JP4543515B2 - Batch type electrolyzed water generator - Google Patents

Batch type electrolyzed water generator Download PDF

Info

Publication number
JP4543515B2
JP4543515B2 JP2000220433A JP2000220433A JP4543515B2 JP 4543515 B2 JP4543515 B2 JP 4543515B2 JP 2000220433 A JP2000220433 A JP 2000220433A JP 2000220433 A JP2000220433 A JP 2000220433A JP 4543515 B2 JP4543515 B2 JP 4543515B2
Authority
JP
Japan
Prior art keywords
water
electrolyzed water
cathode
anode
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000220433A
Other languages
Japanese (ja)
Other versions
JP2002035751A (en
Inventor
朋秀 松本
啓次郎 國本
岳見 桶田
浩二 岡
一繁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000220433A priority Critical patent/JP4543515B2/en
Publication of JP2002035751A publication Critical patent/JP2002035751A/en
Application granted granted Critical
Publication of JP4543515B2 publication Critical patent/JP4543515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被電解水を滞留状態で電気分解して電解水を生成するバッチ式の電解水生成装置に関し、特に還元力の強いアルカリ水と殺菌水を容易に生成できる電解水生成装置に関するものである。
【0002】
【従来の技術】
電解水生成装置には、水道等の給水設備に接続され、流水状態で電解を行い、酸性水やアルカリ水を生成する流水式と、給水設備に接続しない簡易、低コスト構造で水を滞留状態で電解するバッチ方式がある。流水方式では即座に電解水が取水できるメリットがあるが、酸化力の強い酸性水(以下強酸性水とする)や還元力の強いアルカリ水(以下強アルカリ水とする)を得ようとした場合、電極の大型化が必要となり大電力が必要となるとともに複雑な構成が必要となり、装置全体のコストアップとなる。一方、バッチ方式では原水を滞留状態で電解するため長時間にわたる電解が可能であり、簡易な構成で上記強酸性水や強アルカリ水が得られやすい。
【0003】
従来のバッチ方式の電解装置としては、特開平8−299958号公報に記載されているようなものがあった。この電解装置は図6に示すように、隔膜1によって陽極室2と陰極室3を形成するとともに陽極室2には陽極4を、また陰極室3には陰極5が隔膜1を介して対向配置されている。6は開閉自在な蓋であり、電解時の生成ガスを外部に排出する穴7が設けられている。8は制御回路であり、陽極4と陰極5に通電される。生成された電解水はそれぞれ酸性水出口9およびアルカリ水出口10より取水される構成となっている。
【0004】
この構成において、電解に際しては蓋6を開放して手作業によって所定濃度に調整した電解質としての食塩水を電解槽に充填し、制御回路8によって陽極4と陰極5間に電圧が印可され、電気量(電流と時間の積)に応じて所望のpHとなるように水が電気分解されて陽極室2には強酸性水が、陰極室3には強アルカリ水が生成され、それぞれ酸性水出口9およびアルカリ水出口10より取水される。
なお陽極側に生成される塩素ガスおよび酸素ガス、陰極側に生成される水素ガスは穴7から電解槽外に排出される。
【0005】
【発明が解決しようとする課題】
しかしながら上記従来のバッチ式電解装置では、以下に述べるような課題があった。
【0006】
(1)電解前に手作業によって所定濃度の食塩水を作成するため、別途撹拌容器や食塩の計量手段が必要であり、面倒であるとともに食塩濃度が変動し、所望のpH値の電解生成水が安定して得られない。
【0007】
(2)電解によって同時に生成される強アルカリ水と強酸性水のうち、殺菌水としては強酸性水が用いられるが、強酸性水は塩素ガスを多く含有する。この塩素ガスは人体に有害であるとともに異臭があり、また金属などを腐食する腐食性ガスであり、殺菌水としての利用に際して取り扱いが課題となる。
【0008】
(3)電解後、放置すると隔膜を介して酸性水およびアルカリ水が浸透混入し、pH値が劣化する。
【0009】
(4)水道水などの原水には各種イオンが含まれており、特に多く含まれるカルシウムやマグネシウムイオンなどの陽イオンは陰極側の水酸基と反応して水酸化カルシウムや水酸化マグネシウムとなり、溶解限界を越えると陰極、隔膜の表面に析出し、電解電流の妨害因子となり、長期間使用すると所望のpH値が得られなくなる。
【0010】
【課題を解決するための手段】
本発明は上記課題を解決するために、給水口と、隔膜を介して陽極室と陰極室を形成し、陽極水出口と陰極水出口を有する電解槽と、前記電解槽内の水を給液手段によって食塩タンクに導入する導水路と、前記食塩タンクの希釈食塩溶液を前記陽極室に供給する給塩路と、、前記電解槽の下流に設けられ陽極水と陰極水の選択吐出もしくは混合吐出可能な流路切換弁と、前記電解槽の電解水を吐出手段によって吐出口から吐出する吐出路と、制御手段とから構成したものである。
【0011】
上記発明によれば、電解槽から給液手段によって給水することにより食塩タンクの希釈食塩水が陽極室に導入されるので、電解槽に水道水などの原水を入れるのみで電解可能となる。また吐出手段を有するので、スイッチ操作などにより自動的に電解水を取水できる。さらに流路切換弁を設けて陽極水と陰極水の選択吐出もしくは混合中和吐出可能としたので、還元力の強い強アルカリ水と殺菌力にすぐれた弱酸性殺菌水(食塩電解水)が任意に得られる。この殺菌水生成時に陽極水と陰極水が混合して所定のpH値に中和されるので塩素ガスの含有量を低減でき、殺菌水としての利用に際しての課題が解決される。
【0012】
【発明の実施の形態】
本発明の請求項1にかかるバッチ式電解水生成装置は、給水口と、隔膜を介して陽極室と陰極室を形成し、各々陽極と陰極を配設するとともに陽極水出口と陰極水出口を有する電解槽と、前記電解槽内の水を給液手段によって食塩タンクに導入する導水路と、前記食塩タンクの希釈食塩溶液を前記陽極室に供給する給塩路と、前記陽極水出口と陰極水出口の下流に設けられ陽極水と陰極水の選択吐出もしくは混合吐出可能な流路切換弁と、前記電解槽の電解水を吐出手段によって吐出口から吐出する吐出路と、制御手段とから構成したものである。
【0013】
そして、電解槽から給液手段によって給水することにより食塩タンクの希釈食塩水が陽極室に導入されるので、手作業によって食塩水などを作製する必要がなく、食塩濃度も安定するので所望のpH値の電解生成水が安定して精度良く得られる。
【0014】
また、陽極室のみに電解質溶液が供給されるので短時間に還元力の強いアルカリ水が得られる。すなわち、陽/陰極間に電圧が印可されると被電解水に含まれるイオンは電気吸引力により電極と逆極性のイオンが隔膜を通過して移動することとなる。したがって陽極室に導入された食塩のNaイオンは隔膜を経て陰極室へと即座に移動する。この電気吸引力以外にも例えば拡散理論にしたがえば、Naイオンが拡散によってイオン濃度を均一にするように作用する。この結果、陽/陰極間に流れる電流が増加し、短時間に還元力の強いアルカリ水が得られる。この強アルカリ水は油脂の鹸化や乳化作用および蛋白質に対する加水分解作用を有し、家具や住宅建材表面などの洗浄水として利用できる。なお、陰極室は原水なので陽極室へのイオンの移動量は極めて少ない。
【0015】
さらに、流路切換弁を設けて陽極水と陰極水の選択吐出もしくは混合中和吐出可能としたので、還元力の強い強アルカリ水と殺菌力にすぐれた弱酸性殺菌水(食塩電解水)が任意に得られる。この殺菌水生成時に陽極水と陰極水が混合して所定のpH値に中和されるので塩素ガスの含有量を低減でき、殺菌水としての利用に際しての課題が解消される。
【0016】
また請求項2にかかるバッチ式電解水生成装置は、陽極水と陰極水の混合吐出に際して、電解水のpH値が所定値となるように陰極水の流量を制限する絞り部材を設けたものである。
【0017】
そして、殺菌水の取水に際して陽極水出口の下流に設けた絞り部材によって陽極水と陰極水が所定の比率で混合し、所定のpH値となるように中和される。この結果、吐出口から得られる電解水を所望のpH値にすることができ、pH値が中性側に移行するので塩素ガスCl2↑の含有量を低減して人体への影響および異臭を防止でき、殺菌水としての利用に際して取り扱いが容易となる。
【0018】
また請求項3にかかるバッチ式電解水生成装置は、上記混合吐出される電解水のpH値が4から7の範囲となるように陰極水流量を制限したものである。
【0019】
そして、殺菌作用を有する次亜塩素酸HClOの存在比はpH依存性を有し、強酸性側となるほど塩素ガスCl2↑の存在比が大きくなり、次亜塩素酸の存在比が小さくなる。例えばpH2以下となると塩素ガスの存在比は約30%を越えるようになる。pH4以上となると塩素ガスの存在比は数%となり、塩素ガス臭は殆ど気にならないレベルとなる。一方、中性であるpH7を越えると次亜塩素酸イオンClO-の存在比が急激に増加して殺菌力が低下する。したがってpH4〜7の範囲とすることで塩素ガスの悪影響を未然に防止しつつ次亜塩素酸HClOの含有率の高い、つまり殺菌力にすぐれた殺菌水が得られる。
【0020】
また請求項4にかかるバッチ式電解水生成装置は、給塩路に電解槽の水の侵入を阻止する方向に逆止弁を設けたものである。
【0021】
そして、逆止弁を設けることで電解槽への給水時に食塩タンク側への原水の逆流が防止され、食塩溶液の原水逆流による希釈が防止される。この結果、常に所望の濃度の食塩濃度が精度良く食塩供給口から電解槽へ供給されることとなり、安定したpH値が得られる。
【0022】
また請求項5にかかるバッチ式電解水生成装置は、陽極室側の水を食塩タンクに供給する構成としたものである。
【0023】
そして、陽極室側の水を食塩タンクに供給することで電極や電解槽内に生成されるスケール片による給液手段の目詰まりを防止できる。すなわち電解を行うことで原水に含まれるカルシウムやマグネシウムイオンが水酸基と反応して水酸化カルシウムや水酸化マグネシウムなどのスケールとなって陰極や陰極室壁面に付着し、電解槽に原水を入れる際の剥離作用によって微少なスケール片となって原水に混入される場合がある。したがって陰極室側の水を食塩タンクに供給する構成とした場合、微少流量を制御する給液手段に堆積して目詰まりが発生し、電解質溶液が供給されなくなる場合がある。陽極室側の水を食塩タンクに供給することで上記不具合が防止され、長寿命化が図れる。
【0024】
また請求項6にかかるバッチ式電解水生成装置は、電解水の吐出口に対向する位置に電解水容器を設け、所定時間電解終了直後に吐出手段を駆動して陰極水を電解水容器に貯水するとともに陽極室に環流する構成としたものである。
【0025】
そして、電解後直ちにアルカリ水を取水することにより隔膜を介しての酸性水およびアルカリ水の浸透混入が防止される。この結果pH値の劣化が防止されることとなる。また陰極水を陽極室に環流することで自動的に陽極水の中和がなされる。
【0026】
また請求項7にかかるバッチ式電解水生成装置は、電解動作開始直後に所定時間逆極性通電し、その後通常極性で所定時間電解する構成としたものである。
【0027】
そして、電解の都度、電解動作開始直後に逆極性通電することで原水に含まれるカルシウムやマグネシウムイオンが水酸基と反応して水酸化カルシウムや水酸化マグネシウムなどの陰極に析出するスケール被膜が酸化還元されて洗浄される。特に1回電解当たりに生成されるスケールは微量であり、電解毎に逆電洗浄することで大幅な電極の長寿命化が実現できる。
【0028】
また請求項8にかかるバッチ式電解水生成装置は、給液手段をパルスポンプから構成するとともに前記パルスポンプのパルス駆動回数をカウントするパルスカウンタを設け、このパルスカウンタが所定回数に達した時点で電解質補給要求信号を報知する構成としたものである。
【0029】
そして、給液手段の駆動パルスをカウントすることで食塩の消費量が擬似的に検出されるので、食塩の補給を報知することが可能となるとともに食塩レス電解を防止できる。また電気信号を検出するパルスカウンタは安価に構成できるので食塩消費量検出を低コストで実現できる。
【0030】
また請求項9にかかるバッチ式電解水生成装置は、給水口にイオン交換樹脂からなるフィルタ部材を設けたものである。
【0031】
そして、水道水の硬度(導電率)には大きなばらつきがあり、例えば硬水では水酸化カルシウムなどのスケール成分を多く含み、陰極へのスケール析出にばらつきが発生するとともに、所定時間電解した場合、硬度によってpH値にばらつきが生じるが、給水時にイオン交換樹脂を通過することで、例えば軟水化が図られ、硬度差によるpH値のばらつきが解消されるとともに、陰極へのスケール析出を低減できる。
【0032】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0033】
(実施例1)
図1は本発明の実施例1における水浄化装置の構成図を示す。同図において、11は電解槽であり、隔膜12によって陽極室13と陰極室14が形成されており、各々陽極15および陰極16が隔膜12を介して対向配置されている。なお隔膜としてはイオン交換能を有さない中性隔膜と、イオン交換能を有するイオン交換膜のいずれも用いることができるが、ここでは陽イオン交換膜としている。電解槽の下方には陽極水出口17と陰極水出口18が設けられており、上方には給水口19を有する着脱自在の蓋20が設けられている。蓋20には原水に含まれる異物を濾過するフィルタ部材21が設けられており、ここでは原水のスケール成分となる陽イオンを除去して軟水化するイオン交換樹脂が設けられている。また電解時に陽極室から生成される塩素ガスや酸素ガス、陰極室から生成される水素ガスを外部に排気する通孔22が設けられている。
【0034】
23は着脱自在のキャップ24および電解質床25を有する食塩タンクであり、ここでは電解質として食塩(塩化ナトリウム)が充填されている。食塩タンク23には陽極室13の上部に設けられた給水口26からパルスポンより構成される給液手段27によって電解槽11に入れられた原水が導入路28を経て食塩タンク23の上方に送られる。
【0035】
導入された水は食塩と混合して過飽和食塩水となり、電解質床25および給塩路29を通じて食塩供給口30から食塩溶液が陽極室13に供給される構成となっている。
【0036】
ここで、給塩路29の食塩供給口30近傍には陽極室13の原水の侵入を阻止する方向に逆止弁31が設けられており、また食塩供給口30は食塩タンク23の液面よりもhだけ上方位置に設けられている。
【0037】
陽極水出口17および陰極水出口18の下流には陽極水と陰極水の選択吐出もしくは混合吐出可能な流路切換弁32が設けられており、陽極水出口17側には陽極水の流量を所定量に制限する絞り部材33が設けられている。また流路切換弁32の下流にはギヤードポンプなどの比較的大流量を制御する吐出手段34が設けられており、駆動されることで吐出路35を通じて電解水が吐出口36から電解水容器37に取水される。
【0038】
38は後述する操作パネル39と制御回路40から成る制御手段であり、電解水容器37の存在を検知する容器検知手段41の信号が制御回路40に入力され、容器検知手段41によって容器が吐出口36の対向位置に存在する時のみ電解動作を行うように構成されている。また42はパルスポンプからなる給液手段27の駆動パルスをカウントするパルスカウンタであり、累積パルス数をカウントすることで食塩の消費量が擬似的に検出され、所定パルス数に達した時点で食塩補給の報知を行うように構成されている。
【0039】
操作パネル39は図2に示すように電源スイッチ43と洗浄水スイッチ44および殺菌水スイッチ45を有するとともに容器検知手段41によって電解水容器が存在することを報知する容器セット報知手段46とパルスカウンタ42の累積パルスが所定値に達した時点で食塩補給を報知する食塩補給報知手段47を有しており、洗浄水スイッチ44もしくは殺菌水スイッチ45を投入することで制御回路40が動作して給液手段27、陽/陰極15、16、流路切換弁32および吐出手段34が駆動されるように構成されている。
【0040】
上記構成において次に動作、作用について説明する。
【0041】
電解前に給水口19から電解槽11の所定水位まで原水を入れる。この際、原水は陽イオン交換樹脂からなるフィルタ部材21を通過することとなり、原水に含まれる比較的大きな異物が濾過されるとともに、カルシウム、マグネシウムイオンなどの陽イオンが除去されて軟水化される。バッチ方式では水道に直結せず、食塩水生成時点で異物が混入する可能性があり、電解によってその異物が隔膜に付着して隔膜を劣化させる場合があるが、フィルタ部材21で濾過することにより異物混入が防止されて隔膜の長寿命化が図れる。
【0042】
また、水道水の硬度(導電率)には大きなばらつきがあり、例えば硬水では水酸化カルシウムなどのスケール成分を多く含み、陰極へのスケール析出にばらつきが発生するとともに、所定時間電解した場合、硬度によってpH値にばらつきが生じるが、給水時に陽イオン交換樹脂を通過することで、軟水化されるので硬度差によるpH値のばらつきが解消されるとともに、陰極16へのスケール析出を低減できる。
【0043】
次に、図2に示した操作パネル39の電源スイッチ43を投入し、洗浄水スイッチ44を投入することで電解動作が開始される。なお、この時電解水容器37が所定位置にセットされていれば操作パネル39の容器セット報知手段46が点灯し、電解動作が開始される。電解水容器37が吐出口36に対向する位置に載置されていない場合は容器検知手段41によって検出され、電解動作に移行しない。これにより誤って容器外に電解水を吐出することがなくなる。
【0044】
洗浄水生成時の電解動作について図3に示したタイムチャートに基づいて説明する。洗浄水スイッチ44を投入すると、まず給液手段27が所定時間tpだけ駆動され、陽極室13の原水が導入路28を経て食塩タンク23に送られる。食塩タンク23は水密状態に構成されており、原水が導入されることにより過飽和状態の食塩水が電解質床25、給塩路29、逆止弁31を経て食塩供給口30から陽極室13内に所定量供給され、所定濃度の食塩希釈水となる。次いで制御回路40が動作して陽極15と陰極16間に逆極性、つまり陽極15側を−極、陰極16側を+極として電流が所定時間tr印可される。これにより前回の電解によって陰極16の表面に析出したスケール成分が酸化還元されて洗浄される。すなわち、原水には各種のイオンが含まれており、特にカルシウムイオンやマグネシウムイオンなどの陽イオンは陰極室14側の水酸基と反応して水酸化カルシウムや水酸化マグネシウムとなり、溶解限界を越えると陰極16や隔膜12の表面に析出し、電解電流の妨害因子となるが、電解前に逆電洗浄を所定時間tr行うことで良好に洗浄されてスケール成分が分解され、電極の長寿命化が実現できる。
【0045】
その後通常極性ので所定時間teだけ電気分解される。電解時の陽極室13では化式1に示した反応が生じて酸性水が生成される。
【0046】
(化式1)
2Cl-→Cl2↑+2e-
Cl2+H2O→HCl+HClO
2H2O→O2↑+4H++4e-
一方、陰極室14では化式2に示した反応が生じて水酸基OH-を中和するためNa+が隔膜12を通過して移動し、アルカリ水が生成される。
【0047】
(化式2)
2H2O+2e-→H2↑+2OH-
Na++e-→Na
2Na+2H2O→2NaOH+H2
ここで、陽極室13のみに食塩溶液が供給されるので短時間に還元力の強いアルカリ水が得られる。すなわち、陽極15と陰極16間に電圧が印可されると被電解水に含まれるイオンは電気吸引力により陽/陰極15、16と逆極性のイオンが隔膜12を通過して移動することとなる。したがって陽極室13に導入された食塩に含まれるNaイオンは隔膜12を経て陰極室14へと即座に移動する。この電気吸引力以外にも例えば拡散理論にしたがえば、Naイオンが拡散によってイオン濃度を均一にするように作用する。この結果、陽/陰極15、16間に流れる電流が増加し、短時間に還元力の強いアルカリ水が得られる。この還元力の強いアルカリ水は油脂の鹸化や乳化作用および蛋白質に対する加水分解作用を有し、家具や住宅建材、電気製品などの表面の洗浄水として利用できる。
【0048】
また陽極室13のみに食塩溶液が供給されることで陰極室14には塩素イオンCl-濃度の低いアルカリ水が生成される。Cl-は洗浄力を阻害する因子となるため、陽極室13のみに食塩溶液が供給することで洗浄力の高いアルカリ水を生成できる。
【0049】
