JP2002263654A - Electrochemical water treating unit - Google Patents

Electrochemical water treating unit

Info

Publication number
JP2002263654A
JP2002263654A JP2001064606A JP2001064606A JP2002263654A JP 2002263654 A JP2002263654 A JP 2002263654A JP 2001064606 A JP2001064606 A JP 2001064606A JP 2001064606 A JP2001064606 A JP 2001064606A JP 2002263654 A JP2002263654 A JP 2002263654A
Authority
JP
Japan
Prior art keywords
water
chamber
deionization
exchange membrane
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001064606A
Other languages
Japanese (ja)
Inventor
Kiyoaki Matsui
清明 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001064606A priority Critical patent/JP2002263654A/en
Publication of JP2002263654A publication Critical patent/JP2002263654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical water treating unit which can suppress the adhesion of a hard component and can perform a stable operation by reducing the concentration ratio of the ions in the concentration chamber. SOLUTION: This electrochemical water treating unit is provided with an electrodialysis tank 1 obtained by bringing a plurality of units together so that electrode plates A, B2 and 3 are common, wherein each unit has a configuration in which a cation exchange membrane 4 and an anion exchange membrane 5 are alternately arranged, at least one deionization chamber and a concentration chamber are formed and the electrode plates A, B2 and 3 are disposed at both ends. In this configuration, a predetermined electric current can be supplied without applying high voltage and efficient deionization can be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に水道水等の用
水中に含まれているナトリウムイオンやカルシウムイオ
ン等の陽イオン、塩化物イオンや硫酸イオン等の陰イオ
ンを除去する電気化学的水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical device for removing cations such as sodium ions and calcium ions and anions such as chloride ions and sulfate ions mainly contained in service water such as tap water. It relates to a water treatment device.

【0002】[0002]

【従来の技術】一般に海水の淡水化や海水からの食塩の
製造に関しては、イオン交換膜と電界印加手段からなる
電気透析法が用いられている。また、半導体製造などに
使われるイオン交換水や超純水の生成にも、再生操作が
不要な電気透析法が広く用いられている。
2. Description of the Related Art Generally, for desalination of seawater and production of salt from seawater, an electrodialysis method comprising an ion exchange membrane and an electric field applying means is used. In addition, an electrodialysis method that does not require a regeneration operation is widely used for the production of ion-exchanged water and ultrapure water used for semiconductor production and the like.

【0003】前記の電気透析法は、陽イオン交換膜と陰
イオン交換膜とを交互に配列し、脱塩室と濃縮室を形成
した電気透析槽の脱塩室に被処理水を流しながら電圧を
印加して電気透析を行うことにより脱イオン水を製造す
るもので、脱塩室内で水解離による酸とアルカリを用い
てイオン交換膜を自己再生している。これらの装置にお
いては、脱塩効率や信頼性の向上のために、材料、構成
において多くの工夫が行われている。
In the above-mentioned electrodialysis method, a cation exchange membrane and an anion exchange membrane are alternately arranged, and a voltage is applied while flowing water to be treated into a desalination chamber of an electrodialysis tank having a desalination chamber and a concentration chamber. Is applied to perform electrodialysis to produce deionized water. In the deionization chamber, the ion exchange membrane is self-regenerated using an acid and an alkali by water dissociation. In these devices, many efforts have been made in materials and configurations to improve desalination efficiency and reliability.

【0004】特開平3−224688号で提案されてい
る従来の電気透析装置の概略断面図を図7に示し、以下
に説明する。
FIG. 7 is a schematic cross-sectional view of a conventional electrodialysis apparatus proposed in Japanese Patent Application Laid-Open No. 3-224688, which will be described below.

【0005】陽極板101と陰極板102は、それぞれ
陽極室103および陰極室104に収納されている。陽
極室103と陰極室104の間には、陰イオン交換膜1
05、脱塩室107、陽イオン交換膜106、濃縮室1
08が交互に積層されて透析槽を構成する。脱塩室10
7内には、再生型の弱酸性陽イオン交換体および再生型
の弱塩基性陰イオン交換体の混合物が収納される。陽極
室103、陰極室104には導電性を付与するために電
解質溶液を満たしておく。これは濃縮水の一部を循環さ
せるようにしておくと達成できる。
The anode plate 101 and the cathode plate 102 are housed in an anode chamber 103 and a cathode chamber 104, respectively. An anion exchange membrane 1 is provided between the anode chamber 103 and the cathode chamber 104.
05, desalination room 107, cation exchange membrane 106, concentration room 1
08 are alternately stacked to form a dialysis tank. Desalination room 10
A mixture of a regenerative weakly acidic cation exchanger and a regenerative weakly basic anion exchanger is accommodated in 7. The anode chamber 103 and the cathode chamber 104 are filled with an electrolyte solution for imparting conductivity. This can be achieved by circulating a part of the concentrated water.

