校正用の各種パラメータの値が設定されている。測定される値は、実質的に酸化還元電位に対応する値、例えば、酸化還元電位に変換することができる値であれば、他の測定値であってもよい。   The water quality sensor 34 is an oxidation-reduction potentiometer. Unlike the normal oxidation-reduction potentiometer, the water quality sensor 34 does not have a diaphragm between the indicator electrode 341 and the reference electrode 342, and the potassium chloride aqueous solution is not held around the reference electrode by the semipermeable membrane. Thus, the water quality sensor 34 has an inexpensive structure. Therefore, the water quality sensor 34 is set to be able to measure only an acidic or alkaline liquid. In other words, the arithmetic processing circuit included in the water quality sensor 34 is set with various parameter values for calibration in order to measure only acidic or alkaline liquid. The measured value may be a value that substantially corresponds to the oxidation-reduction potential, for example, another measurement value as long as it can be converted into the oxidation-reduction potential.

図4は、電解処理水生成装置150において、制御部17の制御により実行される、電極を洗浄する第1の動作例の流れを示す図である。処理水である次亜塩素酸水を生成する通常動作では、ポンプ21,23が稼動し、両電解室314,315に希釈食塩水が電解質水溶液として供給される。両電極312,313間には通常電圧が印加される。三方弁33は、第1電解室314と第1流路351とを接続する。第1電解室314からは処理水が排出され、電解処理水貯溜部16に貯留される。   FIG. 4 is a diagram illustrating a flow of a first operation example for cleaning the electrodes, which is executed under the control of the control unit 17 in the electrolytically treated water generating apparatus 150. In a normal operation for generating hypochlorous acid water as treated water, the pumps 21 and 23 are operated, and diluted saline is supplied to both the electrolysis chambers 314 and 315 as an electrolyte aqueous solution. A normal voltage is applied between the electrodes 312 and 313. The three-way valve 33 connects the first electrolysis chamber 314 and the first flow path 351. The treated water is discharged from the first electrolysis chamber 314 and stored in the electrolytic treated water reservoir 16.

電極の洗浄時には、まず、三方弁33が、第1電解室314と第1流路351との接続を、第1電解室314と排水路353との接続へと切り替える(ステップS11)。次に、直流電源32は、両電極312,313間に印加する電圧を逆電圧に変更する(ステップS12)。逆電圧の印加は短時間である。本実施形態では、約30秒間逆電圧が印加された後、逆電圧の印加は停止する(ステップS13)。その後、ポンプ23が停止し、電解室314,315に供給される液体が電解質水溶液から用水に変更される。これにより、電解室314,315内の液体が用水に置換される(ステップS14)。   When cleaning the electrode, first, the three-way valve 33 switches the connection between the first electrolysis chamber 314 and the first flow path 351 to the connection between the first electrolysis chamber 314 and the drainage path 353 (step S11). Next, the DC power source 32 changes the voltage applied between the electrodes 312 and 313 to a reverse voltage (step S12). The reverse voltage is applied for a short time. In this embodiment, after the reverse voltage is applied for about 30 seconds, the application of the reverse voltage is stopped (step S13). Thereafter, the pump 23 is stopped, and the liquid supplied to the electrolysis chambers 314 and 315 is changed from the electrolyte aqueous solution to water. As a result, the liquid in the electrolysis chambers 314 and 315 is replaced with service water (step S14).

30秒間用水を供給し、供給された用水の量が所定量に達したことが確認されると、無電圧の状態でポンプ23の稼動が再開され、電解室314,315に供給される液体は、用水から電解質水溶液に変更される。これにより、電解室314,315内の液体は、電解質水溶液に置換される(ステップS15)。直流電源32は、両電極312,313間への通常電圧の印加を再開し、処理水の生成が開始される(ステップS16)。このとき、測定値参照部171は、電流計35からの測定値を繰り返し参照する(ステップS17)。測定値が所定の範囲内になると、制御部17は、第1流路351から所望の処理水が排出されていると判断する。すなわち、制御部17は測定値参照部171を利用して、第1電解室314から排出される液体が、処理水に変化したか否かを監視する。直流電源32に電流計35を接続することにより、第1電解室314から取り出される液体の質を容易に監視することができる。   When supplying the water for 30 seconds and confirming that the amount of the supplied water has reached a predetermined amount, the operation of the pump 23 is resumed in a no-voltage state, and the liquid supplied to the electrolysis chambers 314 and 315 is The water is changed from the irrigation water to the electrolyte aqueous solution. Thereby, the liquid in the electrolysis chambers 314 and 315 is replaced with the electrolyte aqueous solution (step S15). The DC power supply 32 resumes application of the normal voltage between the electrodes 312 and 313, and the generation of treated water is started (step S16). At this time, the measured value reference unit 171 repeatedly refers to the measured value from the ammeter 35 (step S17). When the measured value falls within the predetermined range, the control unit 17 determines that the desired treated water is discharged from the first flow path 351. That is, the control unit 17 uses the measurement value reference unit 171 to monitor whether or not the liquid discharged from the first electrolysis chamber 314 has changed to treated water. By connecting the ammeter 35 to the DC power source 32, the quality of the liquid taken out from the first electrolysis chamber 314 can be easily monitored.