陽極室13に生成される塩素ガスCl2↑、酸素ガスO2↑および陰極室14に生成される水素ガスH2↑は通孔22、フィルタ部材21を通過して外部に排出される。
【0050】
陰極室14に生成されたアルカリ水は、所定時間te電解された後、直ちに吐水手段34が駆動されて流路切換弁32、吐出路33を通過して吐出口36から電解水容器37に注入される。これにより電解隔膜を介しての酸性水とアルカリ水の浸透混入が防止でき、pH値の劣化が防止できるとともに、容器が存在しない場合での誤吐出を防止できる。なお、電解水容器37には噴霧機構(図示せず)を設けて被洗浄面に直接スプレー噴霧して使用することもできる。
【0051】
次に殺菌水生成時の動作について説明する。操作パネル39の殺菌水スイッチ45を投入すると前述した洗浄水生成時と同様に図3のタイムチャートに示した一連の動作が行われ、電解水が生成される。所定時間te電解後流路切換弁32は図4に示したように陽極出口17側と陰極出口18側を連通するように動作し、吐出手段34が動作することによって陽極水と陰極水が混合して吐出路35を経て吐出口36から電解水容器37に注入される。この際、絞り部材33によって陽極水流量が制限され、吐出する電解水のpHが4〜7の範囲となるように調整される。ここで食塩電解水は殺菌作用を有し、この殺菌作用は主に次亜塩素酸HClOによって得られる。この次亜塩素酸HClOの存在比は図5に示したようにpH依存性を有し、強酸性側となるほど塩素ガスCl2↑の存在比が大きくなり、次亜塩素酸の存在比が小さくなる。例えばpH2以下となると塩素ガスの存在比は約30%を越えるようになる。pH4以上となると塩素ガスの存在比は2%以下となり、塩素ガス臭は殆ど気にならないレベルとなる。一方、中性であるpH7を越えると次亜塩素酸イオンClO-の存在比が急激に増加して殺菌力が低下する。したがってpH4〜7の範囲とすることで塩素ガスの悪影響を未然に防止しつつ次亜塩素酸HClOの含有率の高い殺菌水が得られる。なお、実験によれば800ccの水を陽極室13と陰極室14に400ccづつ満たし、1Aで5分間電解することで陰極室側にはpH12.1の強アルカリ水が生成され、陽極室にはpH2.6の強酸性水得られた。電解後吐出手段34を駆動させて強アルカリ水の約30%を強酸性水に混合することでpH4.5の電解水が得られた。なお、この殺菌水は洗浄水(陰極水)と同様に電解水容器37にスプレー手段(図示せず)を設け、殺菌部位に直接噴霧することができる。
【0052】
また、パルスカウンタ42はパルスポンプから構成される給液手段27の駆動信号であるパルス数をカウントする。このパルス数によって食塩の消費量が決まり、所定パルス数すなわち食塩タンク23内の食塩残量が少なくなった時点で操作パネル39の食塩補給報知手段47が点灯もしくは点滅し、食塩の補給が使用者に報知される。
【0053】
また、本実施例では食塩供給口30が食塩タンク23の液面よりも上方に設けられているので不要時における水頭差による電解質溶液の陽極室13内への流出が防止できる。つまり食塩供給口30が食塩タンク23の液面よりも下方に設けられた場合、水頭差によって食塩溶液が常時陽極室13内に流出することとなり、電解時の食塩濃度を所定値に維持できず、所望のpH値が得られなくなるとともに食塩の不要な消費につながるという不具合が生じるが、上記構成によりそれらの不具合を防止できる。
【0054】
また給塩路29に逆止弁31を設けたので陽極室13への給水時に食塩タンク23側への原水の逆流が防止され、電解質溶液の原水逆流による希釈が防止される。この結果、常に所望の濃度の電解質溶液が精度良く食塩供給口30から電解槽へ供給されることとなり、安定したpH値が得られる。
【0055】
また陽極室13側の水を食塩タンク23に供給する構成としので、陰極16や陰極室14内に生成されるスケール片による給液手段27の目詰まりを防止できる。すなわち電解を行うことで原水に含まれるカルシウムやマグネシウムイオンが水酸基と反応して水酸化カルシウムや水酸化マグネシウムなどのスケールとなって陰極16や陰極室14壁面に付着し、電解槽11に原水を入れる際の剥離作用によって微少なスケール片となって原水に混入される場合がある。したがって陰極室14側の水を食塩タンク23に供給する構成とした場合、微少流量を制御する給液手段27にスケール片が堆積して目詰まりが発生し、電解質溶液が供給されなくなる場合があるが、陽極室13側の水を食塩タンク23に供給することで上記不具合が防止され、給液手段27の長寿命化が図れる。
【0056】
【発明の効果】
以上説明したように本発明の請求項1にかかるバッチ式電解水生成装置は、電解槽から給液手段によって給水することにより食塩タンクの希釈電解質が自動的に陽極室に導入されるので、手作業によって食塩水などを作製する必要がなく、電解質濃度も安定するので所望のpH値の電解生成水が精度良く得られる。
【0057】
また、陽極室のみに食塩溶液が供給されるので、陽/陰極間に流れる電流が増加し、短時間に還元力の強いアルカリ水が得られる。この還元力の強いアルカリ水は油脂の鹸化や乳化作用および蛋白質に対する加水分解作用を有し、家具や住宅建材表面などの洗浄水として利用できるとともに塩素イオンの含有量の少ないアルカリ水が生成できるので洗浄力が向上する。
【0058】
さらに、流路切換弁を設けて陽極水と陰極水の選択吐出もしくは混合中和吐出可能としたので、還元力の強い強アルカリ水と殺菌力にすぐれた弱酸性殺菌水(食塩電解水)が任意に得られる。この殺菌水生成時に陽極水と陰極水が混合して所定のpH値に中和されるので塩素ガスの含有量を低減でき、殺菌水としての利用に際しての課題が解消される。
【0059】
また、請求項2にかかるバッチ式電解水生成装置は、殺菌水の取水に際して陽極水出口の下流に設けた絞り部材によって陽極水と陰極水が所定の比率で混合し、所定のpH値となるように中和される。この結果、吐出口から得られる電解水を所望のpH値にすることができ、pH値が中性側に移行するので塩素ガスCl2↑の含有量を低減して人体への影響および異臭を防止でき、殺菌水としての利用に際して取り扱いが容易となる。
【0060】
また、請求項3にかかるバッチ式電解水生成装置は、混合吐出される電解水のpH値が4から7の範囲となるように陰極水流量を制限するので塩素ガスの悪影響を未然に防止しつつ次亜塩素酸HClOの含有率の高い、殺菌力にすぐれた殺菌水が得られる。
【0061】
また請求項4にかかるバッチ式電解水生成装置は、給塩路に逆止弁を設けたので陽極室への給水時に食塩タンク側への原水の逆流が防止され、電解質溶液の原水逆流による希釈が防止される。この結果、常に所望の濃度の電解質溶液が精度良く食塩供給口から電解槽へ供給されることとなり、安定したpH値が得られる。
【0062】
また請求項5にかかるバッチ式電解水生成装置は、陽極室側の水を食塩タンクに供給する構成としので、陰極や陰極室内に生成されるスケール片による給液手段の目詰まりを防止でき、給液手段の長寿命化が図れる。
【0063】
また請求項6にかかるバッチ式電解水生成装置は、電解水の吐出口に対向する位置に電解水容器を設け、所定時間電解終了直後に吐出手段を駆動して陰極水を電解水容器に貯水する構成としたので、電解後直ちにアルカリ水を取水することができ、隔膜を介しての酸性水およびアルカリ水の浸透混入が防止される。この結果pH値の劣化が防止される。
【0064】
また請求項7にかかるバッチ式電解水生成装置は、電解水容器の存在を検知する容器検知手段を設け、この容器検知手段が容器の存在を検知した時のみ電解動作を行うようにしたので、電解終了後自動的に電解水容器にアルカリ水を吐出することができる。これにより、電解隔膜を介しての酸性水とアルカリ水の浸透混入が防止でき、pH値の劣化が防止できるとともに、容器が存在しない場合での誤吐出を防止できる。
【0065】
また請求項7にかかるバッチ式電解水生成装置は、電解動作開始直後に所定時間逆極性通電するので、電解毎に陰極に析出するスケール被膜が酸化還元されて洗浄される。特に1回電解当たりに生成されるスケールは微量であり、電解毎に逆電洗浄することで大幅な電極の長寿命化が実現できる。
【0066】
また請求項8にかかるバッチ式電解水生成装置は、給液手段をパルスポンプから構成するとともにパルスカウンタを設け、このパルスカウンタが所定回数に達した時点で電解質補給要求信号を報知する構成としたので、電解質の消費量が擬似的に検出されて電解質の補給を報知することが可能となるとともに電解質レス電解を防止できる。また電気信号を検出するパルスカウンタは安価に構成できるので電解質消費量検出を低コストで実現できる。
【0067】
また請求項9にかかるバッチ式電解水生成装置は、給水口に設けたフィルタ部材をイオン交換樹脂から構成したので、電解槽への給水時に原水のイオン交換が行われ、例えば軟水化が図られて硬度差によるpH値のばらつきが解消されるとともに、陰極へのスケール析出を低減できる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるはバッチ式電解水生成装置の構成図
【図2】同装置の操作パネルの構成図
【図3】同装置の給液手段、電解電流、吐出手段の動作を示すタイムチャート
【図4】同装置の要部構成図
【図5】 pHと残存遊離塩素存在比の関係を示す特性図
【図6】従来のバッチ式電解水生成装置の構成図
【符号の説明】
11 電解槽
12 隔膜
13 陽極室
14 陰極室
15 陽極
16 陰極
17 陽極水出口
18 陰極水出口
19 給水口
21 フィルタ部材(イオン交換樹脂)
23 食塩タンク
27 給液手段
28 導入路
29 給塩路
31 逆止弁
32 流路切換弁
33 絞り部材
34 吐出手段
35 吐出路
36 吐出口
37 電解水容器
38 制御手段
42 パルスカウンタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a batch-type electrolyzed water generating apparatus that electrolyzes electrolyzed water in a staying state to generate electrolyzed water, and particularly relates to an electrolyzed water generating apparatus that can easily generate alkaline water and sterilizing water having strong reducing power. It is.
[0002]
[Prior art]