【0006】このように構成された電気透析装置の脱塩
室107と濃縮室108に被処理水を通水し、陽極板1
01と陰極板102に直流電圧を印加することにより、
脱塩室107から所定の脱イオン水を得ることができ
る。また、イオン分が濃縮された濃縮水は、濃縮室10
8から排出されることになる。
[0006] The water to be treated is passed through the desalting chamber 107 and the concentrating chamber 108 of the electrodialyzer constructed as described above.
01 and the cathode plate 102 by applying a DC voltage to the
Predetermined deionized water can be obtained from the desalting chamber 107. The concentrated water in which the ion content is concentrated is supplied to the concentration chamber 10
8 will be discharged.

【0007】脱塩室に収納されるイオン交換体は粒状の
イオン交換樹脂ビーズ、あるいはイオン交換繊維、また
は特開平8−155272号公報に記載のように0.1
mm〜1.1mmのシート状のイオン交換体が提案され
ている。
[0007] The ion exchanger contained in the desalting chamber is made of granular ion-exchange resin beads or ion-exchange fibers, or as described in JP-A-8-155272.
A sheet-shaped ion exchanger having a thickness of 0.1 mm to 1.1 mm has been proposed.

【0008】[0008]

【発明が解決しようとする課題】ところで、従来から提
案されていた電気透析装置は、主に超純水を得る目的と
したものが多く、被処理水は逆浸透膜を通過した電気伝
導度が5μS/cm(NaCl濃度にして2.35mg
/L)程度と低く、電気抵抗は200KΩcmと高い。
このため、前記従来例のように、脱塩室にイオン交換体
を充填し、電気抵抗を下げることにより印加電圧を下げ
る工夫がされている。しかしながら、被処理水を河川
水、地下水等を処理して得られた上水とした場合、電気
伝導度は100〜300μS/cmと高いため、電気抵
抗が低く、脱塩室にイオン交換体を充填しなくても電気
透析は可能である。このため、脱塩室の厚さ(陽イオン
交換膜と陰イオン交換膜間の距離)を小さくし、さらに
電気抵抗を小さくすることが可能である。しかしなが
ら、多量の水を処理するためには多層の積層構造にする
必要がある。結果として、電極間距離が遠くなるため電
気抵抗が高くなり、脱塩室にイオン交換体を充填するこ
とだけでは対応できないという課題があった。
However, many of the electrodialyzers that have been proposed in the past are mainly intended to obtain ultrapure water, and the water to be treated has an electric conductivity that has passed through a reverse osmosis membrane. 5 μS / cm (2.35 mg in NaCl concentration)
/ L), and the electrical resistance is as high as 200 KΩcm.
For this reason, as in the above-described conventional example, a device has been devised to fill the desalting chamber with an ion exchanger and reduce the applied voltage by reducing the electric resistance. However, when the water to be treated is water obtained by treating river water, groundwater, or the like, since the electric conductivity is as high as 100 to 300 μS / cm, the electric resistance is low, and the ion exchanger is installed in the desalination chamber. Electrodialysis is possible without filling. Therefore, it is possible to reduce the thickness of the desalting chamber (the distance between the cation exchange membrane and the anion exchange membrane) and further reduce the electric resistance. However, in order to treat a large amount of water, it is necessary to form a multilayered structure. As a result, since the distance between the electrodes is long, the electric resistance is increased, and there is a problem that it cannot be dealt with only by filling the deionization chamber with the ion exchanger.

【0009】そこで、これらの課題を解決するために本
発明は、高電圧を印加することなく所定の電流を流すこ
とができ、効率的な脱イオン化が図れる電気化学的水処
理装置を提供することを目的とする。
Therefore, in order to solve these problems, the present invention provides an electrochemical water treatment apparatus capable of flowing a predetermined current without applying a high voltage and achieving efficient deionization. With the goal.

【0010】また、本発明は、濃縮室のイオン分の濃縮
率を低減して硬度成分の付着を抑制でき、安定した運転
が可能な電気化学的水処理装置を提供することを目的と
する。
Another object of the present invention is to provide an electrochemical water treatment apparatus capable of reducing the concentration of ionic components in a concentration chamber to suppress the adhesion of a hardness component and capable of operating stably.

【0011】また、本発明は、各電解ユニットの脱イオ
ン率に応じた最適電圧を印加することのできる効率の良
い電気化学的水処理装置を提供することを目的とする。
Another object of the present invention is to provide an efficient electrochemical water treatment apparatus capable of applying an optimum voltage according to the deionization rate of each electrolytic unit.

