JP3113645B2 - Electrolyzed water production method - Google Patents

Electrolyzed water production method

Info

Publication number
JP3113645B2
JP3113645B2 JP11052550A JP5255099A JP3113645B2 JP 3113645 B2 JP3113645 B2 JP 3113645B2 JP 11052550 A JP11052550 A JP 11052550A JP 5255099 A JP5255099 A JP 5255099A JP 3113645 B2 JP3113645 B2 JP 3113645B2
Authority
JP
Japan
Prior art keywords
water
cathode
anode
chamber
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11052550A
Other languages
Japanese (ja)
Other versions
JP2000246249A (en
Inventor
洋一 佐野
Original Assignee
ファースト・オーシャン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファースト・オーシャン株式会社 filed Critical ファースト・オーシャン株式会社
Priority to JP11052550A priority Critical patent/JP3113645B2/en
Publication of JP2000246249A publication Critical patent/JP2000246249A/en
Application granted granted Critical
Publication of JP3113645B2 publication Critical patent/JP3113645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、水を電気分解し
て、酸性電解水及びアルカリ性電解水を製造する方法に
関する。
The present invention relates to a method for producing acidic electrolyzed water and alkaline electrolyzed water by electrolyzing water.

【0002】[0002]

【従来技術】小量の塩素系電解質を添加した水を電気分
解して酸性電解水とアルカリ性電解水を生成させること
は従来より行なわれている。従来の酸性電解水は、水素
イオン濃度(pH)が2.0〜3.5(一般的には2.
4〜2.7)の範囲にあり、酸化還元電位(ORP)が
1100V以上を示し、10ppm以上の遊離塩素を含
む。このように酸性電解水は、遊離塩素を含有し、強い
酸性で高い酸化還元電位を呈するので、大腸菌や各種の
細菌やバクテリアに対して強力な殺菌効果を有してお
り、近年、医療分野、農業分野、酪農分野等で広く使用
され始めている。また、アルカリ性電解水は、pHが1
0.5〜12.0の範囲であり、強いアルカリ性を呈す
るので、やはり殺菌力を有し、同時に油分やタンパク質
を含む汚れに対して強い洗浄力を有することが知られて
おり、野菜、果物、畜産品や水産品の洗浄、機械部品や
電子材料の洗浄用水として新しい用途が出てきている。
2. Description of the Related Art It has been conventionally practiced to electrolyze water to which a small amount of chlorine-based electrolyte is added to produce acidic electrolyzed water and alkaline electrolyzed water. Conventional acidic electrolyzed water has a hydrogen ion concentration (pH) of 2.0 to 3.5 (generally, 2.10 to 3.5).
4 to 2.7), the oxidation-reduction potential (ORP) is 1100 V or more, and contains 10 ppm or more of free chlorine. As described above, acidic electrolyzed water contains free chlorine and exhibits a strong acidity and a high oxidation-reduction potential, and thus has a strong bactericidal effect against Escherichia coli and various bacteria and bacteria. It has begun to be widely used in the agricultural and dairy fields. In addition, alkaline electrolyzed water has a pH of 1
It is in the range of 0.5 to 12.0 and exhibits strong alkalinity, so it is also known to have a bactericidal power and at the same time a strong detergency against dirt containing oil and protein, and New uses are emerging as washing water for livestock and marine products, and for washing mechanical parts and electronic materials.

【0003】これらの酸性電解水及びアルカリ性電解水
を水の電気分解によって製造するには、隔膜によって陽
極室と陰極室に仕切った構造の水電気分解装置を用い、
あらかじめ電解質を添加した原水を陽極室及び陰極室に
通水して電気分解する方法や、2枚の隔膜で陽極室、中
間室及び陰極室に仕切った構造の水電気分解装置を用
い、中間室に高濃度電解室を充填し、陽極室及び陰極室
に原水を通水して電気分解する方法などが採用されてい
る。
In order to produce the acidic electrolyzed water and the alkaline electrolyzed water by electrolysis of water, a water electrolyzer having a structure in which an anode chamber and a cathode chamber are separated by a diaphragm is used.
A method in which raw water to which an electrolyte is added in advance is passed through an anode chamber and a cathode chamber to perform electrolysis, or a water electrolysis apparatus having a structure in which an anode chamber, an intermediate chamber, and a cathode chamber are separated by two diaphragms, and an intermediate chamber is used. A high-concentration electrolysis chamber is filled, and raw water is passed through the anode chamber and the cathode chamber to perform electrolysis.

【0004】しかして、酸性電解水にしてもアルカリ性
電解水にしてもそれを使用する目的や用途により、要求
される性質や組成は大いに異ってくる。例えば、酸性電
解水を内視鏡の消毒等医療用途に使用する場合には、水
の滅菌力を左右する遊離塩素濃度が最も重要であるが、
含有する電解質濃度が高くてもさほど問題ではない。一
方、酸性電解水を農業用途に使用する場合には、含有す
る塩分濃度は低くなくてはならない。また、歯科などで
口内の滅菌やうがいに使用する場合は臭気が強すぎると
問題となる。また、滅菌や洗浄の際に使用している金属
の種類によっては錆の発生が問題となる。このように、
酸性電解水、アルカリ性電解水に対する利用者の要求は
様々であるが、それらの要求に対応するためには、従
来、その都度電気分解装置の基本的な設計仕様を変更す
る必要があった。
[0004] However, the required properties and compositions of acidic electrolyzed water and alkaline electrolyzed water vary greatly depending on the purpose and use of the water. For example, when using acidic electrolyzed water for medical applications such as endoscope disinfection, the concentration of free chlorine that determines the sterilizing power of water is the most important,
It does not matter much if the contained electrolyte concentration is high. On the other hand, when acidic electrolyzed water is used for agricultural purposes, the contained salt concentration must be low. Further, when used for oral sterilization and gargle in dentistry and the like, there is a problem if the odor is too strong. Further, depending on the type of metal used for sterilization or washing, rust may be a problem. in this way,
There are various demands of users for acidic electrolyzed water and alkaline electrolyzed water, but in order to meet those demands, it has been conventionally necessary to change the basic design specifications of the electrolyzer each time.

【0005】また、従来の水を電気分解して酸性電解水
やアルカリ性電解水の製造方法には多々の問題点があ
る。すなわち、(1)電気分解効率が悪く消費電力が多
い。(2)酸性電解水の含有する遊離塩素濃度が高くな
りにくく、濃度の調整は容易でない。(3)酸性電解水
やアルカリ性電解水に含まれる電解質すなわち塩分が多
く錆の原因や農作物に長期間使用すると塩害を起こす。
(4)電気分解により陰極にスケールが付着するトラブ
ルが発生しやすいことなどである。
Further, there are many problems in the conventional method for producing acidic electrolyzed water or alkaline electrolyzed water by electrolyzing water. That is, (1) the electrolysis efficiency is poor and the power consumption is large. (2) The concentration of free chlorine contained in the acidic electrolyzed water is not easily increased, and it is not easy to adjust the concentration. (3) The electrolyte contained in the acidic electrolyzed water or the alkaline electrolyzed water, that is, a large amount of salt, causes rust, and causes salt damage when used for a long time on agricultural products.
(4) Problems such as scale adhesion to the cathode due to electrolysis are likely to occur.

【0006】従来の製造方法において、(1)の電解効
率が悪く消費電力が多い原因はいくつか考えられるが、
一つは水に少量の電解質が添加された状態で電気分解さ
れるために水溶液の導電性が低いこと、二つには電気分
解は陽極あるいは陰極近傍に存在するイオンだけが電極
表面で電子の受け渡しをするのであり、電解層に供給さ
れる大部分の水溶液は電気分解に寄与せずに素通りして
排出されること、三っには電気分解されたイオンの一部
は隔膜を通過して対極側に移動してしまう、すなわち陽
極で生成した水素イオンの一部は陰極に移動し、陰極で
生成した水酸イオンは陽極に移動すること、四つには陽
極液のイオン濃度が低い場合に陽極から陰極に向かって
水の輸液現象が起こることなどである。その結果、例え
ば、pH値が2.7の酸性電解水を生成するのに必要な
ファラデーの法則で計算される理論電流量は192クー
ロン/リットルであるのに対して、実際には600ない
し1000クーロン/リットルを要するのが一般であ
る。
In the conventional manufacturing method, there are several possible causes of the poor electrolytic efficiency (1) and high power consumption.
One is that the electrolysis is carried out with a small amount of electrolyte added to water, so the conductivity of the aqueous solution is low. The other is that in the electrolysis, only ions existing near the anode or cathode are converted into electrons on the electrode surface. Most of the aqueous solution supplied to the electrolytic layer is discharged without passing through the electrolysis without contributing to the electrolysis, and thirdly, some of the electrolyzed ions pass through the diaphragm. Move to the counter electrode side, that is, part of the hydrogen ions generated at the anode move to the cathode, and hydroxide ions generated at the cathode move to the anode.Fourth, when the ion concentration of the anolyte is low In addition, the infusion of water from the anode to the cathode may occur. As a result, for example, the theoretical current amount calculated by the Faraday's law required to produce acidic electrolyzed water having a pH value of 2.7 is 192 coulombs / liter, whereas the theoretical current amount is actually 600 to 1000. It generally requires coulombs / liter.

【0007】また、上記の(2)の原因は、陽極におけ
る電気分解反応は、水と電解質中に含まれる塩素イオン
の反応が競合するが、添加する電解質濃度が低いために
塩素ガスの生成やそれに引き続いて起こる次塩素酸イオ
ンの生成が低く、酸性電解水中の遊離塩素濃度が高くな
らないものと考えられる。従って、従来は対策として遊
離塩素の発生効率を高めるべく、陽極用の電極材料とし
て触媒効果のあるイリヂウムやパラジウム等の酸化物を
用いているが、大変高価であるし遊離塩素濃度を自由に
調整することは難しい。また、添加する電解質の量を増
加すれば遊離塩素の濃度をある程度高めることはできる
が、生成水中の塩分濃度を益々増加させることになり、
上記した如き(3)の問題が生じる。本来生成水中の塩
分濃度は低いに越したことはないが、従来の生成方法で
は600ないし1200ppmの塩分濃度である。
[0007] The cause of the above (2) is that, in the electrolysis reaction at the anode, the reaction between water and chlorine ions contained in the electrolyte compete with each other. It is thought that the subsequent generation of hypochlorite ion is low, and the free chlorine concentration in the acidic electrolyzed water does not increase. Therefore, in the past, in order to increase the generation efficiency of free chlorine as a countermeasure, oxides such as iridium and palladium, which have a catalytic effect, are used as the electrode material for the anode, but they are very expensive and the free chlorine concentration can be freely adjusted. Difficult to do. Also, the concentration of free chlorine can be increased to some extent by increasing the amount of electrolyte to be added, but the salt concentration in the produced water will be increased more and more,
The problem (3) described above occurs. Originally, the salt concentration in the produced water has never been lower, but the conventional production method has a salt concentration of 600 to 1200 ppm.

【0008】更に上記の(4)の問題は、電気分解によ
って水に含有しているカルシウムやマグネシウム分等の
成分がスケールとして陰極板に付着することで、スケー
ルの付着により電極の電気抵抗が増加したり、隔膜が目
詰まりしたり、水の流れが阻害される等の重大なトラブ
ルとなる。従来スケール対策は、電気分解の途中で陰極
と陽極の極性を変換したり、酸性溶液で溶解するなど煩
雑な手段が取られていた。
[0008] Further, the problem (4) is that components such as calcium and magnesium contained in water adhere to the cathode plate as a scale by electrolysis, and the electric resistance of the electrode increases due to the adhesion of the scale. It causes serious troubles such as dripping, clogging of the diaphragm, and obstruction of the flow of water. Conventionally, complicated measures have been taken for measures against scale, such as changing the polarity of the cathode and anode during electrolysis and dissolving with an acidic solution.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みなされたもので、水を電気分解して酸性電解水及
びアルカリ性電解水を製造するにあたり、水の通水方
法、電解質水溶液の添加方法及び直流電流の負荷を工夫
することにより、電力消費量が少なく、遊離塩素の発生
効率に優れ、陰極へのスケールの付着を防止できる方法
を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made in consideration of the above-mentioned circumstances. An object of the present invention is to provide a method capable of reducing power consumption, having an excellent generation efficiency of free chlorine, and preventing scale from adhering to a cathode by devising an addition method and a load of a direct current.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記の目的
を達成させるべく、研究を進めた結果、従来の問題点で
ある(1)電気分解効率が悪く消費電力が多い、(2)
酸性電解水の含有する遊離塩素濃度が高くなりにくく、
濃度の調整は容易でない、(3)酸性電解水やアルカリ
性電解水に含まれる電解質すなわち塩分が多いなどは全
て電気分解の方法に問題があることを予測した。そし
て、その解決方法を究明した結果、従来の方法では、p
Hが2.0から3.5の範囲を示す酸性電解水やpHが
10.5から12.0を示すアルカリ性電解水を得るた
めに原水を全量電解槽に通水して電気分解しているが、
この方法では実際は電極と電子を授受して電気分解反応
の寄与しているのは、その内僅かな水だけで、残りの大
部分は電気分解に寄与することなしに素通りして排出さ
れていること、それと共に添加される電解質の大部分も
同様に電気分解に寄与されずに排出されていることに注
目し、そこで電解槽に導入する電解水量を少量に制限
し、これに電解質を存在させて高負荷で電気分解するこ
とにより、上記の問題が解決できること、またこの手段
の採用によって、(4)の陰極に対するスケールの付着
の問題点も解消し得ることを知見し、本発明を完成し
た。
Means for Solving the Problems The present inventor has conducted researches to achieve the above-mentioned object. As a result, the present inventors have found that the conventional problems (1) poor electrolysis efficiency and large power consumption, (2)
The concentration of free chlorine contained in acidic electrolyzed water is unlikely to increase,
It was predicted that there was a problem in the electrolysis method when the concentration was not easily adjusted and (3) the electrolyte contained in the acidic electrolyzed water or the alkaline electrolyzed water, that is, the salt content was high. Then, as a result of investigating the solution, as a result of the conventional method, p
In order to obtain acidic electrolyzed water in which H is in the range of 2.0 to 3.5 or alkaline electrolyzed water in which pH is in the range of 10.5 to 12.0, the entire amount of raw water is passed through the electrolytic cell to perform electrolysis. But,
In this method, in fact, only a small amount of water contributes to the electrolysis reaction by exchanging electrons with the electrodes, and most of the remaining water is discharged without passing through the electrolysis. Note that most of the electrolyte added together with the electrolyte was also discharged without contributing to the electrolysis.Therefore, the amount of electrolytic water introduced into the electrolytic cell was limited to a small amount, and the electrolyte was allowed to exist in this. It has been found that the above problem can be solved by electrolysis under a high load, and that the problem of (4) adhesion of scale to the cathode can be solved by adopting this means, and the present invention has been completed. .

【0011】すなわち、本発明は、隔膜によって陽極室
と陰極室に仕切られ、陽極室には陽極板を配置し、陰極
室には陰極板を配置した電解槽を備え、且つ陽極側に供
給する原水を電解処理する水と電解処理しない水とに分
流させ、電解処理する水を陽極室に通水させ、陽極室か
ら排出した水を上記の電解処理しない水と合流させる構
造にし、また陰極側に供給する原水を電解処理する水と
電解処理しない水とに分流させ、電解処理する水を陰極
室に通水させ、陰極室から排出した水を上記の電解処理
しない水と合流させる構造にした水電気分解装置を用い
て水を電気分解し、pH2.0〜3.0の酸性電解水と
pH10.5〜12.0のアルカリ性電解水を製造する
方法であって、電解処理する水に電解質を存在させ、陽
極板及び陰極板に電解処理用水1リットル当り1500
クーロン以上の直流電流を負荷させることを特徴とする
電解水製造法である。
That is, the present invention provides an anode chamber by a diaphragm.
And a cathode compartment, and an anode plate is placed in the anode compartment.
The chamber is provided with an electrolytic cell provided with a cathode plate , and the raw water supplied to the anode side is divided into water for electrolytic treatment and water not for electrolytic treatment, and the water for electrolytic treatment is passed through the anode chamber. The discharged water is combined with the above-mentioned non-electrolyzed water, and the raw water supplied to the cathode side is divided into the electrolyzed water and the non-electrolyzed water, and the electrolyzed water is passed through the cathode chamber. Water is electrolyzed using a water electrolysis apparatus having a structure in which water discharged from the cathode chamber is merged with the above-mentioned water that has not been subjected to electrolytic treatment, and acidic electrolyzed water having a pH of 2.0 to 3.0 and pH of 10.5 to 12. A method for producing alkaline electrolyzed water of 0, wherein an electrolyte is present in the water to be electrolyzed, and the anode plate and the cathode plate are provided with 1500 per liter of electrolyzed water.
This is a method for producing electrolyzed water, characterized by applying a direct current of more than coulomb.

【0012】要するに、本発明は、原水の全量を陽極室
及び陰極室に通水して電気分解する従来の方式とは異な
り、原水の一部のみを陽極室及び陰極室に通水し、電解
用水量当りの直流電流量を従来より著しく多量の150
0クーロン/リットルにして電気分解することによっ
て、輸液現象を抑え、陰極へのスケールの付着を防止し
て電解効率を高めて、高濃度の強酸性電解水及び強アル
カリ性電解水を生成させ、その後この高濃度の強酸性電
解水及び強アルカリ性電解水を原水と混合して希釈し、
目的とする濃度の酸性電解水(pH2.0〜3.0)と
アルカリ性電解水(pH10.5〜12.0)を得る方
法である。
In short, according to the present invention, unlike the conventional method in which the whole amount of raw water is passed through the anode chamber and the cathode chamber to perform electrolysis, only a part of the raw water is passed through the anode chamber and the cathode chamber to perform electrolysis. The amount of DC current per water supply is 150
Electrolysis at 0 coulomb / liter suppresses the transfusion phenomenon and prevents scale from adhering to the cathode.
To increase the electrolysis efficiency to produce a high concentration of strongly acidic electrolyzed water and strongly alkaline electrolyzed water, and then mix and dilute this highly concentrated strongly acidic electrolyzed water and strongly alkaline electrolyzed water with raw water,
This is a method for obtaining acidic electrolyzed water (pH 2.0 to 3.0) and alkaline electrolyzed water (pH 10.5 to 12.0) at desired concentrations.

【0013】[0013]

【発明の実施の形態】本発明方法は、陽極板を配置した
陽極室と陰極板を配置した陰極室とを設けた電解槽を備
えた電気分解装置であって、且つ陽極側に供給する原水
を電解処理する水と電解処理しない水とに分流させ、電
解処理する水を陽極室に通水させ、陽極室から排出した
水を上記の電解処理しない水と合流させる構造にし、ま
た陰極側に供給する原水を電解処理する水と電解処理し
ない水とに分流させ、電解処理する水を陰極室に通水さ
せ、陰極室から排出した水を上記の電解処理しない水と
合流させる構造にした水電気分解装置を用いて行なう。
図1〜図4は、この構造の水電気分解装置を例示したも
ので、それぞれ断面図である。
DETAILED DESCRIPTION OF THE INVENTION The method of the present invention is an electrolysis apparatus provided with an electrolytic cell provided with an anode chamber in which an anode plate is arranged and a cathode chamber in which a cathode plate is arranged, and the raw water supplied to the anode side. Is divided into water to be subjected to electrolytic treatment and water not to be subjected to electrolytic treatment, water to be subjected to electrolytic treatment is passed through the anode chamber, and water discharged from the anode chamber is combined with the above-mentioned water not to be subjected to electrolytic treatment. Water having a structure in which the raw water to be supplied is divided into water to be subjected to electrolytic treatment and water not to be subjected to electrolytic treatment, water to be subjected to electrolytic treatment is passed through the cathode chamber, and water discharged from the cathode chamber is combined with the water not subjected to electrolytic treatment. This is performed using an electrolyzer.
1 to 4 exemplify a water electrolysis apparatus having this structure, and are cross-sectional views.

【0014】図1は、2枚の隔膜で仕切ることによって
陽極室と中間室と陰極室とを設けた電解槽を備えた水電
気分解装置の断面図である。請求項2発明を実施する例
である。(A)、(B)及び(C)はそれぞれ電解槽の
壁である。この電解槽は、隔膜(1)及び(2)によっ
て、陽極室(D)、中間室(F)及び陰極室(E)に仕
切られている。(3)及び(4)は電極板であり、電極
板(3)は陽極、電極板(4)は陰極である。各電極板
には多数の孔があいている。電極板(3)と隔膜
(1)、電極板(4)と隔膜(2)は離れていても密着
していてもよいが、図1は密着している場合を示したも
のであり、密着させる場合は各電極板と各隔膜との間に
各電極板と同じ孔のあいたシート状の非導電材料を挿入
するのが好ましい。陽極側の原水(5)は電解処理する
水(6)と電解処理しない水(7)とに分流される(以
下、電解処理する水を電解用水ということがある)。電
解処理する水(6)は陽極室(D)を通水し、電解処理
された後電解処理しない水(7)と合流し希釈されて所
定のpH2.0〜3.0の酸性電解水(8)となる。一
方、陰極側の原水(9)は電解処理する水(10)と電
解処理しない水(11)とに分流される。電解処理する
水(10)は陰極室(E)を通水し、電解処理された後
電解処理しない水(11)と合流し希釈されて所定のp
H10.5〜12.0のアルカリ性電解水(12)とな
る。
FIG. 1 is a sectional view of a water electrolysis apparatus provided with an electrolytic cell provided with an anode chamber, an intermediate chamber, and a cathode chamber by being partitioned by two diaphragms. It is an example of carrying out the second aspect of the present invention. (A), (B) and (C) are the walls of the electrolytic cell, respectively. This electrolytic cell is partitioned by a diaphragm (1) and (2) into an anode chamber (D), an intermediate chamber (F) and a cathode chamber (E). (3) and (4) are electrode plates, the electrode plate (3) is an anode, and the electrode plate (4) is a cathode. Each electrode plate has many holes. The electrode plate (3) and the diaphragm (1), and the electrode plate (4) and the diaphragm (2) may be separated or in close contact with each other, but FIG. In this case, it is preferable to insert a sheet-like non-conductive material having the same hole as each electrode plate between each electrode plate and each diaphragm. The raw water (5) on the anode side is divided into water (6) to be electrolyzed and water (7) not to be electrolyzed (hereinafter, the water to be electrolyzed may be referred to as water for electrolysis). The water (6) to be subjected to the electrolytic treatment is passed through the anode chamber (D), is combined with the water (7) that has been subjected to the electrolytic treatment and is not subjected to the electrolytic treatment, is diluted, and is diluted with the acidic electrolyzed water (at a predetermined pH of 2.0 to 3.0). 8). On the other hand, the raw water (9) on the cathode side is divided into water (10) to be electrolyzed and water (11) not to be electrolyzed. The water (10) to be subjected to the electrolytic treatment is passed through the cathode chamber (E), merged with the water (11) not subjected to the electrolytic treatment after being subjected to the electrolytic treatment, diluted and diluted to a predetermined p.
It becomes alkaline electrolyzed water (12) of H10.5-12.0.