The electrolyzed water generator is connected to a water supply facility such as a water supply and electrolyzes under running water to generate acid water or alkaline water, and the water stays in a simple, low-cost structure that does not connect to the water supply facility. There is a batch system for electrolysis. The flowing water method has the merit that the electrolyzed water can be taken immediately. However, when trying to obtain acidic water with strong oxidizing power (hereinafter referred to as strong acidic water) or alkaline water with strong reducing power (hereinafter referred to as strong alkaline water). In addition, it is necessary to increase the size of the electrode, which requires a large amount of power and a complicated configuration, which increases the cost of the entire apparatus. On the other hand, in the batch method, since raw water is electrolyzed in a staying state, it is possible to perform electrolysis for a long time, and it is easy to obtain the strong acidic water and strong alkaline water with a simple configuration.
[0003]
As a conventional batch type electrolysis apparatus, there has been one described in JP-A-8-299958. As shown in FIG. 6, this electrolytic apparatus forms an anode chamber 2 and a cathode chamber 3 by a diaphragm 1, and an anode 4 is disposed in the anode chamber 2, and a cathode 5 is disposed in the cathode chamber 3 through the diaphragm 1. Has been. Reference numeral 6 denotes a lid that can be freely opened and closed, and is provided with a hole 7 for discharging generated gas during electrolysis to the outside. A control circuit 8 energizes the anode 4 and the cathode 5. The generated electrolyzed water is taken from the acidic water outlet 9 and the alkaline water outlet 10, respectively.
[0004]
In this configuration, when electrolysis is performed, the lid 6 is opened, and the electrolytic bath is filled with a saline solution as an electrolyte adjusted to a predetermined concentration by hand, and a voltage is applied between the anode 4 and the cathode 5 by the control circuit 8, Depending on the amount (product of current and time), water is electrolyzed to a desired pH, and strong acidic water is generated in the anode chamber 2 and strong alkaline water is generated in the cathode chamber 3, respectively. 9 and the alkaline water outlet 10.
The chlorine gas and oxygen gas generated on the anode side and the hydrogen gas generated on the cathode side are discharged from the hole 7 to the outside of the electrolytic cell.
[0005]
[Problems to be solved by the invention]
However, the conventional batch electrolytic apparatus has the following problems.
[0006]
(1) Since a salt solution having a predetermined concentration is prepared by hand before electrolysis, a separate stirring container and salt measuring means are required, which is troublesome and the salt concentration fluctuates. Cannot be obtained stably.
[0007]
(2) Among strong alkaline water and strong acid water generated simultaneously by electrolysis, strong acid water is used as sterilizing water, but strong acid water contains a lot of chlorine gas. This chlorine gas is harmful to the human body and has a strange odor, and is a corrosive gas that corrodes metals and the like, and handling becomes a problem when used as sterilizing water.
[0008]
(3) If left to stand after electrolysis, acidic water and alkaline water permeate through the diaphragm and the pH value deteriorates.
[0009]
(4) Raw water, such as tap water, contains various ions. Particularly, the cations such as calcium and magnesium ions that are abundantly contained react with the hydroxyl group on the cathode side to form calcium hydroxide or magnesium hydroxide, which is the solubility limit. If it exceeds the range, it will be deposited on the surface of the cathode and the diaphragm and become a disturbing factor for the electrolysis current, and if it is used for a long time, the desired pH value cannot be obtained.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention forms a positive electrode chamber and a negative electrode chamber through a water supply port, a diaphragm, an electrolytic cell having an anode water outlet and a cathode water outlet, and supplies water in the electrolytic cell. A water conduit that is introduced into the salt tank by means, a salt supply passage that supplies a diluted salt solution in the salt tank to the anode chamber, and selective discharge or mixed discharge of anode water and cathode water provided downstream of the electrolytic cell. The flow path switching valve, the discharge path for discharging the electrolyzed water of the electrolytic cell from the discharge port by the discharge means, and the control means.
[0011]
According to the above invention, since the diluted saline solution in the salt tank is introduced into the anode chamber by supplying water from the electrolytic cell by the liquid supply means, it is possible to perform electrolysis only by putting raw water such as tap water into the electrolytic cell. Moreover, since it has a discharge means, electrolyzed water can be taken automatically by switch operation etc. Furthermore, a flow path switching valve is provided to allow selective discharge or mixed neutralization discharge of anode water and cathode water, so that strong alkaline water with strong reducing power and weakly acidic sterilized water (saline electrolyzed water) with excellent sterilizing power are optional. Is obtained. When the sterilizing water is produced, the anode water and the cathode water are mixed and neutralized to a predetermined pH value, so that the chlorine gas content can be reduced, and the problem in use as sterilizing water is solved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The batch type electrolyzed water generating device according to claim 1 of the present invention forms an anode chamber and a cathode chamber through a water supply port and a diaphragm, and arranges an anode and a cathode, respectively, and provides an anode water outlet and a cathode water outlet. An electrolytic cell having water, a water conduit for introducing water in the electrolytic cell into a salt tank by a liquid supply means, a salt supply channel for supplying a diluted salt solution in the salt tank to the anode chamber, an anode water outlet, and cathode water A flow path switching valve provided downstream of the outlet and capable of selective discharge or mixed discharge of anode water and cathode water, a discharge path for discharging the electrolytic water of the electrolytic cell from the discharge port by the discharge means, and a control means Is.
[0013]
Then, since the diluted saline in the salt tank is introduced into the anode chamber by supplying water from the electrolytic cell by the liquid supply means, it is not necessary to prepare saline etc. manually, and the salt concentration is also stable, so that the desired pH is obtained. The value of electrolytically generated water can be obtained stably and accurately.
[0014]
Further, since the electrolyte solution is supplied only to the anode chamber, alkaline water having a strong reducing power can be obtained in a short time. That is, when a voltage is applied between the positive electrode and the negative electrode, ions contained in the electrolyzed water move through the diaphragm due to the electric attractive force. Therefore, sodium ions of sodium chloride introduced into the anode chamber immediately move to the cathode chamber through the diaphragm. In addition to this electric attractive force, for example, according to the diffusion theory, Na ions act to make the ion concentration uniform by diffusion. As a result, the current flowing between the positive electrode and the negative electrode increases, and alkaline water having a strong reducing power can be obtained in a short time. This strong alkaline water has a saponification and emulsifying action of fats and oils and a hydrolyzing action on proteins, and can be used as cleaning water for furniture, housing building material surfaces and the like. Since the cathode chamber is raw water, the amount of ions moving to the anode chamber is extremely small.
[0015]
Furthermore, since the flow path switching valve is provided to enable selective discharge or mixed neutralization discharge of anode water and cathode water, strong alkaline water with strong reducing power and weakly acidic sterilized water (salt electrolyzed water) with excellent sterilizing power can be obtained. Optionally obtained. When the sterilizing water is produced, the anode water and the cathode water are mixed and neutralized to a predetermined pH value, so that the chlorine gas content can be reduced, and the problem in use as sterilizing water is solved.
[0016]
Further, the batch type electrolyzed water generating apparatus according to claim 2 is provided with a throttle member for limiting the flow rate of the catholyte water so that the pH value of the electrolyzed water becomes a predetermined value when mixing and discharging the anode water and the cathode water. is there.
[0017]
Then, when the sterilizing water is taken, the squeezing member provided downstream of the anodic water outlet mixes the anodic water and the cathodic water at a predetermined ratio and neutralizes them so as to obtain a predetermined pH value. As a result, the electrolyzed water obtained from the discharge port can be set to a desired pH value, and the pH value shifts to the neutral side.2The content of ↑ can be reduced to prevent the influence on the human body and off-flavors, and handling becomes easy when used as sterilizing water.
[0018]
According to a third aspect of the present invention, there is provided a batch-type electrolyzed water generator in which the cathode water flow rate is limited so that the pH value of the electrolyzed water discharged and mixed is in the range of 4 to 7.
[0019]
And the abundance ratio of hypochlorous acid HClO having a bactericidal action has a pH dependence, and the closer to the strongly acidic side, the chlorine gas ClO.2The ratio of ↑ increases and the ratio of hypochlorous acid decreases. For example, when the pH is 2 or less, the abundance ratio of chlorine gas exceeds about 30%. When the pH is 4 or more, the abundance ratio of chlorine gas becomes several percent, and the chlorine gas odor becomes a level that is hardly noticed. On the other hand, when the pH exceeds 7 which is neutral, hypochlorite ion ClO.-The abundance ratio increases rapidly and the sterilizing power decreases. Accordingly, by setting the pH in the range of 4 to 7, sterilized water having a high content of hypochlorous acid HClO, that is, excellent in sterilizing power, can be obtained while preventing adverse effects of chlorine gas.
[0020]
According to a fourth aspect of the present invention, there is provided a batch type electrolyzed water generating device in which a check valve is provided in a direction in which water intrusion into the electrolytic cell is prevented in the salt supply passage.
[0021]
By providing the check valve, the backflow of the raw water to the salt tank side is prevented when water is supplied to the electrolytic cell, and the salt solution is prevented from being diluted by the backflow of the raw water. As a result, a desired salt concentration is always supplied from the salt supply port to the electrolytic cell with high accuracy, and a stable pH value can be obtained.
[0022]
Moreover, the batch type electrolyzed water generating apparatus according to claim 5 is configured to supply water on the anode chamber side to the salt tank.
[0023]
Then, by supplying water on the anode chamber side to the salt tank, clogging of the liquid supply means due to the scale pieces generated in the electrodes and the electrolytic cell can be prevented. In other words, by performing electrolysis, calcium and magnesium ions contained in the raw water react with hydroxyl groups to form scales such as calcium hydroxide and magnesium hydroxide, and adhere to the cathode and cathode chamber wall surfaces. There is a case where it becomes a minute scale piece by the peeling action and mixed into the raw water. Accordingly, when the cathode chamber side water is supplied to the salt tank, there is a case where clogging occurs due to accumulation on the liquid supply means for controlling the minute flow rate, and the electrolyte solution may not be supplied. By supplying water on the anode chamber side to the salt tank, the above problems can be prevented and the life can be extended.
[0024]
The batch type electrolyzed water generating apparatus according to claim 6 is provided with an electrolyzed water container at a position facing the electrolyzed water discharge port, and immediately after completion of electrolysis for a predetermined time, the discharge means is driven to store the cathode water in the electrolyzed water container. In addition, it is configured to recirculate to the anode chamber.
[0025]
Then, the alkaline water is taken immediately after the electrolysis, so that the penetration of acidic water and alkaline water through the diaphragm is prevented. As a result, the deterioration of the pH value is prevented. Further, the anode water is automatically neutralized by circulating the cathode water to the anode chamber.
[0026]
Further, the batch type electrolyzed water generating apparatus according to claim 7 is configured to carry out reverse polarity energization for a predetermined time immediately after the start of the electrolysis operation, and then perform electrolysis for a predetermined time with normal polarity.
[0027]
Then, every time electrolysis is performed, reverse polarity energization immediately after the start of the electrolysis operation causes the calcium and magnesium ions contained in the raw water to react with the hydroxyl groups, and the scale coating deposited on the cathode such as calcium hydroxide and magnesium hydroxide is oxidized and reduced. And washed. In particular, the amount of scale generated per electrolysis is very small, and a significant increase in electrode life can be achieved by performing reverse electric cleaning for each electrolysis.
[0028]
In addition, the batch type electrolyzed water generating apparatus according to claim 8 is configured such that the liquid supply means includes a pulse pump and a pulse counter for counting the number of times the pulse pump is driven is provided, and when the pulse counter reaches a predetermined number of times. The electrolyte replenishment request signal is notified.
[0029]
And since the consumption of salt is detected in a pseudo manner by counting the drive pulses of the liquid supply means, it is possible to notify the replenishment of salt and to prevent salt-less electrolysis. Further, since the pulse counter for detecting the electric signal can be configured at a low cost, the salt consumption detection can be realized at a low cost.
[0030]
The batch type electrolyzed water generating apparatus according to claim 9 is provided with a filter member made of an ion exchange resin at a water supply port.
[0031]
And the hardness (conductivity) of tap water varies greatly. For example, hard water contains a large amount of scale components such as calcium hydroxide, the dispersion of scale deposition on the cathode occurs, and the hardness when electrolyzed for a predetermined time. However, by passing through the ion exchange resin at the time of water supply, for example, water softening is achieved, so that the dispersion of the pH value due to the hardness difference is eliminated, and scale deposition on the cathode can be reduced.
[0032]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0033]
Example 1
FIG. 1 shows a configuration diagram of a water purification apparatus in Embodiment 1 of the present invention. In the figure, 11 is an electrolytic cell, and an anode chamber 13 and a cathode chamber 14 are formed by a diaphragm 12, and an anode 15 and a cathode 16 are arranged opposite to each other via the diaphragm 12. As the diaphragm, either a neutral diaphragm having no ion exchange ability or an ion exchange membrane having ion exchange ability can be used, but here, a cation exchange membrane is used. An anode water outlet 17 and a cathode water outlet 18 are provided below the electrolytic cell, and a detachable lid 20 having a water supply port 19 is provided above. The lid 20 is provided with a filter member 21 for filtering foreign substances contained in the raw water. Here, an ion exchange resin for removing the cations that are the scale components of the raw water and softening the water is provided. Further, a through hole 22 is provided for exhausting chlorine gas or oxygen gas generated from the anode chamber during the electrolysis and hydrogen gas generated from the cathode chamber to the outside.
[0034]
Reference numeral 23 denotes a salt tank having a detachable cap 24 and an electrolyte bed 25. Here, salt (sodium chloride) is filled as an electrolyte. In the salt tank 23, raw water put in the electrolytic cell 11 by a liquid supply means 27 constituted by a pulse pump from a water supply port 26 provided in the upper part of the anode chamber 13 is sent to the upper side of the salt tank 23 through an introduction path 28. .
[0035]
The introduced water is mixed with salt to form supersaturated saline, and the salt solution is supplied from the salt supply port 30 to the anode chamber 13 through the electrolyte bed 25 and the salt supply passage 29.
[0036]
Here, a check valve 31 is provided in the vicinity of the salt supply port 30 of the salt supply passage 29 in a direction to prevent the intrusion of the raw water in the anode chamber 13, and the salt supply port 30 is located above the liquid level of the salt tank 23. Only h is provided at the upper position.
[0037]
A flow path switching valve 32 that can selectively discharge or mix anode water and cathode water is provided downstream of the anode water outlet 17 and the cathode water outlet 18, and the anode water outlet 17 has a flow rate of anode water. A diaphragm member 33 is provided for limiting the amount to be determined. Discharge means 34 for controlling a relatively large flow rate, such as a geared pump, is provided downstream of the flow path switching valve 32. When driven, the electrolyzed water flows from the discharge port 36 to the electrolyzed water container 37 through the discharge path 35. Is taken in.
[0038]
38 is a control means comprising an operation panel 39 and a control circuit 40, which will be described later, and a signal from the container detection means 41 for detecting the presence of the electrolyzed water container 37 is input to the control circuit 40, and the container detection means 41 causes the container to be The electrolysis operation is performed only when it exists at 36 opposing positions. Reference numeral 42 denotes a pulse counter that counts the drive pulses of the liquid supply means 27 composed of a pulse pump. By counting the cumulative number of pulses, the consumption of salt is detected in a pseudo manner, and when the predetermined number of pulses is reached, It is comprised so that the notification of replenishment may be performed.
[0039]
As shown in FIG. 2, the operation panel 39 has a power switch 43, a washing water switch 44, and a sterilizing water switch 45, and a container detection means 46 and a pulse counter 42 for notifying the presence of an electrolytic water container by the container detection means 41. Is provided with a salt replenishment notifying means 47 for notifying the salt replenishment when the accumulated pulse reaches a predetermined value, and the control circuit 40 operates by supplying the washing water switch 44 or the sterilizing water switch 45 to supply liquid. The means 27, the positive / negative electrodes 15, 16, the flow path switching valve 32 and the discharge means 34 are configured to be driven.
[0040]
Next, the operation and action of the above configuration will be described.
[0041]
Prior to electrolysis, raw water is introduced from the water supply port 19 to a predetermined water level in the electrolytic cell 11. At this time, the raw water passes through the filter member 21 made of a cation exchange resin, and relatively large foreign matters contained in the raw water are filtered, and cations such as calcium and magnesium ions are removed and softened. . The batch method does not directly connect to the water supply, and foreign matter may be mixed in at the time of saline solution generation. The foreign matter may adhere to the diaphragm due to electrolysis and deteriorate the diaphragm, but by filtering with the filter member 21 Foreign matter contamination is prevented and the life of the diaphragm can be extended.
[0042]
In addition, the hardness (conductivity) of tap water varies greatly. For example, hard water contains a large amount of scale components such as calcium hydroxide, causing variations in scale deposition on the cathode, and the hardness when electrolyzed for a predetermined time. However, the pH value varies due to the hardness difference, and scale deposition on the cathode 16 can be reduced.
[0043]
Next, the electrolysis operation is started by turning on the power switch 43 of the operation panel 39 shown in FIG. At this time, if the electrolyzed water container 37 is set at a predetermined position, the container setting notifying means 46 of the operation panel 39 is turned on, and the electrolysis operation is started. When the electrolyzed water container 37 is not placed at a position facing the discharge port 36, it is detected by the container detecting means 41 and does not shift to the electrolysis operation. This prevents accidental discharge of electrolyzed water out of the container.
[0044]
The electrolysis operation at the time of generating the washing water will be described based on the time chart shown in FIG. When the washing water switch 44 is turned on, the liquid supply means 27 is first driven for a predetermined time tp, and the raw water in the anode chamber 13 is sent to the salt tank 23 through the introduction path 28. The salt tank 23 is configured in a water-tight state. When raw water is introduced, the supersaturated salt solution is placed in the anode chamber 13 from the salt supply port 30 through the electrolyte bed 25, the salt supply passage 29, and the check valve 31. A fixed amount is supplied to obtain a salt-diluted water having a predetermined concentration. Next, the control circuit 40 operates to apply a current tr for a predetermined time between the anode 15 and the cathode 16, with the opposite polarity, that is, the anode 15 side as a negative electrode and the cathode 16 side as a positive electrode. Thereby, the scale component deposited on the surface of the cathode 16 by the previous electrolysis is oxidized and reduced and washed. That is, the raw water contains various ions, and in particular, cations such as calcium ions and magnesium ions react with the hydroxyl groups on the cathode chamber 14 side to form calcium hydroxide and magnesium hydroxide. 16 and deposits on the surface of the diaphragm 12 and becomes an obstruction factor for the electrolysis current, but by performing the reverse electric cleaning tr for a predetermined time tr before electrolysis, the scale component is decomposed and the life of the electrode is extended. it can.
[0045]
Thereafter, since it is of normal polarity, it is electrolyzed for a predetermined time te. In the anode chamber 13 during electrolysis, the reaction shown in Chemical Formula 1 occurs and acidic water is generated.
[0046]
(Formula 1)
2Cl-→ Cl2↑ + 2e-
Cl2+ H2O → HCl + HClO
2H2O → O2↑ + 4H++ 4e-
On the other hand, in the cathode chamber 14, the reaction shown in Formula 2 occurs to generate a hydroxyl group OH.-Na to neutralize+Moves through the diaphragm 12 to generate alkaline water.
[0047]
(Formula 2)
2H2O + 2e-→ H2↑ + 2OH-
Na++ E-→ Na
2Na + 2H2O → 2NaOH + H2
Here, since the saline solution is supplied only to the anode chamber 13, alkaline water having a strong reducing power can be obtained in a short time. That is, when a voltage is applied between the anode 15 and the cathode 16, ions contained in the water to be electrolyzed move through the diaphragm 12 through the diaphragm 12 due to the electric attractive force. . Therefore, Na ions contained in the sodium chloride introduced into the anode chamber 13 immediately move to the cathode chamber 14 through the diaphragm 12. In addition to this electric attractive force, for example, according to the diffusion theory, Na ions act to make the ion concentration uniform by diffusion. As a result, the current flowing between the positive / negative cathodes 15 and 16 increases, and alkaline water having a strong reducing power can be obtained in a short time. This alkaline water having a strong reducing power has a saponification and emulsifying action of fats and oils and a hydrolyzing action of proteins, and can be used as a cleaning water for the surfaces of furniture, housing building materials, electrical products and the like.
[0048]
In addition, a salt solution is supplied only to the anode chamber 13, so that the cathode chamber 14 has chlorine ion Cl.-Low-concentration alkaline water is produced. Cl-Is a factor that impedes detergency, so that a salt solution is supplied only to the anode chamber 13 to generate alkaline water with high detergency.
[0049]
Chlorine gas Cl generated in the anode chamber 132↑, oxygen gas O2↑ and hydrogen gas H generated in the cathode chamber 142↑ passes through the through hole 22 and the filter member 21 and is discharged to the outside.
[0050]
Alkaline water generated in the cathode chamber 14 is subjected to te electrolysis for a predetermined time, and immediately thereafter, the water discharge means 34 is driven to pass through the flow path switching valve 32 and the discharge path 33 and injected into the electrolyzed water container 37 from the discharge port 36. Is done. Thereby, the penetration of acidic water and alkaline water through the electrolytic diaphragm can be prevented, the pH value can be prevented from being deteriorated, and erroneous discharge in the case where no container is present can be prevented. The electrolyzed water container 37 may be provided with a spray mechanism (not shown) and sprayed directly onto the surface to be cleaned.
[0051]
Next, the operation | movement at the time of sterilization water production | generation is demonstrated. When the sterilizing water switch 45 of the operation panel 39 is turned on, a series of operations shown in the time chart of FIG. 3 is performed as in the case of generating the cleaning water described above, and electrolyzed water is generated. After the te electrolysis for a predetermined time, the flow path switching valve 32 operates so as to communicate the anode outlet 17 side and the cathode outlet 18 side as shown in FIG. 4, and the discharge means 34 operates to mix the anode water and the cathode water. Then, it is injected into the electrolyzed water container 37 from the discharge port 36 through the discharge path 35. At this time, the flow rate of the anode water is limited by the throttle member 33, and the pH of the discharged electrolyzed water is adjusted to be in the range of 4-7. Here, the salt electrolyzed water has a bactericidal action, and this bactericidal action is mainly obtained by hypochlorous acid HClO. The abundance ratio of this hypochlorous acid HClO has pH dependence as shown in FIG. 5, and the closer to the strongly acidic side, the chlorine gas ClO.2The ratio of ↑ increases and the ratio of hypochlorous acid decreases. For example, when the pH is 2 or less, the abundance ratio of chlorine gas exceeds about 30%. When the pH is 4 or more, the abundance ratio of chlorine gas is 2% or less, and the chlorine gas odor becomes a level that is hardly noticed. On the other hand, when the pH exceeds 7 which is neutral, hypochlorite ion ClO.-The abundance ratio increases rapidly and the sterilizing power decreases. Therefore, by setting the pH in the range of 4 to 7, sterilized water having a high content of hypochlorous acid HClO can be obtained while preventing adverse effects of chlorine gas. According to an experiment, 800 cc of water is filled in the anode chamber 13 and the cathode chamber 14 in 400 cc increments, and electrolysis with 1A for 5 minutes generates pH 12.1 strong alkaline water on the cathode chamber side. A strongly acidic water having a pH of 2.6 was obtained. Electrolytic water having pH 4.5 was obtained by driving the discharge means 34 after electrolysis and mixing about 30% of strong alkaline water with strong acid water. The sterilizing water can be sprayed directly on the sterilized part by providing spraying means (not shown) in the electrolyzed water container 37 in the same manner as the washing water (cathode water).
[0052]
The pulse counter 42 counts the number of pulses, which is a drive signal for the liquid supply means 27 composed of a pulse pump. The amount of salt consumed is determined by the number of pulses, and when a predetermined number of pulses, that is, when the amount of salt remaining in the salt tank 23 is reduced, the salt replenishment notifying means 47 of the operation panel 39 is lit or blinked. To be notified.
[0053]
In this embodiment, since the salt supply port 30 is provided above the liquid level of the salt tank 23, it is possible to prevent the electrolyte solution from flowing out into the anode chamber 13 due to a water head difference when not required. That is, when the salt supply port 30 is provided below the liquid level of the salt tank 23, the salt solution always flows out into the anode chamber 13 due to the water head difference, and the salt concentration during electrolysis cannot be maintained at a predetermined value. In addition, there is a problem that a desired pH value cannot be obtained and an unnecessary consumption of sodium chloride occurs. However, these problems can be prevented by the above configuration.
[0054]
Further, since the check valve 31 is provided in the salt supply passage 29, the backflow of the raw water to the salt tank 23 side is prevented when water is supplied to the anode chamber 13, and dilution of the electrolyte solution due to the backflow of the raw water is prevented. As a result, an electrolyte solution having a desired concentration is always supplied from the salt supply port 30 to the electrolytic cell with high accuracy, and a stable pH value can be obtained.
[0055]
Further, since the water on the anode chamber 13 side is supplied to the salt tank 23, the liquid supply means 27 can be prevented from being clogged by the scale pieces generated in the cathode 16 and the cathode chamber 14. That is, by performing electrolysis, calcium and magnesium ions contained in the raw water react with hydroxyl groups to form a scale such as calcium hydroxide and magnesium hydroxide and adhere to the wall surface of the cathode 16 and the cathode chamber 14, and the raw water is supplied to the electrolytic cell 11. There is a case where a fine scale piece is mixed into the raw water due to the peeling action when it is put. Accordingly, when the cathode chamber 14 side water is supplied to the salt tank 23, scale pieces may accumulate on the liquid supply means 27 that controls the minute flow rate, resulting in clogging, and the electrolyte solution may not be supplied. However, by supplying the water on the anode chamber 13 side to the salt tank 23, the above-mentioned problems are prevented and the life of the liquid supply means 27 can be extended.
[0056]
【The invention's effect】
As described above, in the batch type electrolyzed water generating apparatus according to claim 1 of the present invention, the diluted electrolyte in the salt tank is automatically introduced into the anode chamber by supplying water from the electrolytic cell by the liquid supplying means. It is not necessary to prepare a saline solution or the like by the work, and the electrolyte concentration is stabilized, so that electrolyzed water having a desired pH value can be obtained with high accuracy.
[0057]
In addition, since the salt solution is supplied only to the anode chamber, the current flowing between the positive electrode and the negative electrode is increased, and alkaline water having a strong reducing power can be obtained in a short time. This highly reducing alkaline water has saponification and emulsification of fats and oils and hydrolysis of proteins, and can be used as cleaning water for furniture and housing building surfaces, and can produce alkaline water with low chloride ion content. Detergency improves.
[0058]
Furthermore, since the flow path switching valve is provided to enable selective discharge or mixed neutralization discharge of anode water and cathode water, strong alkaline water with strong reducing power and weakly acidic sterilized water (salt electrolyzed water) with excellent sterilizing power can be obtained. Optionally obtained. When the sterilizing water is produced, the anode water and the cathode water are mixed and neutralized to a predetermined pH value, so that the chlorine gas content can be reduced, and the problem in use as sterilizing water is solved.
[0059]
Further, in the batch type electrolyzed water generating apparatus according to claim 2, the anodic water and the cathodic water are mixed at a predetermined ratio by the throttle member provided downstream of the anodic water outlet when the sterilizing water is taken, and a predetermined pH value is obtained. So that it is neutralized. As a result, the electrolyzed water obtained from the discharge port can be set to a desired pH value, and the pH value shifts to the neutral side.2The content of ↑ can be reduced to prevent the influence on the human body and off-flavors, and handling becomes easy when used as sterilizing water.
[0060]
Further, the batch type electrolyzed water generating apparatus according to claim 3 limits the cathode water flow rate so that the pH value of the electrolyzed water to be mixed and discharged is in the range of 4 to 7, so that the adverse effect of chlorine gas can be prevented in advance. In addition, sterilized water having a high content of hypochlorous acid HClO and excellent sterilizing power can be obtained.
[0061]
The batch type electrolyzed water generating apparatus according to claim 4 is provided with a check valve in the salt supply passage, so that backflow of raw water to the salt tank side is prevented when water is supplied to the anode chamber, and dilution of the electrolyte solution by backflow of raw water is prevented. Is prevented. As a result, an electrolyte solution having a desired concentration is always supplied from the salt supply port to the electrolytic cell with high accuracy, and a stable pH value can be obtained.
[0062]
Moreover, since the batch type electrolyzed water generating apparatus according to claim 5 is configured to supply water on the anode chamber side to the salt tank, clogging of the liquid supply means by the scale pieces generated in the cathode and the cathode chamber can be prevented, The life of the liquid supply means can be extended.
[0063]
The batch type electrolyzed water generating apparatus according to claim 6 is provided with an electrolyzed water container at a position facing the electrolyzed water discharge port, and immediately after completion of electrolysis for a predetermined time, the discharge means is driven to store the cathode water in the electrolyzed water container. Since it was set as the structure which carries out, it can take in alkaline water immediately after electrolysis, and the permeation | mixing penetration of acidic water and alkaline water through a diaphragm is prevented. As a result, deterioration of the pH value is prevented.
[0064]
Moreover, since the batch type electrolyzed water generating apparatus according to claim 7 is provided with a container detecting means for detecting the presence of the electrolyzed water container, the electrolysis operation is performed only when the container detecting means detects the presence of the container. Alkaline water can be automatically discharged into the electrolyzed water container after completion of electrolysis. As a result, it is possible to prevent the penetration of acidic water and alkaline water through the electrolytic membrane, prevent deterioration of the pH value, and prevent erroneous ejection when no container is present.
[0065]
In the batch type electrolyzed water generating apparatus according to the seventh aspect, since reverse polarity energization is performed for a predetermined time immediately after the start of the electrolysis operation, the scale film deposited on the cathode is electrolyzed and cleaned every electrolysis. In particular, the amount of scale generated per electrolysis is very small, and a significant increase in electrode life can be achieved by performing reverse electric cleaning for each electrolysis.
