JP4631173B2 - Electrodeionization equipment - Google Patents

Electrodeionization equipment Download PDF

Info

Publication number
JP4631173B2
JP4631173B2 JP2001013386A JP2001013386A JP4631173B2 JP 4631173 B2 JP4631173 B2 JP 4631173B2 JP 2001013386 A JP2001013386 A JP 2001013386A JP 2001013386 A JP2001013386 A JP 2001013386A JP 4631173 B2 JP4631173 B2 JP 4631173B2
Authority
JP
Japan
Prior art keywords
plate
chamber
anode
cathode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001013386A
Other languages
Japanese (ja)
Other versions
JP2002210473A (en
Inventor
伸 佐藤
隆行 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001013386A priority Critical patent/JP4631173B2/en
Publication of JP2002210473A publication Critical patent/JP2002210473A/en
Application granted granted Critical
Publication of JP4631173B2 publication Critical patent/JP4631173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

【0001】
【発明の属する技術分野】
本発明は、陰極板と陽極板との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置に係り、特に、陰極板及び陽極板の構造を改良することにより、電気脱イオン装置の部品数を減らして装置の簡素化、低コスト化、小型化を図ると共に、電気抵抗を著しく低減してエネルギー効率、脱イオン効率を高めた電気脱イオン装置に関する。
【0002】
【従来の技術】
従来、半導体製造工場、液晶製造工場、製薬工業、食品工業、電力工業等の各種の産業又は民生用ないし研究施設等において使用される脱イオン水の製造には、図3に示す如く、電極板(陽極板11,陰極板12)の間に複数のアニオン交換膜13及びカチオン交換膜14を交互に配列して濃縮室15と脱塩室16とを交互に形成し、脱塩室16にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填した電気脱イオン装置が多用されている(特許第1782943号、特許第2751090号、特許第2699256号)。なお、図3において、17は陽極室、18は陰極室である。
【0003】
従来、陽極板11及び陰極板12としては板状のものが用いられており、これら陽極板11及び陰極板12とカチオン交換膜14及びアニオン交換膜13との間に形成される陽極室17及び陰極室18にはそれぞれスペーサ等が充填され、電極水を通水することによって、電解により陽極板11や陰極板12から発生する水素ガスや塩素ガスを排出するように構成されている。
【0004】
しかしながら、スペーサで形成された陽極室17及び陰極室18に電極水を通水する従来の電気脱イオン装置では、陽極室17及び陰極室18の電気抵抗が大きいという問題がある。
【0005】
この問題を解決するために、電導体粒子を陰極室に充填すること(特開平10−43554号公報)や、イオン交換樹脂又は活性炭を陰極室及び陽極室に充填すること(USP5,868,915)も提案されている。しかしながら、このような充填材料を用いることは、電気脱イオン装置の構造を複雑なものとし、電気脱イオン装置の組み立てが難しくなり、製作コストも高くつくという欠点がある。
【0006】
また、陰極室や陽極室で発生する電気抵抗をなくすために、図4に示す如く、陽極板11及び陰極板12にそれぞれカチオン交換膜14及びアニオン交換膜13を接して設け、陰極室及び陽極室自体をなくす構成とした場合には、電解により発生するガスを電極水により排出することができず、電気脱イオン装置としての運転が困難となる。
【0007】
【発明が解決しようとする課題】
本発明は上記従来の問題点を解決し、陰極板と陽極板との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、電気脱イオン装置の部品数を減らして装置の簡素化、低コスト化、小型化を図ると共に、電気抵抗を著しく低減してエネルギー効率、脱イオン効率を高めた電気脱イオン装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の電気脱イオン装置は、陰極板と陽極板との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、該陰極板及び陽極板のうちの少なくとも一方が電極水の通水路を有する電気脱イオン装置であって、該陰極板及び/又は陽極板は、厚み方向に貫通する多数の開口を有した孔明き板を複数枚積層してなり、隣接する孔明き板の孔同士が部分的に重なり合うことにより前記電極水の通水路が形成されていることを特徴とする。
【0009】
陰極板及び陽極板自体に電極水を通水可能な通水路を設けることにより、電極水を通水するための陰極室及び陽極室を省略することができ、陰極室及び陽極室を設けることによる電気抵抗の発生を解消することができる。また、陰極板及び陽極板に電極水を通水して、電解により発生したガスを排出することができる。
【0010】
即ち、本発明の電気脱イオン装置は、陰極板及び陽極板のそれぞれに陰極室及び陽極室の機能を持たせたものであり、電極水の通水によるガス排出を行った上で陰極室及び陽極室を省略することができる。これにより、部品数が大幅に低減し、装置の構成が簡易となり、容易かつ低コストで装置を組み立てることが可能となる。
【0011】
本発明において、陰極板はアニオン交換膜に、また陽極板はカチオン交換膜に接していることが好ましい。
【0012】
また、陰極板及び陽極板は、厚み方向に貫通する多数の開口を有した孔明き板を複数枚積層してなり、隣接する孔明き板の孔同士が部分的に重なり合うことにより電極水の通水路が形成された構成において、孔明き板の1個当たりの開口の面積は1〜5mmであることが好ましい。
【0013】
【発明の実施の形態】
以下に図面を参照して本発明の電気脱イオン装置の実施の形態を詳細に説明する。
【0014】
図1は本発明の電気脱イオン装置の実施の形態を示す模式的な断面図である。図2は本発明の電気脱イオン装置に好適な電極板(陰極板、陽極板)の構成を示す図であって、図2(a),(b)は電極板を構成する孔明き板を示す平面図、図2(c)は図2(a)のC−C線に沿う断面の拡大図、図2(d)は図2(b)のD−D線に沿う断面図の拡大図、図2(e)は電極板の断面の拡大図である。
【0015】
図1に示す電気脱イオン装置は、陽極板21と陰極板22との間に複数のアニオン交換膜13とカチオン交換膜14を交互に配列し、濃縮室15と脱塩室16とを交互に形成したものであり、最も陽極板21に近いカチオン交換膜14は、陽極板21に接して設けられている。また、最も陰極板22に近いアニオン交換膜13は陰極板22に接して設けられている。
【0016】
この電気脱イオン装置において、陽極板21及び陰極板22は電極水の通水路を有するため、図3に示す従来の電気脱イオン装置に対して、陽極室及び陰極室を省略した構成としても陽極板21及び陰極板22に電極水を通水して電解により発生するガスを排出することができる。
【0017】
なお、脱イオン水の生産機構は従来の電気脱イオン装置と同様であり、被処理水中のイオンが脱塩室16からアニオン交換膜13又はカチオン交換膜14を透過して隣接する濃縮室15に移動することにより、脱塩室16から脱イオン水が生産され、濃縮室15からは、イオンが濃縮された濃縮水が排出される。
【0018】
以下に本発明に好適な陽極板21及び陰極板22(以下「電極板」と称す場合がある。)の構成について、図2を参照して説明する。
【0019】
本発明において、陽極板21及び陰極板22に形成される電極水の通水路は、厚み方向に貫通する多数の開口を有した孔明き板を複数枚積層して構成し、隣接する孔明き板の孔同士が部分的に重なり合うことにより、形成されたものである。
【0020】
例えば、図2(a),(b)に示す如く、厚さ方向に貫通する多数の菱形の開口1A,2Aが形成された孔明き板1,2を積層し、孔明き板1,2の孔1A,2Aが重なり合った部分から、順次電極水が移動できるような構成とされたものが好ましい。
【0021】
即ち、孔明き板1の開口1Aと孔明き板2の開口2Aとは、孔明き板1と孔明き板2とを重ね合わせたときに、互いに位置がずれ、一部のみが重なるような位相で設けられており、図2(e)に示す如く、この孔明き板1と孔明き板2とを重ねると、開口1Aと開口2Aの重なり部分を通って、電極水は、孔明き板1の開口1A→孔明き板2の開口2A→孔明き板1の開口1A→孔明き板2の開口2A→…………………………の順で上から下へ順次孔明き板1の開口1Aと孔明き板2の開口2Aとを交互に通過して流れるようになる。
【0022】
この開口の形成割合が過度に大きいと電気抵抗が大きくなるため、開口の形成割合は電極水の通水路を確保することができる範囲である程度小さくすることが望ましい。特に、イオン交換膜(アニオン交換膜又はカチオン交換膜)と接する電極板面の開口の総面積(全部の開口の面積の合計)は、電極板の面積(開口を含む面積)に対して50%以下、特に30%以下であることが好ましい。
【0023】
また、1個当たりの開口の面積は、1〜5mmであることが好ましい。この面積範囲であれば、電極水が効率的に流れ、ガスも効率的に排出される。
【0024】