第1電解室314から排出される液体が、処理水に変化したことが検出されると、三方弁33が、第1電解室314と排水路353との接続を、第1電解室314と第1流路351との接続へと切り替える。これにより、第1電解室314と電解処理水貯溜部16とが接続され、通常動作へと戻る(ステップS18)。水質センサ34は、処理水が所望の質を有するか否かを確認する。   When it is detected that the liquid discharged from the first electrolysis chamber 314 has changed to treated water, the three-way valve 33 connects the first electrolysis chamber 314 and the drainage channel 353, and connects the first electrolysis chamber 314 and the first electrolysis chamber 314. Switching to connection with one flow path 351 is performed. Thereby, the 1st electrolysis chamber 314 and the electrolysis treatment water storage part 16 are connected, and it returns to normal operation (Step S18). The water quality sensor 34 confirms whether the treated water has a desired quality.

電解処理水生成装置150では、逆電圧印加時に第1電解室314にてアルカリ性水が発生する。このとき、三方弁33により、第1電解室314から排出される液体は廃棄され、水質センサ34には導かれない。これにより、水質センサ34として安価なものを用いても水質センサ34の機能低下を防止することができる。その結果、電解処理水生成装置150の製造コストを低減することができる。   In the electrolyzed water generator 150, alkaline water is generated in the first electrolysis chamber 314 when a reverse voltage is applied. At this time, the liquid discharged from the first electrolysis chamber 314 is discarded by the three-way valve 33 and is not guided to the water quality sensor 34. Thereby, even if an inexpensive thing is used as the water quality sensor 34, it is possible to prevent the function of the water quality sensor 34 from being deteriorated. As a result, the manufacturing cost of the electrolyzed water generating device 150 can be reduced.

また、逆電圧印加時に用水を電解室に一時的に流すため、電解質水溶液の消費量を削減することができる。   In addition, since water is temporarily allowed to flow into the electrolysis chamber when a reverse voltage is applied, the consumption of the aqueous electrolyte solution can be reduced.

上記動作例では、電解槽31に電解質水溶液が供給される際に、電解質貯溜部22に接続されたポンプ23が駆動され、用水と高濃度食塩水とが混合される。しかし、透過水の電解質濃度が高い場合は、透過水がそのまま電解質水溶液として使用されてもよい。すなわち、原水の状態や逆浸透膜の状態によって、ポンプ23を利用する上記動作例と、ポンプ23を利用せずに逆電圧を電極間に一時的に印加する動作とが切り替えられてよい。以下の他の動作例においても同様である。   In the above operation example, when the aqueous electrolyte solution is supplied to the electrolytic bath 31, the pump 23 connected to the electrolyte reservoir 22 is driven to mix the irrigation water and the high-concentration saline. However, when the electrolyte concentration of the permeated water is high, the permeated water may be used as the electrolyte aqueous solution as it is. That is, the operation example using the pump 23 and the operation of temporarily applying the reverse voltage between the electrodes without using the pump 23 may be switched depending on the state of the raw water or the state of the reverse osmosis membrane. The same applies to the other operation examples described below.

図5は、電解処理水生成装置150において、制御部17の制御により実行される、電極を洗浄する第2の動作例の流れを示す図である。第2の動作例では、第1の動作例と同様に、通常動作から、まず、三方弁33が、第1電解室314と第1流路351との接続を、第1電解室314と排水路353との接続へと切り替える(ステップS21)。その後、ポンプ23が停止し、電解室314,315に供給される液体が電解質水溶液から用水に変更される。これにより、電解室314,315内の液体が用水に置換される(ステップS22)。   FIG. 5 is a diagram illustrating a flow of a second operation example for cleaning the electrodes, which is executed under the control of the control unit 17 in the electrolytically treated water generating apparatus 150. In the second operation example, as in the first operation example, from the normal operation, the three-way valve 33 first connects the first electrolysis chamber 314 and the first flow path 351, and the first electrolysis chamber 314 and the drainage. The connection with the path 353 is switched (step S21). Thereafter, the pump 23 is stopped, and the liquid supplied to the electrolysis chambers 314 and 315 is changed from the electrolyte aqueous solution to water. As a result, the liquid in the electrolysis chambers 314 and 315 is replaced with service water (step S22).

次に、直流電源32は、両電極312,313間に印加する電圧を逆電圧に変更する(ステップS23)。逆電圧の印加は短時間であり、本実施形態では、約30秒間逆電圧が印加され、逆電圧の印加が停止される(ステップS24)。その後も一定時間、例えば、30秒間、両電解室314,315への用水の供給は継続される。   Next, the DC power supply 32 changes the voltage applied between the electrodes 312 and 313 to a reverse voltage (step S23). The reverse voltage is applied for a short time. In this embodiment, the reverse voltage is applied for about 30 seconds, and the reverse voltage application is stopped (step S24). Thereafter, the supply of water to both electrolysis chambers 314 and 315 is continued for a certain time, for example, 30 seconds.

供給された用水の量が所定量に達したことが確認されると、ポンプ23の稼動が再開され、電解室314,315に供給される液体は、用水から電解質水溶液に変更される。これにより、電解室314,315内の液体は、電解質水溶液に置換される(ステップS25)。直流電源32は、両電極312,313間への通常電圧の印加を再開し、処理水の生成が開始される(ステップS26)。このとき、第1の動作例と同様に、測定値参照部171は、電流計35からの測定値を繰り返し参照し(ステップS27)、制御部17は、第1電解室314から排出される液体が、処理水に変化したか否かを監視する。   When it is confirmed that the amount of supplied water has reached a predetermined amount, the operation of the pump 23 is resumed, and the liquid supplied to the electrolysis chambers 314 and 315 is changed from the water to the aqueous electrolyte solution. As a result, the liquid in the electrolysis chambers 314 and 315 is replaced with the aqueous electrolyte solution (step S25). The DC power supply 32 resumes application of the normal voltage between the electrodes 312 and 313, and generation of treated water is started (step S26). At this time, similarly to the first operation example, the measurement value reference unit 171 repeatedly refers to the measurement value from the ammeter 35 (step S27), and the control unit 17 performs liquid discharge from the first electrolysis chamber 314. However, it is monitored whether it changed into treated water.

第1電解室314から排出される液体が、処理水に変化したことが検出されると、三方弁33が、第1電解室314と排水路353との接続を、第1電解室314と第1流路351との接続へと切り替える。これにより、第1電解室314と電解処理水貯溜部16とが接続され、通常動作へと戻る(ステップS28)。   When it is detected that the liquid discharged from the first electrolysis chamber 314 has changed to treated water, the three-way valve 33 connects the first electrolysis chamber 314 and the drainage channel 353, and connects the first electrolysis chamber 314 and the first electrolysis chamber 314. Switching to connection with one flow path 351 is performed. Thereby, the 1st electrolysis chamber 314 and the electrolysis treatment water storage part 16 are connected, and it returns to normal operation (Step S28).

第2の動作例においても、逆電圧印加時に三方弁33により、第1電解室314から排出される液体は廃棄される。これにより、水質センサ34にアルカリ性水は導かれず、水質センサ34の機能低下を防止することができる。用水を電解室に一時的に流すことにより、電解質水溶液の消費量を削減することができる。   Also in the second operation example, the liquid discharged from the first electrolysis chamber 314 is discarded by the three-way valve 33 when a reverse voltage is applied. Thereby, alkaline water is not guide | induced to the water quality sensor 34, but the function fall of the water quality sensor 34 can be prevented. By temporarily flowing the water into the electrolysis chamber, the consumption of the aqueous electrolyte solution can be reduced.

図6は、電解処理水生成装置150において、制御部17の制御により実行される、電極を洗浄する第3の動作例の流れを示す図である。第3の動作例においても、まず、通常動作から、三方弁33が、第1電解室314と第1流路351との接続を、第1電解室314と排水路353との接続へと切り替える(ステップS31)。次に、直流電源32は、両電極312,313間に印加する電圧を逆電圧に変更する(ステップS32)。逆電圧の印加は短時間である。本実施形態では、約30秒間逆電圧が印加された後、逆電圧の印加が通常電圧の印加に変更される(ステップS33)。   FIG. 6 is a diagram illustrating a flow of a third operation example for cleaning the electrodes, which is executed under the control of the control unit 17 in the electrolytically treated water generating apparatus 150. Also in the third operation example, first, from the normal operation, the three-way valve 33 switches the connection between the first electrolysis chamber 314 and the first flow path 351 to the connection between the first electrolysis chamber 314 and the drainage path 353. (Step S31). Next, the DC power supply 32 changes the voltage applied between the electrodes 312 and 313 to a reverse voltage (step S32). The reverse voltage is applied for a short time. In the present embodiment, after the reverse voltage is applied for about 30 seconds, the reverse voltage application is changed to the normal voltage application (step S33).

その後、第1の動作例と同様に、測定値参照部171は、電流計35からの測定値を繰り返し参照し(ステップS34)、制御部17は、第1電解室314から排出される液体が、処理水に変化したか否かを監視する。   Thereafter, similarly to the first operation example, the measurement value reference unit 171 repeatedly refers to the measurement value from the ammeter 35 (step S34), and the control unit 17 determines that the liquid discharged from the first electrolysis chamber 314 is discharged. Monitor whether it has changed to treated water.

第1電解室314から排出される液体が、処理水に変化したことが検出されると、三方弁33が、第1電解室314と排水路353との接続を、第1電解室314と第1流路351との接続へと切り替える。これにより、第1電解室314と電解処理水貯溜部16とが接続され、通常動作へと戻る(ステップS35)。   When it is detected that the liquid discharged from the first electrolysis chamber 314 has changed to treated water, the three-way valve 33 connects the first electrolysis chamber 314 and the drainage channel 353, and connects the first electrolysis chamber 314 and the first electrolysis chamber 314. Switching to connection with one flow path 351 is performed. Thereby, the 1st electrolysis chamber 314 and the electrolysis treated water storage part 16 are connected, and it returns to normal operation (Step S35).

第3の動作例においても、逆電圧印加時に三方弁33により、第1電解室314から排出される液体は廃棄される。これにより、水質センサ34にアルカリ性水は導かれず、水質センサ34の機能低下を防止することができる。   Also in the third operation example, the liquid discharged from the first electrolysis chamber 314 is discarded by the three-way valve 33 when the reverse voltage is applied. Thereby, alkaline water is not guide | induced to the water quality sensor 34, but the function fall of the water quality sensor 34 can be prevented.

図7は、電解処理水生成装置150において、制御部17の制御により実行される、電極を洗浄する第4の動作例の流れを示す図である。第4の動作例においても、まず、通常動作から、三方弁33が、第1電解室314と第1流路351との接続を、第1電解室314と排水路353との接続へと切り替える(ステップS41)。その後、ポンプ23が停止し、電解室314,315に供給される液体が電解質水溶液から用水に変更される。これにより、電解室314,315内の液体が用水に置換される(ステップS42)。   FIG. 7 is a diagram illustrating a flow of a fourth operation example for cleaning the electrodes, which is executed under the control of the control unit 17 in the electrolytically treated water generating apparatus 150. Also in the fourth operation example, first, from the normal operation, the three-way valve 33 switches the connection between the first electrolysis chamber 314 and the first flow path 351 to the connection between the first electrolysis chamber 314 and the drainage path 353. (Step S41). Thereafter, the pump 23 is stopped, and the liquid supplied to the electrolysis chambers 314 and 315 is changed from the electrolyte aqueous solution to water. As a result, the liquid in the electrolysis chambers 314 and 315 is replaced with service water (step S42).

次に、直流電源32は、両電極312,313間に印加する電圧を逆電圧に変更する(ステップS43)。逆電圧の印加が行われている間に、ポンプ23の稼動が再開され、電解室314,315に供給される液体は、用水から電解質水溶液に変更される。これにより、電解室314,315内の液体は、電解質水溶液に置換される(ステップS44)。   Next, the DC power supply 32 changes the voltage applied between the electrodes 312 and 313 to a reverse voltage (step S43). While the reverse voltage is being applied, the operation of the pump 23 is resumed, and the liquid supplied to the electrolysis chambers 314 and 315 is changed from water for use to an aqueous electrolyte solution. Thereby, the liquid in the electrolysis chambers 314 and 315 is replaced with the electrolyte aqueous solution (step S44).

逆電圧の印加は短時間であり、本実施形態では、約30秒間逆電圧が印加される。直流電源32は、両電極312,313間への通常電圧の印加を再開し、処理水の生成が開始される(ステップS45)。このとき、第1の動作例と同様に、測定値参照部171は、電流計35からの測定値を繰り返し参照し(ステップS46)、制御部17は、第1電解室314から排出される液体が、処理水に変化したか否かを監視する。   The reverse voltage is applied for a short time. In this embodiment, the reverse voltage is applied for about 30 seconds. The DC power source 32 resumes application of the normal voltage between the electrodes 312 and 313, and generation of treated water is started (step S45). At this time, similarly to the first operation example, the measurement value reference unit 171 repeatedly refers to the measurement value from the ammeter 35 (step S46), and the control unit 17 performs liquid discharge from the first electrolysis chamber 314. However, it is monitored whether it changed into treated water.

第1電解室314から排出される液体が、処理水に変化したことが検出されると、三方弁33が、第1電解室314と排水路353との接続を、第1電解室314と第1流路351との接続へと切り替える。これにより、第1電解室314と電解処理水貯溜部16とが接続され、通常動作へと戻る(ステップS47)。   When it is detected that the liquid discharged from the first electrolysis chamber 314 has changed to treated water, the three-way valve 33 connects the first electrolysis chamber 314 and the drainage channel 353, and connects the first electrolysis chamber 314 and the first electrolysis chamber 314. Switching to connection with one flow path 351 is performed. Thereby, the 1st electrolysis chamber 314 and the electrolysis treated water storage part 16 are connected, and it returns to normal operation (Step S47).

第4の動作例においても、逆電圧印加時に三方弁33により、第1電解室314から排出される液体は廃棄される。これにより、水質センサ34にアルカリ性水は導かれず、水質センサ34の機能低下を防止することができる。用水を電解室に一時的に流すことにより、電解質水溶液の消費量を削減することができる。   Also in the fourth operation example, the liquid discharged from the first electrolysis chamber 314 is discarded by the three-way valve 33 when the reverse voltage is applied. Thereby, alkaline water is not guide | induced to the water quality sensor 34, but the function fall of the water quality sensor 34 can be prevented. By temporarily flowing the water into the electrolysis chamber, the consumption of the aqueous electrolyte solution can be reduced.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々な変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible.

電解処理水生成装置150では、次亜塩素酸水が電解処理水として生成されるが、次亜塩素酸水外の電解処理水が生成されてもよい。また、通常電圧にて第1電極312が陰極となり、逆電圧にて第1電極312が陽極となり、第1電解室314からアルカリ性水が電解処理水として生成されてもよい。さらに、第1電解室314および第2電解室315から酸性水およびアルカリ性水の双方が電解処理水として取水されてもよい。   In the electrolyzed water generator 150, hypochlorous acid water is generated as the electrolyzed water, but electrolyzed water outside the hypochlorous acid water may be generated. Alternatively, the first electrode 312 may be a cathode at a normal voltage, the first electrode 312 may be an anode at a reverse voltage, and alkaline water may be generated from the first electrolysis chamber 314 as electrolytically treated water. Furthermore, both acidic water and alkaline water may be taken from the first electrolysis chamber 314 and the second electrolysis chamber 315 as electrolytic treatment water.

上記第1ないし第4の動作例では、各工程を時系列にて説明したが、実際には、装置内を時間の経過とともに液体が流れるため、隣接する工程を同時に行っても、あるいは、僅かな時間だけ順序を逆転させても、同様の処理を行うことができる。このような場合であっても、実質的に本発明の工程順序に含まれる。   In the first to fourth operation examples, each process has been described in time series. However, in actuality, the liquid flows in the apparatus over time, so even if the adjacent processes are performed simultaneously, The same processing can be performed even if the order is reversed for a long time. Even such a case is substantially included in the process sequence of the present invention.

上記実施形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.

本発明は、様々な電解処理水を生成する技術に利用可能である。   The present invention can be used in technologies for generating various electrolytically treated water.

17 制御部
32 直流電源
33 三方弁(接続切替部)
34 水質センサ
35 電流計
141 第1供給部
142 第2供給部
150 電解処理水生成装置
171 測定値参照部
311 イオン透過性隔膜
312 第1電極
313 第2電極
314 第1電解室
315 第2電解室
341 指示電極
342 参照電極
351 第1流路
352 第2流路
353 排水路
17 Control unit 32 DC power supply 33 Three-way valve (connection switching unit)
34 Water quality sensor 35 Ammeter 141 First supply unit 142 Second supply unit 150 Electrolyzed water generation device 171 Measurement value reference unit 311 Ion permeable diaphragm 312 First electrode 313 Second electrode 314 First electrolysis chamber 315 Second electrolysis chamber 341 Indicator electrode 342 Reference electrode 351 First channel 352 Second channel 353 Drainage channel

Claims (11)

第1電解室と、
第2電解室と、
前記第1電解室と前記第2電解室との間に配置されるイオン透過性隔膜と、
前記第1電解室内の液中に配置される第1電極と、
前記第2電解室内の液中に配置される第2電極と、
前記第1電極と前記第2電極との間に通常電圧および逆電圧の一方を選択的に印加する直流電源と、
前記第1電解室に電解質水溶液を供給する、または、前記電解質水溶液よりも電解質濃度が低く、前記電解質水溶液の生成に利用される用水および前記電解質水溶液の一方を選択的に供給する第1供給部と、
前記第2電解室に前記電解質水溶液を供給する第2供給部と、
第1流路と、
前記第2電解室に接続される第2流路と、
前記第1電解室と前記第1流路との接続と、前記第1電解室と排水路との接続とを切り替える接続切替部と、
前記第1流路上に設けられ、酸性またはアルカリ性の液体のみを測定可能に設定された水質センサと、
制御部と、
を備え、
前記制御部の制御により、
a)前記第1電解室と前記第1流路とを接続し、前記第1電解室に前記電解質水溶液を供給し、前記第1電極と前記第2電極との間に前記通常電圧を印加することにより、前記第1電解室から処理水が排出される状態から、前記第1電解室と前記第1流路との接続を、前記第1電解室と前記排水路との接続へと切り替える工程と、
b)前記a)工程の後に、前記第1電極と前記第2電極との間に印加する電圧を前記逆電圧に変更する工程と、
c)前記b)工程の後に、前記第1電極と前記第2電極との間に印加する電圧を前記通常電圧に変更する工程と、
d)前記c)工程の後に、前記第1電解室から排出される液体が、前記処理水に変化したか否かを監視する工程と、
e)前記d)工程にて、前記第1電解室から排出される液体が、前記処理水に変化したことを検出した後に、前記第1電解室と前記排水路との接続を、前記第1電解室と前記第1流路との接続へと切り替える工程と、
を実行する、電解処理水生成装置。
A first electrolysis chamber;
A second electrolysis chamber;
An ion permeable membrane disposed between the first electrolysis chamber and the second electrolysis chamber;
A first electrode disposed in the liquid in the first electrolytic chamber;
A second electrode disposed in the liquid in the second electrolytic chamber;
A DC power source that selectively applies one of a normal voltage and a reverse voltage between the first electrode and the second electrode;
A first supply unit that supplies an aqueous electrolyte solution to the first electrolysis chamber, or selectively supplies one of water for use in generating the aqueous electrolyte solution and the aqueous electrolyte solution that has an electrolyte concentration lower than that of the aqueous electrolyte solution When,
A second supply unit for supplying the aqueous electrolyte solution to the second electrolysis chamber;
A first flow path;
A second flow path connected to the second electrolysis chamber;
A connection switching unit that switches connection between the first electrolysis chamber and the first flow path and connection between the first electrolysis chamber and the drainage channel;
A water quality sensor provided on the first flow path and configured to measure only acidic or alkaline liquid;
A control unit;
With
By the control of the control unit,
a) connecting the first electrolysis chamber and the first flow path, supplying the electrolyte aqueous solution to the first electrolysis chamber, and applying the normal voltage between the first electrode and the second electrode; Thus, the process of switching the connection between the first electrolysis chamber and the first flow path to the connection between the first electrolysis chamber and the drainage channel from the state in which treated water is discharged from the first electrolysis chamber. When,
b) after the step a), changing the voltage applied between the first electrode and the second electrode to the reverse voltage;
c) after the step b), changing the voltage applied between the first electrode and the second electrode to the normal voltage;
d) a step of monitoring whether the liquid discharged from the first electrolysis chamber has changed to the treated water after the step c);
e) In the step d), after detecting that the liquid discharged from the first electrolysis chamber has changed to the treated water, the connection between the first electrolysis chamber and the drainage channel is connected to the first electrolysis chamber. Switching to the connection between the electrolysis chamber and the first flow path;
An electrolyzed water generating device that executes
前記制御部の制御により、
f)前記b)工程の後、前記c)工程の前に、前記第1電極と前記第2電極との間における電圧の印加を停止し、前記第1電解室に供給される液体を前記電解質水溶液から前記用水に変更する工程と、
g)前記f)工程の後、前記c)工程の前に、前記第1電解室に供給される液体を前記用水から前記電解質水溶液に変更する工程と、
をさらに実行する、請求項1に記載の電解処理水生成装置。
By the control of the control unit,
f) After the step b) and before the step c), the application of voltage between the first electrode and the second electrode is stopped, and the liquid supplied to the first electrolysis chamber is allowed to flow into the electrolyte. Changing from an aqueous solution to the water;
g) after the step f) and before the step c), changing the liquid supplied to the first electrolysis chamber from the water to the aqueous electrolyte solution;
The electrolytic-process water production | generation apparatus of Claim 1 which performs further.
前記制御部の制御により、
h)前記a)工程の後、前記b)工程の前に、前記第1電解室に供給される液体を前記電解質水溶液から前記用水に変更する工程と、
i)前記b)工程の後、前記c)工程の前に、前記第1電極と前記第2電極との間における電圧の印加を停止する工程と、
j)前記i)工程の後、前記c)工程の前に、前記第1電解室に供給される液体を前記用水から前記電解質水溶液に変更する工程と、
をさらに備える、請求項1に記載の電解処理水生成装置。
By the control of the control unit,
h) after the step a), and before the step b), changing the liquid supplied to the first electrolysis chamber from the electrolyte aqueous solution to the water;
i) after the step b) and before the step c), stopping the application of voltage between the first electrode and the second electrode;
j) After the step i) and before the step c), changing the liquid supplied to the first electrolysis chamber from the water to the aqueous electrolyte solution;
The electrolyzed water generating apparatus according to claim 1, further comprising:
前記制御部の制御により、
k)前記a)工程の後、前記b)工程の前に、前記第1電解室に供給される液体を前記電解質水溶液から前記用水に変更する工程と、
l)前記b)工程の後、前記c)工程の前に、前記第1電解質に供給される液体を前記用水から前記電解質水溶液に変更する工程と、
をさらに実行する、請求項1に記載の電解処理水生成装置。
By the control of the control unit,
k) after the step a) and before the step b), changing the liquid supplied to the first electrolysis chamber from the electrolyte aqueous solution to the irrigation water;
l) after the step b) and before the step c), changing the liquid supplied to the first electrolyte from the water to the aqueous electrolyte solution;
The electrolytic-process water production | generation apparatus of Claim 1 which performs further.
前記第1電解室に供給される前記電解質水溶液として、食塩水を用い、
前記第1電極と前記第2電極との間に前記通常電圧を印加した際に、前記第1電極が陽極である、請求項1ないし4のいずれかに記載の電解処理水生成装置。
As the electrolyte aqueous solution supplied to the first electrolysis chamber, saline is used,
The electrolyzed water generating apparatus according to any one of claims 1 to 4, wherein when the normal voltage is applied between the first electrode and the second electrode, the first electrode is an anode.
前記第1電極と前記第2電極との間を流れる電流を測定する電流計、をさらに備え、
前記制御部が、前記電流計の測定値を参照する測定値参照部、を備え、
前期d)工程において、前記制御部が、前記電流計の測定値を参照する、請求項1ないし5のいずれかに記載の電解処理水生成装置。
An ammeter that measures a current flowing between the first electrode and the second electrode;
The control unit includes a measurement value reference unit that refers to a measurement value of the ammeter,
The electrolyzed water generating apparatus according to any one of claims 1 to 5, wherein in the step d), the control unit refers to a measurement value of the ammeter.
前記水質センサが、
白金電極である指示電極と、
銀/塩化銀電極である参照電極と、
を備え、
前記指示電極と前記参照電極とが、前記第1流路を流れる液体に直接的に触れる、請求項1ないし6のいずれかに記載の電解処理水生成装置。
The water quality sensor is
An indicator electrode which is a platinum electrode;
A reference electrode which is a silver / silver chloride electrode;
With
The electrolyzed water generating apparatus according to any one of claims 1 to 6, wherein the indicator electrode and the reference electrode directly touch a liquid flowing through the first flow path.
第1電解室と、
第2電解室と、
前記第1電解室と前記第2電解室との間に配置されるイオン透過性隔膜と、
前記第1電解室内の液中に配置される第1電極と、
前記第2電解室内の液中に配置される第2電極と、
前記第1電極と前記第2電極との間に通常電圧および逆電圧の一方を選択的に印加する直流電源と、
前記第1電解室に電解質水溶液を供給する、または、前記電解質水溶液よりも電解質濃度が低く、前記電解質水溶液の生成に利用される用水および前記電解質水溶液の一方を選択的に供給する第1供給部と、
前記第2電解室に前記電解質水溶液を供給する第2供給部と、
第1流路と、
前記第2電解室に接続される第2流路と、
前記第1電解室と前記第1流路との接続と、前記第1電解室と排水路との接続とを切り替える接続切替部と、
前記第1流路上に設けられ、酸性またはアルカリ性の液体のみを測定可能に設定された水質センサと、
を備える電解処理水生成装置における電解処理水生成方法であって、
a)前記第1電解室と前記第1流路とを接続し、前記第1電解室に前記電解質水溶液を供給し、前記第1電極と前記第2電極との間に前記通常電圧を印加することにより、前記第1電解室から処理水が排出される状態から、前記第1電解室と前記第1流路との接続を、前記第1電解室と前記排水路との接続へと切り替える工程と、
b)前記a)工程の後に、前記第1電極と前記第2電極との間に印加する電圧を前記逆電圧に変更する工程と、
c)前記b)工程の後に、前記第1電極と前記第2電極との間に印加する電圧を前記通常電圧に変更する工程と、
d)前記c)工程の後に、前記第1電解室から排出される液体が、前記処理水に変化したか否かを監視する工程と、
e)前記d)工程にて、前記第1電解室から排出される液体が、前記処理水に変化したことを検出した後に、前記第1電解室と前記排水路との接続を、前記第1電解室と前記第1流路との接続へと切り替える工程と、
を備える、電解処理水生成方法。
A first electrolysis chamber;
A second electrolysis chamber;
An ion permeable membrane disposed between the first electrolysis chamber and the second electrolysis chamber;
A first electrode disposed in the liquid in the first electrolytic chamber;
A second electrode disposed in the liquid in the second electrolytic chamber;
A DC power source that selectively applies one of a normal voltage and a reverse voltage between the first electrode and the second electrode;
A first supply unit that supplies an aqueous electrolyte solution to the first electrolysis chamber, or selectively supplies one of water for use in generating the aqueous electrolyte solution and the aqueous electrolyte solution that has an electrolyte concentration lower than that of the aqueous electrolyte solution When,
A second supply unit for supplying the aqueous electrolyte solution to the second electrolysis chamber;
A first flow path;
A second flow path connected to the second electrolysis chamber;
A connection switching unit that switches connection between the first electrolysis chamber and the first flow path and connection between the first electrolysis chamber and the drainage channel;
A water quality sensor provided on the first flow path and configured to measure only acidic or alkaline liquid;
An electrolyzed water generating method in an electrolyzed water generating apparatus comprising:
a) connecting the first electrolysis chamber and the first flow path, supplying the electrolyte aqueous solution to the first electrolysis chamber, and applying the normal voltage between the first electrode and the second electrode; Thus, the process of switching the connection between the first electrolysis chamber and the first flow path to the connection between the first electrolysis chamber and the drainage channel from the state in which treated water is discharged from the first electrolysis chamber. When,
b) after the step a), changing the voltage applied between the first electrode and the second electrode to the reverse voltage;
c) after the step b), changing the voltage applied between the first electrode and the second electrode to the normal voltage;
d) a step of monitoring whether the liquid discharged from the first electrolysis chamber has changed to the treated water after the step c);
e) In the step d), after detecting that the liquid discharged from the first electrolysis chamber has changed to the treated water, the connection between the first electrolysis chamber and the drainage channel is connected to the first electrolysis chamber. Switching to the connection between the electrolysis chamber and the first flow path;
An electrolytically treated water generating method comprising:
f)前記b)工程の後、前記c)工程の前に、前記第1電解室に供給される液体を前記電解質水溶液から前記用水に変更し、前記第1電極と前記第2電極との間における電圧の印加を停止する工程と、
g)前記f)工程の後、前記c)工程の前に、前記第1電解室に供給される液体を前記用水から前記電解質水溶液に変更する工程と、
をさらに備える、請求項8に記載の電解処理水生成方法。
f) After the step b) and before the step c), the liquid supplied to the first electrolysis chamber is changed from the aqueous electrolyte solution to the water to be used, and between the first electrode and the second electrode. Stopping the application of voltage in
g) after the step f) and before the step c), changing the liquid supplied to the first electrolysis chamber from the water to the aqueous electrolyte solution;
The method for generating electrolytically treated water according to claim 8, further comprising:
h)前記a)工程の後、前記b)工程の前に、前記第1電解室に供給される液体を前記電解質水溶液から前記用水に変更する工程と、
i)前記b)工程の後、前記c)工程の前に、前記第1電極と前記第2電極との間における電圧の印加を停止する工程と、
j)前記i)工程の後、前記c)工程の前に、前記第1電解室に供給される液体を前記用水から前記電解質水溶液に変更する工程と、
をさらに備える、請求項8に記載の電解処理水生成方法。
h) after the step a), and before the step b), changing the liquid supplied to the first electrolysis chamber from the electrolyte aqueous solution to the water;
i) after the step b) and before the step c), stopping the application of voltage between the first electrode and the second electrode;
j) After the step i) and before the step c), changing the liquid supplied to the first electrolysis chamber from the water to the aqueous electrolyte solution;
The method for generating electrolytically treated water according to claim 8, further comprising:
k)前記a)工程の後、前記b)工程の前に、前記第1電解室に供給される液体を前記電解質水溶液から前記用水に変更する工程と、
l)前記b)工程の後、前記c)工程の前に、前記第1電解質に供給される液体を前記用水から前記電解質水溶液に変更する工程と、
をさらに備える、請求項8に記載の電解処理水生成方法。
k) after the step a) and before the step b), changing the liquid supplied to the first electrolysis chamber from the electrolyte aqueous solution to the irrigation water;
l) after the step b) and before the step c), changing the liquid supplied to the first electrolyte from the water to the aqueous electrolyte solution;
The method for generating electrolytically treated water according to claim 8, further comprising:
JP2012152673A 2012-07-06 2012-07-06 Electrolytic treatment water generator and method for generating electrolytic treatment water Pending JP2014015646A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012152673A JP2014015646A (en) 2012-07-06 2012-07-06 Electrolytic treatment water generator and method for generating electrolytic treatment water
PCT/JP2013/068398 WO2014007340A1 (en) 2012-07-06 2013-07-04 Device for generating electrolytically treated water, and method for generating electrolytically treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152673A JP2014015646A (en) 2012-07-06 2012-07-06 Electrolytic treatment water generator and method for generating electrolytic treatment water

Publications (1)

Publication Number Publication Date
JP2014015646A true JP2014015646A (en) 2014-01-30

Family

ID=49882091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152673A Pending JP2014015646A (en) 2012-07-06 2012-07-06 Electrolytic treatment water generator and method for generating electrolytic treatment water

Country Status (2)

Country Link
JP (1) JP2014015646A (en)
WO (1) WO2014007340A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132491A1 (en) * 2015-02-18 2016-08-25 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
JP2017196559A (en) * 2016-04-26 2017-11-02 株式会社バイオレドックス研究所 Electrolytic water manufacturing device and operation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580733B (en) * 2018-12-10 2020-10-30 亳州学院 Electrolytic cell for electrochemical test of dregs treatment and use method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051359Y2 (en) * 1988-06-02 1993-01-13
JPH06320162A (en) * 1993-05-14 1994-11-22 Brother Ind Ltd Water preparing apparatus
JPH08192160A (en) * 1995-01-13 1996-07-30 Janome Sewing Mach Co Ltd Water maker
JP3539459B2 (en) * 1995-10-19 2004-07-07 日本インテック株式会社 ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water
JPH11128938A (en) * 1997-10-29 1999-05-18 Honda Motor Co Ltd Formation of electrolyzed water
JP2003225666A (en) * 2002-02-06 2003-08-12 Aiken Kogyo Kk Electrolyzed water producing equipment
JP2008086885A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Electrolytic water generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132491A1 (en) * 2015-02-18 2016-08-25 独立行政法人石油天然ガス・金属鉱物資源機構 Apparatus for producing lithium hydroxide and method for producing lithium hydroxide
JP2017196559A (en) * 2016-04-26 2017-11-02 株式会社バイオレドックス研究所 Electrolytic water manufacturing device and operation method therefor

Also Published As

Publication number Publication date
WO2014007340A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
WO2017006837A1 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
KR20140074927A (en) Electrolysis system and electrolysis method for the same
JP2008100180A (en) Water treatment apparatus
JP4090665B2 (en) Electrolyzed water production method
JP2011522123A (en) Electrolytic cell cleaning method including electrode and electrolytic product generator
JP6836914B2 (en) Water treatment equipment, dialysate preparation water production equipment and hydrogen water server
JP2015217357A (en) Electrolytic water production apparatus, and production method of electrolytic water using the same
JP2012057229A (en) Scale prevention method for three-compartment electrolytic water generator, and three-compartment electrolytic water generator
JP7037515B2 (en) Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane
JP5863143B2 (en) Method for producing oxidized water for sterilization
WO2014007340A1 (en) Device for generating electrolytically treated water, and method for generating electrolytically treated water
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
JP2013091039A (en) Strong acid water producing apparatus
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
Long et al. A multifunctional and low-energy electrochemical membrane system for chemical-free regulation of solution pH
JP2008178845A (en) Electrolyzed hypochlorous water production apparatus
JP2008178845A5 (en)
JP6086306B2 (en) Ballast water treatment apparatus and ballast water treatment method
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP4543515B2 (en) Batch type electrolyzed water generator
WO2020179339A1 (en) Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film
JP4543516B2 (en) Batch type electrolyzed water generator
KR102031322B1 (en) 3-room type electrolyzed water producing apparatus