[0066]
Further, the batch type electrolyzed water generating apparatus according to claim 8 is configured such that the liquid supply means is constituted by a pulse pump and a pulse counter is provided, and an electrolyte replenishment request signal is notified when the pulse counter reaches a predetermined number of times. Therefore, the consumption amount of the electrolyte can be detected in a pseudo manner to notify the supply of the electrolyte, and the electrolyte-less electrolysis can be prevented. In addition, since the pulse counter for detecting the electric signal can be configured at low cost, the electrolyte consumption amount can be detected at a low cost.
[0067]
In the batch type electrolyzed water generating device according to claim 9, since the filter member provided at the water supply port is made of ion exchange resin, ion exchange of raw water is performed at the time of water supply to the electrolytic cell, for example, softening of water is achieved. Thus, the dispersion of the pH value due to the hardness difference can be eliminated, and the scale deposition on the cathode can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of a batch-type electrolyzed water generator in Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of an operation panel of the apparatus.
FIG. 3 is a time chart showing the operation of liquid supply means, electrolytic current, and discharge means of the apparatus.
FIG. 4 is a block diagram of the main part of the apparatus.
FIG. 5 is a characteristic diagram showing the relationship between pH and residual free chlorine abundance ratio.
FIG. 6 is a block diagram of a conventional batch-type electrolyzed water generator.
[Explanation of symbols]
11 Electrolysis tank
12 Diaphragm
13 Anode chamber
14 Cathode chamber
15 Anode
16 Cathode
17 Anode water outlet
18 Cathode water outlet
19 Water inlet
21 Filter member (ion exchange resin)
23 Salt tank
27 Liquid supply means
28 Introduction route
29 salt supply
31 Check valve
32 Channel switching valve
33 Diaphragm member
34 Discharge means
35 Discharge path
36 Discharge port
37 Electrolyzed water container
38 Control means
42 Pulse counter

Claims (9)

給水口と、隔膜を介して陽極室と陰極室を形成し、各々陽極と陰極を配設するとともに陽極水出口と陰極水出口を有する電解槽と、前記電解槽内の水を給液手段によって食塩タンクに導入する導水路と、前記食塩タンクの希釈食塩溶液を前記陽極室に供給する給塩路と、前記陽極水出口と陰極水出口の下流に設けられ陽極水と陰極水の選択吐出もしくは混合吐出可能な流路切換弁と、前記電解槽の電解水を吐出手段によって吐出口から吐出する吐出路と、制御手段とから構成したバッチ式電解水生成装置。An anode chamber and a cathode chamber are formed through a water supply port and a diaphragm, respectively, and an anode and a cathode are disposed respectively, and an electrolytic cell having an anode water outlet and a cathode water outlet, and water in the electrolytic cell is supplied by liquid supply means Selective discharge or mixing of anode water and cathode water provided downstream of the anode water outlet and cathode water outlet, water supply path for introducing into the sodium chloride tank, salt supply path for supplying the diluted sodium chloride solution in the salt tank to the anode chamber A batch type electrolyzed water generating apparatus comprising a flow path switching valve capable of discharging, a discharge path for discharging electrolyzed water in the electrolytic cell from a discharge port by a discharge means, and a control means. 陽極水と陰極水の混合吐出に際して、電解水のpH値が所定値となるように陰極水の流量を制限する絞り部材を設けた請求項1記載のバッチ式電解水生成装置。The batch-type electrolyzed water generating apparatus according to claim 1, further comprising a throttle member that restricts the flow rate of the cathodic water so that the pH value of the electrolyzed water becomes a predetermined value when the anode water and the cathodic water are mixed and discharged. 混合吐出される電解水のpH値が4から7の範囲となるように陰極水流量を制限した請求項2記載のバッチ式電解水生成装置。The batch-type electrolyzed water generating apparatus according to claim 2, wherein the flow rate of the cathode water is limited so that the pH value of the electrolyzed water to be mixed and discharged is in the range of 4 to 7. 給塩路に電解槽の水の侵入を阻止する方向に逆止弁を設けた請求項1ないし3のいずれか1項に記載のバッチ式電解水生成装置。The batch type electrolyzed water generating apparatus according to any one of claims 1 to 3, wherein a check valve is provided in a direction in which water in the electrolytic cell is prevented from entering the salt supply passage. 陽極室側の水を食塩タンクに供給する構成とした請求項1ないし4のいずれか1項に記載のバッチ式電解水生成装置。The batch type electrolyzed water generating apparatus according to any one of claims 1 to 4, wherein water on the anode chamber side is supplied to the salt tank. 電解水の吐出口に対向する位置に電解水容器を設け、所定時間電解終了直後に吐出手段を駆動して電解水を電解水容器に貯水する構成とした請求項1ないし5のいずれか1項に記載のバッチ式電解水生成装置。6. An electrolyzed water container is provided at a position facing the electrolyzed water discharge port, and the electrolyzing water is stored in the electrolyzed water container by driving the discharge means immediately after completion of electrolysis for a predetermined time. The batch type electrolyzed water generator described in 1. 電解動作開始直後に所定時間逆極性通電し、その後通常極性で所定時間電解する請求項1ないし6のいずれか1項に記載のバッチ式電解水生成装置。The batch type electrolyzed water generating apparatus according to any one of claims 1 to 6, wherein reverse polarity energization is performed for a predetermined time immediately after the start of electrolysis, and electrolysis is then performed for a predetermined time with normal polarity. 給液手段をパルスポンプから構成するとともに前記パルスポンプのパルス駆動回数をカウントするパルスカウンタを設け、このパルスカウンタが所定回数に達した時点で食塩補給要求信号を報知する構成とした請求項1ないし7のいずれか1項に記載のバッチ式電解水生成装置。The liquid supply means is constituted by a pulse pump, and a pulse counter for counting the number of times the pulse pump is driven is provided, and a salt replenishment request signal is notified when the pulse counter reaches a predetermined number. 8. The batch type electrolyzed water generating apparatus according to any one of 7 above. 給水口にイオン交換樹脂からなるフィルタ部材を設けた請求項1ないし8のいずれか1項に記載のバッチ式電解水生成装置。The batch type electrolyzed water generating apparatus according to any one of claims 1 to 8, wherein a filter member made of an ion exchange resin is provided at a water supply port.
JP2000220433A 2000-07-21 2000-07-21 Batch type electrolyzed water generator Expired - Fee Related JP4543515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220433A JP4543515B2 (en) 2000-07-21 2000-07-21 Batch type electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220433A JP4543515B2 (en) 2000-07-21 2000-07-21 Batch type electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2002035751A JP2002035751A (en) 2002-02-05
JP4543515B2 true JP4543515B2 (en) 2010-09-15

Family

ID=18715042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220433A Expired - Fee Related JP4543515B2 (en) 2000-07-21 2000-07-21 Batch type electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4543515B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
US8007654B2 (en) * 2006-02-10 2011-08-30 Tennant Company Electrochemically activated anolyte and catholyte liquid
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
EP2361227B1 (en) * 2008-09-30 2014-03-05 Danish Clean Water A/S Disinfection system
JP6776077B2 (en) * 2016-09-26 2020-10-28 株式会社東芝 Electrolyzed water production equipment
CN108217856B (en) * 2018-01-30 2024-02-20 武汉工程大学 Electrochemical water treatment system and water treatment method thereof

Also Published As

Publication number Publication date
JP2002035751A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
US6855233B2 (en) Apparatus for production of strong alkali and acid electrolytic solution
JP3716042B2 (en) Acid water production method and electrolytic cell
JP3113645B2 (en) Electrolyzed water production method
KR100433856B1 (en) Electrolytic liquid and apparatus for producing same
KR20020090888A (en) Water treatment apparatus
JP4543515B2 (en) Batch type electrolyzed water generator
JP4543516B2 (en) Batch type electrolyzed water generator
JP4085724B2 (en) Batch type electrolyzed water generator
JP2003062569A (en) Electrolytic water generator
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP3356161B2 (en) Batch type electrolyzed water generator
WO2014007340A1 (en) Device for generating electrolytically treated water, and method for generating electrolytically treated water
JP2012196643A (en) Apparatus for producing hypochlorous acid water or the like
KR20070078823A (en) Apparatus for producing electrolyzed water
JP2003038409A (en) Dishwasher having electrolysed water generator
KR100556291B1 (en) Electric-Chemical Processing Apparatus for Waste Water
JP3356169B2 (en) Electrolyzed water generator
JPH1057960A (en) Generating method of electrolytic water and device therefor
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3804519B2 (en) Electrolyzed water generator
JP3804521B2 (en) Electrolyzed water generator
JP2003062568A (en) Electrolytic water and electrolytic water generator
JP2001246381A (en) Method and device for manufacturing alkaline ionized water
JP2002316160A (en) Electrolytic water making apparatus
JP2002320969A (en) Generation system for electrolytic water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees