JP2002166282A - Electrochemical water treatment device and its manufacturing method - Google Patents

Electrochemical water treatment device and its manufacturing method

Info

Publication number
JP2002166282A
JP2002166282A JP2000368068A JP2000368068A JP2002166282A JP 2002166282 A JP2002166282 A JP 2002166282A JP 2000368068 A JP2000368068 A JP 2000368068A JP 2000368068 A JP2000368068 A JP 2000368068A JP 2002166282 A JP2002166282 A JP 2002166282A
Authority
JP
Japan
Prior art keywords
chamber
spacer
water
cell
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000368068A
Other languages
Japanese (ja)
Inventor
Kiyoaki Matsui
清明 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000368068A priority Critical patent/JP2002166282A/en
Publication of JP2002166282A publication Critical patent/JP2002166282A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-efficient electrochemical water treatment device making use of a granular ion-exchange resin which is low in cost and excellent in characteristics, wherein the widths of a desalting chamber and an enriching chamber can be constituted each with a thin and polylayered laminated body. SOLUTION: The characteristics of the device of this invention is: provided with a first spacer which becomes the desalting chamber and a second spacer which becomes the enriching chamber alternately laminated, a laminate frame whose both sides are pinched by a first and a second pole chamber cells, an anion-exchange membrane arranged on the side of the first pole chamber cell of the first spacer, a cation- exchange membrane arranged on the side of the second pole chamber cells of the second spacer, and the granular ion-exchange resin is provided in the desalting chamber of the spacer, a pair of first connection holes and a pair of first water-flowing paths are formed in the first spacer, a pair of second connecting holes and a pair of second water-flowing paths are formed in the second spacer, and the second connecting holes are communicated with the first water-flowing paths and then connected with the desalting chamber, the first connecting holes are communicated with the second water- flowing paths and then connected with the enriching chamber, and a water flow stopping valve member is inserted in the second connecting holes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に水道水等の用
水中に含まれているナトリウムイオンやカルシウムイオ
ン等の陽イオン、塩化物イオンや硫酸イオン等の陰イオ
ンを除去する電気化学的水処理装置及びその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical device for removing cations such as sodium ions and calcium ions and anions such as chloride ions and sulfate ions mainly contained in service water such as tap water. The present invention relates to a water treatment device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】海水の淡水化や海水からの食塩の製造に
関しては、イオン交換膜と電界印加手段からなる電気透
析法が用いられている。また、半導体製造などに使われ
るイオン交換水や超純水の生成にも再生操作が不要な電
気透析法が広く用いられている。
2. Description of the Related Art For desalination of seawater and production of salt from seawater, an electrodialysis method comprising an ion exchange membrane and an electric field applying means is used. In addition, an electrodialysis method that does not require a regeneration operation is widely used for the production of ion-exchanged water and ultrapure water used in semiconductor production and the like.

【0003】とくに、陽イオン交換膜と陰イオン交換膜
とに挟まれた脱塩室に、イオン交換体を収納したものを
「電気脱イオン化」と呼び、「電気透析」と区別してい
る。その基本技術は、従来米国のKollsmanによ
って提案されている(米国特許2,689,826号明細
書, 米国特許2,815,320号明細書)。
[0003] In particular, the one in which an ion exchanger is accommodated in a desalting chamber sandwiched between a cation exchange membrane and an anion exchange membrane is called "electrodeionization" and is distinguished from "electrodialysis". The basic technology has been conventionally proposed by Kollsman of the United States (US Pat. No. 2,689,826, US Pat. No. 2,815,320).

【0004】「電気脱イオン化」に関してKollsm
anによって提案された従来の技術は、陽イオン交換膜
と陰イオン交換膜とを交互に配列し、脱塩室と濃縮室を
形成した電気透析槽の脱塩室にイオン交換体を収容し、
この脱塩室に被処理水を流しながら電圧を印加して電気
透析を行うことにより脱イオン水を製造するもので、脱
塩室内で水解離による酸とアルカリを用いてイオン交換
体及びイオン交換膜を自己再生している。これらの装置
においては、脱塩効率や信頼性の向上のために、材料、
構成において多くの工夫が行われている。
Regarding "electrodeionization", Kollsm
According to the conventional technique proposed by An, a cation exchange membrane and an anion exchange membrane are alternately arranged, and an ion exchanger is accommodated in a desalination chamber of an electrodialysis tank formed with a desalination chamber and a concentration chamber.
The deionized water is produced by applying a voltage while flowing the water to be treated into the desalting chamber and performing electrodialysis. The ion exchanger and the ion exchange are performed using an acid and an alkali by water dissociation in the desalting chamber. The membrane is self-regenerating. In these devices, materials,
Many contrivances have been made in the configuration.

【0005】「電気透析」の従来の技術として、図6に
示す特開平3−224688号公報で提案された電気透
析装置がある。以下これを説明する。図6は従来の電気
透析装置の断面略図、図7は従来の電気式脱イオン水製
造装置の脱塩セルにおける集水装置を示す図である。
As a conventional technique of "electrodialysis", there is an electrodialysis apparatus proposed in Japanese Patent Application Laid-Open No. 3-224688 shown in FIG. This will be described below. FIG. 6 is a schematic sectional view of a conventional electrodialysis apparatus, and FIG. 7 is a view showing a water collecting apparatus in a desalination cell of a conventional electric deionized water producing apparatus.

【0006】図6において、陽極板101と、陰極板1
02が設けられ、それぞれ陽極室103および陰極室1
04に収納されている。陽極室103と陰極室104の
間に、陰イオン交換膜105、脱塩室107、陽イオン
交換膜106、濃縮室108が交互に積層されて透析槽
を構成する。脱塩室107内には再生型の弱酸性陽イオ
ン交換体および再生型の弱塩基性陰イオン交換体の混合
物が収納される。陽極室103、陰極室104には導電
性を付与するために電解質溶液を満たしておく。これは
濃縮水の一部を循環させるようにしておくと達成でき
る。このように構成された電気透析装置の脱塩室107
と濃縮室108に被処理水を通水し、陽極板101と陰
極板102に直流電圧を印加することにより脱塩室10
7から所定の脱イオン水を得ることが出来る。またイオ
ン分が濃縮された濃縮水は、濃縮室108から排出され
ることになる。
In FIG. 6, an anode plate 101 and a cathode plate 1
02 are provided, and the anode chamber 103 and the cathode chamber 1 are respectively provided.
04. Between the anode chamber 103 and the cathode chamber 104, an anion exchange membrane 105, a desalination chamber 107, a cation exchange membrane 106, and a concentration chamber 108 are alternately stacked to form a dialysis tank. In the desalting chamber 107, a mixture of a regeneration type weakly acidic cation exchanger and a regeneration type weakly basic anion exchanger is stored. The anode chamber 103 and the cathode chamber 104 are filled with an electrolyte solution for imparting conductivity. This can be achieved by circulating a part of the concentrated water. The desalting chamber 107 of the electrodialysis apparatus thus configured
The water to be treated is passed through the concentrating chamber 108 and a DC voltage is applied to the anode plate 101 and the cathode plate 102, thereby causing
7, a predetermined deionized water can be obtained. Further, the concentrated water in which the ion content is concentrated is discharged from the concentration chamber 108.

【0007】ところで、脱イオン化を行うとき重要な位
置を占めるのは脱塩室に収納されるイオン交換体である
が、粒状のイオン交換樹脂ビーズ、あるいはイオン交換
繊維、または特開平8−155272に開示された0.
1mm〜1.1mmのシート状のイオン交換体などが一
般的に用いられているものである。
[0007] By the way, an important part when deionization is performed is an ion exchanger housed in a desalting chamber. However, granular ion exchange resin beads, ion exchange fibers, or Japanese Patent Application Laid-Open No. 8-155272 are disclosed. The disclosed 0.
A sheet-like ion exchanger of 1 mm to 1.1 mm is generally used.

【0008】しかし、これらのイオン交換体には次のよ
うな特徴がある。粒状のイオン交換体は材料のコストは
一番安価で優れているが、粒が流動し扱いづらく、脱塩
室への収納が著しく困難であった。これに対しイオン交
換繊維やイオン交換シートは扱い易いという利点はある
が、非常に高価である上に、脱塩室に隙間なく充填する
ことが困難で、電気伝導に偏りが出る傾向を有してい
る。こうしたことから、いまのところイオン交換体とし
ては、イオン交換繊維やイオン交換シートを用いるよ
り、粒状のイオン交換体(以下、イオン交換樹脂ビー
ズ)を使い易くして使用するというアプローチが模索さ
れている。
However, these ion exchangers have the following characteristics. The granular ion exchanger has the lowest material cost and is excellent, but the particles flow and are difficult to handle, and it is extremely difficult to store them in the desalting chamber. On the other hand, ion-exchange fibers and ion-exchange sheets have the advantage of being easy to handle, but they are very expensive, and it is difficult to fill the desalination chamber without gaps, and there is a tendency for electric conduction to be biased. ing. For these reasons, an approach has been sought to use granular ion exchangers (hereinafter, ion exchange resin beads) more easily than ion exchange fibers or ion exchange sheets as ion exchangers. I have.

【0009】例えば、特開平10−15360による
と、図7に示すように、脱塩室の出入り口に二つの櫛歯
状部材121A、121Bを組み合わせて、水は通過す
るがイオン交換樹脂ビーズは通過しないような格子を作
る工夫がされている。第一櫛歯状部材121Aの部材本
体122Aと、第二櫛歯状部材121Bの部材本体12
2Bには、それぞれ突起124と凹部125が設けられ
て通水孔123を形成し、嵌合突片126と嵌合凹所1
27を用いて組立てられられる。この方法だとイオン交
換樹脂ビーズの流出を防ぐことができ、確かに流出防止
が可能な方法である。しかし、現在、より効率的な脱イ
オン化を実現するために、脱塩室と濃縮室の幅をさらに
薄くして多層積層することが求められており、このため
には脱塩室をできるだけ薄くするということが重要且つ
必須の課題となっている。この、特開平10−1536
0で提案された技術だと、櫛歯状部材の成型厚さを薄く
することはできない。またこの櫛歯状部材を全ての脱塩
室の出入り口に設置するとなるとコストのみならず製造
方法も非常に複雑なものとなってしまう。
For example, according to Japanese Patent Application Laid-Open No. H10-15360, as shown in FIG. 7, two comb-like members 121A and 121B are combined at the entrance and exit of the desalting chamber, and water passes but ion-exchange resin beads pass. The grid is designed so that it does not. The member body 122A of the first comb-like member 121A and the member body 12 of the second comb-like member 121B
2B is provided with a projection 124 and a recess 125, respectively, to form a water passage hole 123, and the fitting protrusion 126 and the fitting recess 1
27. According to this method, the outflow of the ion exchange resin beads can be prevented, and the outflow can be certainly prevented. However, at present, in order to realize more efficient deionization, it is required to further reduce the width of the desalting chamber and the concentrating chamber to form a multilayer stack. For this purpose, the desalting chamber is made as thin as possible. That is an important and essential issue. This is disclosed in Japanese Unexamined Patent Application Publication No. 10-1536.
With the technique proposed in No. 0, the molding thickness of the comb-like member cannot be reduced. If this comb-shaped member is installed at the entrances and exits of all the desalting chambers, not only the cost but also the manufacturing method becomes very complicated.

【0010】[0010]

【発明が解決しようとする課題】以上説明したように、
脱イオン化を行うとき使用するイオン交換体は、イオン
交換樹脂ビーズだと高特性が期待できるが流動し、非常
に扱いづらいものであった。また、イオン交換繊維やイ
オン交換シートは扱い易いという利点はあるが、非常に
高価である上に、脱塩室に隙間なく充填することが困難
で、電気伝導に偏りが出るおそれのあるものであった。
扱い易いイオン交換体を新たに開発するか、扱いづらい
イオン交換樹脂ビーズを如何に扱い易くするかというこ
とに大きな期待が寄せられている。
As described above,
The ion exchanger used for deionization can be expected to have high characteristics if it is an ion exchange resin bead, but flows and is very difficult to handle. In addition, ion-exchange fibers and ion-exchange sheets have the advantage that they are easy to handle, but they are very expensive, and it is difficult to fill the desalination chamber without gaps, and there is a possibility that the electric conduction may be biased. there were.
There is a great expectation on how to develop a new ion exchanger which is easy to handle or how to easily handle ion exchange resin beads which are difficult to handle.

【0011】ところで、脱イオン化をより効率的に行う
ためには、脱塩室と濃縮室の幅をさらに薄くして多層積
層することがきわめて重要で、薄くできないのであれば
いくら扱いやすいといっても、そのような構造にするわ
けにはいかない。またイオン交換樹脂ビーズが流出しな
いようにするため、脱塩室を複雑な構造にすると、この
複雑な構造のものを組立てなければならず、組立ては難
渋を極め、生産性を大きく損なってしまう。
By the way, in order to carry out deionization more efficiently, it is extremely important to further reduce the width of the desalting chamber and the concentrating chamber to form a multilayer stack. However, such a structure cannot be achieved. If the desalting chamber has a complicated structure in order to prevent the ion-exchange resin beads from flowing out, it is necessary to assemble the desalting chamber with a complicated structure, which is extremely difficult to assemble and greatly impairs productivity.

【0012】従って、シンプルな構成で多層の積層体が
形成でき、イオン交換樹脂ビーズを扱うのに優れており
外部に流出させることがなく、同時に脱塩室と濃縮室の
幅をきわめて薄くすることができる電気化学的水処理装
置というのは、矛盾に満ちたもので、実現が難しいもの
と考えられていた。
Therefore, it is possible to form a multi-layered laminate with a simple structure, which is excellent in handling ion-exchange resin beads, does not flow out to the outside, and at the same time, makes the width of the desalting chamber and the concentrating chamber extremely thin. An electrochemical water treatment system that could be used was thought to be inconsistent and difficult to implement.

【0013】そこで、このような従来の問題を解決する
ため本発明は、シンプルな構成で、脱塩室と濃縮室の幅
をきわめて薄い多層の積層体とすることができ、安価で
高特性の粒状のイオン交換樹脂を利用した高効率の電気
化学的水処理装置を提供することを目的とする。
Therefore, in order to solve such a conventional problem, the present invention can provide a multi-layered laminate having a simple structure and extremely thin widths of the desalting chamber and the concentrating chamber, and is inexpensive and has high characteristics. An object of the present invention is to provide a highly efficient electrochemical water treatment apparatus using a granular ion exchange resin.

【0014】また、本発明は、シンプルな構成で、脱塩
室と濃縮室の幅をきわめて薄い多層の積層体とすること
ができ、粒状のイオン交換樹脂を利用することを可能に
し、組立ての容易な電気化学的水処理装置の製造方法を
提供することを目的とする。
Further, the present invention can provide a multi-layered laminate having a very simple structure and a very narrow width between the desalting chamber and the concentrating chamber, making it possible to use a granular ion-exchange resin. An object of the present invention is to provide a method for easily manufacturing an electrochemical water treatment apparatus.

【0015】[0015]

【課題を解決するための手段】これらの課題を解決する
ために本発明の電気化学的水処理装置は、脱塩室となる
開口が形成された第1スペーサと、濃縮室となる開口が
形成された第2スペーサが交互に積層され、両側から第
1極室セルと第2極室セルとで挟持する積層体フレーム
と、第1電極と、第2電極と、積層体フレームを構成す
る交互に積層される第1スペーサと第2スペーサの間で
第1スペーサの第1極室セル側に配設される陰イオン交
換膜と、第1スペーサと第2スペーサの間で第2スペー
サの第2極室セル側に配設される陽イオン交換膜と、第
1スペーサの脱塩室内に充填される粒状イオン交換樹脂
を備え、第1スペーサには一対の第1連結穴と一対の第
1通水路が形成され、且つ第2スペーサには一対の第2
連結穴と一対の第2通水路が形成され、積層体フレーム
を構成したとき、第2連結穴と第1通水路が連通して脱
塩室のそれぞれが脱塩室吐水管と脱塩室入水管に接続さ
れるとともに、第1連結穴と第2通水路が連通して濃縮
室のそれぞれが濃縮室吐水管と濃縮室入水管に接続さ
れ、第2連結穴には通水栓部材が挿入されていることを
特徴とする。
In order to solve these problems, an electrochemical water treatment apparatus according to the present invention comprises a first spacer having an opening serving as a desalting chamber and an opening serving as a concentrating chamber. Stacked second spacers are alternately stacked, and a stacked frame sandwiched between the first electrode chamber cell and the second electrode chamber cell from both sides, a first electrode, a second electrode, and an alternating frame forming the stacked frame An anion exchange membrane disposed between the first spacer and the second spacer stacked on the first electrode chamber cell side of the first spacer; and a second spacer formed of the second spacer between the first spacer and the second spacer. A cation exchange membrane provided on the bipolar cell side; and a granular ion exchange resin filled in the desalting chamber of the first spacer. The first spacer has a pair of first connection holes and a pair of first connection holes. A water passage is formed, and a pair of second
When the connection hole and the pair of second water passages are formed to form the laminated body frame, the second connection hole and the first water passage communicate with each other, so that each of the desalination chambers has a desalination chamber discharge pipe and a desalination chamber entrance. While being connected to the water pipe, the first connection hole and the second water passage communicate with each other, and each of the concentration chambers is connected to the water discharge pipe of the concentration chamber and the water inlet pipe of the concentration chamber, and a water tap member is inserted into the second connection hole. It is characterized by having been done.

【0016】これにより、シンプルな構成で、脱塩室と
濃縮室の幅をきわめて薄い多層の積層体とすることがで
き、安価で高特性の粒状のイオン交換樹脂を利用した高
効率の電気化学的水処理装置とすることができる。
[0016] Thus, it is possible to form a multi-layered laminate having a simple configuration and extremely narrow widths of the desalting chamber and the concentrating chamber. It can be a target water treatment device.

【0017】また、本発明の電気化学的水処理装置の製
造方法は、第1極室セル内に陽極となる第1電極を設
け、該第1極室セルに陰イオン交換膜を介して第1スペ
ーサを積層し、さらに陽イオン交換樹脂膜を介して第2
スペーサを積層し、その後陰イオン交換膜、第1スペー
サ、陽イオン交換膜、第2スペーサの順で積層を繰り返
し、陰イオン交換膜を介して第2極室セルを積層し、該
第2極室セル内には陰極となる第2電極を設け、このと
き第2連結穴と第1通水路とを連通して脱塩室が脱塩室
吐水管と脱塩室入水管に接続させるとともに、第1連結
穴と第2通水路とを連通して濃縮室を濃縮室吐水管と濃
縮室入水管に接続させ、次いで第1スペーサ内の脱塩室
内のそれぞれに粒状イオン交換樹脂を充填する電気化学
的水処理装置の製造方法であって、組立て時、下方に位
置する第2連結穴に通水栓部材を挿通し、次いで第1ス
ペーサ内の脱塩室内に粒状イオン交換樹脂を充填し、し
かる後、残りの第2連結穴に通水栓部材を挿通すること
を特徴とする。
Further, according to the method of manufacturing an electrochemical water treatment apparatus of the present invention, a first electrode serving as an anode is provided in a first electrode chamber cell, and the first electrode is connected to the first electrode chamber cell via an anion exchange membrane. One spacer is laminated, and the second is placed via a cation exchange resin membrane.
The spacers are stacked, and thereafter, the stacking is repeated in the order of the anion exchange membrane, the first spacer, the cation exchange membrane, and the second spacer, and the second electrode chamber cell is stacked via the anion exchange membrane. A second electrode serving as a cathode is provided in the chamber cell. At this time, the desalting chamber is connected to the desalting chamber water discharge pipe and the desalting chamber water inlet pipe by connecting the second connection hole and the first water passage, The first connecting hole communicates with the second water passage to connect the concentration chamber to the water discharge pipe of the concentration chamber and the water inlet pipe of the concentration chamber, and then to charge each of the deionization chambers in the first spacer with the particulate ion exchange resin. A method of manufacturing a chemical water treatment apparatus, wherein during assembly, a water faucet member is inserted into a second connection hole located below, and then a particulate ion exchange resin is filled in a desalting chamber in a first spacer. Thereafter, the faucet member is inserted into the remaining second connection hole.

【0018】これにより、シンプルな構成で、脱塩室と
濃縮室の幅をきわめて薄い多層の積層体とすることがで
き、粒状のイオン交換樹脂を利用することを可能にする
電気化学的水処理装置を容易に組立てることができる。
This makes it possible to form a multi-layered laminate having a very simple structure with the widths of the desalting chamber and the concentrating chamber being extremely thin, and to use a granular ion exchange resin for electrochemical water treatment. The device can be easily assembled.

【0019】[0019]

【発明の実施の形態】請求項1に記載された発明は、脱
塩室となる開口が形成された第1スペーサと、濃縮室と
なる開口が形成された第2スペーサが交互に積層され、
両側から第1極室セルと第2極室セルとで挟持する積層
体フレームと、第1極室セル内に設けられ陽極とされる
第1電極と、第2極室セル内に設けられ陰極とされる第
2電極と、積層体フレームを構成する交互に積層される
第1スペーサと第2スペーサの間では、第1スペーサの
第1極室セル側に配設され、且つ第1極室セルとこれに
隣接する第1スペーサの間にも配設される陰イオン交換
膜と、積層体フレームを構成する交互に積層される第1
スペーサと第2スペーサの間では、第2スペーサの第2
極室セル側に配設され、且つ第2極室セルとこれに隣接
する第2スペーサの間にも配設される陽イオン交換膜
と、第1スペーサの脱塩室内に充填される粒状イオン交
換樹脂を備えた電気化学的水処理装置であって、第1ス
ペーサには、一対の第1連結穴と、脱塩室となる開口か
ら延びた一対の第1通水路が形成され、且つ第2スペー
サには、一対の第2連結穴と、濃縮室となる開口から延
びた一対の第2通水路が形成され、積層体フレームを構
成したとき、第2連結穴と第1通水路が連通して脱塩室
のそれぞれが脱塩室吐水管と脱塩室入水管に接続される
とともに、第1連結穴と第2通水路が連通して濃縮室の
それぞれが濃縮室吐水管と濃縮室入水管に接続され、第
2連結穴には通水栓部材が挿入されていることを特徴と
する電気化学的水処理装置であるから、第1スペーサの
中に脱塩室となる開口、第2スペーサの中に濃縮室とな
る開口を有すシンプルな構成とし、通水路は第1スペー
サと第2スペーサで構成でき、脱塩室と濃縮室の幅がき
わめて薄い多層の積層体を形成でき、安価な高特性の粒
状イオン交換樹脂を通水栓部材によって脱塩室内に隙間
なく充填して保持でき、しかも脱塩室と濃縮室の幅をき
わめて薄くできるため高効率の電気化学的水処理装置と
することができる。
According to the first aspect of the present invention, a first spacer having an opening serving as a desalting chamber and a second spacer having an opening serving as a concentration chamber are alternately laminated,
A laminate frame sandwiched between the first pole chamber cell and the second pole chamber cell from both sides, a first electrode provided in the first pole chamber cell as an anode, and a cathode provided in the second pole chamber cell Between the second electrode and the first and second spacers, which are alternately laminated to form a laminate frame, are disposed on the first electrode chamber cell side of the first spacer, and the first electrode chamber An anion exchange membrane also disposed between a cell and a first spacer adjacent thereto; and a first alternately laminated first frame constituting a laminate frame.
Between the spacer and the second spacer, the second spacer of the second spacer
A cation exchange membrane disposed on the side of the pole chamber cell and also disposed between the second pole chamber cell and the second spacer adjacent thereto, and particulate ions filled in the desalting chamber of the first spacer An electrochemical water treatment apparatus provided with an exchange resin, wherein the first spacer is formed with a pair of first connection holes and a pair of first water passages extending from an opening serving as a desalination chamber. The two spacers are formed with a pair of second connection holes and a pair of second water passages extending from an opening serving as a concentration chamber. When the laminated body frame is formed, the second connection holes and the first water passages communicate with each other. Then, each of the desalting chambers is connected to the desalting chamber water discharge pipe and the desalination chamber water inlet pipe, and the first connection hole and the second water passage communicate with each other, so that each of the concentration chambers becomes the concentration chamber discharge pipe and the concentration chamber. An electrochemical water treatment device connected to the water inlet pipe, wherein a water tap member is inserted into the second connection hole. Since the apparatus is an apparatus, it has a simple structure having an opening serving as a desalting chamber in the first spacer and an opening serving as a concentrating chamber in the second spacer, and the water passage can be constituted by the first spacer and the second spacer. The width of the desalting chamber and the concentrating chamber can be made very thin and multi-layered. Since the width of the chamber and the concentrating chamber can be made extremely thin, a highly efficient electrochemical water treatment apparatus can be obtained.

【0020】請求項2に記載された発明は、通水栓部材
が通水可能な多孔質棒または多孔質管であることを特徴
とする請求項1記載の電気化学的水処理装置であるか
ら、多孔質棒や多孔質管で通水を行うとともに、粒状陽
イオン交換樹脂と粒状陰イオン交換樹の連通穴からの流
出は防ぐことができる。
The invention according to claim 2 is the electrochemical water treatment apparatus according to claim 1, wherein the water faucet member is a porous rod or a porous tube through which water can pass. In addition, water can be passed through a porous rod or a porous tube, and the outflow of the granular cation exchange resin and the granular anion exchange tree from the communication hole can be prevented.

【0021】請求項3に記載された発明は、第1スペー
サと第2スペーサが同一の形状を備え、第1極室セルと
第2極室セルが同一の形状を備えていることを特徴とす
る請求項1または2に記載の電気化学的水処理装置であ
るから、第1スペーサと第2スペーサが同一の形状、第
1極室セルと第2極室セルが同一の形状であるため構成
がきわめてシンプルになる。
According to a third aspect of the present invention, the first spacer and the second spacer have the same shape, and the first pole chamber cell and the second pole chamber cell have the same shape. Since the electrochemical water treatment apparatus according to claim 1 or 2, the first spacer and the second spacer have the same shape, and the first pole chamber cell and the second pole chamber cell have the same shape. Becomes very simple.

【0022】請求項4に記載された発明は、第1スペー
サに脱塩室となる開口と、該開口から延びた一対の第1
通水路と、一対の第1連結穴を設けるとともに、第2ス
ペーサに濃縮室となる開口と、該開口から延びた一対の
第2通水路と、一対の第2連結穴とを設け、第1極室セ
ル内に陽極となる第1電極を設け、該第1極室セルに陰
イオン交換膜を介して第1スペーサを積層し、さらに陽
イオン交換樹脂膜を介して第2スペーサを積層し、その
後陰イオン交換膜、第1スペーサ、陽イオン交換膜、第
2スペーサの順で積層を繰り返し、陰イオン交換膜を介
して第2極室セルを積層し、該第2極室セル内には陰極
となる第2電極を設け、このとき第2連結穴と第1通水
路とを連通して脱塩室が脱塩室吐水管と脱塩室入水管に
接続させるとともに、第1連結穴と第2通水路とを連通
して濃縮室を濃縮室吐水管と濃縮室入水管に接続させ、
次いで第1スペーサ内の脱塩室内のそれぞれに粒状イオ
ン交換樹脂を充填する電気化学的水処理装置の製造方法
であって、組立て時、下方に位置する第2連結穴に通水
栓部材を挿通し、次いで第1スペーサ内の脱塩室内に粒
状イオン交換樹脂を充填し、しかる後、残りの第2連結
穴に通水栓部材を挿通することを特徴とする電気化学的
水処理装置の製造方法であるから、第1スペーサの中に
脱塩室となる開口、第2スペーサの中に濃縮室となる開
口を有すシンプルな構成とし、通水路は第1スペーサと
第2スペーサで構成でき、脱塩室と濃縮室の幅がきわめ
て薄い多層の積層体を形成でき、安価な粒状イオン交換
樹脂を通水栓部材によって脱塩室内に保持するため脱塩
室への収納と組立てがきわめて容易であり、脱塩室に隙
間なく粒状イオン交換樹脂を充填でき、脱塩室と濃縮室
の幅がきわめて薄いため高効率の電気化学的水処理装置
を製造できる。
According to a fourth aspect of the present invention, an opening serving as a desalting chamber is formed in the first spacer, and a pair of the first extending from the opening.
A water passage, a pair of first connection holes are provided, and an opening serving as a concentration chamber in the second spacer, a pair of second water passages extending from the opening, and a pair of second connection holes are provided. A first electrode serving as an anode is provided in the pole chamber cell, a first spacer is laminated on the first pole chamber cell via an anion exchange membrane, and a second spacer is laminated via a cation exchange resin membrane. After that, the lamination is repeated in the order of the anion exchange membrane, the first spacer, the cation exchange membrane, and the second spacer, and the second pole chamber cell is laminated via the anion exchange membrane. Is provided with a second electrode serving as a cathode. At this time, the desalting chamber is connected to the desalting chamber water discharge pipe and the desalting chamber water inlet pipe by connecting the second connection hole and the first water passage, and the first connection hole is provided. And the second water passage, and connects the concentration chamber to the water discharge pipe of the concentration chamber and the water inlet pipe of the concentration chamber,
Next, there is provided a method for manufacturing an electrochemical water treatment apparatus in which a particulate ion exchange resin is filled in each of the desalting chambers in a first spacer, wherein a water faucet member is inserted into a second connection hole located below during assembly. Then, the desalting chamber in the first spacer is filled with the particulate ion exchange resin, and thereafter, a water faucet member is inserted into the remaining second connection hole, thereby manufacturing the electrochemical water treatment apparatus. Since the method is a simple configuration having an opening serving as a desalting chamber in the first spacer and an opening serving as a concentrating chamber in the second spacer, the water passage can be constituted by the first spacer and the second spacer. The width of the desalting chamber and the concentrating chamber can be made extremely thin and multi-layered, and the inexpensive granular ion exchange resin is held in the desalting chamber by the faucet member. And in the desalination chamber there are no granular ions Can filled with exchange resin, can be manufactured electrochemical water treatment device of the width of the concentrating chambers and desalination chambers is very thin for high efficiency.

【0023】(実施の形態1)以下、本発明の実施の形
態1における電気化学的水処理装置とその製造方法つい
て図面に基づき説明する。本実施の形態1の電気化学的
水処理装置は、主に水道水等の用水中に含まれているナ
トリウムイオンやカルシウムイオン等の陽イオン、塩化
物イオンや硫酸イオン等の陰イオンを脱イオンするもの
である。図1は本発明の実施の形態1における電気化学
的水処理装置の概要を示す図、図2は本発明の実施の形
態1における電気化学的水処理装置の脱塩室の概略図、
図3は本発明の実施の形態1における電気化学的水処理
装置の濃縮室の概略図、図4は本発明の実施の形態1に
おける電気化学的水処理装置の通水路付近の概略断面
図、図5は本発明の実施の形態1における電気化学的水
処理装置の組立て図である。
(Embodiment 1) Hereinafter, an electrochemical water treatment apparatus and a method for manufacturing the same according to Embodiment 1 of the present invention will be described with reference to the drawings. The electrochemical water treatment apparatus according to the first embodiment deionizes cations such as sodium ions and calcium ions and anions such as chloride ions and sulfate ions mainly contained in service water such as tap water. Is what you do. FIG. 1 is a diagram showing an outline of an electrochemical water treatment apparatus according to Embodiment 1 of the present invention, FIG. 2 is a schematic diagram of a desalination chamber of the electrochemical water treatment apparatus according to Embodiment 1 of the present invention,
FIG. 3 is a schematic diagram of a concentration chamber of the electrochemical water treatment device according to the first embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of the vicinity of a water passage of the electrochemical water treatment device according to the first embodiment of the present invention. FIG. 5 is an assembly diagram of the electrochemical water treatment apparatus according to Embodiment 1 of the present invention.

【0024】図1において、1は電解槽、2は極室セ
ル、3は電極、4は脱塩室、5は濃縮室、6は脱塩室入
水管、7は脱塩室吐水管、8は濃縮室入水管、9は濃縮
室吐水管、10は極室セル入水管、11は極室セル吐水
管、12は極室セル入水管、13は極室セル吐水管であ
る。
In FIG. 1, 1 is an electrolytic cell, 2 is an electrode chamber cell, 3 is an electrode, 4 is a desalination chamber, 5 is a concentration chamber, 6 is a water inlet pipe of a desalination chamber, 7 is a water discharge pipe of a desalination chamber, 8 Is a water inlet pipe of the concentration chamber, 9 is a water discharge pipe of the concentration chamber, 10 is a water inlet pipe of the pole chamber cell, 11 is a water pipe of the pole chamber cell, 12 is a water pipe of the pole chamber cell, and 13 is a water pipe of the pole chamber cell.

【0025】本実施の形態1の極室セル2は、陽極とな
る電極3(第1電極)を配設した陽極側の極室セル(第
1極室セル)と、陰極となる電極3(第2電極)を配設
した陰極側の極室セル(第2極室セル)とが同一形状で
構成されているが、異なる形状としてもよい。本実施の
形態1ではこの2つの極室セル2は対向させて用いる。
なお、実施の形態1の電極3は図示しない電源に接続さ
れ、極性は上述のとおりであるが、極性は逆洗のためな
どのように陽極、陰極に固定されるものではない。
The electrode chamber cell 2 of the first embodiment includes an anode-side electrode chamber cell (first electrode cell) provided with an electrode 3 (first electrode) serving as an anode and an electrode 3 (first electrode cell) serving as a cathode. Although the cathode chamber cell (second electrode chamber cell) on the cathode side on which the second electrode is disposed has the same shape, it may have a different shape. In the first embodiment, the two pole chamber cells 2 are used facing each other.
The electrode 3 of the first embodiment is connected to a power supply (not shown), and the polarity is as described above. However, the polarity is not fixed to the anode and the cathode as in the case of backwashing.

【0026】図2〜4において、14はスペーサ、15
は陽イオン交換膜、16は陰イオン交換膜、17は陽イ
オン交換樹脂ビーズ(粒状陽イオン交換樹脂)、18は
陰イオン交換樹脂ビーズ(粒状陰イオン交換樹脂)、1
9は多孔質体、20は連結穴、21は多孔質管(通水栓
部材)である。本実施の形態1では、陽イオン交換樹脂
ビーズ17と陰イオン交換樹脂ビーズ18を混合したも
のを粒状のイオン交換樹脂として用いている。
2 to 4, reference numeral 14 denotes a spacer;
Is a cation exchange membrane, 16 is an anion exchange membrane, 17 is cation exchange resin beads (granular cation exchange resin), 18 is anion exchange resin beads (granular anion exchange resin), 1
9 is a porous body, 20 is a connection hole, and 21 is a porous tube (water faucet member). In the first embodiment, a mixture of the cation exchange resin beads 17 and the anion exchange resin beads 18 is used as the granular ion exchange resin.

【0027】電解槽1は、電極3を配置した2つの極室
セル2の間に陽イオン交換膜16、スペーサ14(第1
スペーサ)、陰イオン交換膜16、スペーサ14(第2
スペーサ)の順を一組として、多層に積層して積層体フ
レームを形成し、脱塩室入水管6、脱塩室吐水管7、濃
縮室入水管8、濃縮室吐水管9、極室セル入水管10、
極室セル吐水管11、極室セル入水管12、極室セル吐
水管13をそれぞれ接続し、外側から締め付けて固定し
て構成される。図2、5に示すように脱塩室4は、スペ
ーサ14の中央開口を両側から陰イオン交換膜16と陽
イオン交換膜15で挟持されて構成され、被処理水に含
まれるイオンを除去するセルとなるものである。図3、
5に示すように濃縮室5は、スペーサ14の中央開口を
両側から陽イオン交換膜15と陰イオン交換膜16で挟
持されて構成され、被処理水の陽イオン、陰イオンを濃
縮するセルとなる。この脱塩室4と濃縮室5は交互に配
設される。なお、本実施の形態1のように、脱塩室4を
形成するスペーサ14(第1スペーサ)と濃縮室5を形
成するスペーサ14(第2スペーサ)を同一形状とし、
一方を反転させて用いるのでもよいが、別形状とするの
でもよい。ただ、同一形状にする本実施の形態1のスペ
ーサ14は、きわめてシンプルな構成で、金型が1つで
すみ製造も容易である。なお、本実施の形態1において
は、陽イオン交換膜16として旭化成K501、陰イオ
ン交換膜16として旭化成A501を使用している。ま
た、スペーサ14の材質として、ABS、PP等の樹脂
を用いるのが適当である。
The electrolytic cell 1 comprises a cation exchange membrane 16 and a spacer 14 (first
Spacer), anion exchange membrane 16, spacer 14 (second
Spacers) are stacked in multiple layers to form a laminate frame, and the desalting chamber inlet pipe 6, the desalting chamber outlet pipe 7, the concentrating chamber inlet pipe 8, the concentrating chamber outlet pipe 9, the pole chamber cell Inlet pipe 10,
The pole room cell water discharge pipe 11, the pole room cell water supply pipe 12, and the pole room cell water discharge pipe 13 are connected to each other, and are fastened and fixed from the outside. As shown in FIGS. 2 and 5, the desalting chamber 4 has a central opening of the spacer 14 sandwiched between the anion exchange membrane 16 and the cation exchange membrane 15 from both sides, and removes ions contained in the water to be treated. It is a cell. FIG.
As shown in FIG. 5, the concentration chamber 5 has a central opening of the spacer 14 sandwiched between the cation exchange membrane 15 and the anion exchange membrane 16 from both sides, and a cell for concentrating cations and anions of the water to be treated. Become. The desalting chambers 4 and the concentrating chambers 5 are arranged alternately. As in the first embodiment, the spacer 14 (first spacer) forming the desalting chamber 4 and the spacer 14 (second spacer) forming the enrichment chamber 5 have the same shape.
One of them may be used inverted, or another shape may be used. However, the spacer 14 of the first embodiment having the same shape has a very simple configuration, requires only one mold, and is easy to manufacture. In the first embodiment, Asahi Kasei K501 is used as the cation exchange membrane 16, and Asahi Kasei A501 is used as the anion exchange membrane 16. Also, it is appropriate to use a resin such as ABS or PP as a material of the spacer 14.

【0028】ところで、脱塩室4となる中央開口が形成
されたスペーサ14(第1スペーサ)には、対角線とな
る位置で上方向と下方向に延びる一対の細い溝の第1通
水路が形成されている。この第1通水路のほかに、スペ
ーサ14(第1スペーサ)には逆の対角線となる位置に
一対の連結穴20(第1連結穴)が形成されている。ま
た同じく、濃縮室5となる中央開口が形成されたスペー
サ14(第2スペーサ)には、スペーサ14(第1スペ
ーサ)の逆の対角線の位置で上方向と下方向に延びる一
対の細い溝の第2通水路が形成されている。スペーサ1
4(第2スペーサ)には、この第2通水路のさらに対角
線の位置に一対の連結穴20(第2連結穴)が形成され
ている。第1通水路の先端位置と連結穴20(第2連結
穴)の位置、また第2通水路の先端位置と連結穴20
(第1連結穴)の位置は、2枚のスペーサ14を積層し
た状態でそれぞれ重合する位置関係にあり、第2通水路
の先端の外側形状は連結穴20(第1連結穴)の形状と
合致する形状であり、第1通水路の先端の外側形状は連
結穴20(第2連結穴)の形状と合致する形状となって
いる。積層して積層体フレームを構成したとき、第1通
水路と連結穴20(第2連結穴)が連通し、各脱塩室4
のそれぞれが脱塩室入水管6と脱塩室吐水管7に接続さ
れるとともに、第2通水路と連結穴20(第1連結穴)
が連通し、各濃縮室5のそれぞれが濃縮室入水管8と濃
縮室吐水管9に接続される。
By the way, in the spacer 14 (first spacer) in which the central opening serving as the desalting chamber 4 is formed, a first water passage of a pair of narrow grooves extending upward and downward at diagonal positions is formed. Have been. In addition to the first water passage, a pair of connection holes 20 (first connection holes) are formed in the spacer 14 (first spacer) at opposite diagonal positions. Similarly, the spacer 14 (second spacer) in which the central opening serving as the enrichment chamber 5 is formed has a pair of thin grooves extending upward and downward at diagonal positions opposite to the spacer 14 (first spacer). A second water passage is formed. Spacer 1
A pair of connection holes 20 (second connection holes) are formed in the 4 (second spacer) at diagonal positions of the second water passage. The front end position of the first water passage and the position of the connection hole 20 (second connection hole), and the front end position of the second water passage and the position of the connection hole 20
The position of the (first connection hole) is in a positional relationship in which the two spacers 14 are stacked in a stacked state, and the outer shape of the tip of the second water passage is different from the shape of the connection hole 20 (first connection hole). The outer shape of the tip of the first water passage is a shape that matches the shape of the connection hole 20 (second connection hole). When the laminated body frame is formed by lamination, the first water passage and the connection hole 20 (second connection hole) communicate with each other, and
Are connected to the desalination chamber water inlet pipe 6 and the desalination chamber water discharge pipe 7, respectively, and the second water passage and the connection hole 20 (first connection hole).
And each of the enrichment chambers 5 is connected to the enrichment chamber water inlet pipe 8 and the enrichment chamber water discharge pipe 9.

【0029】次に、積層体フレームに接続される脱塩室
入水管6と脱塩室吐水管7について説明すると、入口側
となる連結穴20(第2連結穴)は図2、5の紙面に直
交する方向に貫通しており、脱塩室入水管6が始点に設
置されている。終端側は極室セル2の壁面で閉ざされて
いる。出口側となる連結穴20(第2連結穴)はやはり
紙面に直交する方向に貫通しており、脱塩室吐水管7が
始点に設置されて、終端側は極室セル2(第2極室セ
ル)の壁面で閉ざされる。同様に、濃縮室入水管8と濃
縮室吐水管9について説明すると、図1、3、5に示す
ように脱塩室4の場合とは逆方向になるが、入口側とな
る連結穴20(第1連結穴)は紙面に直交する方向に貫
通しており、濃縮室入水管8が始点に設置されている。
終端側は極室セル2の壁面で閉ざされている。出口側と
なる連結穴20(第1連結穴)はやはり紙面に直交する
方向に貫通しており、濃縮水吐水管9が始点に設置され
て、終端側は極室セル2(第1極室セル)の壁面で閉ざ
される。
Next, the desalination chamber inlet pipe 6 and the desalination chamber water discharge pipe 7 connected to the laminate frame will be described. The connection hole 20 (second connection hole) on the inlet side is shown in FIG. And a water inlet pipe 6 for the desalination chamber is provided at the starting point. The terminal side is closed by the wall surface of the pole room cell 2. The connection hole 20 (second connection hole) on the outlet side also penetrates in a direction orthogonal to the paper surface, the desalting chamber water discharge pipe 7 is installed at the starting point, and the terminal side is the pole chamber cell 2 (second pole). Room cell). Similarly, the concentrating chamber inlet pipe 8 and the concentrating chamber outlet pipe 9 will be described. As shown in FIGS. 1, 3, and 5, the direction is opposite to that of the desalting chamber 4, but the connection hole 20 ( The first connection hole) penetrates in a direction perpendicular to the plane of the paper, and the concentrating chamber inlet pipe 8 is installed at the starting point.
The terminal side is closed by the wall surface of the pole room cell 2. The connection hole 20 (first connection hole) on the outlet side also penetrates in a direction orthogonal to the paper surface, the concentrated water discharge pipe 9 is installed at the starting point, and the terminal side is the pole chamber cell 2 (first pole chamber). Cell).

【0030】このように、脱塩室4と濃縮室5は交互に
配置されるとともに、脱塩室4同士、濃縮室5同士は、
入口側、出口側とも連結されて同時に通水できるように
なる。濃縮室5の通水路と、脱塩室4の通水路とは水路
的に完全に独立したものとなる。また、極室セル2は脱
塩室4および濃縮室5からは独立し、電極3が設けられ
ており、被処理水が通過する構造となっている。極室セ
ル2内は、極室セル入水管10、極室セル吐水管11、
極室セル入水管12、極室セル吐水管13と接続され
る。なお、電極3は図示しない電源に接続されている。
As described above, the desalting chambers 4 and the concentration chambers 5 are arranged alternately, and the desalination chambers 4 and the concentration chambers 5 are
The inlet side and the outlet side are connected so that water can flow at the same time. The water passage of the concentration chamber 5 and the water passage of the desalination room 4 are completely independent in terms of water passage. The electrode chamber cell 2 is provided with an electrode 3 independently of the desalting chamber 4 and the concentration chamber 5, and has a structure through which water to be treated passes. Inside the pole room cell 2, a pole room cell inlet pipe 10, a pole chamber cell water discharge pipe 11,
It is connected to the polar chamber cell water inlet pipe 12 and the polar chamber cell water discharge pipe 13. The electrode 3 is connected to a power source (not shown).

【0031】ところで、濃縮室5には通常、通水抵抗の
少ない高分子やセラミックの多孔質体19が配置され
る。また、脱塩室4には陽イオン交換樹脂ビーズ17と
陰イオン交換樹脂ビーズ18を混合した粒状のイオン交
換樹脂が充填される。脱塩室4での透析効率を向上させ
るため、本実施の形態1では、陽イオン交換樹脂ビーズ
17として三菱化学 DIAION SK 1B 粒
径;0.4〜0.6mm、陰イオン交換樹脂ビーズ18
として三菱化学 DIAION SA 2A 粒径;
0.4〜0.6mmの2種類のイオン交換樹脂ビーズの
混合物を充填している。これにより、脱塩質4内に隙間
なく陽イオン交換樹脂ビーズ17と陰イオン交換樹脂ビ
ーズ18を充填でき、安価で高効率の電気化学的水処理
装置を実現できる。この陽イオン交換樹脂ビーズ17と
陰イオン交換樹脂ビーズ18は粒径が1mm以下の非常
に微小な粒体であるから、そのままにしておくと脱塩室
4から第1通水路と連結穴20(第2連結穴)を通って
外部へ流出する可能性が高い。電気化学的水処理装置の
積層体フレームを構成したとき、陽イオン交換樹脂ビー
ズ17と陰イオン交換樹脂ビーズ18は組立て時点で外
部に流出してしまう。
Incidentally, in the concentrating chamber 5, a porous body 19 made of a polymer or a ceramic having a low water flow resistance is usually arranged. The desalting chamber 4 is filled with a granular ion exchange resin obtained by mixing cation exchange resin beads 17 and anion exchange resin beads 18. In order to improve the dialysis efficiency in the desalting chamber 4, in the first embodiment, as the cation exchange resin beads 17, Mitsubishi Chemical DIAION SK 1B particle size: 0.4 to 0.6 mm, anion exchange resin beads 18
As Mitsubishi Chemical DIAION SA 2A particle size;
It is filled with a mixture of two types of ion exchange resin beads of 0.4 to 0.6 mm. Thereby, the cation-exchange resin beads 17 and the anion-exchange resin beads 18 can be filled in the desalinated substance 4 without gaps, and an inexpensive and highly efficient electrochemical water treatment apparatus can be realized. Since the cation exchange resin beads 17 and the anion exchange resin beads 18 are very fine particles having a particle diameter of 1 mm or less, if they are left as they are, the first water passage and the connection hole 20 ( There is a high possibility of flowing out through the second connection hole). When the laminate frame of the electrochemical water treatment apparatus is configured, the cation exchange resin beads 17 and the anion exchange resin beads 18 flow out at the time of assembly.

【0032】そこで、本実施の形態1では、スペーサ1
4(第2スペーサ)の連結穴20(第2連結穴)に多孔
質管21(通水栓部材)を挿通している。連結穴20と
多孔質管21の外部形状は合致し、液密状態で装着され
る。この多孔質管21は通水抵抗の小さい高分子または
セラミック製のもの、例えば三菱樹脂製のポリエチレン
多孔質体(商品名フィルダス)等が適当である。また、
多孔質管21に代えて、多孔質棒としてもよい。この多
孔質管21で連結穴20(第2連結穴)の中を塞ぐか
ら、陽イオン交換樹脂ビーズ17と陰イオン交換樹脂ビ
ーズ18はこれにトラップされ、外部に流出することは
ない。この多孔質管21もしくは多孔質棒からなる通水
栓部材は、積層体フレームを貫通する長いものであって
もよいが、スペーサ14(第2スペーサ)の幅以下の長
さで、連結穴20(第2連結穴)をそれぞれ塞ぐもので
あってもよい。積層体フレームを貫通する長い通水栓部
材とする方が組立てが容易になるが、通水抵抗が上がっ
てしまう。従ってこの場合には、多孔質棒とするより多
孔質管21とするのが好ましい。スペーサ14(第2ス
ペーサ)の幅の長さより短い多孔質管21を複数本それ
ぞれの連結穴20(第2連結穴)の位置に挿入するの
は、通水抵抗の面では有効であるが、組立ては非常に面
倒になる。
Therefore, in the first embodiment, the spacer 1
The porous tube 21 (water tap member) is inserted into the connection hole 20 (second connection hole) of 4 (second spacer). The external shapes of the connection hole 20 and the porous tube 21 match and are mounted in a liquid-tight state. The porous tube 21 is suitably made of a polymer or ceramic having a small water flow resistance, for example, a polyethylene porous body (trade name: Fildas) made of Mitsubishi resin. Also,
Instead of the porous tube 21, a porous rod may be used. Since the inside of the connection hole 20 (the second connection hole) is closed by the porous tube 21, the cation exchange resin beads 17 and the anion exchange resin beads 18 are trapped by this and do not flow out. The water faucet member made of the porous tube 21 or the porous rod may be a long one penetrating the laminated body frame, but has a length equal to or less than the width of the spacer 14 (second spacer), and The second connection holes) may be closed. Although it is easier to assemble a long water faucet member that penetrates the laminated body frame, the water flow resistance increases. Therefore, in this case, it is preferable to use the porous tube 21 rather than the porous rod. Inserting the porous tube 21 shorter than the width of the spacer 14 (second spacer) at the position of each of the plurality of connection holes 20 (second connection holes) is effective in terms of water flow resistance. Assembly is very cumbersome.

【0033】このように本実施の形態1の電気的化学水
処理装置は、スペーサ14と陽イオン交換膜15と陰イ
オン交換膜16を多層に積層して積層体フレームを形成
するだけで、通水路がスペーサ14によって形成され、
スペーサ14の構成も非常にシンプルで、脱塩室4の幅
をきわめて小さくすることができ、積層体フレームも全
体としてコンパクトになる。また、これに伴い脱塩効率
も上昇する。
As described above, the electrochemical water treatment apparatus according to the first embodiment is formed by laminating the spacer 14, the cation exchange membrane 15, and the anion exchange membrane 16 in multiple layers to form a laminated frame. A water channel is formed by the spacer 14;
The configuration of the spacer 14 is also very simple, the width of the desalting chamber 4 can be made extremely small, and the laminated frame becomes compact as a whole. In addition, the desalination efficiency increases accordingly.

【0034】続いて、本実施の形態1の電気化学的水処
理装置によって行われる処理について説明する。まず被
処理水が脱塩室入水管6から注入され、連結穴20(第
2連結穴)内に挿通された多孔質管21を通って各脱塩
室4に供給される、脱塩室4でイオンを除去された処理
水は、もう一方の連結穴20(第2連結穴)内に挿通さ
れた多孔質管21を通って、脱イオン水(軟水)となっ
て脱塩室出水管7を通って吐水される。
Next, the processing performed by the electrochemical water treatment apparatus according to the first embodiment will be described. First, the water to be treated is injected from the desalting chamber inlet pipe 6 and supplied to each desalting chamber 4 through the porous pipe 21 inserted into the connection hole 20 (second connection hole). The treated water from which the ions have been removed in step (a) passes through the porous tube 21 inserted into the other connection hole 20 (second connection hole), and turns into deionized water (soft water) to form the deionization chamber discharge pipe 7. Water is spouted through.

【0035】一方、濃縮室入水管8から注入された被処
理水は連結穴20(第1連結穴)を通って各濃縮室5に
供給される、濃縮室5でイオンを供給された処理水は、
もう一方の連結穴20(第1連結穴)を通って、濃縮水
となって、濃縮室吐水管9を通って吐水される。
On the other hand, the water to be treated injected from the condensing chamber inlet pipe 8 is supplied to each concentrating chamber 5 through the connecting hole 20 (first connecting hole), and the treated water supplied with ions in the concentrating chamber 5 Is
The water passes through the other connection hole 20 (first connection hole), becomes concentrated water, and is discharged through the water discharge pipe 9 in the concentration chamber.

【0036】さらに、極室セル2にはそれぞれ陽極セル
入水管10、陰極セル入水管11から注入された被処理
水は各極室セル2で電解を受け、アルカリ性水及び酸性
水となって陽極セル吐水管12、陰極セル吐水管13よ
り吐水される。
Further, the to-be-processed water injected from the anode cell water inlet pipe 10 and the cathode cell water inlet pipe 11 into the electrode chamber cell 2 is electrolyzed in each of the electrode chamber cells 2, and becomes alkaline water and acidic water to form the anode water. Water is discharged from the cell water discharge pipe 12 and the cathode cell water discharge pipe 13.

【0037】ここで、脱塩室4、濃縮室5、陽極セル、
陰極セルに注入される被処理水は同一のものであり、各
室に分配されて通水される。分配比率は、脱イオン水
(軟水)を主として利用する場合、脱塩室=1に対し濃
縮室=0.1、陽極セル=0.1、陰極セル=0.1程
度とするのが適当である。
Here, a desalting chamber 4, a concentration chamber 5, an anode cell,
The water to be treated injected into the cathode cell is the same, and is distributed to and passed through each chamber. When the deionized water (soft water) is mainly used, the distribution ratio is preferably about 0.1 in the demineralization chamber, 0.1 in the concentration chamber, 0.1 in the anode cell, and about 0.1 in the cathode cell. is there.

【0038】続いて、図5を用いて本実施の形態1の電
気化学的水処理装置の製造方法について説明する。極室
セル2(第1極室セル)内に陽極となる電極3(第1
電)を設け、第1極室セルに陰イオン交換膜16を介し
てスペーサ14(第1スペーサ)を積層し、さらに陽イ
オン交換樹脂膜15を介してスペーサ14(第2スペー
サ)を積層し、その後陰イオン交換膜16、スペーサ1
4(第1スペーサ)、陽イオン交換膜15、スペーサ1
4(第2スペーサ)の順で積層を繰り返し、陰イオン交
換膜16を介して極室セル2(第2極室セル)を積層
し、第2極室セル内には陰極となる電極3(第2電極)
を設け、1つの積層体フレームを構成して、外部からネ
ジ止めする。
Next, a method of manufacturing the electrochemical water treatment apparatus according to the first embodiment will be described with reference to FIG. An electrode 3 (first electrode) serving as an anode is placed in an electrode chamber cell 2 (first electrode chamber cell).
And a spacer 14 (first spacer) is laminated on the first electrode chamber cell via the anion exchange film 16 and further a spacer 14 (second spacer) is laminated via the cation exchange resin film 15. , Then anion exchange membrane 16, spacer 1
4 (first spacer), cation exchange membrane 15, spacer 1
4 (second spacer) is repeated in this order, and the electrode chamber cell 2 (second electrode chamber cell) is stacked via the anion exchange membrane 16, and the electrode 3 (the cathode) is provided in the second electrode chamber cell. 2nd electrode)
Are provided, and one laminated body frame is formed and screwed from the outside.

【0039】このとき連結穴20(第2連結穴)とスペ
ーサ14(第1スペーサ)の第1通水路とは連通し、各
脱塩室4は脱塩室入水管6と脱塩室吐水管7に接続状態
になる。また、連結穴20(第1連結穴)とスペーサ1
4(第1スペーサ)の第2通水路とは連通し、各濃縮室
5も同様に濃縮室入水管8と濃縮室吐水管9に接続状態
となる。
At this time, the connection hole 20 (second connection hole) communicates with the first water passage of the spacer 14 (first spacer), and each desalting chamber 4 is connected to the desalting chamber inlet pipe 6 and the desalting chamber spouting pipe. 7 is connected. The connection hole 20 (first connection hole) and the spacer 1
4 (the first spacer) communicates with the second water passage, and each of the concentration chambers 5 is similarly connected to the concentration chamber inlet pipe 8 and the concentration chamber discharge pipe 9.

【0040】この状態で陽イオン交換樹脂ビーズ17と
陰イオン交換樹脂ビーズ18の混合体を隙間なく脱塩室
4に注入するため、まず一方(下方側)の連結穴20に
多孔質管21を挿入する。続いて、連通しているもう一
方(上方側)の通水口より陽イオン交換樹脂ビーズ17
と陰イオン交換樹脂ビーズ18の混合体の一定量を水な
いしは食塩水に分散させ流し込む。水ないし食塩水は多
孔質管21を通過し、連結穴20より流出するが、イオ
ン交換樹脂は多孔質管21にトラップされスペーサ14
の中央開口内の空間に留まる。すべてのスペーサ14に
陽イオン交換樹脂ビーズ17と陰イオン交換樹脂ビーズ
18が充填された後、注入したほうの連結穴20にも多
孔質管21を挿入し、陽イオン交換樹脂ビーズ17と陰
イオン交換樹脂ビーズ18の流出防止を行う。最後に脱
塩室入水管6と脱塩室吐水管7を挿入する。
In this state, in order to inject the mixture of the cation exchange resin beads 17 and the anion exchange resin beads 18 into the desalting chamber 4 without gaps, first connect the porous tube 21 to one (lower) connection hole 20. insert. Subsequently, the cation-exchange resin beads 17 are passed through the other (upper side) water communication port.
A certain amount of the mixture of the and the anion exchange resin beads 18 is dispersed and poured into water or saline. Water or saline passes through the porous tube 21 and flows out of the connection hole 20, but the ion exchange resin is trapped in the porous tube 21 and
Stay in the space inside the central opening. After all the spacers 14 have been filled with the cation exchange resin beads 17 and the anion exchange resin beads 18, the porous tube 21 is also inserted into the connection hole 20 to which the cation exchange resin beads 17 and the anion exchange resin beads 17 have been added. The exchange resin beads 18 are prevented from flowing out. Finally, the desalting chamber inlet pipe 6 and the desalting chamber spout 7 are inserted.

【0041】このように、本実施の形態1の電気化学的
水処理装置は、スペーサ14の中に脱塩室4となる空間
と濃縮室5となる空間を有するシンプルな構成であり、
脱塩室4と濃縮室5の幅がきわめて薄い多層の積層体を
形成でき、安価な陽イオン交換樹脂ビーズ17と陰イオ
ン交換樹脂ビーズ18を多孔質管21によって脱塩室4
内に収納でき、脱塩室4と濃縮室5の幅がきわめて薄い
ため高効率の電気化学的水処理装置とすることができ
る。
As described above, the electrochemical water treatment apparatus according to the first embodiment has a simple configuration in which the space serving as the desalting chamber 4 and the space serving as the concentration chamber 5 are provided in the spacer 14.
It is possible to form a multilayer laminate in which the width of the desalting chamber 4 and the concentrating chamber 5 is extremely small, and the inexpensive cation exchange resin beads 17 and anion exchange resin beads 18 are formed by the porous tube 21 in the desalination chamber 4.
Since the width of the desalting chamber 4 and the concentrating chamber 5 is extremely small, a highly efficient electrochemical water treatment apparatus can be provided.

【0042】また、本実施の形態1の電気化学的水処理
装置の製造方法は、陽イオン交換樹脂ビーズ17と陰イ
オン交換樹脂ビーズ18を、多孔質管21によって脱塩
室4内に保持できるため、組立て時脱塩室4への収納が
きわめて容易にすることできる。
In the method of manufacturing the electrochemical water treatment apparatus according to the first embodiment, the cation exchange resin beads 17 and the anion exchange resin beads 18 can be held in the desalting chamber 4 by the porous tube 21. Therefore, storage in the desalting chamber 4 during assembly can be made extremely easy.

【0043】[0043]

【発明の効果】本発明の電気化学的水処理装置は、シン
プルな構成で、脱塩室と濃縮室の幅がきわめて薄い多層
の積層体フレームとすることができ、脱塩室につながる
通水路に多孔質管あるいは多孔質棒を配設することによ
り、脱塩室内に容易に粒状のイオン交換樹脂を隙間なく
充填することができるため、脱塩効率が向上すると共
に、低コストの電解槽を実現できるという優れた特徴を
持つものである。
The electrochemical water treatment apparatus of the present invention can have a simple structure, and can form a multi-layered laminated frame in which the width of the desalting chamber and the concentrating chamber is extremely thin, and the water passage leading to the desalting chamber. By disposing a porous tube or a porous rod in the desalination chamber, it is possible to easily fill the deionization chamber with granular ion exchange resin without any gaps, thereby improving the desalination efficiency and using a low-cost electrolytic cell. It has the excellent feature that it can be realized.

【0044】また、本発明の電気化学的水処理装置の製
造方法は、シンプルな構成で、脱塩室と濃縮室の幅をき
わめて薄い多層の積層体フレームとすることができ、脱
塩室につながる通水路に多孔質管あるいは多孔質棒を配
設することにより、脱塩室内に容易に粒状のイオン交換
樹脂を隙間なく充填することができ、流出を防止できる
から粒状のイオン交換樹脂を利用することが可能にな
り、組立てもきわめて容易である。
Further, the method for manufacturing an electrochemical water treatment apparatus of the present invention can provide a multilayer structure frame having a very simple structure and a very thin width between the desalting chamber and the concentrating chamber. By arranging porous pipes or rods in the connecting water channel, the deionization chamber can be easily filled with granular ion exchange resin without gaps, and can prevent outflow, so use granular ion exchange resin. And it is very easy to assemble.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における電気化学的水処
理装置の概要を示す図
FIG. 1 is a diagram showing an outline of an electrochemical water treatment apparatus according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における電気化学的水処
理装置の脱塩室の概略図
FIG. 2 is a schematic diagram of a desalination chamber of the electrochemical water treatment apparatus according to Embodiment 1 of the present invention.

【図3】本発明の実施の形態1における電気化学的水処
理装置の濃縮室の概略図
FIG. 3 is a schematic diagram of a concentration chamber of the electrochemical water treatment apparatus according to Embodiment 1 of the present invention.

【図4】本発明の実施の形態1における電気化学的水処
理装置の通水路付近の概略断面図
FIG. 4 is a schematic sectional view near a water passage of the electrochemical water treatment apparatus according to Embodiment 1 of the present invention.

【図5】本発明の実施の形態1における電気化学的水処
理装置の組立て図
FIG. 5 is an assembly view of the electrochemical water treatment apparatus according to Embodiment 1 of the present invention.

【図6】従来の電気透析装置の断面略図FIG. 6 is a schematic cross-sectional view of a conventional electrodialysis device.

【図7】従来の電気式脱イオン水製造装置の脱塩セルに
おける集水装置を示す図
FIG. 7 is a diagram showing a water collecting device in a desalination cell of a conventional electric deionized water producing device.

【符号の説明】[Explanation of symbols]

1 電解槽 2 極室セル 3 電極 4 脱塩室 5 濃縮室 6 脱塩室入水管 7 脱塩室吐水管 8 濃縮室入水管 9 濃縮室吐水管 10 極室セル入水管 11 極室セル吐水管 12 極室セル入水管 13 極室セル吐水管 14 スペーサ 15 陽イオン交換膜 16 陰イオン交換膜 17 陽イオン交換樹脂ビーズ 18 陰イオン交換樹脂ビーズ 19 多孔質体 20 連結穴 21 多孔質管 101 陽極版 102 陰極版 103 陽極室 104 陰極室 105 陰イオン交換膜 106 陽イオン交換膜 107 脱塩室 108 濃縮室 121A 第一櫛歯状部材 121B 第二櫛歯状部材 122A 部材本体 122B 部材本体 123 通水孔 124 突起 125 凹部 126 嵌合突片 127 嵌合凹所 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrode cell 3 Electrode 4 Demineralization room 5 Concentration room 6 Deionization room water inlet pipe 7 Deionization room water discharge pipe 8 Concentration room water inlet pipe 9 Concentration room water discharge pipe 10 Electrode room cell water inlet pipe 11 Electrode room cell water discharge pipe REFERENCE SIGNS LIST 12 Polar chamber cell water inlet pipe 13 Polar chamber cell water discharge pipe 14 Spacer 15 Cation exchange membrane 16 Anion exchange membrane 17 Cation exchange resin beads 18 Anion exchange resin beads 19 Porous body 20 Connection hole 21 Porous tube 101 Anode plate 102 Cathode plate 103 Anode compartment 104 Cathode compartment 105 Anion exchange membrane 106 Cation exchange membrane 107 Demineralization compartment 108 Concentration compartment 121A First comb-shaped member 121B Second comb-shaped member 122A Member body 122B Member body 123 Water passage hole 124 protrusion 125 recess 126 fitting protrusion 127 fitting recess

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】脱塩室となる開口が形成された第1スペー
サと、濃縮室となる開口が形成された第2スペーサが交
互に積層され、両側から第1極室セルと第2極室セルと
で挟持する積層体フレームと、 前記第1極室セル内に設けられ陽極とされる第1電極
と、 前記第2極室セル内に設けられ陰極とされる第2電極
と、 前記積層体フレームを構成する交互に積層される第1ス
ペーサと第2スペーサの間では第1スペーサの第1極室
セル側に配設され、且つ前記第1極室セルとこれに隣接
する第1スペーサの間にも配設される陰イオン交換膜
と、 前記積層体フレームを構成する交互に積層される第1ス
ペーサと第2スペーサの間では第2スペーサの第2極室
セル側に配設され、且つ前記第2極室セルとこれに隣接
する第2スペーサの間にも配設される陽イオン交換膜
と、 前記第1スペーサの脱塩室内に充填される粒状イオン交
換樹脂を備えた電気化学的水処理装置であって、 前記第1スペーサには、一対の第1連結穴と、前記脱塩
室となる開口から延びた一対の第1通水路が形成され、
且つ前記第2スペーサには、一対の第2連結穴と、前記
濃縮室となる開口から延びた一対の第2通水路が形成さ
れ、 前記積層体フレームを構成したとき、前記第2連結穴と
前記第1通水路が連通して前記脱塩室のそれぞれが脱塩
室吐水管と脱塩室入水管に接続されるとともに、前記第
1連結穴と前記第2通水路が連通して前記濃縮室のそれ
ぞれが濃縮室吐水管と濃縮室入水管に接続され、 前記第2連結穴には通水栓部材が挿入されていることを
特徴とする電気化学的水処理装置。
A first spacer having an opening serving as a desalting chamber and a second spacer having an opening serving as a concentration chamber are alternately laminated, and a first pole chamber cell and a second pole chamber are formed from both sides. A laminate frame sandwiched between cells, a first electrode provided in the first pole chamber cell and serving as an anode, a second electrode provided in the second pole chamber cell and serving as a cathode, Between the first spacers and the second spacers, which are alternately stacked, constituting the body frame, the first spacers are disposed on the first pole chamber cell side of the first spacer, and the first pole chamber cells and the first spacer adjacent thereto are disposed. And an anion exchange membrane also disposed between the first spacer and the second spacer, which are alternately laminated to form the laminate frame, disposed on the second pole cell side of the second spacer. And between the second electrode chamber cell and a second spacer adjacent thereto. An electrochemical water treatment apparatus comprising: a cation exchange membrane; and a granular ion exchange resin filled in a desalting chamber of the first spacer, wherein the first spacer has a pair of first connection holes, Forming a pair of first water passages extending from the opening serving as the desalination chamber;
The second spacer is formed with a pair of second connection holes and a pair of second water passages extending from an opening serving as the enrichment chamber. The first water passage communicates with each of the desalting chambers, and is connected to the water discharge pipe of the desalination chamber and the water inlet pipe of the desalination chamber, and the first connection hole communicates with the second water passage to form the concentrator. An electrochemical water treatment apparatus, wherein each of the chambers is connected to a water discharge pipe of the concentration chamber and a water inlet pipe of the concentration chamber, and a water tap member is inserted into the second connection hole.
【請求項2】前記通水栓部材が通水可能な多孔質棒また
は多孔質管であることを特徴とする請求項1記載の電気
化学的水処理装置。
2. The electrochemical water treatment apparatus according to claim 1, wherein said water tap member is a porous rod or a porous tube through which water can pass.
【請求項3】前記第1スペーサと前記第2スペーサが同
一の形状を備え、前記第1極室セルと前記第2極室セル
が同一の形状を備えていることを特徴とする請求項1ま
たは2に記載の電気化学的水処理装置。
3. The cell according to claim 1, wherein said first spacer and said second spacer have the same shape, and said first pole chamber cell and said second pole chamber cell have the same shape. Or the electrochemical water treatment apparatus according to 2.
【請求項4】第1スペーサに脱塩室となる開口と、該開
口から延びた一対の第1通水路と、一対の第1連結穴を
設けるとともに、前記第2スペーサに濃縮室となる開口
と、該開口から延びた一対の第2通水路と、一対の第2
連結穴とを設け、 第1極室セル内に陽極となる第1電極を設け、該第1極
室セルに陰イオン交換膜を介して第1スペーサを積層
し、さらに陽イオン交換膜を介して第2スペーサを積層
し、その後陰イオン交換膜、第1スペーサ、陽イオン交
換膜、第2スペーサの順で積層を繰り返し、陰イオン交
換膜を介して第2極室セルを積層し、該第2極室セル内
には陰極となる第2電極を設け、 このとき前記第2連結穴と前記第1通水路とを連通して
前記脱塩室が脱塩室吐水管と脱塩室入水管に接続させる
とともに、前記第1連結穴と前記第2通水路とを連通し
て前記濃縮室を濃縮室吐水管と濃縮室入水管に接続さ
せ、 次いで前記第1スペーサ内の前記脱塩室内のそれぞれに
粒状イオン交換樹脂を充填する電気化学的水処理装置の
製造方法であって、 組立て時、下方に位置する第2連結穴に通水栓部材を挿
通し、次いで第1スペーサ内の脱塩室内に粒状イオン交
換樹脂を充填し、しかる後、残りの第2連結穴に前記通
水栓部材を挿通することを特徴とする電気化学的水処理
装置の製造方法。
4. An opening serving as a desalting chamber in the first spacer, a pair of first water passages extending from the opening, a pair of first connection holes, and an opening serving as a concentration chamber in the second spacer. A pair of second water passages extending from the opening;
A connection hole, a first electrode serving as an anode in the first pole chamber cell, a first spacer laminated on the first pole chamber cell via an anion exchange membrane, and further via a cation exchange membrane. Then, the second spacer is stacked in this order, and the second anion exchange cell is stacked through the anion exchange membrane. A second electrode serving as a cathode is provided in the second pole chamber cell. At this time, the desalting chamber communicates with the second connection hole and the first water passage so that the desalting chamber enters the desalting chamber discharge pipe and the desalting chamber. A water pipe connected to the first connection hole and the second water passage to connect the concentration chamber to a water discharge pipe in the concentration chamber and a water inlet pipe in the concentration chamber; and then, the desalting chamber in the first spacer. A method for producing an electrochemical water treatment apparatus in which each of the particles is filled with a granular ion exchange resin, At the time of assembling, the faucet member is inserted into the second connection hole located below, and then the granular ion-exchange resin is filled in the desalting chamber in the first spacer. A method for manufacturing an electrochemical water treatment apparatus, comprising inserting a faucet member.
JP2000368068A 2000-12-04 2000-12-04 Electrochemical water treatment device and its manufacturing method Pending JP2002166282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368068A JP2002166282A (en) 2000-12-04 2000-12-04 Electrochemical water treatment device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368068A JP2002166282A (en) 2000-12-04 2000-12-04 Electrochemical water treatment device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002166282A true JP2002166282A (en) 2002-06-11

Family

ID=18838383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368068A Pending JP2002166282A (en) 2000-12-04 2000-12-04 Electrochemical water treatment device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002166282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298731A (en) * 2003-03-31 2004-10-28 Japan Organo Co Ltd Water collection device of desalting cell of electric deionized water manufacturing apparatus
KR101147198B1 (en) 2012-02-22 2012-05-25 (주) 시온텍 Capacitive deionization device
KR20200118336A (en) * 2019-04-05 2020-10-15 시스템코리아 주식회사 Method for manufacturing electrochemical processing apparatus having ion exchange membrane and manufacturing apparatus of ion exchange membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004298731A (en) * 2003-03-31 2004-10-28 Japan Organo Co Ltd Water collection device of desalting cell of electric deionized water manufacturing apparatus
KR101147198B1 (en) 2012-02-22 2012-05-25 (주) 시온텍 Capacitive deionization device
WO2013125832A1 (en) * 2012-02-22 2013-08-29 (주) 시온텍 Capacitive deionization device
KR20200118336A (en) * 2019-04-05 2020-10-15 시스템코리아 주식회사 Method for manufacturing electrochemical processing apparatus having ion exchange membrane and manufacturing apparatus of ion exchange membrane
KR102199855B1 (en) 2019-04-05 2021-01-11 시스템코리아 주식회사 Method for manufacturing electrochemical processing apparatus having ion exchange membrane and manufacturing apparatus of ion exchange membrane

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US9446971B2 (en) Techniques for promoting current efficiency in electrochemical separation systems and methods
JP4065664B2 (en) Electric desalination equipment
US20080078672A1 (en) Hybrid Capacitive Deionization and Electro-Deionization (CDI-EDI) Electrochemical Cell for Fluid Purification
US10301200B2 (en) Flow distributors for electrochemical separation
TW201240923A (en) Electrical purification apparatus and methods of manufacturing same
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP2002166282A (en) Electrochemical water treatment device and its manufacturing method
CN111615497B (en) Electric deionizing device for producing deionized water
JP2001321773A (en) Apparatus and method for making electro-deionized water
JP2002263654A (en) Electrochemical water treating unit
JP2002186973A (en) Continuous electro-deionization device
JP7374400B1 (en) Electrodeionized water production equipment and pure water production method
JP2002011477A (en) Electric deionization apparatus
JP2004050018A (en) Electrodeionizing apparatus
JP2002346568A (en) Electric regeneration type pure water production apparatus