【0015】(6’)(7’)、(10’)及び(1
1’)はそれぞれ水量を調整するためのバルブである。
中間室(F)には、高濃度の電解質水溶液を充填する。
通常は塩化カリウムや塩化ナトリウムの10%以上の水
溶液を使用し、別に設けた電解質水溶液貯槽からポンプ
等を使用して送給してもよい。電解質濃度は水溶液の流
動性を妨げない限りいくら高くてもよい。また、この例
の場合の電解用水(6)、(10)の通水方法は、陽極
室及び陰極室の下部入口から導入し、電解後の生成水及
びガスを上部出口から取り出してもよいが、上部の出口
用の孔から電解後の生成水及びガスと置換させて導入し
てもよい。この置換させて導入させる場合の電解用水の
通水量は、陽極及び陰極で発生するガスの容積に近い値
で、後述する(a)及び(b)式で計算される最小値と
なる。
(6 ') (7'), (10 ') and (1)
1 ') are valves for adjusting the amount of water, respectively.
The intermediate chamber (F) is filled with a high concentration aqueous electrolyte solution.
Usually, an aqueous solution of 10% or more of potassium chloride or sodium chloride is used, and the solution may be supplied from a separately provided electrolyte aqueous solution storage tank using a pump or the like. The electrolyte concentration may be as high as not to interfere with the fluidity of the aqueous solution. In the method of passing the electrolysis waters (6) and (10) in this example, water may be introduced from the lower inlets of the anode chamber and the cathode chamber, and water and gas generated after the electrolysis may be taken out from the upper outlet. Alternatively, the water and the gas after the electrolysis may be replaced through the upper outlet hole and introduced. The flow rate of the electrolyzing water in the case of the substitution and introduction is a value close to the volume of the gas generated at the anode and the cathode, and is the minimum value calculated by the following equations (a) and (b).

【0016】電気分解に際しての陽極室(D)及び陰極
室(E)に通水する電解用水(6)、(10)の電解用
水量は、後述する(a)及び(b)式で示される量であ
り、その最大量は1A(アンペア)の電流負荷の場合に
40ミリリットル/分であり、その値は1500クーロ
ン/リットルから逆算される値となる。以上の条件で電
気分解すると、陽極側では、中間室(F)内に充填した
電解質水溶液に含有している塩素イオン等の陰イオンが
各イオンの輸率に基づき陽極室(D)内に電気泳動によ
り移動し、電極表面において陰イオン及び水が電気分解
されてpH値が1.9以下の強酸性電解水及び酸素、塩
素等のガスが生成する。この強酸性電解水は、陽極室
(D)から排出され、電解処理されない水(7)と合流
し、目的のpH値(pH2.0〜3.0)を有する酸性
電解水(8)が生成される。一方、陰極側では、中間室
(F)内に充填した電解質水溶液に含有しているナトリ
ウムイオン等の陽イオンが各イオンの輸率に基づき陰極
室内に移動し、電極表面において陽イオン及び水が電気
分解されてpH値が12.1以上の強アルカリ性電解水
及び水素等のガスが生成する。この強アルカリ性電解水
は陰極室(E)から排出され、電解処理されない水(1
1)と合流し、目的のpH値(pH10.5〜12.
0)を有するアルカリ性電解水(12)が生成される。
The amounts of electrolysis water (6) and (10) passing through the anode chamber (D) and the cathode chamber (E) at the time of electrolysis are shown by the following equations (a) and (b). The maximum amount is 40 ml / min at a current load of 1 A (ampere), and the value is a value calculated backward from 1500 coulomb / liter. When electrolysis is carried out under the above conditions, on the anode side, anions such as chloride ions contained in the aqueous electrolyte solution filled in the intermediate chamber (F) are transferred into the anode chamber (D) based on the transport number of each ion. Electrophoresis moves by electrophoresis, anions and water are electrolyzed on the electrode surface, and strongly acidic electrolyzed water having a pH value of 1.9 or less and gases such as oxygen and chlorine are generated. The strongly acidic electrolyzed water is discharged from the anode chamber (D) and merges with the water (7) that has not been subjected to the electrolysis treatment, thereby producing acidic electrolyzed water (8) having a target pH value (pH 2.0 to 3.0). Is done. On the other hand, on the cathode side, cations such as sodium ions contained in the aqueous electrolyte solution filled in the intermediate chamber (F) move into the cathode chamber based on the transport number of each ion, and cations and water are removed on the electrode surface. Electrolysis produces strongly alkaline electrolyzed water having a pH value of 12.1 or more and a gas such as hydrogen. This strongly alkaline electrolyzed water is discharged from the cathode chamber (E) and is not electrolyzed.
1) and the desired pH value (pH 10.5-12.
0) is generated.

【0017】本発明においては電解用水量に対して15
00クーロン/リットル以上の直流電流を負荷する。こ
の負荷は、逆算すると1Aの電流値の場合の電解用水量
の最大値は40ミリリットルとなる。1500クーロン
/リットル以上の直流電流を負荷する理由は、電解効率
を低下させる原因の一つである水の輸液現象を防止する
のに必要な電流負荷量を調べた結果、その値1500ク
ーロン/リットル以上あったこと、遊離塩素の生成効率
が1500クーロン/リットル以上で高まる現象を示し
たこと、また1500クーロン/リットル以上で陰極に
おけるスケールの付着が見られなかったことからであ
る。そして、前述したごとく、1500クーロン/リッ
トル以上の電流負荷時における陽極室内ので生成する強
酸性電解水のpH値は1.9以下になり、陰極室内の強
アルカリ性電解水のpH値は12.1以上になる。
In the present invention, 15 to the amount of water for electrolysis is used.
Apply a DC current of 00 coulomb / liter or more. When this load is calculated backward, the maximum value of the amount of water for electrolysis when the current value is 1 A is 40 ml. The reason why a DC current of 1500 coulombs / liter or more is loaded is that, as a result of examining the amount of current load necessary to prevent the infusion of water, which is one of the causes of lowering the electrolysis efficiency, the value was 1500 coulombs / liter. This is because the generation efficiency of free chlorine was increased at 1500 coulombs / liter or more, and no scale adhesion was observed on the cathode at 1500 coulombs / liter or more. Then, as described above, the pH value of the strongly acidic electrolyzed water generated in the anode chamber at the time of a current load of 1500 coulombs / liter or more becomes 1.9 or less, and the pH value of the strongly alkaline electrolyzed water in the cathode chamber becomes 12.1. That is all.

【0018】そして、この電解用水量の最小値は、電気
分解時に陽極及び陰極において生成するガスを置換する
に足りる量、すなわち、ファラデーの法則により計算で
きるガス生成量に近似する量である。ちなみに、ファラ
デーの法則により計算される1A(アンペア)の電流
で、標準状態での陽極におけるガスの発生量は3.49
ミリリットル/分であり、陰極におけるガスの発生量は
6.98ミリリットル/分である。以上の条件を簡略な
式としてまとめると、電解用水量の最小〜最大の範囲は
以下の(a)及び(b)の式になる。 陽極側電解用水量(ミリリットル/分)=3.5×A〜40×A・・・(a) 陰極側電解用水量(ミリリットル/分)=7.0×A〜40×A・・・(b) (但し、Aは電気分解電流量である) この範囲内で水電気分解処理することによって上記した
強酸性電解水、強アルカリ性電解水を生成させることが
できる。そして、この生成した強酸性電解水、強アルカ
リ性電解水を電解処理されない水と混合することによっ
て目的のpH値の酸性電解水及びアルカリ性電解水を得
ることができる。
The minimum value of the amount of water for electrolysis is an amount sufficient to replace the gas generated at the anode and the cathode at the time of electrolysis, that is, an amount close to the gas generation amount that can be calculated by Faraday's law. Incidentally, at a current of 1 A (ampere) calculated by Faraday's law, the amount of gas generated at the anode in the standard state is 3.49.
The amount of gas generated at the cathode is 6.98 ml / min. When the above conditions are summarized as a simple expression, the minimum to maximum range of the amount of water for electrolysis is represented by the following expressions (a) and (b). Amount of water for electrolysis on the anode side (milliliter / min) = 3.5 × A to 40 × A (a) Amount of water for electrolysis on the cathode side (milliliter / min) = 7.0 × A to 40 × A ... ( b) (where A is the amount of electrolysis current) By performing water electrolysis treatment within this range, the strongly acidic electrolyzed water and the strongly alkaline electrolyzed water described above can be generated. Then, by mixing the generated strongly acidic electrolyzed water and strongly alkaline electrolyzed water with water that is not electrolyzed, it is possible to obtain acidic electrolyzed water and alkaline electrolyzed water having a desired pH value.

【0019】次に、電解用水に対して1500クーロン
/リットル以上の直流電流を負荷し、その後に電解処理
しない水と混合して希釈することにより、pH値コント
ロールが容易に行え、酸性電解水中に含有する遊離塩素
濃度が高められ、電力効率が改善できる理由を説明す
る。まず、pH値が容易に調整できる理由は、電解処理
しない水との混合比率の変更は電気分解条件を変更せず
に自由に行えるからである。すなわち、具体的には、図
1において陽極側についてはバルブ(6’)、(7’)
を調整することによって、また陰極側ではバルブ(1
0’)、(11’)を調整することによって容易に所望
のpH値の酸性電解水及びアルカリ性電解水を得ること
ができる。
Next, a direct current of 1500 coulombs / liter or more is applied to the water for electrolysis, and then mixed with water that has not been subjected to electrolysis treatment and diluted, whereby the pH value can be easily controlled. The reason why the concentration of free chlorine contained is increased and the power efficiency can be improved will be described. First, the reason why the pH value can be easily adjusted is that the mixing ratio with water that is not subjected to electrolytic treatment can be freely changed without changing the electrolysis conditions. That is, specifically, the valves (6 ') and (7') on the anode side in FIG.
And the bulb (1) on the cathode side
By adjusting 0 ′) and (11 ′), acidic electrolyzed water and alkaline electrolyzed water having desired pH values can be easily obtained.

【0020】次に、酸性電解水中に含有する遊離塩素濃
度が高められる理由を説明する。本発明に於ける陽極側
電解用水量は、最大でも電流(アンペア)に40を乗じ
た量(ミリリットル/分)である。これは逆算すれば毎
分1リットル当たりの水に負荷する電流は25アンペア
以上であり、電気分解の電流負荷量は従来の条件に比べ
て大変高い値である。その結果、陽極室内の塩素イオン
濃度は従来の方法に比べて高い値となる。
Next, the reason why the concentration of free chlorine contained in the acidic electrolyzed water is increased will be described. In the present invention, the amount of water for electrolysis on the anode side is an amount (milliliter / min) obtained by multiplying the current (ampere) by 40 at the maximum. When this is calculated backward, the current applied to water per liter per minute is 25 amperes or more, and the current load of electrolysis is much higher than that of the conventional condition. As a result, the chlorine ion concentration in the anode chamber becomes a higher value than in the conventional method.

【0021】ここで、陽極板表面で起こる代表的な電極
反応式を示すと以下の通りである。 2H2O−4e~ → O2+4H+ ・・・・・・(c) 2Cl~−2e~ → Cl2 ・・・・・・・・(d) ここで(c)の反応を分解して考えると、まず水が水素
イオンと水酸イオンに解離し、水酸イオンが電極反応で
電子を奪われて酸素ガスと水素イオンになる過程を経る
と考えられる。 4H2O ⇔ 4H+ + 4OH~ ・・・・・・(e) 4OH~−4e~ → O2+2H2O ・・・・・(f) したがって、(c)と(d)の反応は、電極表面に於て
競合するもので、反応速度を支配するファクターとして
電極表面近くに存在するOH~イオンとCl~イオンの濃
度が大きく関与する。それ故、本発明の如く、陽極室内
の塩素イオン濃度が高い場合には、従来の方法より高い
比率で塩素ガスが生成できる。
Here, a typical electrode reaction formula occurring on the surface of the anode plate is as follows. By decomposing reaction of 2H 2 O-4e ~ → O 2 + 4H + ······ (c) 2Cl ~ -2e ~ → Cl 2 ········ (d) where (c) Considering that, first, it is considered that water is dissociated into hydrogen ions and hydroxide ions, and the hydroxide ions undergo a process of being deprived of electrons by an electrode reaction to become oxygen gas and hydrogen ions. 4H 2 O⇔4H + + 4OH ~ (e) 4OH ~ -4e ~ → O 2 + 2H 2 O (f) Therefore, the reaction between (c) and (d) is Competing on the electrode surface, the concentration of OHOH ions and Cl ~ ions existing near the electrode surface is greatly involved as a factor controlling the reaction rate. Therefore, when the chlorine ion concentration in the anode chamber is high as in the present invention, chlorine gas can be generated at a higher ratio than in the conventional method.

【0022】また、発生した塩素ガスは更に水と反応し
て殺菌力の強い次亜塩素酸や次亜塩素酸イオン等を生成
する。 Cl2+H2O ⇔ HCl+HClO ・・・・(g) HClO ⇔ H++ClO~ ・・・・・・・・(h) 本発明の方法は、遊離塩素濃度を容易に高められるだけ
でなく、電解用水(6)の量の変更及び電解処理しない
水(7)との比率を変更することにより、容易に遊離塩
素濃度を調節することができる。すなわち、電解用水
(6)の量を(a)式の最小値にした時に遊離塩素濃度
が最も高くなり、電解用水(6)の量を増加するに従い
遊離塩素濃度を低くすることができる。また、高遊離塩
素濃度の酸性電解水を製造する際に、陽極用の電極材料
は一般的に使用されている高価な白金イリヂウムやパラ
ジウム等を使用してもよいが、本発明の遊離塩素濃度を
高める条件であれば、チタンに白金メッキした電極材料
でも、高い遊離塩素濃度を得ることができる。
The generated chlorine gas further reacts with water to produce hypochlorous acid and hypochlorite ions having strong sterilizing power. Cl 2 + H 2 O⇔HCl + HClO (g) HClO⇔H + + ClO ~ (h) The method of the present invention not only can easily increase the concentration of free chlorine, but also The concentration of free chlorine can be easily adjusted by changing the amount of the water (6) and changing the ratio with the water (7) not subjected to the electrolytic treatment. That is, when the amount of the electrolysis water (6) is set to the minimum value of the expression (a), the free chlorine concentration becomes the highest, and the free chlorine concentration can be lowered as the amount of the electrolysis water (6) increases. When producing acidic electrolyzed water having a high free chlorine concentration, the electrode material for the anode may be a commonly used expensive platinum iridium or palladium, but the free chlorine concentration of the present invention may be used. If the condition is increased, a high free chlorine concentration can be obtained even with an electrode material formed by plating platinum on titanium.

【0023】次に電力効率が改善できる理由を説明す
る。前述の如く本発明では、電解用水量に対して電流負
荷量が高く、陽極室及び陰極室において、電解用水中の
イオン濃度及び電気電導度が高いために、電気分解時の
電圧を下げることができ、その結果、電力消費量を低く
できる。また水中のイオン濃度が高まるので、水分子が
陽極から陰極に向かって移動する輸液現象を抑えること
ができる。
Next, the reason why the power efficiency can be improved will be described. As described above, in the present invention, the current load is high with respect to the amount of water for electrolysis, and the ion concentration and the electric conductivity in the water for electrolysis are high in the anode chamber and the cathode chamber. As a result, power consumption can be reduced. Further, since the ion concentration in the water is increased, the transfusion phenomenon in which water molecules move from the anode to the cathode can be suppressed.

【0024】次に、陰極に対するスケールの付着現象を
減少させ得る理由を説明する。陰極において行われる主
な電気分解反応は以下の通りである。 2H2O+2e~ → H2+2OH~ ・・・・・・・(i) Na++e~ → Na ・・・・・・・・・・・・(j) 2Na+2H2O → 2Na++2OH~+H2 ・・(k) 上記の反応式のように、陰極では、水酸イオンや水素ガ
スの発生と共に、ナトリウム等の金属イオンが還元され
て一旦金属となり、更に水と反応する現象が起こる。こ
のとき水中にカルシウム、マグネシウム、シリカ等のイ
オンが存在するとそれらのイオンも同様な反応で還元さ
れ金属化されたり、カルシウム、マグネシウム等の成分
が水酸化物を生成したりするため、これらがしばしば電
極表面にスケールとして沈着する。
Next, the reason why the scale adhesion phenomenon to the cathode can be reduced will be described. The main electrolysis reactions performed at the cathode are as follows. 2H 2 O + 2e ~ → H 2 + 2OH ~ (i) Na + + e ~ → Na (j) 2Na + 2H 2 O → 2Na + + 2OH ~ + H 2 (K) As shown in the above reaction formula, at the cathode, a phenomenon occurs in which a metal ion such as sodium is reduced to a metal once, and further reacts with water with the generation of hydroxyl ions and hydrogen gas. At this time, if ions such as calcium, magnesium, and silica are present in the water, these ions are also reduced and metallized by a similar reaction, and components such as calcium and magnesium form hydroxides. Deposit as scale on the electrode surface.

【0025】このように、従来から水の電気分解の際に
陰極にスケールが付着する現象は不可避なものとして考
えられており、付着防止対策としては、軟水装置等を用
いて原水中に含有する硬度成分を除去したり、電極に付
着したスケールを酸で洗うなり、電極の極性を反転させ
てスケールを剥離させるなりの対策がとられている。従
来の方法による電気分解でアルカリ性電解水を生成する
場合の、陰極室に通水する電解用水にたいして負荷する
電流量は、およそ毎分1リットル当たり12アンペア程
度(720クーロン/リットル)であるが、この条件の
場合にはしばしば陰極板の表面に析出しスケールとなる
のが観察されている。後述する特開平8−276184
公報記載の電極を用い、陰極室の側壁を透明の材料で制
作した電解槽を用いて電気分解の電極表面を目視観察
し、陰極にスケールを析出させない条件を研究した結
果、通水量に対して1500クーロン/リットル以上、
好ましくは1800クーロン/リットル以上の電流を負
荷し、陰極室のpHを12.1以上の強アルカリ性にす
るとスケールが電極表面に析出しないことを確認した。
この理由は、強アルカリ条件のもとでは、多くのスケー
ル成分は溶解しているか、或は結晶を析出させにくいた
めであると推測される。更に、陽極側の隔膜に比べて陰
極側の隔膜のイオン透過率の方が大きいものを選択し、
中間室内の水溶液のpH値を酸性に保つこともスケール
の発生を防ぐ効果がある。
As described above, the phenomenon that scale adheres to the cathode during the electrolysis of water is conventionally considered to be inevitable, and as a countermeasure for preventing adhesion, the scale is contained in raw water using a water softener or the like. Measures have been taken to remove the hardness component, wash the scale attached to the electrode with acid, and invert the polarity of the electrode to peel off the scale. In the case where alkaline electrolyzed water is generated by electrolysis according to a conventional method, the amount of current applied to electrolysis water flowing through the cathode chamber is about 12 amps per liter per minute (720 coulombs / liter). Under these conditions, it has been observed that precipitation often occurs on the surface of the cathode plate to form scale. JP-A-8-276184 described later
Using the electrode described in the publication, the electrode surface of the electrolysis was visually observed using an electrolytic cell made of a transparent material on the side wall of the cathode chamber, and the conditions under which scale was not deposited on the cathode were studied. More than 1500 coulombs / liter,
Preferably, when a current of 1800 coulombs / liter or more was applied and the pH of the cathode chamber was made strongly alkaline of 12.1 or more, no scale was deposited on the electrode surface.
It is presumed that the reason for this is that many scale components are dissolved or crystals are hardly precipitated under strong alkaline conditions. Furthermore, select one having a higher ion permeability of the cathode side diaphragm than the anode side diaphragm,
Keeping the pH of the aqueous solution in the intermediate chamber acidic also has the effect of preventing the generation of scale.

【0026】図2は、図1を変形した電解槽の断面図で
ある。図1の電解槽は、陽極の電極板(3)及び陰極の
電極板(4)として多数の孔のあいた電極板を用い、各
電極板(3)、(4)を各隔膜(1)、(2)に密着さ
せた電解槽であるが、図2に示すような、陽極の電極板
(3)及び陰極の電極板(4)として孔があいていない
通常の電極板を用い、各電極板(3)、(4)を各隔膜
(1)、(2)から離れた位置に配置した電解槽を使用
して水を電気分解して電解水製造することもでき、この
場合も同様な作用効果をあげることができる。
FIG. 2 is a sectional view of an electrolytic cell obtained by modifying FIG. The electrolytic cell of FIG. 1 uses an electrode plate having a large number of holes as an anode electrode plate (3) and a cathode electrode plate (4), and replaces each electrode plate (3), (4) with each diaphragm (1), Although the electrolytic cell is closely attached to (2), as shown in FIG. 2, ordinary electrode plates having no holes are used as an anode electrode plate (3) and a cathode electrode plate (4). Electrolyzed water can be used to produce electrolyzed water by using an electrolytic cell in which the plates (3) and (4) are arranged at positions apart from the respective membranes (1) and (2). The effect can be improved.

【0027】請求項3発明について説明する。請求項3
発明は、請求項2発明をより効果的に実施するための方
法である。すなわち、請求項2発明に従って陽極室及び
陰極室に通水させて水を電気分解するとき、陽極室及び
陰極室への通水量は少量である。この小量の電解用水
(6)、(10)に対して1500クーロン/リットル
以上の直流電流を負荷して電気分解すると、電極や水中
を電気が流れる際に発生するジュール熱が充分に放出で
きず、電解槽の温度が上昇する問題が生じる。請求項3
発明は、電解処理しない水(7)、(11)を電解槽の
冷却に利用することによって上記の問題を解消するもの
である。
A third aspect of the present invention will be described. Claim 3
The invention is a method for implementing the invention of claim 2 more effectively. That is, when water is electrolyzed by passing water through the anode chamber and the cathode chamber according to the second aspect of the invention, the amount of water passing through the anode chamber and the cathode chamber is small. When a small amount of direct current of 1500 coulombs / liter or more is applied to the small amount of electrolyzing water (6) or (10) for electrolysis, Joule heat generated when electricity flows through the electrodes and water can be sufficiently released. The temperature of the electrolytic cell rises. Claim 3
The present invention solves the above problem by using the water (7) and (11) that are not subjected to the electrolytic treatment for cooling the electrolytic cell.

【0028】図3は、電解槽に陽極室、中間室及び陰極
室が設けられた水電気分解装置を用いた請求項2発明を
上記の趣旨で変形した請求項3発明を実施する例を示す
断面図である。(A)、(B)及び(C)はそれぞれ電
解槽の壁である。この電解槽は、隔膜(1)、(2)及
び仕切板(13)、(14)によって、左から順に流水
路(G)、陽極室(D)、中間室(F)、陰極室(E)
及び流水路(H)に仕切られている。(3)は陽極板、
(4)は陰極板である。電極板(3)と隔膜(1)、電
極板(4)と隔膜(2)は離れていても密着していても
よいが、多数の孔を有し、隔膜側に非導電性シートが積
層された形態の電極を隔膜に密着させたものが好まし
い。流水路(G)は電解槽の側壁(A)と仕切板(1
3)で囲まれており、流水路(H)は電解槽の側壁
(B)と仕切板(14)で囲まれている。仕切板(1
3)、(14)の素材は金属、合成樹脂などである。
FIG. 3 shows an embodiment of the present invention, wherein the water electrolysis apparatus provided with an anode chamber, an intermediate chamber, and a cathode chamber in an electrolytic cell is modified from the above-mentioned invention to the above-mentioned purpose. It is sectional drawing. (A), (B) and (C) are the walls of the electrolytic cell, respectively. The electrolyzer comprises a flow channel (G), an anode chamber (D), an intermediate chamber (F), and a cathode chamber (E) in order from the left by diaphragms (1) and (2) and partition plates (13) and (14). )
And a water channel (H). (3) is an anode plate,
(4) is a cathode plate. The electrode plate (3) and the diaphragm (1), and the electrode plate (4) and the diaphragm (2) may be separated or in close contact with each other, but have a large number of holes, and a non-conductive sheet is laminated on the diaphragm side. It is preferable that the electrode having the above-mentioned configuration is adhered to the diaphragm. The water channel (G) is connected to the side wall (A) of the electrolytic cell and the partition plate (1).
The flow channel (H) is surrounded by the side wall (B) of the electrolytic cell and the partition plate (14). Partition plate (1
Materials of 3) and (14) are metals, synthetic resins, and the like.

【0029】陽極側の原水(5)は電解処理する水
(6)と電解処理しない水(7)とに分流される。電解
処理する水(6)は陽極室(D)を通水し、電解処理し
ない水(7)は流水路(G)を通水する。そして陽極室
(D)を通水して電解処理された水は、電解処理しない
水(7)と合流混合し所定のpH2.0〜3.0の酸性
電解水(8)となる。一方、陰極側の原水(9)は電解
処理する水(10)と電解処理しない水(11)とに分
流される。電解処理する水(10)は陰極室(E)を通
水し、電解処理しない水(11)は流水路(H)を通水
する。そして陰極室(E)を通水して電解処理された水
は、電解処理された後電解処理しない水(11)と合流
混合し所定のpH10.5〜12.0のアルカリ性電解
水(12)となる。流水路(G)及び(H)を通水する
水が電解槽の冷却作用をする。(6’)、(7’)、
(10’)及び(11’)はそれぞれ水量を調整するた
めのバルブである。中間室(F)には、高濃度の電解質
水溶液を充填する。通常は塩化カリウムや塩化ナトリウ
ムの10%以上の水溶液を使用し、別に設けた電解質水
溶液貯槽からポンプ等を使用して送給してもよい。
The raw water (5) on the anode side is divided into water (6) to be electrolyzed and water (7) not to be electrolyzed. The water (6) to be subjected to the electrolytic treatment passes through the anode chamber (D), and the water (7) not subjected to the electrolytic treatment passes through the flowing water channel (G). Then, the water subjected to the electrolytic treatment through the anode chamber (D) is mixed and mixed with the water (7) which has not been subjected to the electrolytic treatment to become acidic electrolyzed water (8) having a predetermined pH of 2.0 to 3.0. On the other hand, the raw water (9) on the cathode side is divided into water (10) to be electrolyzed and water (11) not to be electrolyzed. The water (10) to be subjected to the electrolytic treatment passes through the cathode chamber (E), and the water (11) not subjected to the electrolytic treatment passes through the flowing water channel (H). The water electrolyzed through the cathode chamber (E) is mixed with water (11) that has been electrolyzed and not electrolyzed, and is mixed with alkaline electrolyzed water (12) having a predetermined pH of 10.5 to 12.0. Becomes The water flowing through the flowing water channels (G) and (H) acts to cool the electrolytic cell. (6 '), (7'),
(10 ') and (11') are valves for adjusting the amount of water, respectively. The intermediate chamber (F) is filled with a high concentration aqueous electrolyte solution. Usually, an aqueous solution of 10% or more of potassium chloride or sodium chloride is used, and the solution may be supplied from a separately provided electrolyte aqueous solution storage tank using a pump or the like.

【0030】図3において、陽極側及び陰極側共に、電
解処理した水(すなわち強酸性電解水又は強アルカリ性
電解水)と流水路(G)、(H)を通水した水との混合
は、図3に示す如く電解槽から出たところで合流混合し
てもよいが、仕切板(13)、(14)の上部出口付近
に孔を設けて、この孔を通してそれぞれ混合してもよ
い。また、電解処理する水(6)、(10)それぞれの
陽極室(D)、陰極室(E)への導入方法は3通りあ
り、図3に示すごとく陽極室(D)、陰極室(E)のそ
れぞれの下部に設けた入口から直接導入してもよいし、
仕切板(13)及び(14)の下部に孔を設け、原水
(5)、(9)のそれぞれをまず流路(G)、(H)に
導入し、孔を通してそれぞれ陽極室(D)、陰極室
(E)に導入してもよいし、また仕切板(13)及び
(14)の上部に孔を設け、このそれぞれの孔から電解
処理した水及びガスと置換させて導入してもよい。この
置換させて導入させる場合の電解用水(6)及び(1
0)の通水量は、電気分解によって陽極で発生するガス
の容量に近い値で、前述の(a)、(b)式で計算され
る最小値の値である。図3に示す電気分解装置を用いて
水を電気分解する操作は、図1及び図2に示す電気分解
装置を用いて行なった場合と同じある。またその際の作
用も同じである。また、この流水路を設け、流水路を通
水する水を利用して電解槽を冷却する方式は、図1に示
す電気分解装置を用いる水電気分解方法にも適用でき
る。
In FIG. 3, on both the anode side and the cathode side, the mixture of the electrolyzed water (ie, strongly acidic electrolyzed water or strongly alkaline electrolyzed water) and the water passed through the flow channels (G) and (H) is As shown in FIG. 3, they may be mixed and mixed when they come out of the electrolytic cell. Alternatively, holes may be provided near the upper outlets of the partition plates (13) and (14), and mixing may be performed through these holes. In addition, there are three methods for introducing the water (6) and (10) to be subjected to the electrolytic treatment into the anode chamber (D) and the cathode chamber (E). As shown in FIG. 3, the anode chamber (D) and the cathode chamber (E) are used. ) Can be introduced directly from the entrance provided at the bottom of each,
Holes are provided in the lower part of the partition plates (13) and (14), and the raw waters (5) and (9) are first introduced into the flow paths (G) and (H), respectively. The gas may be introduced into the cathode chamber (E), or holes may be provided in the upper portions of the partition plates (13) and (14), and the holes may be replaced with water and gas subjected to electrolytic treatment through the holes. . The water for electrolysis (6) and (1)
The water flow rate 0) is a value close to the capacity of gas generated at the anode by electrolysis, and is a minimum value calculated by the above-described equations (a) and (b). The operation of electrolyzing water using the electrolyzer shown in FIG. 3 is the same as that performed using the electrolyzer shown in FIGS. 1 and 2. The operation at that time is also the same. Further, the method of providing the flowing water channel and cooling the electrolytic cell using water flowing through the flowing water channel can also be applied to the water electrolysis method using the electrolysis apparatus shown in FIG.

【0031】請求項4発明について説明する。請求項4
発明は、図2に示す請求項2発明の変形であって、流水
路を形成するための仕切板を電極板で兼ねさせた水電気
分解装置を用いて行なう方法である。図4はその水電気
分解装置の一例を示す断面図である。(A)、(B)及
び(C)はそれぞれ電解槽の壁である。この電解槽は、
陽極板(3)と隔膜(1)と隔膜(2)と陰極板(4)
によって順次に仕切られ、左から順に流水路(G)、陽
極室(D)、中間室(F)、陰極室(E)及び流水路
(H)が形成されている。すなわち、陽極室(D)は陽
極板(3)と隔膜(1)とで形成され、陰極室(E)は
陰極板(4)と隔膜(2)とで形成されている。また流
水路(G)は電解槽の側壁(A)と陽極板(3)で囲ま
れており、流水路(H)は電解槽の側壁(B)と陰極板
(4)で囲まれている。
A fourth aspect of the present invention will be described. Claim 4
The present invention is a modification of the second aspect of the present invention shown in FIG. 2, and is a method of using a water electrolysis apparatus in which a partition plate for forming a flowing water channel is also used as an electrode plate. FIG. 4 is a sectional view showing an example of the water electrolysis apparatus. (A), (B) and (C) are the walls of the electrolytic cell, respectively. This electrolyzer is
Anode plate (3), diaphragm (1), diaphragm (2) and cathode plate (4)
, A flowing channel (G), an anode chamber (D), an intermediate chamber (F), a cathode chamber (E), and a flowing channel (H) are formed in this order from the left. That is, the anode chamber (D) is formed by the anode plate (3) and the diaphragm (1), and the cathode chamber (E) is formed by the cathode plate (4) and the diaphragm (2). The flowing water channel (G) is surrounded by the side wall (A) of the electrolytic cell and the anode plate (3), and the flowing water channel (H) is surrounded by the side wall (B) of the electrolytic cell and the cathode plate (4). .

【0032】陽極側の原水(5)は電解処理する水
(6)と電解処理しない水(7)とに分流される。電解
処理する水(6)は陽極室(D)を通水し、電解処理し
ない水(7)は流水路(G)を通水する。そして陽極室
(D)を通水して電解処理された水は、電解処理しない
水(7)と合流混合し所定のpH2.0〜3.0の酸性
電解水(8)となる。一方、陰極側の原水(9)は電解
処理する水(10)と電解処理しない水(11)とに分
流される。電解処理する水(10)は陰極室(E)を通
水し、電解処理しない水(11)は流水路(H)を通水
する。そして陰極室(E)を通水して電解処理された水
は、電解処理された後電解処理しない水(11)と合流
混合し所定のpH10.5〜12.0のアルカリ性電解
水(12)となる。流水路(G)及び(H)を通水する
水が電解槽の冷却作用をする。(6’)、(7’)、
(10’)及び(11’)はそれぞれ水量を調整するた
めのバルブである。
The raw water (5) on the anode side is divided into water (6) to be electrolyzed and water (7) not to be electrolyzed. The water (6) to be subjected to the electrolytic treatment passes through the anode chamber (D), and the water (7) not subjected to the electrolytic treatment passes through the flowing water channel (G). Then, the water subjected to the electrolytic treatment through the anode chamber (D) is mixed and mixed with the water (7) which has not been subjected to the electrolytic treatment to become acidic electrolyzed water (8) having a predetermined pH of 2.0 to 3.0. On the other hand, the raw water (9) on the cathode side is divided into water (10) to be electrolyzed and water (11) not to be electrolyzed. The water (10) to be subjected to the electrolytic treatment passes through the cathode chamber (E), and the water (11) not subjected to the electrolytic treatment passes through the flowing water channel (H). The water electrolyzed through the cathode chamber (E) is mixed with water (11) that has been electrolyzed and not electrolyzed, and is mixed with alkaline electrolyzed water (12) having a predetermined pH of 10.5 to 12.0. Becomes The water flowing through the flowing water channels (G) and (H) acts to cool the electrolytic cell. (6 '), (7'),
(10 ') and (11') are valves for adjusting the amount of water, respectively.

【0033】図4において、陽極側及び陰極側共に、電
解処理した水(すなわち強酸性電解水又は強アルカリ性
電解水)と流水路(G)又は(H)を通水した水との混
合は、図4に示す如く電解槽から出たところで合流混合
してもよいが、陽極板(3)及び陰極板(4)の上部出
口付近に孔を設け、この孔を通してそれぞれ混合しても
よい。また、電解処理する水(6)、(10)のそれぞ
れの陽極室(D)又は陰極室(E)への導入方法は3通
りあり、図4に示すごとく陽極室(D)及び陰極室
(E)のそれぞれの下部に設けた入口から直接導入して
もよいし、陽極板(3)及び陰極板(4)の下部に孔を
設け、原水(5)、(9)のそれぞれをまず流水路
(G)、(H)に導入し、この孔を通してそれぞれ陽極
室(D)又は陰極室(E)に導入してもよいし、また陽
極板(3)及び陰極板(4)の上部に孔を設け、このそ
れぞれの孔から電解処理した水及びガスと置換させて導
入してもよい。この置換させて導入させる場合の電解用
水(6)及び(10)の通水量は、電気分解によって陽
極で発生するガスの容量に近い値で、前述の(a)及び
(b)式で計算される最小値の値である。図4に示す電
気分解装置を用いて水を電気分解する操作は、図1〜図
3に示す電気分解装置を用いて行なった場合と同じあ
る。またその際の作用も同じである。
In FIG. 4, on both the anode side and the cathode side, the mixture of the electrolyzed water (that is, the strongly acidic electrolyzed water or the strongly alkaline electrolyzed water) and the water passed through the flow channel (G) or (H) is As shown in FIG. 4, they may be mixed and mixed when they come out of the electrolytic cell. Alternatively, holes may be provided near the upper outlets of the anode plate (3) and the cathode plate (4), and mixing may be performed through these holes. In addition, there are three methods for introducing the water (6) and (10) to be subjected to the electrolytic treatment into the anode chamber (D) or the cathode chamber (E). As shown in FIG. 4, the anode chamber (D) and the cathode chamber ( E) may be introduced directly from the inlet provided at the lower part of each, or holes may be provided at the lower part of the anode plate (3) and the cathode plate (4) so that each of the raw waters (5) and (9) is first supplied with flowing water. It may be introduced into the channels (G) and (H) and introduced into the anode chamber (D) or the cathode chamber (E) through these holes, respectively, or may be provided at the upper part of the anode plate (3) and the cathode plate (4). Holes may be provided, and the holes may be replaced with water and gas subjected to electrolytic treatment and introduced. The flow rate of the electrolyzing water (6) and (10) when the replacement is introduced is a value close to the capacity of the gas generated at the anode by electrolysis, and is calculated by the above-described equations (a) and (b). Is the minimum value. The operation of electrolyzing water using the electrolyzer shown in FIG. 4 is the same as that performed using the electrolyzer shown in FIGS. The operation at that time is also the same.

【0034】上記した図3及び図4に示した例におい
て、それぞれ陰極及び陽極の片側に単独で使用してもよ
いし請求項2と3の発明を組み合わせて使用しても良
い。例えば、陽極側に請求項2の発明の装置を取付けて
陰極側に請求項3の発明の装置を取り付ける等である。
また、図1〜図4の電気分解装置では、陽極室(D)と
陰極室(E)との間に2枚の隔膜で仕切られた中間室
(F)を設けた電解槽を備えているが、図5及び図6に
示すように隔膜(1)を1枚のみ用い、中間室を設けな
い電解槽を備えた電気分解装置を用いても本発明を実施
することができる。そして、この装置を用いる場合は、
陽極室(D)及び陰極室(E)に通水する電解処理する
水(6)、(10)に電解質水溶液(15)、(16)
を混入する。この電解質水溶液を添加する操作以外は、
図1〜図4の電気分解装置を用いた場合と同じである。
In the examples shown in FIGS. 3 and 4, the cathode and the anode may be used alone on one side, respectively, or the inventions of claims 2 and 3 may be used in combination. For example, the device of the invention of claim 2 is attached to the anode side, and the device of the invention of claim 3 is attached to the cathode side.
The electrolyzer shown in FIGS. 1 to 4 includes an electrolytic cell provided with an intermediate chamber (F) partitioned by two diaphragms between an anode chamber (D) and a cathode chamber (E). However, as shown in FIGS. 5 and 6, the present invention can be carried out by using only one diaphragm (1) and using an electrolysis apparatus having an electrolytic cell without an intermediate chamber. And when using this device,
Electrolyte solutions (15), (16) are added to the water (6), (10) to be electrolyzed, which passes through the anode chamber (D) and the cathode chamber (E).
Is mixed. Other than the operation of adding the aqueous electrolyte solution,
This is the same as the case where the electrolyzer of FIGS. 1 to 4 is used.

【0035】本発明で使用する電気分解装置における電
極及び隔膜について説明する。電極板は隔膜と密着させ
ても密着させなくてもよい。電極と隔膜を密着させて使
用する場合には、電極板に多数の孔を有する板や網状の
ものを用いるのが望ましい。電極と隔膜を密着させない
で、すなわち間隔をあけて使用する場合には孔を有して
も有さなくてもよい。電極板の材料は、例えば銅、鉛、
ニッケル、クロム、チタン、タンタル、金、白金、酸化
鉄、ステンレス鋼、炭素繊維やグラファイトの板であ
り、陽極板の材料としてはチタンに白金族の金属をメッ
キしたり焼き付けしたりしたものが好ましい。また、陰
極板の材料としては高クロムステンレス鋼(SUS31
6L)やニッケルを使用しても良い。
The electrodes and the diaphragm in the electrolyzer used in the present invention will be described. The electrode plate may or may not be in close contact with the diaphragm. When the electrode and the diaphragm are used in close contact with each other, it is desirable to use a plate having a large number of holes in the electrode plate or a net-like plate. In the case where the electrode and the diaphragm are not in close contact with each other, that is, when they are used at intervals, they may or may not have holes. The material of the electrode plate is, for example, copper, lead,
It is a plate of nickel, chromium, titanium, tantalum, gold, platinum, iron oxide, stainless steel, carbon fiber or graphite, and the material of the anode plate is preferably a material obtained by plating or baking titanium with a platinum group metal. . The material of the cathode plate is high chromium stainless steel (SUS31).
6L) or nickel may be used.

【0036】また、上記した多数の孔を有する電極板を
隔膜と密着させて使用する場合には、各電極板と隔膜と
の間に、電極板の孔とほぼ一致する多数の孔を有するシ
ート状非導電性材料、例えばフッソ系樹脂(商標名テフ
ロン)、ABS樹脂、アクリル樹脂、エポキシ樹脂、ポ
リウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹
脂、ナイロン樹脂、ポリエチレンテレフタレート樹脂、
ポリアミド樹脂、塩化ビニール樹脂等の合成樹脂や天然
ゴム、SBR、クロロプレン、ポリブタジエン等のエラ
ストマー等のシートを配置して積層した電極板、或は隔
膜側に電気絶縁性皮膜を形成させ多数の孔のあいた電極
板を使用する。この電極板自体は特開平8−27618
4号公報に記載されている。この電極板は隔膜と接する
側の電極面で電気分解をさせないために、電極面で生成
したイオンが対極へ移動する現象と、電極と隔膜の間に
ガスが停滞して電流を阻害する現象を減少させることが
できるので好ましい。図1、図3、図5は上記の構造の
多数の孔のあいた電極板を使用した例である。また図4
では、電極板が仕切板を兼用するため、多数の孔があけ
られていない電極板を使用している。
When the above-described electrode plate having a large number of holes is used in close contact with the diaphragm, a sheet having a large number of holes between the respective electrode plates and the diaphragm that substantially matches the holes of the electrode plate. Non-conductive material, for example, fluorine resin (trade name: Teflon), ABS resin, acrylic resin, epoxy resin, polyurethane resin, polyethylene resin, polypropylene resin, nylon resin, polyethylene terephthalate resin,
An electrode plate laminated with sheets of synthetic resin such as polyamide resin and vinyl chloride resin, natural rubber, elastomer such as SBR, chloroprene, polybutadiene, etc., or an electric insulating film is formed on the diaphragm side to form a large number of holes. Use a perforated electrode plate. This electrode plate itself is disclosed in JP-A-8-27618.
No. 4 publication. Since this electrode plate does not cause electrolysis on the electrode surface in contact with the diaphragm, the phenomenon in which ions generated on the electrode surface move to the counter electrode and the phenomenon in which gas stagnates between the electrode and the diaphragm and inhibits current flow. It is preferable because it can be reduced. FIGS. 1, 3, and 5 show examples using an electrode plate having a large number of holes having the above structure. FIG. 4
Uses an electrode plate without many holes because the electrode plate also serves as a partition plate.

【0037】また、隔膜としては、例えば通水性を有す
るものとして、ポリ弗化ビニル系繊維、アスベスト、グ
ラスウール、ポリ塩化ビニル繊維、ポリ塩化ビニリデン
繊維、ポリエステル繊維、芳香属ポリアミド繊維等の織
布や不織布である。また、例えば骨材にポリエステル繊
維、ナイロン繊維、ポリエチレン繊維の織布や不織布を
用い、膜材に塩素化ポリエチレン、ポリ塩化ビニル又は
ポリ弗化ビニリデンあるいはこれらに酸化チタンを混合
した隔膜である。また、通水性が少ない隔膜として、セ
ロファン等の半透膜あるいは陽イオン交換膜、陰イオン
交換膜などが使用される。本発明の電気分解条件は、小
量の電解用水に高負荷の電流を流して非常に強い酸性や
アルカリ性の水を生成させたり、高濃度の塩素ガスが生
成させるのでその条件に耐えられる材料の隔膜を選択す
るのが好ましい。
As the diaphragm, for example, a woven fabric such as polyvinyl fluoride fiber, asbestos, glass wool, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyester fiber, aromatic polyamide fiber or the like having water permeability is used. It is a non-woven fabric. Also, for example, a woven or nonwoven fabric of polyester fiber, nylon fiber, or polyethylene fiber is used as an aggregate, and a chlorinated polyethylene, polyvinyl chloride, polyvinylidene fluoride, or a titanium oxide mixed with these is used as a membrane material. A semipermeable membrane such as cellophane or a cation exchange membrane or an anion exchange membrane is used as the membrane having low water permeability. The electrolysis conditions of the present invention are such that a high load current is applied to a small amount of electrolysis water to generate very strong acidic or alkaline water, or a high concentration of chlorine gas is generated, so that a material that can withstand the conditions is used. It is preferred to choose a diaphragm.

【0038】[0038]

【実施例】実施例1 図3に示す水電気分解装置を用いた実施例を説明する。
電解槽の寸法は、縦15cm、横9cm、厚さ6cmで
あり、陽極用の電極板(3)としては有効面積が50c
2である多数の孔を有するのチタン板に白金/酸化イ
リヂウム焼成電極を用い、陰極用の電極板(4)には有
効面積が50cm2である多数の孔を有するのチタン板
に白金メッキした電極を使用した。各電極板の隔膜側に
多数の孔を有する非導電性材料であるフッ素樹脂(テフ
ロン)シートを積層させて使用した。陽極室と中間室の
仕切の隔膜(1)には不織布製のMF膜を使用し、陰極
室と中間室の仕切の隔膜(2)には陽イオン交換樹脂膜
を使用し、中間室(F)には電解質として濃度約30%
の塩化ナトリウム水溶液を充填した。電解槽の陽極側
は、側壁(A)と陽極板(3)の間に設けられた仕切板
(13)によって陽極室(D)と流水路(G)に仕切ら
れており、電解用水(6)は陽極室(D)に通水され、
電解処理されない水(7)は電解槽を冷却する目的で流
水路(G)に通水される。両方の水は電解槽を出たとこ
ろで再び合流され混合され出口(8)から排出される。
また、陰極室側は、側壁(B)と陰極板(4)の間に設
けられた仕切板(14)によって陰極室(E)と流水路
(H)に仕切られており、電解用水(10)は陰極室に
通水され、その他用水(11)は電解槽を冷却する目的
で流水路(H)に通水され、再び合流され混合し出口
(12)から排出される。
Embodiment 1 An embodiment using the water electrolysis apparatus shown in FIG. 3 will be described.
The dimensions of the electrolytic cell are 15 cm in length, 9 cm in width, and 6 cm in thickness, and the effective area for the electrode plate (3) for the anode is 50 c.
A platinum / iridium oxide fired electrode is used for a titanium plate having a large number of holes of m 2 , and a platinum plate having a large number of holes of an effective area of 50 cm 2 is used for a cathode electrode plate (4). The used electrode was used. A fluororesin (Teflon) sheet, which is a nonconductive material having a large number of holes, was laminated on the diaphragm side of each electrode plate and used. A non-woven fabric MF membrane is used for the partition (1) between the anode chamber and the intermediate chamber, and a cation exchange resin membrane is used for the partition (2) between the cathode chamber and the intermediate chamber. ) Contains about 30% as electrolyte
Of sodium chloride. The anode side of the electrolytic cell is divided into an anode chamber (D) and a flowing water channel (G) by a partition plate (13) provided between the side wall (A) and the anode plate (3). ) Is passed through the anode compartment (D),
The water (7) that is not subjected to the electrolytic treatment is passed through the flowing water channel (G) for cooling the electrolytic cell. Both waters are joined again at the exit of the electrolytic cell, mixed and discharged from the outlet (8).
Further, the cathode chamber side is partitioned into the cathode chamber (E) and the flowing water channel (H) by a partition plate (14) provided between the side wall (B) and the cathode plate (4), and the water for electrolysis (10 ) Is passed through the cathode compartment, and the other service water (11) is passed through the water channel (H) for cooling the electrolytic cell, is combined again, mixed and discharged from the outlet (12).

【0039】電極板に負荷する直流電流は9.0アンペ
アで、電圧は6,7ボルトとした。陽極室に通水する電
解用水量(6)を0.1リットル/分に設定し、また流
水路(G)に通水する水(7)の水量を1.25リット
ル/分に設定し、電解槽を出た付近で合流混合して1.
35リットル/分の酸性電解水を得た。得られた酸性電
解水のpH値は2.68で、ORP値は1130mV
で、含有する遊離塩素の測定値は90ppmであった。
一方、陰極室に通水する電解用水量(10)を0.1リ
ットル/分に設定し、流水路(H)に通水する水(1
1)の水量を0.9リットル/分に設定し、電解槽を出
た付近で合流混合してアルカリ性水を得た。得られたア
ルカリ性電解水のpH値は11.54であった。この例
の電流負荷量は、電解用水(6)当たり、9.0アンペ
ア(5400クーロン/リットル)に相当する。本条件
で48時間連続的に実験を行ったが、陰極に対するスケ
ールの付着は一切発生しなかった。また、陽極から陰極
へ水が移動する輸液現象は全く見られなかった。次に、
生成する酸性電解水のpH値を一定に保った状態で陽極
室を通水する水量及び流水路(G)を通水する水量を種
々変えて実験し、ORP及び遊離塩素含有量の変化を測
定し輸液現象を観察した。その結果を表1に示す。陽極
の電解用水量の増加に伴い遊離塩素濃度の減少と電流負
荷量が1350及び338クーロン/リットルで輸液現
象が生じ、中間室の水位が上昇することが分かった。
The DC current applied to the electrode plate was 9.0 amps, and the voltage was 6.7 volts. The amount of water for electrolysis (6) passing through the anode chamber was set at 0.1 liter / min, and the amount of water (7) passing through the water channel (G) was set at 1.25 liter / min. Merge and mix near the exit of the electrolytic cell.
35 liters / minute of acidic electrolyzed water was obtained. The pH value of the obtained acidic electrolyzed water was 2.68, and the ORP value was 1130 mV.
The measured value of free chlorine contained was 90 ppm.
On the other hand, the amount of water for electrolysis (10) passing through the cathode chamber was set to 0.1 liter / min, and the amount of water (1) passing through the water channel (H) was set.
The amount of water in 1) was set at 0.9 liter / min, and the water was mixed and mixed near the outlet of the electrolytic cell to obtain alkaline water. The pH value of the obtained alkaline electrolyzed water was 11.54. The current load in this example corresponds to 9.0 amps (5400 coulombs / liter) per electrolysis water (6). The experiment was continuously performed under these conditions for 48 hours, but no adhesion of scale to the cathode occurred. Also, there was no infusion phenomenon in which water moved from the anode to the cathode. next,
Experiments were conducted while varying the amount of water passing through the anode chamber and the amount of water passing through the flow channel (G) while maintaining the pH value of the generated acidic electrolyzed water constant, and measuring changes in ORP and free chlorine content. The transfusion phenomenon was observed. Table 1 shows the results. It was found that with the increase in the amount of water for electrolysis at the anode, the concentration of free chlorine was reduced, and the current load was 1350 and 338 coulombs / liter, an infusion phenomenon occurred, and the water level in the intermediate chamber rose.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例2 陽極用の電極板(3)として、チタン板・白金/酸化イ
リジウム焼成電極に代えてチタンに白金メッキを施した
電極板を用いた以外は、実施例1と同じ電解装置を用い
同じ操作した。このときの遊離塩素の発生効果を調べた
ところ、表2の結果を得た。表2から高濃度の塩素発生
が確認できる。
Example 2 The same electrolytic apparatus as in Example 1 except that an electrode plate (3) for the anode was replaced by a titanium plate and platinum-plated electrode plate instead of a platinum / iridium oxide fired electrode. The same operation was performed using. When the effect of generating free chlorine at this time was examined, the results shown in Table 2 were obtained. From Table 2, it can be confirmed that chlorine is generated at a high concentration.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明では、原水から抜き出した少量の
電解用水に電解質を存在させ、1500クーロン/リッ
トル以上の直流電流を負荷させて水電気分解し、その後
原水と混合して目的のpHの電解水とするので、電気分
解時に生成イオン濃度を高め、水の輸液現象を防止で
き、また遊離塩素の生成効果を高めることができ、そし
て(1)電気分解効率が悪く消費電力が多い、(2)酸
性電解水の含有する遊離塩素濃度が高くなりにくく濃度
の調整が容易でない、(3)酸性電解水やアルカリ性電
解水に含まれる電解質すなわち塩分が多く錆の原因や農
作物に長期間使用すると塩害を起こす、(4)電気分解
により陰極にスケールが付着するトラブルが発生しやす
いという従来の水電気分解の欠点を改善して、所定のp
HpH2.0〜3.0の酸性電解水とpH10.5〜1
2.0のアルカリ性電解水を効率よく製造することがで
きる。またスケールの付着を防止できるので、従来行わ
れている定期的な電極の極の反転や、酸で洗うなどの操
作が不要となり、また電解処理する原水の軟化装置も不
要となる利点がある。また本発明において、中間室を設
けて、この中間室に電解質を充填した電気分解装置を用
いた場合は電解質の供給が簡単になる。
According to the present invention, an electrolyte is present in a small amount of electrolyzing water extracted from raw water, a direct current of 1500 coulomb / liter or more is applied thereto, and water electrolysis is carried out. Since it is electrolyzed water, the concentration of ions generated during electrolysis can be increased, the phenomenon of water infusion can be prevented, the effect of generating free chlorine can be enhanced, and (1) the electrolysis efficiency is poor and the power consumption is large. 2) The concentration of free chlorine contained in the acidic electrolyzed water is not easily increased, and it is not easy to adjust the concentration. (3) The electrolyte contained in the acidic electrolyzed water or the alkaline electrolyzed water, that is, a large amount of salt, causes rust or is used for a long time on agricultural products. (4) It is possible to improve the disadvantages of the conventional water electrolysis that a problem that the scale is easily attached to the cathode due to the electrolysis is improved.
H pH 2.0 to 3.0 acidic electrolyzed water and pH 10.5 to 1
2.0 alkaline electrolyzed water can be efficiently produced. In addition, since the adhesion of scale can be prevented, there is an advantage that a conventional operation of periodically reversing the poles of the electrode or washing with acid is not required, and a device for softening raw water for electrolytic treatment is not required. Further, in the present invention, when an intermediate chamber is provided and an electrolysis apparatus in which the intermediate chamber is filled with an electrolyte is used, the supply of the electrolyte is simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で用いる水電気分解装置の一例の断
面図
FIG. 1 is a cross-sectional view of an example of a water electrolysis apparatus used in the method of the present invention.

【図2】本発明方法で用いる水電気分解装置の他の例の
断面図
FIG. 2 is a sectional view of another example of the water electrolysis apparatus used in the method of the present invention.

【図3】本発明方法で用いる水電気分解装置の他の例の
断面図
FIG. 3 is a cross-sectional view of another example of the water electrolysis apparatus used in the method of the present invention.

【図4】本発明方法で用いる水電気分解装置の他の例の
断面図
FIG. 4 is a sectional view of another example of the water electrolysis apparatus used in the method of the present invention.

【図5】本発明方法で用いる水電気分解装置の他の例の
断面図
FIG. 5 is a sectional view of another example of the water electrolysis apparatus used in the method of the present invention.

【図6】本発明方法で用いる水電気分解装置の他の例の
断面図
FIG. 6 is a sectional view of another example of the water electrolysis apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1,2 隔膜、3,4 電極板、5,9 原水、13,
14 仕切板、15,16 電解質溶液、A,B,C
電解槽壁、D 陽極室、E 陰極室、F 中間室、G,
H 流水路
1,2 diaphragm, 3,4 electrode plate, 5,9 raw water, 13,
14 partition plate, 15, 16 electrolyte solution, A, B, C
Electrolyte wall, D anode room, E cathode room, F intermediate room, G,
H running water channel

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】隔膜によって陽極室と陰極室に仕切られ、
陽極室には陽極板を配置し、陰極室には陰極板を配置し
た電解槽を備え、且つ陽極側に供給する原水を電解処理
する水と電解処理しない水とに分流させ、電解処理する
水を陽極室に通水させ、陽極室から排出した水を上記の
電解処理しない水と合流させる構造にし、また陰極側に
供給する原水を電解処理する水と電解処理しない水とに
分流させ、電解処理する水を陰極室に通水させ、陰極室
から排出した水を上記の電解処理しない水と合流させる
構造にした水電気分解装置を用いて水を電気分解し、p
H2.0〜3.0の酸性電解水とpH10.5〜12.
0のアルカリ性電解水を製造する方法であって、電解処
理する水に電解質を存在させ、陽極板及び陰極板に電解
処理用水1リットル当り1500クーロン以上の直流電
流を負荷させることを特徴とする電解水製造法。
1. An anode compartment and a cathode compartment separated by a diaphragm,
An anode plate is placed in the anode compartment, and a cathode plate is placed in the cathode compartment.
The raw water supplied to the anode side is divided into water for electrolysis treatment and water not for electrolysis treatment, water for electrolysis treatment is passed through the anode chamber, and water discharged from the anode chamber is subjected to the electrolysis described above. The structure is to be combined with untreated water, and the raw water to be supplied to the cathode side is divided into water to be subjected to electrolytic treatment and water not to be subjected to electrolytic treatment.The water to be subjected to electrolytic treatment is passed through the cathode chamber, and water discharged from the cathode chamber is discharged. Water is electrolyzed using the water electrolyzer configured to merge with the water not subjected to the electrolytic treatment, and p
Acidic electrolyzed water of H2.0-3.0 and pH10.5-12.
A method for producing alkaline electrolyzed water of 0, wherein an electrolyte is present in the water to be electrolyzed, and a direct current of 1500 coulomb or more per liter of electrolyzed water is applied to the anode plate and the cathode plate. Water production method.
【請求項2】電解槽が2枚の隔膜で仕切ることによって
陽極室と中間室と陰極室とを設けたものであり、中間室
に電解質溶液を収納し、該収納した電解質溶液を電気泳
動により電解処理する水に供給することを特徴とする請
求項1記載の電解水製造法。
2. An electrolytic cell comprising an anode compartment, an intermediate compartment and a cathode compartment provided by partitioning an electrolytic cell by two diaphragms. An electrolyte solution is accommodated in the intermediate compartment, and the accommodated electrolyte solution is subjected to electrophoresis. 2. The method for producing electrolyzed water according to claim 1, wherein the water is supplied to the water to be electrolyzed.
【請求項3】請求項2に記載の電解水製造法において、
陽極室及び陰極室の各室を更に電極板が存在する室と電
極板が存在しない室に仕切板で仕切った電解槽を備えた
水電気分解装置を用い、電解処理する水を電極板が存在
する室に通水し、また電解処理しない水を電極板が存在
しない室に通水することを特徴とする電解水製造法。
3. The method for producing electrolyzed water according to claim 2,
Each of the anode chamber and the cathode chamber is further equipped with an electrolysis tank having an electrolytic cell separated by a partition plate into a chamber where an electrode plate is present and a chamber where no electrode plate is present. A method for producing electrolyzed water, characterized in that water is passed through a chamber that does not undergo electrolytic treatment, and water that is not subjected to electrolytic treatment is passed through a chamber that does not have an electrode plate.
【請求項4】陽極板と2枚の隔膜と陰極板とを順次に間
隔を置いて配置することによって、陽極板と隔膜とで仕
切られた陽極室及び陰極板と隔膜とで仕切られた陰極室
並びに槽壁と陽極板とで囲まれた通水路及び陰極板と槽
壁とで囲まれた通水路を設けた電解槽を備えた水電気分
解装置を用い、且つ上記陽極室及び上記陰極室の各室に
は電解処理する水を通水させ、電解処理しない水は上記
の各通水路を通水させることを特徴とする請求項1記載
の電解水製造法。
4. An anode chamber separated by an anode plate and a diaphragm and a cathode separated by a cathode plate and a diaphragm by sequentially disposing an anode plate, two diaphragms, and a cathode plate at intervals. A water electrolysis apparatus provided with a chamber and a water passage surrounded by a tank wall and an anode plate, and an electrolytic tank provided with a water passage surrounded by a cathode plate and a tank wall, and wherein the anode chamber and the cathode chamber are used. 2. The method for producing electrolyzed water according to claim 1, wherein water to be subjected to electrolytic treatment is passed through each of the chambers, and water not subjected to electrolytic treatment is passed through each of the water passages.
JP11052550A 1999-03-01 1999-03-01 Electrolyzed water production method Expired - Fee Related JP3113645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052550A JP3113645B2 (en) 1999-03-01 1999-03-01 Electrolyzed water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052550A JP3113645B2 (en) 1999-03-01 1999-03-01 Electrolyzed water production method

Publications (2)

Publication Number Publication Date
JP2000246249A JP2000246249A (en) 2000-09-12
JP3113645B2 true JP3113645B2 (en) 2000-12-04

Family

ID=12917921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052550A Expired - Fee Related JP3113645B2 (en) 1999-03-01 1999-03-01 Electrolyzed water production method

Country Status (1)

Country Link
JP (1) JP3113645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067213A2 (en) 2007-11-20 2009-05-28 Electrolyzer Corp. Electrolyzer cell for producing acidic or alkaline electrolyzed water
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus
JP2011016065A (en) * 2009-07-08 2011-01-27 First Ocean Kk Electrolytic water mixing apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631173B2 (en) * 2001-01-22 2011-02-16 栗田工業株式会社 Electrodeionization equipment
JP4922508B2 (en) * 2001-08-10 2012-04-25 三浦電子株式会社 ELECTROLYTIC WATER GENERATION DEVICE FOR EMPTY BOTTLE AND METHOD FOR PRODUCING ELECTROLYTIC WATER FOR EMPTY BOTTLE
JP2003311270A (en) 2002-04-18 2003-11-05 First Ocean Kk Liquid distributor
JP4614623B2 (en) * 2003-01-20 2011-01-19 ホシザキ電機株式会社 Water production method for use in agriculture
DE602004021138D1 (en) * 2004-02-27 2009-06-25 Electrolyzer Corp
US7238272B2 (en) 2004-02-27 2007-07-03 Yoichi Sano Production of electrolytic water
JP4600225B2 (en) * 2005-09-14 2010-12-15 パナソニック電工株式会社 Electrolyzed water generator
JP4216892B1 (en) 2007-04-13 2009-01-28 優章 荒井 Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP2009072778A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water
AU2008293381B2 (en) * 2007-08-27 2012-07-19 Technion Research & Development Foundation Ltd. pH gradients controlled by electrolysis, and their use in isoelectric focusing
JP4713625B2 (en) * 2007-12-31 2011-06-29 優章 荒井 Precision parts cleaning equipment
CN104673534A (en) * 2013-11-28 2015-06-03 深圳市富兰克科技有限公司 Alkaline electrolyte physical eco-friendly cleaning agent prepared from electrolyzed alkaline water
WO2015162803A1 (en) * 2014-04-22 2015-10-29 優章 荒井 Rapid-growth culturing device for diatoms, rapid-growth culturing method thereof, and method for extracting oil from diatoms
JPWO2016147439A1 (en) * 2015-03-13 2017-12-28 株式会社東芝 Electrolyzer and method for generating electrolyzed water
JP2018083146A (en) * 2016-11-22 2018-05-31 ヘルスサポートサンリ株式会社 Production method of drinkable water having bactericidal action and three chamber-type electrolysis apparatus for use in the method
CN108185279A (en) * 2017-12-31 2018-06-22 宋金鸿 It is electrolysed module and is thrown into formula food purifying machine
KR102313539B1 (en) * 2018-11-21 2021-10-15 이연주 Sterilizing electrode and method thereof and sterilizer using same
CN110790347B (en) * 2019-10-16 2024-02-13 广西桂润环保科技有限公司 Electrophoresis enhancement electrocatalytic oxidation advanced treatment device
CN113802146B (en) * 2021-10-14 2024-03-26 中国华能集团清洁能源技术研究院有限公司 Electrolytic cell diaphragm integrity online test system and use method
JP7381808B1 (en) 2022-03-17 2023-11-16 株式会社エナジックインターナショナル Electrolyzed water generator and control method for electrolyzed water generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067213A2 (en) 2007-11-20 2009-05-28 Electrolyzer Corp. Electrolyzer cell for producing acidic or alkaline electrolyzed water
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus
JP4528840B2 (en) * 2008-02-29 2010-08-25 日科ミクロン株式会社 Ozone water generator
JP2011016065A (en) * 2009-07-08 2011-01-27 First Ocean Kk Electrolytic water mixing apparatus

Also Published As

Publication number Publication date
JP2000246249A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP3113645B2 (en) Electrolyzed water production method
US7238272B2 (en) Production of electrolytic water
JP3716042B2 (en) Acid water production method and electrolytic cell
EP1723268B1 (en) Production of electrolytic water
KR100575036B1 (en) Electrolysis cell for generating chlorine dioxide
JP2004058006A (en) Method of manufacturing electrolytic water
JP5716100B2 (en) Electrolysis apparatus and electrolysis method
JP4090665B2 (en) Electrolyzed water production method
US5871623A (en) Apparatus for electrochemical treatment of water and/or water solutions
JP3785219B2 (en) Method for producing acidic water and alkaline water
TWI608129B (en) Electrolysis device and electrolytic ozone water production device
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
JPS58224189A (en) Chlorine gas generator and method
WO2006127633A2 (en) Acidic electrolyzed water production system and protection membrane
US9546427B2 (en) System and method for generating a chlorine-containing compound
KR100794106B1 (en) Electrolyzor for generating hypochlorous acid, apparatus and method for generating hypochlorous acid by use the same
WO1998050309A1 (en) Apparatus for electrochemical treatment of water and/or water solutions
JP2020531686A5 (en)
JP2012217991A (en) Electroreduction water producing apparatus
JPH11128940A (en) Device and method for electrolysis of water
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JPH0428438B2 (en)
KR100956872B1 (en) High Efficient method for manufacturing of aqueous chlorine dioxide using un-divided electrochemical cell
JPH11221566A (en) Production of electrolytic water
JPH11335884A (en) Water electrolysis apparatus and water electrolysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316304

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316304

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees