JPH0428438B2 - - Google Patents

Info

Publication number
JPH0428438B2
JPH0428438B2 JP60221838A JP22183885A JPH0428438B2 JP H0428438 B2 JPH0428438 B2 JP H0428438B2 JP 60221838 A JP60221838 A JP 60221838A JP 22183885 A JP22183885 A JP 22183885A JP H0428438 B2 JPH0428438 B2 JP H0428438B2
Authority
JP
Japan
Prior art keywords
ppm
salt
water
electrolytic
fresh water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60221838A
Other languages
Japanese (ja)
Other versions
JPS6283485A (en
Inventor
Kenjiro Yanagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP60221838A priority Critical patent/JPS6283485A/en
Priority to KR1019860008023A priority patent/KR870003938A/en
Publication of JPS6283485A publication Critical patent/JPS6283485A/en
Publication of JPH0428438B2 publication Critical patent/JPH0428438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は微量の塩分、即ち2000ppm以下の塩分
を含有する淡水を工業的に直接電解する方法に関
し、特に消毒又は殺菌に使用される遊離塩素含有
水を経済的に生産するための淡水の直接電解方法
に関する。 (従来の技術) 上下水道水の殺菌や発電プラントその他各種工
業で使用される冷却海水の復水器又はその他の海
水流路における海洋生物の繁殖防止のために大量
の塩素が使用されてきたが、塩素は強い毒性を有
するため、その危険性が問題視され、これに代る
ものとして最近次亜鉛素酸ソーダ水溶液(遊離塩
素含有水)が徐々に利用されてきた。 従来、次亜塩素酸ソーダの供給方法として (1) 食塩の電解工場から約13%水溶液として出荷
される (2) 海水の直接無隔膜電解法によつて供給される (3) 市販食塩を水に溶解して約3%溶液としこれ
を無隔膜電解法によつて供給される の三つの方法があるが、(1)の方法は主として大工
業より出荷されるため山間僻地、離島への供給は
不便であり、しかも日時の経過と共に次亜塩素酸
ソーダ水溶液の有効塩素分は低下し、(2)の方法で
は海水の取水が可能な沿岸地域に限られ、又、(3)
の方法では原料塩購入のためコストがかさむばか
りでなく、小型装置では原料とする3%食塩水を
調整する手間もかかる等の欠点があつた。 (解決しようとする問題点) 本発明者は、これらの欠点を改良し、塩分が
2000ppm以下という微量の塩分含有水より工業的
に容易に次亜塩素酸水溶液を入手できるような方
法につき種々検討した結果、本発明を完成するに
至つたものである。 (問題点を解決するための手段) 本発明は、白金又は白金属元素酸化物被覆チタ
ンよりなる陽極板と、鉄、ステンレス、チタン又
は白金被覆チタンよりなる陰極板とを0.4〜1.0mm
の範囲の間隙を保つて対設し、該間隙間に食塩濃
度が10〜2000ppmの淡水を流動させて電解するこ
とを特徴とする淡水の無隔膜直接電解方法であつ
て、該淡水中に陽極近傍で遊離塩素を発生させ同
時に陰極近傍で生じたNaOHに吸収させて次亜
塩素酸ソーダ水とするもので、この電解分解反応
は次のように考えることができる。 すなわち、陽極においてCl-の放電によつて遊
離塩素が生成する。 2Cl-→Cl2+2e (1) 一方、陰極においては 2Na+2e→2Na 2Na+2H2O→H2(ガス)+2NaOH (2) 無隔膜電解では(1)と(2)の生成物が混合するので Cl2+2NaOH ―――――――−−→ 次亜塩素酸ソーダNaClO +NaCl+H2O (3) 本発明において淡水とは10〜2000ppmの食塩濃
度の水を云う。しかして水道水は通常微量の
NaClが含まれ、その量は水源によつて異なるが
一般に10〜300ppm程度であるので、(水道水の水
質基準では食塩は約300ppmまでが認められてい
る)本発明の原料として使用されるのは勿論、そ
の他プール、浴場水、下水道処理すみ放流水が原
料として利用される。 ところで、未だ2000ppmのような極めて微量の
塩分を含有する淡水より工業的に電解を行なつ
て、次亜塩素酸ソーダを工業的に製造することは
未だ知られていない。電極間の間隙を狭小にした
り、或は電流密度を上げたりすることにより原理
的には希薄な塩含有溶液を電解することは可能で
あるかも知れないが、その電解効率は、或は電極
面での複反応等を考慮した場合、必ずしも工業的
に2000ppm以下の塩分を含有する淡水より次亜塩
素酸ソーダを工業的に製造することが予測できる
とは云えない。 しかしながら、本発明では次の3つの条件を満
足することによつて、初めて2000ppm以下という
淡水の無隔膜直接電解方法が可能となつたのであ
る。 1 陽電極と陰電極との間隙を0.4〜1.0mmという
狭隘な間隙にする。 2 電解すべき淡水を流動させること。 3 陽電極として白金、白金元素酸化物被覆チタ
ン板を使用し、陰電極として鉄、ステンレス、
チタン又は白金被覆チタンを使用する。 この三条件を満足することによつて2000ppm以
下という極めて塩分濃度の低い淡水を工業的に直
接電解することができるのである。 すなわち、本発明によれば、10〜20ppmの食塩
低濃度淡水では電極間隙が0.5〜1.0mmであれば極
間電圧は電流密度が1A/dm2以内とすると6ボ
ルト以内で通電によつて次亜塩素酸ソーダが発生
し300ppmの濃度の場合には5A/dm2で7ボルト
を越えず、また1000ppm程度の濃度では10A/d
m2でも7ボルトを越えない。また電流効率は陽極
表面の材質及び淡水中の食塩濃度で異なるが、一
般に白金・酸化パラジウム混合物や白金・酸化イ
リジウム混合物等の被覆チタン板を陽極として使
用した場合、食塩濃度が2000〜1000ppmでは効率
は約60%程度であり、食塩濃度の低下と共に効率
は低下し、10〜60ppmでは3〜10%程度となる。
しかして、本発明において生成する有効塩素量は
例えば淡水電解液を20〜60リツトルの一定容積と
し、電解槽より出た淡水を再び電解するように淡
水を循環させて有効塩素濃度を分析することによ
り知ることができ、しかしてその分析値は時間の
経過と共に増加し一定値に達する。そして、この
有効塩素濃度は淡水中のそれぞれの食塩濃度に関
係し、一般に10〜2000ppmの範囲で食塩濃度
(ppm)の約3〜30%濃度の有効塩素が淡水電解
液中に生成存在する。 次に本発明を実施する際の装置につき図面につ
いて説明する。 第1図において電解液循環タンクに電解液を入
れ、ポンプP.により電解液を電解槽Cに送入し、
その送水量を流量計Rを設けて知ることができ
る。そして電解槽Cに送入された電解液は電解槽
の両極間の狭隘な間隙を通過し、電解中に生じた
塩素と共に再び循環タンクに還流され電解中電解
液は循環する。生成した塩素はある一定時間後電
解液と共に取だすか、或は電解槽より連続的に電
解液と共に取だし、同時に循環タンクに淡水を供
給するようにしてもよい。電解槽は第2図に示す
ように、陽極1と陰極2との間を約0.4mm〜1.0mm
の間隙を保つように狭小スペーサー3を設置した
フイルタープレス型電解槽であつて、該電解槽の
一方には電解液の流入孔4を、他方には電解液を
循環タンクに還流するための流出孔5を設け電解
液は図に示すように両極間の間隙を通つて流出孔
より循環タンクに還流される。 本発明において示されている電流効率及び電解
電力量は次の式より算出された。すなわち、同一
条件で電解を行なつた場合におけるフアラデイの
定律による理論生成量Q、実際に生成した量Aと
すると電流効率ηは η=A/Q×100 % であり、又所定の電流i、電圧V、電流効果ηな
る電解操作で一定量の有効塩素を製造するに必要
な電解用直流電力量Wとすると、 W=V・Q/η である。 次に上記の装置を使用して本発明を実施例を持
つて具体的に説明する。 実施例 1 先に述べた装置において電極として陽極は40
m/m×225m/mの電極機能有効表面を有する
1.5m/m厚さのチタン板の表面に白金属元素酸
化物(主成分、酸化イリジウムIrO2を主体とする
物質を被覆したものを使用し、陰極としては陽極
と同一寸法な厚さ2.0mmとステンレス板を使用し
両極間の間隙を0.7mmとした。電解液としては
725ppmの食塩を含有する淡水を使用し、淡水タ
ンク中に16.7を採取、これをポンプPによつて
電解槽内に流出させた。このときの圧力は1.1
Kg/cm2であり電極間の電解液の流速は100cm/sec
である。電解条件としては、電解電流1.5アンペ
アで極間電圧は5.0ボルトである。この条件下で
30分間操業を行なつた後、タンク内の淡水中の有
効塩素は150ppmであつた。従つて、電解効率
25.3%であつて、有効塩素1Kgを生産するに要す
る必要電解直流電力量は14.2Kwhとなつた。 実施例 2〜6 実施例1と同様の装置を用い同じ操業で各種の
食塩濃度をもつ淡水を直接電解した結果を下記の
表に示す。
(Field of Industrial Application) The present invention relates to a method for industrially directly electrolyzing fresh water containing trace amounts of salt, i.e., less than 2000 ppm of salt, and particularly for economically producing free chlorine-containing water used for disinfection or sterilization. This invention relates to a method for direct electrolysis of fresh water. (Prior art) Large amounts of chlorine have been used to sterilize water and sewage water, and to prevent the breeding of marine organisms in condensers for cooling seawater used in power plants and other various industries, and in other seawater channels. Since chlorine has strong toxicity, its danger has been viewed as a problem, and recently, an aqueous solution of sodium subzincate (water containing free chlorine) has gradually been used as an alternative. Traditionally, sodium hypochlorite has been supplied by (1) shipped as an approximately 13% aqueous solution from a salt electrolysis factory, (2) supplied by direct non-diaphragm electrolysis of seawater, and (3) commercially available salt mixed with water. There are three methods of dissolving this into a 3% solution and supplying it by non-diaphragm electrolysis, but method (1) is mainly shipped from large industries, so it is difficult to supply to remote mountainous areas and remote islands. is inconvenient, and the effective chlorine content of the sodium hypochlorite aqueous solution decreases as time passes; method (2) is limited to coastal areas where seawater can be taken;
This method not only increases costs due to the purchase of the raw material salt, but also has disadvantages such as the fact that it takes time and effort to prepare the 3% saline solution used as the raw material in a small device. (Problems to be Solved) The present inventor has improved these drawbacks and solved the problem by reducing salt content.
The present invention was completed as a result of various studies on a method for industrially easily obtaining an aqueous hypochlorous acid solution from water containing a trace amount of salt of 2000 ppm or less. (Means for Solving the Problems) The present invention provides an anode plate made of titanium coated with platinum or a platinum element oxide, and a cathode plate made of iron, stainless steel, titanium, or platinum coated titanium with a thickness of 0.4 to 1.0 mm.
A method for directly electrolyzing freshwater without a diaphragm, characterized in that the electrodes are placed opposite each other with a gap in the range of Free chlorine is generated nearby and simultaneously absorbed by NaOH generated near the cathode to form sodium hypochlorite water. This electrolytic decomposition reaction can be thought of as follows. That is, free chlorine is generated by the discharge of Cl - at the anode. 2Cl - →Cl 2 +2e (1) On the other hand, at the cathode, 2Na + 2e → 2Na 2Na + 2H 2 O → H 2 (gas) + 2NaOH (2) In membraneless electrolysis, the products of (1) and (2) mix, so Cl 2 +2NaOH -----------→ Sodium hypochlorite NaClO +NaCl+H 2 O (3) In the present invention, fresh water refers to water with a salt concentration of 10 to 2000 ppm. However, tap water usually contains a trace amount of water.
It contains NaCl, and its amount varies depending on the water source, but is generally around 10 to 300 ppm (according to water quality standards for tap water, up to about 300 ppm of salt is allowed), so it is used as a raw material in the present invention. Of course, water from pools, baths, and treated sewerage water can also be used as raw materials. By the way, it is not yet known that sodium hypochlorite can be produced industrially by electrolyzing fresh water containing extremely small amounts of salt, such as 2000 ppm. In principle, it may be possible to electrolyze a dilute salt-containing solution by narrowing the gap between the electrodes or increasing the current density, but the electrolytic efficiency is When taking into account multiple reactions, etc., it cannot be said that it is necessarily possible to industrially produce sodium hypochlorite from fresh water containing 2000 ppm or less of salt. However, in the present invention, by satisfying the following three conditions, it has become possible for the first time to achieve a diaphragm-less direct electrolysis method for freshwater with a concentration of 2000 ppm or less. 1. Make the gap between the positive and negative electrodes as narrow as 0.4 to 1.0 mm. 2. Flowing the fresh water to be electrolyzed. 3 Use platinum or a titanium plate coated with platinum element oxide as the positive electrode, and use iron, stainless steel, or stainless steel as the negative electrode.
Use titanium or platinum-coated titanium. By satisfying these three conditions, it is possible to industrially directly electrolyze fresh water with extremely low salinity of less than 2000 ppm. That is, according to the present invention, in fresh water with a low salt concentration of 10 to 20 ppm, if the electrode gap is 0.5 to 1.0 mm, the voltage between the electrodes is as follows by applying current within 6 volts when the current density is within 1 A/ dm2 . If sodium chlorite is generated and the concentration is 300 ppm, it will not exceed 7 volts at 5 A/ dm2 , and at a concentration of about 1000 ppm, it will not exceed 7 volts.
Even m2 does not exceed 7 volts. In addition, the current efficiency varies depending on the material of the anode surface and the salt concentration in the fresh water, but in general, when a titanium plate coated with a platinum/palladium oxide mixture or a platinum/iridium oxide mixture is used as an anode, the efficiency is lower at a salt concentration of 2000 to 1000 ppm. is about 60%, and the efficiency decreases as the salt concentration decreases, and becomes about 3 to 10% at 10 to 60 ppm.
Therefore, the amount of available chlorine produced in the present invention can be determined by, for example, making the fresh water electrolyte a constant volume of 20 to 60 liters, circulating the fresh water so as to electrolyze the fresh water coming out of the electrolytic tank again, and analyzing the effective chlorine concentration. The analysis value increases over time and reaches a constant value. The concentration of available chlorine is related to the concentration of each salt in fresh water, and in general, available chlorine is produced in the freshwater electrolyte at a concentration of about 3 to 30% of the concentration of salt (ppm) in the range of 10 to 2000 ppm. Next, drawings will be described regarding an apparatus for carrying out the present invention. In Fig. 1, the electrolytic solution is put into the electrolytic solution circulation tank, and the electrolytic solution is sent to the electrolytic cell C by pump P.
The flow rate of water can be determined by installing a flow meter R. The electrolytic solution fed into the electrolytic cell C passes through a narrow gap between the two electrodes of the electrolytic cell, and returns to the circulation tank together with chlorine generated during electrolysis, so that the electrolytic solution during electrolysis is circulated. The generated chlorine may be taken out together with the electrolyte solution after a certain period of time, or it may be taken out continuously with the electrolyte solution from the electrolytic cell, and at the same time fresh water is supplied to the circulation tank. As shown in Figure 2, the electrolytic cell has a distance of approximately 0.4 mm to 1.0 mm between anode 1 and cathode 2.
It is a filter press type electrolytic cell in which a narrow spacer 3 is installed to maintain a gap, and one side of the electrolytic cell has an inflow hole 4 for electrolyte, and the other side has an outflow hole for returning the electrolyte to a circulation tank. A hole 5 is provided so that the electrolyte passes through the gap between the two electrodes and flows back into the circulation tank from the outflow hole as shown in the figure. The current efficiency and electrolytic power amount shown in the present invention were calculated using the following formula. That is, when electrolysis is carried out under the same conditions, the theoretical production amount Q according to Faraday's law, and the actual production amount A, the current efficiency η is η = A / Q × 100%, and the predetermined current i, Assuming that the amount of direct current power for electrolysis is W required to produce a certain amount of available chlorine in an electrolytic operation with voltage V and current effect η, W=V·Q/η. Next, the present invention will be specifically explained with examples using the above-mentioned apparatus. Example 1 In the device described above, the anode was 40 mm as an electrode.
Has an effective electrode surface of m/m x 225 m/m
The surface of a 1.5 m/m thick titanium plate is coated with white metal element oxide (the main component is iridium oxide IrO2 ), and the cathode is 2.0 mm thick and has the same dimensions as the anode. and a stainless steel plate were used, and the gap between the two electrodes was set to 0.7mm.As the electrolyte,
Fresh water containing 725 ppm of salt was used, and 16.7 was collected in a fresh water tank, which was drained into the electrolytic cell by pump P. The pressure at this time is 1.1
Kg/cm 2 and the flow rate of electrolyte between the electrodes is 100cm/sec
It is. The electrolytic conditions were an electrolytic current of 1.5 amperes and a voltage between electrodes of 5.0 volts. under this condition
After 30 minutes of operation, the available chlorine in the fresh water in the tank was 150 ppm. Therefore, the electrolytic efficiency
25.3%, and the amount of electrolytic DC power required to produce 1 kg of available chlorine was 14.2 Kwh. Examples 2 to 6 The table below shows the results of direct electrolysis of fresh water with various salt concentrations in the same operation using the same apparatus as in Example 1.

【表】 (効果) 以上述べたように本発明は淡水の直接電解法に
よつて次亜塩素酸ソーダ水溶液(遊離塩素含有
水)を容易に製造することができ、従来、海水又
は食塩水(3% NaCl)電解の場合には有効塩
素1トンを製造するに必要な電力量として通常
5500〜6500KWHであると云われているが、本発
明における淡水電解の場合には先の実施例に見ら
れるようにこれよりやや多くの電解電力量を必要
とするが、原料として食塩を全く必要とせず、例
えば下水道の処理済み水は殺菌のため1〜2ppm
の塩素を注入してから放流されるが、この下水道
水中には食塩を200〜2000ppm含有するので本発
明の原料としては最も適しているので、この処理
費は他の液体次亜塩素酸ソーダ注入方法や3%食
塩水電解法に比して遥かに経済性に優れている。
更に原料面については、本発明では淡水の食塩含
有量が10〜2000ppmと範囲が広く、低濃度の場合
より高濃度の方が電力量が少なく経済的であり、
従つてプール、浴場で水道水を使用する場合当初
は食塩濃度は甚だ低いので経済性は劣るが、この
場合少量の食塩を添加して200〜300ppmとすれば
著しく経済性は向上し、またプールの水は毎日と
りかえるわけではないので1度添加すれば殺菌し
たNaClO→NaCl+Oで再び食塩となり使用可能
となるので遥かに原料面では従来のものに比して
優れている。また、小規模水道水、タンク等の殺
菌においては次亜塩素酸ソーダと注入を要せず、
単に電解のみの適用によつて実施できるので本法
は実用性が高く、殊に次亜塩素酸の注入量が有効
塩素10g/hrまたはそれ以下というような小規模
の簡易水道水やマンシヨン、アパートの小規模な
貯水タンク(5〜20トン程度)のものの殺菌用と
して有効である。
[Table] (Effects) As described above, the present invention can easily produce a sodium hypochlorite aqueous solution (free chlorine-containing water) by direct electrolysis of fresh water. 3% NaCl) In the case of electrolysis, the amount of electricity required to produce 1 ton of available chlorine is usually
It is said to be 5,500 to 6,500 KWH, but in the case of freshwater electrolysis in the present invention, slightly more electrolytic power is required as seen in the previous example, but no salt is required as a raw material. For example, treated sewer water has a concentration of 1 to 2 ppm for sterilization.
However, this sewage water contains 200 to 2000 ppm of salt and is most suitable as a raw material for the present invention, so this treatment cost is lower than that of other liquid sodium hypochlorite injections. This method is far more economical than the 3% saline electrolysis method.
Furthermore, regarding raw materials, in the present invention, the salt content of fresh water has a wide range of 10 to 2000 ppm, and it is more economical to use a high concentration than a low concentration because it requires less electricity.
Therefore, when tap water is used in pools and baths, the salt concentration is initially very low, making it less economical, but in this case, adding a small amount of salt to 200 to 300 ppm can significantly improve economic efficiency; Since the water cannot be changed every day, once it is added, the sterilized NaClO→NaCl+O becomes table salt again and can be used again, so it is far superior to conventional products in terms of raw materials. In addition, it does not require injection of sodium hypochlorite for sterilizing small-scale tap water, tanks, etc.
This method is highly practical because it can be carried out by simply applying electrolysis, especially for small-scale simple tap water, condominiums, and apartments where the injection amount of hypochlorous acid is 10 g/hr or less of available chlorine. It is effective for sterilizing small-scale water storage tanks (approximately 5 to 20 tons).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための説明図、第2
図は本発明に使用する電解槽の概略図を示す。 C……電解層、T……淡水循環タンク、P……
ポンプ、R……流量計、1……陽極、2……陰
極、3……狭小スペーサー、4……流入孔、5…
…流出孔。
Figure 1 is an explanatory diagram for implementing the present invention, Figure 2 is an explanatory diagram for implementing the present invention;
The figure shows a schematic diagram of an electrolytic cell used in the present invention. C...Electrolytic layer, T...Fresh water circulation tank, P...
Pump, R...flow meter, 1...anode, 2...cathode, 3...narrow spacer, 4...inflow hole, 5...
...Outflow hole.

Claims (1)

【特許請求の範囲】[Claims] 1 白金又は白金属元素酸化物被覆チタンよりな
る陽極板と、鉄、ステンレス、チタン又は白金被
覆チタンよりなるよりなる陰極板とを0.4〜1.0mm
の範囲の間〓を保つて対設し、該間〓感に食塩濃
度が10〜2000ppmの淡水を流動させて電解するこ
とを特徴とする淡水の無隔膜直接電解方法。
1. An anode plate made of titanium coated with platinum or platinum element oxide and a cathode plate made of iron, stainless steel, titanium or platinum coated titanium with a thickness of 0.4 to 1.0 mm.
A membrane-less direct electrolysis method for freshwater, characterized in that the membrane-less direct electrolysis method for freshwater is carried out by electrolyzing freshwater with a salt concentration of 10 to 2000 ppm in the range of 10 to 2000 ppm.
JP60221838A 1985-10-07 1985-10-07 Diaphragmless direct electrolysis method for fresh water Granted JPS6283485A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60221838A JPS6283485A (en) 1985-10-07 1985-10-07 Diaphragmless direct electrolysis method for fresh water
KR1019860008023A KR870003938A (en) 1985-10-07 1986-09-25 Non-diaphragm Direct Electrolysis of Freshwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221838A JPS6283485A (en) 1985-10-07 1985-10-07 Diaphragmless direct electrolysis method for fresh water

Publications (2)

Publication Number Publication Date
JPS6283485A JPS6283485A (en) 1987-04-16
JPH0428438B2 true JPH0428438B2 (en) 1992-05-14

Family

ID=16772984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221838A Granted JPS6283485A (en) 1985-10-07 1985-10-07 Diaphragmless direct electrolysis method for fresh water

Country Status (2)

Country Link
JP (1) JPS6283485A (en)
KR (1) KR870003938A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106348B2 (en) * 1986-12-26 1995-11-15 ト−メ−産業株式会社 Pipeline sterilization system
JPH03191A (en) * 1989-05-26 1991-01-07 Noritz Corp Bathtub water sterilizing and cleaning device
WO1997019707A1 (en) * 1995-11-28 1997-06-05 Ist Instant Surface Technology S.A. Method for preparing liquid sterilising and/or stimulating agents, and device therefor
KR100443894B1 (en) * 2001-04-03 2004-08-09 서순기 Sterilizing Powered Water Supplier
JP2008132443A (en) * 2006-11-29 2008-06-12 Tominaga Oil Pump Mfg Co Ltd Electrolyzed water production system and process for producing electrolyzed water
JP2008259930A (en) * 2007-04-10 2008-10-30 Hitachi Plant Technologies Ltd Method for treating organic solvent-containing waste water
WO2013111788A1 (en) * 2012-01-23 2013-08-01 シャープ株式会社 Water purification system and apparatus for producing antiseptic solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104489A (en) * 1979-02-02 1980-08-09 Mitsubishi Heavy Ind Ltd Electrode apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104489A (en) * 1979-02-02 1980-08-09 Mitsubishi Heavy Ind Ltd Electrode apparatus

Also Published As

Publication number Publication date
JPS6283485A (en) 1987-04-16
KR870003938A (en) 1987-05-06

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP3428998B2 (en) Electrolyzer producing mixed oxidant gas
JP3913923B2 (en) Water treatment method and water treatment apparatus
US3616355A (en) Method of generating enhanced biocidal activity in the electroylsis of chlorine containing solutions and the resulting solutions
US5938916A (en) Electrolytic treatment of aqueous salt solutions
CA1153982A (en) Electrolytic production of alkali metal hypohalite and apparatus therefor
JP3785219B2 (en) Method for producing acidic water and alkaline water
JP3113645B2 (en) Electrolyzed water production method
EA030556B1 (en) Electrolyzed water generating method and generator
KR101361651B1 (en) A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby
JP3729432B2 (en) Hypochlorite production equipment
US4279712A (en) Method for electrolyzing hydrochloric acid
EP1461291B1 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JP3818619B2 (en) Hypochlorite production apparatus and method
JPH0428438B2 (en)
EP0243846A2 (en) Process and apparatus for the disinfection of water
KR101024011B1 (en) Apparatus producing chlorine dioxide and manufacturing method for chlorine dioxide using the same
JPH0673675B2 (en) Method for producing sterilized water containing hypochlorous acid by electrolysis
JP3283052B2 (en) Method for producing hypochlorite
JPH07155765A (en) Production of electrolyzed water and device therefor
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
RU2540616C2 (en) Method of decontamination of water systems with mineralised industrial waters in form of hypochlorite solutions
WO1998012144A1 (en) Electrolytic treatment of aqueous salt solutions
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP2003293178A (en) Method for preparing chemical for water treatment