図2では、孔明き板の開口として菱形形状のものを示したが、開口の形状は何らこれに限定されず、電極水が重なり合い部分を経て少なくとも一方向へ流れるような形状であれば、円形、楕円形、その他の多角形や、星形等の異形形状であっても良い。また、開口の大きさや形状は必ずしもすべて同一である必要はなく、大きさ及び/又は形状の異なる開口を組み合わせて設けたものであっても良い。図2に示すような菱形の開口であれば、電極水は上下方向のみならず、電極板の幅方向にも流れることができ、水流が均一化され、好ましい。
【0025】
図2では、孔明き板を2枚積層した電極板を示したが、3枚以上の孔明き板を積層して電極板を構成しても良い。また、イオン交換膜と反対側の面には無孔板を設けても良く、このような無孔板を設けることにより、電気脱イオン装置の組み立てに際し、電極板を締め付けるプレートと電極板との間の水のシール性を高めることができる。
【0026】
電極板の材質、即ち、電極板を構成する孔明き板の材質は特に限定されず、電極板として一般的に用いられているものを使用することができるが、陽極板にはチタン等が好ましく、陰極板にはSUS、チタン等が好適である。特に、陽極板においては、開口の内側の電極水が接する部分に白金やイリジウムのメッキを施すことが好ましく、これにより、電極板の寿命を著しく延長することができる。
【0027】
なお、電極板の厚さは、開口の大きさや形成割合、電気脱イオン装置の規模によっても異なり、電極水の通水量を十分に確保することができるような範囲に設計されるが、通常の場合、0.3〜2.0mm程度とされる。
【0028】
図1は、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。
【0029】
例えば、濃縮室と脱塩室とで向流となるように通水することもでき、また、電極水としては、陽極板の出口水を陰極板の入口水として通水することもできる。また、脱塩室からの生産水(脱イオン水)の一部を濃縮室の給水や電極水として一過式に供給しても良い。
【0030】
本発明の電気脱イオン装置であれば、電極水として生産水のような高純度の水を流しても、従来のスペーサにより電極室を形成した電気脱イオン装置と異なり、電気抵抗が過度に大きくなることはなく、効率的な処理を行える。
【0031】
なお、前述の如く、脱塩室には、一般にイオン交換樹脂、イオン交換繊維もしくはグラフト交換体等からなるアニオン交換体及びカチオン交換体を混合もしくは複層状に充填されていることが、得られる脱イオン水の向上の面で好ましいが、このようなイオン交換体を、濃縮室にも充填しても良い。
【0032】
このように、脱塩室及び濃縮室にイオン交換体を充填し、かつ、本発明のような電極板構成を採用することにより、電気脱イオン装置全体の電気抵抗を小さくすることができ、電気脱イオン装置の給水として高純度の水を供給するような場合であっても、電気抵抗の増大を防止して、より一層高純度の水を効率的に生産することが可能となる。
【0033】
【発明の効果】
以上詳述した通り、本発明の電気脱イオン装置によれば、電気脱イオン装置の部品数を減らして装置の簡素化、低コスト化、小型化を図ると共に、電気抵抗を著しく低減してエネルギー効率、脱イオン効率を高めることができる。
【図面の簡単な説明】
【図1】本発明の電気脱イオン装置の実施の形態を示す模式的な断面図である。
【図2】本発明の電気脱イオン装置に好適な電極板(陰極板、陽極板)の構成を示す図であって、図2(a),(b)は電極板を構成する孔明き板を示す平面図、図2(c)は図2(a)のC−C線に沿う断面の拡大図、図2(d)は図2(b)のD−D線に沿う断面図の拡大図、図2(e)は電極板の断面の拡大図である。
【図3】従来の電気脱イオン装置を示す模式的な断面図である。
【図4】従来の電気脱イオン装置において、陽極室及び陰極室を省略した構成を示す模式的な断面図である。
【符号の説明】
1,2 孔明き板
1A,2A 開口
11,21 陽極板
12,22 陰極板
13 アニオン交換膜
14 カチオン交換膜
15 濃縮室
16 脱塩室
17 陽極室
18 陰極室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode plate and an anode plate to alternately form a concentration chamber and a desalting chamber. In particular, by improving the structure of the cathode plate and anode plate, the number of parts of the electrodeionization device is reduced, thereby simplifying the device, reducing the cost and reducing the size, and significantly reducing the electrical resistance and energy efficiency. The present invention relates to an electrodeionization apparatus with improved deionization efficiency.
[0002]
[Prior art]
Conventionally, in the production of deionized water used in various industries such as semiconductor manufacturing factory, liquid crystal manufacturing factory, pharmaceutical industry, food industry, electric power industry, etc. or consumer use or research facilities, etc., as shown in FIG. A plurality of anion exchange membranes 13 and cation exchange membranes 14 are alternately arranged between (anode plate 11 and cathode plate 12) to form concentration chambers 15 and desalting chambers 16 alternately. Electrodeionization devices in which anion exchangers and cation exchangers composed of exchange resins, ion exchange fibers or graft exchangers, etc. are mixed or packed in multiple layers have been widely used (Japanese Patent No. 1784293, Patent No. 2751090, Patent No. 1). 2699256). In FIG. 3, 17 is an anode chamber and 18 is a cathode chamber.
[0003]
Conventionally, plate-like materials are used as the anode plate 11 and the cathode plate 12, and the anode chamber 17 formed between the anode plate 11 and the cathode plate 12, the cation exchange membrane 14 and the anion exchange membrane 13 and Each of the cathode chambers 18 is filled with a spacer or the like, and configured to discharge hydrogen gas and chlorine gas generated from the anode plate 11 and the cathode plate 12 by electrolysis by passing electrode water.
[0004]
However, the conventional electrodeionization apparatus in which electrode water is passed through the anode chamber 17 and the cathode chamber 18 formed of spacers has a problem that the electric resistance of the anode chamber 17 and the cathode chamber 18 is large.
[0005]
In order to solve this problem, the cathode particles are filled in the cathode chamber (Japanese Patent Laid-Open No. 10-43554), or the ion exchange resin or activated carbon is filled in the cathode chamber and the anode chamber (USP 5,868,915). ) Has also been proposed. However, the use of such a filling material has the disadvantages that the structure of the electrodeionization apparatus is complicated, the assembly of the electrodeionization apparatus becomes difficult, and the production cost is high.
[0006]
Further, in order to eliminate the electric resistance generated in the cathode chamber and the anode chamber, as shown in FIG. 4, a cation exchange membrane 14 and an anion exchange membrane 13 are provided in contact with the anode plate 11 and the cathode plate 12, respectively. If the chamber itself is eliminated, the gas generated by electrolysis cannot be discharged by the electrode water, making it difficult to operate as an electrodeionization apparatus.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode plate and an anode plate to alternately form a concentration chamber and a desalting chamber. In the electrodeionization device, the number of parts of the electrodeionization device is reduced to simplify the device, lower the cost and reduce the size, and the electric resistance is remarkably reduced to increase the energy efficiency and deionization efficiency. An object is to provide a deionization apparatus.
[0008]
[Means for Solving the Problems]
The electrodeionization apparatus of the present invention is an electric device in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a cathode plate and an anode plate to alternately form concentration chambers and demineralization chambers. In the deionization apparatus, at least one of the cathode plate and the anode plate is an electrodeionization device having a water passage for electrode water, and the cathode plate and / or the anode plate has a large number of openings penetrating in the thickness direction. A plurality of perforated plates having the above are laminated, and the holes of the adjacent perforated plates are partially overlapped to form the water passage for the electrode water .
[0009]
By providing the cathode plate and the anode plate with a water passage through which the electrode water can flow, the cathode chamber and the anode chamber for passing the electrode water can be omitted, and by providing the cathode chamber and the anode chamber. Generation of electrical resistance can be eliminated. Moreover, the electrode water can be passed through the cathode plate and the anode plate, and the gas generated by electrolysis can be discharged.
[0010]
That is, the electrodeionization apparatus of the present invention has a function of the cathode chamber and the anode chamber in each of the cathode plate and the anode plate, and after discharging the gas by passing the electrode water, The anode chamber can be omitted. Thereby, the number of parts is greatly reduced, the configuration of the apparatus is simplified, and the apparatus can be assembled easily and at low cost.
[0011]
In the present invention, the cathode plate is preferably in contact with the anion exchange membrane and the anode plate is in contact with the cation exchange membrane.
[0012]
Further, the cathode plate and the anode plate are formed by laminating a plurality of perforated plates having a large number of openings penetrating in the thickness direction, and the holes of the adjacent perforated plates are partially overlapped to allow the passage of electrode water. Oite the configuration of waterways are formed, the area of the opening of one per perforated plate is preferably 1 to 5 mm 2.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an electrodeionization apparatus of the present invention will be described in detail below with reference to the drawings.
[0014]
FIG. 1 is a schematic sectional view showing an embodiment of the electrodeionization apparatus of the present invention. FIG. 2 is a diagram showing a configuration of an electrode plate (cathode plate, anode plate) suitable for the electrodeionization apparatus of the present invention. FIGS. 2 (a) and 2 (b) show a perforated plate constituting the electrode plate. FIG. 2C is an enlarged view of a cross section taken along line CC in FIG. 2A, and FIG. 2D is an enlarged view of a cross sectional view taken along line DD in FIG. 2B. FIG. 2E is an enlarged view of a cross section of the electrode plate.
[0015]
In the electrodeionization apparatus shown in FIG. 1, a plurality of anion exchange membranes 13 and cation exchange membranes 14 are alternately arranged between an anode plate 21 and a cathode plate 22, and concentration chambers 15 and demineralization chambers 16 are alternately arranged. The cation exchange membrane 14 that is formed and closest to the anode plate 21 is provided in contact with the anode plate 21. The anion exchange membrane 13 closest to the cathode plate 22 is provided in contact with the cathode plate 22.
[0016]
In this electrodeionization apparatus, since the anode plate 21 and the cathode plate 22 have a water passage for electrode water, the anode chamber and the cathode chamber can be omitted from the conventional electrodeionization apparatus shown in FIG. The electrode water can be passed through the plate 21 and the cathode plate 22 to discharge the gas generated by electrolysis.
[0017]
The production mechanism of deionized water is the same as that of the conventional electrodeionization apparatus, and ions in the water to be treated permeate from the desalting chamber 16 through the anion exchange membrane 13 or the cation exchange membrane 14 to the adjacent concentrating chamber 15. By moving, deionized water is produced from the desalting chamber 16, and concentrated water enriched with ions is discharged from the concentration chamber 15.
[0018]
The structure of the anode plate 21 and the cathode plate 22 (hereinafter sometimes referred to as “electrode plate”) suitable for the present invention will be described below with reference to FIG.
[0019]
In the present invention, the water flow path of the electrode water formed in the anode plate 21 and cathode plate 22, a perforated plate having a plurality of openings through the thickness direction and constructed by laminating a plurality,-out adjacent perforated by holes each other plates partially overlap, Ru der been made form.
[0020]
For example, as shown in FIGS. 2 (a) and 2 (b), perforated plates 1 and 2 having a large number of rhomboid openings 1A and 2A penetrating in the thickness direction are laminated, It is preferable that the electrode water can be moved sequentially from the portion where the holes 1A and 2A overlap.
[0021]
In other words, the opening 1A of the perforated plate 1 and the opening 2A of the perforated plate 2 are shifted from each other when the perforated plate 1 and the perforated plate 2 are overlapped with each other, and only partially overlap each other. As shown in FIG. 2 (e), when the perforated plate 1 and the perforated plate 2 are overlapped, the electrode water passes through the overlapping portion of the opening 1A and the opening 2A. 1A → opening 2A of perforated plate 2 → opening 1A of perforated plate 1 → opening 2A of perforated plate 2 → from top to bottom in order of the perforated plate 1 1A and the aperture 2A of the perforated plate 2 are alternately passed through.
[0022]
If the formation ratio of the openings is excessively large, the electrical resistance increases. Therefore, it is desirable to reduce the formation ratio of the openings to some extent within a range in which the water passage for the electrode water can be secured. In particular, the total area (total area of all openings) of the electrode plate surface in contact with the ion exchange membrane (anion exchange membrane or cation exchange membrane) is 50% of the electrode plate area (area including the openings). Hereinafter, it is particularly preferably 30% or less.
[0023]
Moreover, it is preferable that the area of the opening per piece is 1-5 mm < 2 >. If it is this area range, electrode water will flow efficiently and gas will also be discharged | emitted efficiently.
[0024]
In FIG. 2, the opening of the perforated plate has a rhombus shape, but the shape of the opening is not limited to this, and the shape of the opening is circular as long as the electrode water flows in at least one direction through the overlapping portion. It may be an elliptical shape, other polygonal shapes, or an irregular shape such as a star shape. Also, the sizes and shapes of the openings are not necessarily the same, and openings having different sizes and / or shapes may be provided in combination. A diamond-shaped opening as shown in FIG. 2 is preferable because the electrode water can flow not only in the vertical direction but also in the width direction of the electrode plate, and the water flow is made uniform.
[0025]
Although FIG. 2 shows an electrode plate in which two perforated plates are stacked, the electrode plate may be configured by stacking three or more perforated plates. In addition, a non-porous plate may be provided on the surface opposite to the ion exchange membrane, and by providing such a non-porous plate, when assembling the electrodeionization apparatus, a plate for clamping the electrode plate and the electrode plate are provided. It is possible to improve the sealing performance of the water.
[0026]
The material of the electrode plate, that is, the material of the perforated plate constituting the electrode plate is not particularly limited, and those commonly used as the electrode plate can be used, but titanium or the like is preferable for the anode plate. For the cathode plate, SUS, titanium or the like is suitable. In particular, in the anode plate, it is preferable to apply platinum or iridium plating to the portion of the opening that is in contact with the electrode water, thereby significantly extending the life of the electrode plate.
[0027]
The thickness of the electrode plate varies depending on the size and ratio of the openings and the scale of the electrodeionization device, and is designed in a range that can ensure a sufficient amount of electrode water flow. In this case, the thickness is about 0.3 to 2.0 mm.
[0028]
FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to that shown in the drawings as long as the gist of the present invention is not exceeded.
[0029]
For example, water can be passed through the concentrating chamber and the desalting chamber so as to be countercurrent, and the outlet water of the anode plate can be passed as the inlet water of the cathode plate as the electrode water. Moreover, you may supply a part of production water (deionized water) from a desalination room | chamber transiently as feed water or electrode water of a concentration room | chamber.
[0030]
In the case of the electrodeionization apparatus of the present invention, even if high-purity water such as production water flows as electrode water, unlike the electrodeionization apparatus in which the electrode chamber is formed by the conventional spacer, the electric resistance is excessively large. It is not necessary to perform efficient processing.
[0031]
As described above, the desalting chamber is generally mixed with an anion exchanger and a cation exchanger made of an ion exchange resin, an ion exchange fiber, a graft exchanger, etc. Although it is preferable in terms of improving ionic water, such an ion exchanger may be filled in the concentrating chamber.
[0032]
Thus, by filling the demineralization chamber and the concentration chamber with the ion exchanger and adopting the electrode plate configuration as in the present invention, the electric resistance of the entire electrodeionization apparatus can be reduced, Even when high-purity water is supplied as the water supply for the deionizer, it is possible to prevent an increase in electrical resistance and efficiently produce even higher-purity water.
[0033]
【The invention's effect】
As described above in detail, according to the electrodeionization apparatus of the present invention, the number of parts of the electrodeionization apparatus is reduced, the apparatus is simplified, the cost is reduced, and the size is reduced. Efficiency and deionization efficiency can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an electrodeionization apparatus of the present invention.
FIGS. 2A and 2B are diagrams showing a configuration of an electrode plate (cathode plate, anode plate) suitable for the electrodeionization apparatus of the present invention, and FIGS. 2A and 2B are perforated plates constituting the electrode plate. FIG. 2C is an enlarged view of a cross section taken along the line CC of FIG. 2A, and FIG. 2D is an enlarged view of a cross sectional view taken along the line DD of FIG. FIG. 2 and FIG. 2E are enlarged views of the cross section of the electrode plate.
FIG. 3 is a schematic cross-sectional view showing a conventional electrodeionization apparatus.
FIG. 4 is a schematic cross-sectional view showing a configuration in which an anode chamber and a cathode chamber are omitted in a conventional electrodeionization apparatus.