【0012】また、本発明は、飲用に適したアルカリイ
オン水とアストリンゼント効果のある酸性水を同時に取
り出せる電気化学的水処理装置を提供することを目的と
する。
Another object of the present invention is to provide an electrochemical water treatment apparatus capable of simultaneously extracting alkaline ionized water suitable for drinking and acidic water having an astringent effect.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するため
に本発明は、陽イオン交換膜と陰イオン交換膜とを交互
に配列し、脱イオン室と濃縮室を少なくとも1つ以上形
成し、両端に電極対を配置したユニットを、電極が共通
となるよう複数積層した構成の電気化学的水処理装置と
する。
In order to achieve the above object, the present invention provides a cation exchange membrane and an anion exchange membrane which are alternately arranged, and at least one or more deionization chambers and concentration chambers are formed. An electrochemical water treatment apparatus having a configuration in which a plurality of units each having an electrode pair disposed at both ends are stacked so as to have a common electrode.

【0014】また、本発明は、脱イオン室への通水手段
として、電解ユニット内では並列に、電解ユニット間で
は直列に流れるような通水路によって構成し、濃縮室へ
の通水手段として、電解ユニット内および電解ユニット
間に並列に流れるような通水路によって構成した電気化
学的水処理装置とする。
The present invention also provides a water passage to the deionization chamber as a water passage that flows in parallel within the electrolysis unit and serially flows between the electrolysis units. An electrochemical water treatment apparatus is constituted by a water passage that flows in parallel between the electrolysis units and between the electrolysis units.

【0015】これにより、低い電圧で駆動できるため電
気回路が単純化、軽量化でき、さらに硬度成分の付着が
防止できる。
As a result, since the electric circuit can be driven at a low voltage, the electric circuit can be simplified and reduced in weight, and the adhesion of a hardness component can be prevented.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載された発
明は、陽イオン交換膜と陰イオン交換膜とを交互に配列
し、脱イオン室と濃縮室を少なくとも1つ以上形成し、
両端に電極対を配置したユニットを、電極が共通となる
よう複数積層した電気透析槽を備えた電気化学的水処理
装置であり、運転の低電圧化がはかれ、電気回路を単純
かつ軽量化できる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, a cation exchange membrane and an anion exchange membrane are alternately arranged, and at least one or more deionization chambers and concentration chambers are formed.
This is an electrochemical water treatment system equipped with an electrodialysis tank in which units with electrode pairs arranged at both ends are stacked so that the electrodes are common, reducing the operating voltage and making the electric circuit simpler and lighter. it can.

【0017】本発明の請求項2に記載の発明は、請求項
1に記載された電気化学的水処理装置において、脱イオ
ン室への通水手段を、ユニット内では並列に、ユニット
間では直列に流れる通水路によって構成し、濃縮室への
通水手段を、ユニット内およびユニット間に並列に流れ
る通水路によって構成したものであり、濃縮室のイオン
濃度が極端に高くならないため、硬度成分の付着を防止
できる。
According to a second aspect of the present invention, in the electrochemical water treatment apparatus according to the first aspect, means for passing water to the deionization chamber is provided in parallel within the unit and in series between the units. And a means for passing water to the concentration chamber is constituted by a water passage flowing in parallel between the units and between the units.Since the ion concentration in the concentration chamber does not become extremely high, the hardness component Adhesion can be prevented.

【0018】本発明の請求項3に記載の発明は、請求項
1に記載された電気化学的水処理装置において、電極対
のうち、陽極同士に独立して電位を印加するようにした
ものであり、各電解ユニットの電気伝導度に応じた最適
の電圧を印加することができるので、効率的な運転がで
きる。
According to a third aspect of the present invention, in the electrochemical water treatment apparatus according to the first aspect, a potential is independently applied to the anodes of the electrode pairs. In addition, since an optimal voltage according to the electric conductivity of each electrolytic unit can be applied, efficient operation can be performed.

【0019】本発明の請求項4に記載の発明は、請求項
1に記載された電気化学的水処理装置において、電極対
のうち陽極と、対向するイオン交換膜の間を通水した水
を分離して取水し、陰極と、対向するイオン交換膜との
間に通水した水を分離して取水するようにしたものであ
り、アルカリイオン水と酸性水を同時に取り出すことが
できる。
According to a fourth aspect of the present invention, in the electrochemical water treatment apparatus according to the first aspect, water passed between the anode of the electrode pair and the opposed ion exchange membrane is used. It separates and takes water, and separates and takes in water that has passed between the cathode and the opposing ion exchange membrane, so that alkali ion water and acidic water can be taken out at the same time.

【0020】以下、本発明の実施の形態について図面を
用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0021】(実施の形態1)図1は、本発明の実施の
形態1の電気化学的水処理装置の構成を示す断面図、図
2は、同電気化学的水処理装置における脱イオン部の平
面図、図3は、同電気化学的水処理装置における濃縮部
の平面図、図4は、同電気化学的水処理装置における脱
イオン部と濃縮部の位置関係を表す斜視図である。
(Embodiment 1) FIG. 1 is a sectional view showing a configuration of an electrochemical water treatment apparatus according to Embodiment 1 of the present invention, and FIG. FIG. 3 is a plan view, FIG. 3 is a plan view of a concentrating unit in the electrochemical water treatment device, and FIG. 4 is a perspective view showing a positional relationship between a deionizing unit and a concentrating unit in the electrochemical water treatment device.

【0022】図1に示すように、電気化学的水処理装置
における電気透析槽1は以下のような構成となってい
る。すなわち、電極板A2と電極板B3を配置した2つ
の極室セル17の間に陽イオン交換膜4(たとえば、旭
化成 K501)、スペーサー6(たとえば、日本バル
カー 熱可塑性ポリウレタンエラストマー、商品名;タ
フレタン)、陰イオン交換膜5(たとえば、旭化成 A
501)、スペーサー6の順を一組として、多層を積層
する。さらに、電極板B3を共通として次の電極板A2
を配置した極室セル17の間に、陰イオン交換膜5、ス
ペーサー6、陽イオン交換膜4、スペーサー6の順を一
組として多層積層する。つづいて、電極板A2を共通と
して次の電極板B3を配置した極室セル17の間に、陽
イオン交換膜4、スペーサー6、陰イオン交換膜5、ス
ペーサー6の順を一組として、多数積層する。
As shown in FIG. 1, the electrodialysis tank 1 in the electrochemical water treatment apparatus has the following configuration. That is, the cation exchange membrane 4 (for example, Asahi Kasei K501) and the spacer 6 (for example, Nippon Valqua thermoplastic polyurethane elastomer, trade name: Taffletan) between the two electrode chamber cells 17 in which the electrode plates A2 and B3 are arranged. , An anion exchange membrane 5 (for example, Asahi Kasei A
501), the order of the spacers 6 is set as one set, and multiple layers are stacked. Further, the next electrode plate A2 is shared with the electrode plate B3.
Are stacked in layers in the order of the anion exchange membrane 5, the spacer 6, the cation exchange membrane 4, and the spacer 6 as a set between the electrode chamber cells 17 in which. Subsequently, a large number of cation exchange membranes 4, spacers 6, anion exchange membranes 5, and spacers 6 are grouped in order between the electrode chamber cells 17 in which the next electrode plate B3 is arranged with the electrode plate A2 in common. Laminate.

【0023】このようにして繰り返し積層されたものを
外側から締め付けて固定することにより電気透析層1を
完成する。なお、スペーサー6の厚さは薄いほど効率の
良い電気透析ができるが、薄すぎると圧力が増大して多
くの流量が流せなくなるため、0.5mm〜2mm程度
が適当である。
The electrodialysis layer 1 is completed by tightening and fixing the thus repeatedly laminated ones from the outside. The thinner the spacer 6 is, the more efficient the electrodialysis can be. However, if the thickness is too thin, the pressure increases and a large amount of flow cannot be flowed.

【0024】図中の7は脱塩室入水口、8は濃縮室入水
口、9は極室入水口、10は脱塩室吐水口、11は濃縮
水吐水口、12は極水吐水口(陰極)、13は極水吐水
口(陽極)である。
In the figure, reference numeral 7 denotes a water inlet for the desalination chamber, 8 denotes a water inlet for the concentration chamber, 9 denotes a water inlet for the pole room, 10 denotes a water outlet for the desalination chamber, 11 denotes a water outlet for the concentrated water, and 12 denotes a water outlet for the polar water ( Cathodes) and 13 are polar water outlets (anodes).

【0025】次に、図2、図3、図4をもとに通水経路
について説明する。スペーサー6はスペーサー中央部1
5の脱イオン部が中空ないしはイオン交換膜同士の接触
を避けるため、外枠部から中空部に向かって部分的に突
起の出た形状とする。中央の脱イオン部18への入水
は、外枠部に向かって開かれたスペーサー開口部16の
先端が膜に直交するよう貫通した直角連通孔14に接続
する構造とする。膜に直交するよう貫通した直角連通孔
14は外枠部に配置され、陰イオン交換膜5、スペーサ
ー6、陽イオン交換膜4の積層体を貫通して配置されて
おり、電極板A2(+)側から、陰イオン交換膜5、ス
ペーサー6、陽イオン交換膜4の順に積層されたスペー
サー6がスペーサー中空部15に向かって開口してお
り、隣り合う電極板A2(+)側から、陽イオン交換膜
4、スペーサー6、陰イオン交換膜5の順に積層された
スペーサー6はスペーサー中空部15に向かっては閉じ
ている。
Next, the water passage will be described with reference to FIGS. 2, 3 and 4. Spacer 6 is spacer center part 1
In order to avoid contact between the deionized portion 5 and the hollow or the ion exchange membranes, the deionized portion 5 has a shape in which a projection is partially formed from the outer frame portion toward the hollow portion. Water entering the central deionization section 18 is connected to the right-angled communication hole 14 penetrating the distal end of the spacer opening 16 opened toward the outer frame so as to be orthogonal to the membrane. The right-angled communication hole 14 penetrating perpendicular to the membrane is arranged in the outer frame portion, is arranged so as to penetrate the laminated body of the anion exchange membrane 5, the spacer 6, and the cation exchange membrane 4, and has the electrode plate A2 (+ ) Side, the spacer 6 in which the anion exchange membrane 5, the spacer 6, and the cation exchange membrane 4 are laminated in this order is opened toward the spacer hollow portion 15, and from the adjacent electrode plate A2 (+) side, the positive The spacers 6 laminated in the order of the ion exchange membrane 4, the spacer 6, and the anion exchange membrane 5 are closed toward the spacer hollow portion 15.

【0026】このように交互に開口部と閉じた部分を繰
り返し持つ構造により、直角連通孔14により、すべて
の脱イオン部18に通水できる水路が形成される。吐水
水路は、入水部と中央の脱イオン部に対して略対向する
位置に配置され、入水部と同じように膜に直交する直角
連通孔14につながっている。
With such a structure in which the opening and the closed portion are alternately repeated, a water passage through which water can pass through all the deionized portions 18 is formed by the right-angled communication holes 14. The water discharge channel is disposed at a position substantially opposed to the water inlet and the central deionization unit, and is connected to the right-angled communication hole 14 orthogonal to the membrane similarly to the water inlet.

【0027】一方、濃縮部の入水は、電極板A2(+)
側から、陽イオン交換膜4、スペーサー6、陰イオン交
換膜5の順に積層されたスペーサー6がスペーサー中空
部15から外枠部に向かって開かれたスペーサー開口部
16を持ち、脱イオン部18の入水路とは異なる位置に
直角連通孔14を持つ。電極板A2(+)側から陰イオ
ン交換膜5、スペーサー6、陽イオン交換膜4の順に積
層されたスペーサー部は直角連通孔14と中空部が接続
されていない。濃縮部の吐水は、入水部と中空部を挟ん
で略対向する位置に配置されスペーサー開口部16を経
て直角連通孔14と接続されている。一方、電極水は、
電極板A,B2,3、スペーサー6、陰/陽イオン交換
膜4,5との中空部に入水し他端から吐水するよう、他
水路と独立して配置する。電極の極性により、陽極水お
よび陰極水が得られる。
On the other hand, the water entering the concentrating section is supplied to the electrode plate A2 (+)
From the side, the cation exchange membrane 4, the spacer 6, and the anion exchange membrane 5 are stacked in this order. The spacer 6 has a spacer opening 16 opened from the spacer hollow portion 15 to the outer frame portion, and a deionization portion 18. Has a right-angled communication hole 14 at a position different from the water inlet channel. The spacer portion in which the anion exchange membrane 5, the spacer 6, and the cation exchange membrane 4 are laminated in this order from the electrode plate A2 (+) side is not connected to the rectangular communication hole 14 and the hollow portion. The water discharged from the concentrating unit is disposed at a position substantially opposite to the water input unit with the hollow part interposed therebetween, and is connected to the right-angled communication hole 14 via the spacer opening 16. On the other hand, electrode water
Independently of the other water passages, water enters the hollow space between the electrode plates A, B2, 3, the spacer 6, the anion / cation exchange membranes 4, 5 and discharges water from the other end. Anode water and cathodic water are obtained depending on the polarity of the electrodes.

【0028】被処理水の具体的経路について説明する
と、一組の電極間の脱イオン部18に通水された被処理
水は、電極板A,B2,3に直流電圧を印加することに
より脱イオン化され、集められて次の電極板A,B2,
3間の脱イオン部18に通水される。これを繰り返すこ
とにより、徐々に高い脱イオン率の水が生成されるよう
になる。この方法の特長は、低い印加電圧で高い脱イオ
ン率の水が得られることにある。
The specific path of the water to be treated will be described. The water to be treated passed through the deionization section 18 between a pair of electrodes is desorbed by applying a DC voltage to the electrode plates A, B2 and 3. It is ionized and collected, and the next electrode plates A, B2,
Water is passed through the deionization section 18 between the three. By repeating this, water with a gradually higher deionization rate is generated. The feature of this method is that water with a high deionization rate can be obtained at a low applied voltage.

【0029】図5に、電圧と脱イオン率の関係を示す。
脱イオン率は、低い電圧領域では直線的であるが電圧が
高くなるにつれ直線からずれてくる。これは、電圧を高
くするにしたがって流れる電流が水中のイオン分離以
外、水の電気分解に使われるため効率が落ちるものと考
えられる。したがって最適なイオン分離方法は、低い電
圧でかつ多段処理することにより効率を上げることにあ
る。
FIG. 5 shows the relationship between the voltage and the deionization rate.
The deionization rate is linear in a low voltage region, but deviates from the straight line as the voltage increases. This is thought to be due to the fact that the current flowing as the voltage is increased is used for electrolysis of water other than ion separation in water, so that the efficiency decreases. Therefore, an optimal ion separation method is to increase efficiency by performing low-voltage and multi-stage processing.

【0030】一方、濃縮水に関しては多段処理をして濃
縮する必要はない。濃縮しすぎるとかえって、濃度拡散
により電位勾配に逆らって脱イオン室側にイオンが拡散
する現象が生じることになり、都合が良くない。このた
め濃縮水は複数の段の複数の濃縮室全てにわたって一度
に同一方向から流し、一段処理とする。
On the other hand, it is not necessary to concentrate the concentrated water by performing a multi-stage treatment. On the contrary, if the concentration is too high, a phenomenon occurs in which ions diffuse to the deionization chamber side against the potential gradient due to the concentration diffusion, which is not convenient. For this reason, the concentrated water flows from the same direction at the same time over all of the plurality of concentration chambers in a plurality of stages, so that a single-stage treatment is performed.

【0031】さらに、電極水に関しても多段処理する必
要は無い。電極水を多段処理すると、陰極水では、pH
が高くなりすぎカルシウムの沈殿が生じやすくなる。ア
ルカリイオン水として飲用に供す場合、pHは9程度が
適当であるため、一段の処理で充分であり、また並列処
理により、処理水も多くなるためである。
Further, the electrode water does not need to be subjected to multi-stage treatment. When the electrode water is treated in multiple stages,
Becomes too high, and calcium precipitation easily occurs. In the case of drinking as alkaline ionized water, a pH of about 9 is appropriate, so that one-stage treatment is sufficient, and the amount of treated water is increased by parallel treatment.

【0032】以下に、脱イオン処理の具体的実施例を述
べる。条件としては、原水として、蒸留水に塩化カルシ
ウムを硬度100mg/Lになるよう調整したものを用
いた。電気透析層は、電極面積100mm×180mm
のものを用い、陰イオン交換膜と陽イオン交換膜の距離
すなわちスペーサーの厚さを0.75mmとした。積層
数は、脱イオン室を6層、濃縮室を7層とした。流量
は、脱イオン室に2L/分、濃縮室に0.5L/分、極
室に、陽極、陰極併せて0.5L/分とした。直流電源
を用い、印加電圧60Vで処理した。
Hereinafter, specific examples of the deionization treatment will be described. As the conditions, as raw water, distilled water prepared by adjusting calcium chloride to a hardness of 100 mg / L was used. Electrodialysis layer, electrode area 100mm x 180mm
The distance between the anion exchange membrane and the cation exchange membrane, that is, the thickness of the spacer was set to 0.75 mm. The number of layers was six in the deionization chamber and seven in the concentration chamber. The flow rate was 2 L / min in the deionization chamber, 0.5 L / min in the concentration chamber, and 0.5 L / min for the anode and cathode in the pole chamber. The treatment was performed at an applied voltage of 60 V using a DC power supply.

【0033】図6に段数と脱イオン率および電流の関係
を示した。段数を1段、2段、3段、4段として脱イオ
ン率を測定した。1段あたりの脱イオン率は50%前後
であるが、総脱イオン率は3段目で90%を超え、実用
可能なレベルとなった。
FIG. 6 shows the relationship between the number of stages, the deionization rate and the current. The number of stages was 1, 2, 3, and 4, and the deionization rate was measured. The deionization rate per stage was around 50%, but the total deionization ratio exceeded 90% at the third stage, and was at a practical level.

【0034】本発明の請求項2に記載の発明は、請求項
1に記載された電気化学的水処理装置において、脱イオ
ン室への通水手段を、ユニット内では並列に、ユニット
間では直列に流れる通水路によって構成し、濃縮室への
通水手段を、ユニット内およびユニット間に並列に流れ
る通水路によって構成したものであり、濃縮室のイオン
濃度が極端に高くならないため、硬度成分の付着を防止
できる。
According to a second aspect of the present invention, in the electrochemical water treatment apparatus according to the first aspect, means for passing water to the deionization chamber is provided in parallel within the unit and in series between the units. And a means for passing water to the concentration chamber is constituted by a water passage flowing in parallel between the units and between the units.Since the ion concentration in the concentration chamber does not become extremely high, the hardness component Adhesion can be prevented.

【0035】[0035]

【発明の効果】以上の説明より明らかなように、本発明
の電気化学的水処理装置は、多段処理とし、電極の一部
を共通としていることから、本処理を低い印加電圧で、
かつ、一つの電気透析槽内で行うことができ、脱イオン
効率が向上するとともに、低コストの電気透析槽を実現
できるという効果を持つものである。
As is clear from the above description, the electrochemical water treatment apparatus of the present invention employs a multistage treatment and uses a part of the electrodes in common.
In addition, it can be performed in one electrodialysis tank, which has the effect of improving deionization efficiency and realizing a low-cost electrodialysis tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の電気化学的水処理装置
の構成を示す断面図
FIG. 1 is a sectional view showing a configuration of an electrochemical water treatment apparatus according to a first embodiment of the present invention.

【図2】同電気化学的水処理装置における脱イオン部の
平面図
FIG. 2 is a plan view of a deionization part in the electrochemical water treatment apparatus.

【図3】同電気化学的水処理装置における濃縮部の平面
FIG. 3 is a plan view of a concentration unit in the electrochemical water treatment apparatus.

【図4】同電気化学的水処理装置における脱イオン部と
濃縮部の位置関係を表す斜視図
FIG. 4 is a perspective view showing a positional relationship between a deionization part and a concentration part in the electrochemical water treatment apparatus.

【図5】同電気化学的水処理装置における電圧対脱イオ
ン率を示す図
FIG. 5 is a diagram showing voltage versus deionization rate in the electrochemical water treatment apparatus.

【図6】同電気化学的水処理装置における透析段数対脱
イオン率を示す図
FIG. 6 is a diagram showing the number of dialysis stages versus the deionization rate in the electrochemical water treatment apparatus.

【図7】従来の電気透析装置の概略断面図FIG. 7 is a schematic sectional view of a conventional electrodialysis apparatus.

【符号の説明】[Explanation of symbols]

1 電気透析槽 2 電極板A 3 電極板B 4 陽イオン交換膜 5 陰イオン交換膜 6 スペーサー 7 脱塩室入水口 8 濃縮室入水口 9 極室入水口 10 脱塩室吐水口 11 濃縮水吐水口 12 極水吐水口(陰極) 13 極水吐水口(陽極) 14 直角連通孔 15 スペーサー中空部 16 スペーサー開口部 17 極室セル 18 脱イオン部 DESCRIPTION OF SYMBOLS 1 Electrodialysis tank 2 Electrode plate A 3 Electrode plate B 4 Cation exchange membrane 5 Anion exchange membrane 6 Spacer 7 Deionization room water inlet 8 Concentration room water inlet 9 Electrode room water inlet 10 Deionization room water outlet 11 Concentrated water spout Water outlet 12 Polar water spout (cathode) 13 Polar water spout (anode) 14 Right-angled communication hole 15 Spacer hollow 16 Spacer opening 17 Electrode chamber cell 18 Deionizer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA17 HA47 JA04A JA04B JA41A JA42A JA43A JA44A KB11 KE02Q KE03Q KE17Q MA03 MB07 PB06 PB25 PB26 PC02 4D025 AA02 AB07 AB14 AB18 BA08 BA13 BB15 DA05 DA06 4D061 DA03 DB13 DB18 DC19 EA09 EB01 EB04 EB13 EB19  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA17 HA47 JA04A JA04B JA41A JA42A JA43A JA44A KB11 KE02Q KE03Q KE17Q MA03 MB07 PB06 PB25 PB26 PC02 4D025 AA02 AB07 AB14 AB18 BA08 BA13 BB15 DA05 DA06 4D061EB EB DB EB19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】陽イオン交換膜と陰イオン交換膜とを交互
に配列し、脱イオン室と濃縮室を少なくとも1つ以上形
成し、両端に電極対を配置したユニットを、電極が共通
となるよう複数積層した電気透析槽を備えたことを特徴
とする電気化学的水処理装置。
1. A unit in which cation exchange membranes and anion exchange membranes are alternately arranged, at least one or more deionization chambers and concentration chambers are formed, and a unit in which electrode pairs are arranged at both ends is a common electrode. An electrochemical water treatment apparatus, comprising a plurality of stacked electrodialysis tanks.
【請求項2】脱イオン室への通水手段は、ユニット内で
は並列に、ユニット間では直列に流れる通水路によって
構成され、濃縮室への通水手段は、ユニット内およびユ
ニット間に並列に流れる通水路によって構成されたこと
を特徴とする請求項1記載の電気化学的水処理装置。
2. The means for passing water to the deionization chamber is constituted by a water passage which flows in parallel within the unit and the means for flowing in series between the units. The means for passing water to the concentrating chamber is provided in parallel between the units and between the units. 2. The electrochemical water treatment apparatus according to claim 1, wherein the apparatus is constituted by a flowing water passage.
【請求項3】電極対のうち、陽極同士に独立して電位を
印加するようにしたことを特徴とする請求項1記載の電
気化学的水処理装置。
3. The electrochemical water treatment apparatus according to claim 1, wherein an electric potential is independently applied to the anodes of the electrode pairs.
【請求項4】電極対のうち陽極と、対向するイオン交換
膜の間を通水した水を分離して取水し、陰極と、対向す
るイオン交換膜との間に通水した水を分離して取水する
ことを特徴とする請求項1記載の電気化学的水処理装
置。
4. An electrode pair, in which water passed between an anode and an opposing ion exchange membrane is separated and taken, and water passed between a cathode and an opposing ion exchange membrane is separated. The electrochemical water treatment apparatus according to claim 1, wherein the water is taken out.
JP2001064606A 2001-03-08 2001-03-08 Electrochemical water treating unit Pending JP2002263654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064606A JP2002263654A (en) 2001-03-08 2001-03-08 Electrochemical water treating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064606A JP2002263654A (en) 2001-03-08 2001-03-08 Electrochemical water treating unit

Publications (1)

Publication Number Publication Date
JP2002263654A true JP2002263654A (en) 2002-09-17

Family

ID=18923400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064606A Pending JP2002263654A (en) 2001-03-08 2001-03-08 Electrochemical water treating unit

Country Status (1)

Country Link
JP (1) JP2002263654A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515228A (en) * 2003-04-25 2006-05-25 ユーエスフィルター・コーポレイション Injection-bonded article and its manufacturing method
JP2007112145A (en) * 2002-12-25 2007-05-10 Seiko Epson Corp Liquid ejector and liquid ejecting method
JP2010089093A (en) * 2003-04-11 2010-04-22 Millipore Corp Electrodeionization device
CN103880118A (en) * 2014-03-13 2014-06-25 亿丰洁净科技江苏股份有限公司 Wastewater treatment device for laboratory
KR20200001646A (en) * 2018-06-26 2020-01-07 김백암 Electrodialysis system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112145A (en) * 2002-12-25 2007-05-10 Seiko Epson Corp Liquid ejector and liquid ejecting method
JP4666268B2 (en) * 2002-12-25 2011-04-06 セイコーエプソン株式会社 Liquid ejecting apparatus and liquid ejecting method
JP2010089093A (en) * 2003-04-11 2010-04-22 Millipore Corp Electrodeionization device
JP2014004586A (en) * 2003-04-11 2014-01-16 E M D Millipore Corp Electric deionization device
JP2006515228A (en) * 2003-04-25 2006-05-25 ユーエスフィルター・コーポレイション Injection-bonded article and its manufacturing method
CN103880118A (en) * 2014-03-13 2014-06-25 亿丰洁净科技江苏股份有限公司 Wastewater treatment device for laboratory
KR20200001646A (en) * 2018-06-26 2020-01-07 김백암 Electrodialysis system
KR102078100B1 (en) * 2018-06-26 2020-02-18 김백암 Electrodialysis system

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US20220380235A1 (en) Electrochemical separation systems and methods
KR101421097B1 (en) Electrodeionizer
JP4065664B2 (en) Electric desalination equipment
US20080078672A1 (en) Hybrid Capacitive Deionization and Electro-Deionization (CDI-EDI) Electrochemical Cell for Fluid Purification
JP2004082092A (en) Electric deionizing apparatus
CA2459840A1 (en) Apparatus for electrodeionization of water
JP2014530755A (en) Desalination system and method
JP3956836B2 (en) Electrodeionization equipment
KR20150094909A (en) Electrodialysis device for desalination containing metal fibers
JP2002263654A (en) Electrochemical water treating unit
JP2003001259A (en) Ultrapure water producing apparatus
JP2014528824A (en) Desalination system and method
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP2001321773A (en) Apparatus and method for making electro-deionized water
JP2002186973A (en) Continuous electro-deionization device
JP7460012B1 (en) Electrodeionization apparatus and method of operating same
JP2002166282A (en) Electrochemical water treatment device and its manufacturing method
JP2003266077A (en) Electrical deionizing device
JP2003024947A (en) Electrodialytic cell
US20210198126A1 (en) Electrodialysis process for high ion rejection in the presence of boron
JP2002136971A (en) Electrodeionizing apparatus
RU2380145C2 (en) Multichamber electrodialysis apparatus for deep demineralisation
JP4660890B2 (en) Operation method of electrodeionization equipment