[Explanation of symbols]
1, 2 Perforated plates 1A, 2A Openings 11, 21 Anode plates 12, 22 Cathode plate 13 Anion exchange membrane 14 Cation exchange membrane 15 Concentration chamber 16 Desalination chamber 17 Anode chamber 18 Cathode chamber

Claims (3)

陰極板と陽極板との間に、複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、該陰極板及び陽極板のうちの少なくとも一方が電極水の通水路を有する電気脱イオン装置であって、該陰極板及び/又は陽極板は、厚み方向に貫通する多数の開口を有した孔明き板を複数枚積層してなり、隣接する孔明き板の孔同士が部分的に重なり合うことにより前記電極水の通水路が形成されていることを特徴とする電気脱イオン装置。An electrodeionization apparatus comprising a plurality of anion exchange membranes and cation exchange membranes alternately arranged between a cathode plate and an anode plate to alternately form a concentration chamber and a desalting chamber. An electrodeionization apparatus in which at least one of the anode plates has a water passage for electrode water, and the cathode plate and / or anode plate includes a plurality of perforated plates having a large number of openings penetrating in the thickness direction. An electrodeionization apparatus characterized in that the electrode water passage is formed by laminating and partially overlapping holes of adjacent perforated plates . 請求項1において、該陰極板及び陽極板のうちの少なくとも一方がイオン交換膜と接していることを特徴とする電気脱イオン装置。  2. The electrodeionization apparatus according to claim 1, wherein at least one of the cathode plate and the anode plate is in contact with the ion exchange membrane. 請求項1又は2において、該孔明き板の1個当たりの開口の面積が1〜5mmであることを特徴とする電気脱イオン装置。According to claim 1 or 2, electrodeionization apparatus, wherein the area of the opening per one of the holes perforated plate is 1 to 5 mm 2.
JP2001013386A 2001-01-22 2001-01-22 Electrodeionization equipment Expired - Fee Related JP4631173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013386A JP4631173B2 (en) 2001-01-22 2001-01-22 Electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013386A JP4631173B2 (en) 2001-01-22 2001-01-22 Electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2002210473A JP2002210473A (en) 2002-07-30
JP4631173B2 true JP4631173B2 (en) 2011-02-16

Family

ID=18880243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013386A Expired - Fee Related JP4631173B2 (en) 2001-01-22 2001-01-22 Electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP4631173B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864891B2 (en) * 2002-07-01 2007-01-10 栗田工業株式会社 Electric deionizer
JP2004216302A (en) * 2003-01-16 2004-08-05 Kurita Water Ind Ltd Electrodeionizing apparatus and water treatment apparatus
JP4960288B2 (en) * 2008-03-24 2012-06-27 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
CN111217424A (en) * 2020-02-25 2020-06-02 上海海洋大学 Desalination system for removing polycyclic aromatic hydrocarbons in seawater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246249A (en) * 1999-03-01 2000-09-12 First Ocean Kk Production of electrolytic water
JP2001259643A (en) * 2000-03-16 2001-09-25 Matsushita Electric Ind Co Ltd Deionized water producer, alkaline water producer and acidic water producer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246249A (en) * 1999-03-01 2000-09-12 First Ocean Kk Production of electrolytic water
JP2001259643A (en) * 2000-03-16 2001-09-25 Matsushita Electric Ind Co Ltd Deionized water producer, alkaline water producer and acidic water producer

Also Published As

Publication number Publication date
JP2002210473A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
JP3864891B2 (en) Electric deionizer
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US9446971B2 (en) Techniques for promoting current efficiency in electrochemical separation systems and methods
EP2708514B1 (en) Regenerative demineralizing apparatus
JP2004216302A (en) Electrodeionizing apparatus and water treatment apparatus
JP4400218B2 (en) Electric deionization apparatus and deionization method
JP2003094064A (en) Electric deionization equipment
JP4631173B2 (en) Electrodeionization equipment
JPH07328395A (en) Electrodialytic apparatus
JP3985495B2 (en) Electrodeionization equipment
JPH11192491A (en) Electric deionized water production device
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3894033B2 (en) Electric deionizer
JP3985497B2 (en) Electric deionizer
AU2013345396A1 (en) Electrochemical separation device
JP3985494B2 (en) Electric deionization apparatus and deionization method
JP4599669B2 (en) Electrical deionizer
JP2001321773A (en) Apparatus and method for making electro-deionized water
JP2002263654A (en) Electrochemical water treating unit
JP2002166282A (en) Electrochemical water treatment device and its manufacturing method
JP2002136971A (en) Electrodeionizing apparatus
JP2000301156A (en) Electric deionized water making apparatus and water passing method using the same
JP2003311275A (en) Electric deionization apparatus
MXPA99005767A (en) Apparatus for electrically producing deionized water
WO2004071550A2 (en) Web structure membrane spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees