JP2011016065A - Electrolytic water mixing apparatus - Google Patents

Electrolytic water mixing apparatus Download PDF

Info

Publication number
JP2011016065A
JP2011016065A JP2009161745A JP2009161745A JP2011016065A JP 2011016065 A JP2011016065 A JP 2011016065A JP 2009161745 A JP2009161745 A JP 2009161745A JP 2009161745 A JP2009161745 A JP 2009161745A JP 2011016065 A JP2011016065 A JP 2011016065A
Authority
JP
Japan
Prior art keywords
water
electrolytic
electrolyzed
pipe
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009161745A
Other languages
Japanese (ja)
Other versions
JP5244038B2 (en
Inventor
Yoichi Sano
洋一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIRST OCEAN KK
Original Assignee
FIRST OCEAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIRST OCEAN KK filed Critical FIRST OCEAN KK
Priority to JP2009161745A priority Critical patent/JP5244038B2/en
Publication of JP2011016065A publication Critical patent/JP2011016065A/en
Application granted granted Critical
Publication of JP5244038B2 publication Critical patent/JP5244038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic water mixing apparatus which stably supplies raw water to an electrolytic chamber without influence of the hydraulic pressure of the raw water to stably generate electrolytic water, and returns the electrolytic water to the raw water to mix the raw water and the electrolytic water.SOLUTION: The electrolytic water mixing apparatus comprises a water flow pipe 1 and an electrolytic cell 8. The water flow pipe is provided with a water flow sensor 2, a raw water outlet port 3, and an electrolytic water receiving port 4. The electrolytic cell has an anode chamber 10 and a cathode chamber 11 divided by an electrode 9 having a structure made by sequentially layering a positive electrode plate 91 having a number of holes 94, a diaphragm 92 made of an anion exchange membrane, and a negative electrode plate 93 having a number of holes and integrating them. The raw water outlet port of the water flow pipe and a raw water introduction port 12 of the electrolytic cell are connected to each other through a metering pump 17 operated by water flow detection of the water flow sensor. An electrolytic water discharge port 13 of the electrolytic cell and the electrolytic water receiving port of the water flow pipe are connected to each other by a pipe.

Description

本発明は、電解槽で生成した電解水を、流水管内において、原水と混合する装置に関する。更に詳しくは、流水管を流れる原水の一部を取り出して電解槽で電解し、生成した電解水を再び流水管に戻して原水と混合する電解水混合装置に関する。 The present invention relates to an apparatus for mixing electrolyzed water generated in an electrolytic cell with raw water in a flowing water pipe. More specifically, the present invention relates to an electrolyzed water mixing apparatus that takes out a part of raw water flowing through a flowing water pipe, electrolyzes it in an electrolytic tank, and returns the generated electrolytic water to the flowing water pipe again to mix with the raw water.

従来、電解槽で製造した電解水は、そのまま或いは原水例えば水道水と混合して、殺菌処理や洗浄処理などに使用している。電解水を水道水と混合して使用するには、バッチ式で混合する場合と、電解水を水道水の流水中に加えて混合する場合がある。そして、後者のノズルやシャワーなどから出る水道水に電解水を混合して使用する場合は、予め電解水を生成し、更には一旦電解水を容器に貯水し、ポンプや高低差により生ずる水圧により水道水の流水中に押し込んで混合する方式が採用されている。この方法を採用する場合は、電解水を貯水する貯水タンク液面のレベルのコントロールが必要だったり、電解水を水道水の流水中に押し込む高圧ポンプの使用が必要である。そして、水道水の水圧は、使用装置により千差万別であり、又食事時刻や入浴時など時刻によって水の使用量が大きく変化し、水圧もそれに応じて変動し、これが電解水を生成する際の不安定要素となり、水圧変動に対応した複雑なコントロールシステムが必要であった。 Conventionally, electrolyzed water produced in an electrolyzer is used as it is or mixed with raw water such as tap water for sterilization or cleaning. In order to mix and use electrolyzed water with tap water, there are a case of mixing in a batch system and a case where electrolyzed water is added to running water of tap water and mixed. And when using electrolyzed water mixed with tap water coming out of the latter nozzle or shower, etc., generate electrolyzed water in advance, and once the electrolyzed water is stored in a container, the water pressure generated by the pump and the height difference A method of pushing and mixing into running tap water is adopted. When this method is adopted, it is necessary to control the level of a storage tank that stores electrolyzed water, or to use a high-pressure pump that pushes electrolyzed water into running tap water. And the water pressure of tap water varies widely depending on the equipment used, and the amount of water used varies greatly depending on the time of day such as meal time and bathing, and the water pressure also fluctuates accordingly, which generates electrolyzed water. A complex control system that responded to fluctuations in water pressure was necessary.

また、従来から、電解水を生成する方法は、種々提案されている。例えば、本出願人は、隔膜によって陽極室と陰極室に仕切られ、陽極室には陽極板を配置し、陰極室には陰極板を配置した電解槽を備え、且つ陽極側に供給する原水を電解処理する水と電解処理しない水とに分流させ、電解処理する水を陽極室に通水させ、陽極室から排出した水を上記の電解処理しない水と合流させる構造にし、また陰極側に供給する原水を電解処理する水と電解処理しない水とに分流させ、電解処理する水を陰極室に通水させ、陰極室から排出した水を上記の電解処理しない水と合流させる構造にした水電気分解装置を用いて、電解処理する水に電解質を存在させて、電気分解し、酸性電解水とアルカリ性電解水を製造する方法を提案した(特許文献1)。また、本出願人は、多数の孔を有する陽電極板、複数のスリット状切れ目を有する保護膜、陰イオン交換膜製隔膜及び陰電極板をこの順に積層し一体構造になした電極によって区切られた陽極室と陰極室を有する電解槽を用い、塩分を含まない酸性電解水をバッチ式で製造する方法を提案した(特許文献2)。 Conventionally, various methods for generating electrolyzed water have been proposed. For example, the applicant of the present invention is divided into an anode chamber and a cathode chamber by a diaphragm, an anode plate is disposed in the anode chamber, an electrolytic cell having a cathode plate disposed in the cathode chamber, and raw water supplied to the anode side is supplied. Dividing into water to be electrolyzed and water not to be electrolyzed, allowing water to be electrolyzed to flow through the anode chamber, and merging the water discharged from the anode chamber with water not subjected to electrolysis, and supplying it to the cathode side The water electricity is structured to split the raw water to be electrolyzed into water to be electrolyzed and water to be electrolyzed, to pass the water to be electrolyzed through the cathode chamber, and to join the water discharged from the cathode chamber with the water not electrolyzed. A method for producing an acidic electrolyzed water and an alkaline electrolyzed water by causing an electrolyte to be present in water to be electrolyzed by using a decomposition apparatus and electrolyzing it has been proposed (Patent Document 1). In addition, the applicant of the present invention is divided by a positive electrode plate having a large number of holes, a protective film having a plurality of slit-like cuts, an anion exchange membrane diaphragm and a negative electrode plate in this order to form an integrated structure. A method for producing acidic electrolyzed water containing no salt by a batch method using an electrolytic cell having an anode chamber and a cathode chamber was proposed (Patent Document 2).

特許第3113645号明細書Japanese Patent No. 3113645 特許第4024278号明細書Japanese Patent No. 4024278

本発明は、流水管中を流れる原水例えば水道水を、その水圧に影響されることなく、安定に電解質に供給し、安定に電解水を生成させ、この電解水を再び流水管を流れる原水に返して、原水と電解水とを混合する電解水混合装置を提供することを目的とする。   The present invention supplies raw water, for example, tap water, which flows in a water pipe, to the electrolyte stably without being affected by the water pressure, stably generates electrolytic water, and this electrolytic water is again converted into raw water flowing through the water pipe. Returning, it aims at providing the electrolyzed water mixing apparatus which mixes raw | natural water and electrolyzed water.

本発明は、流水管と電解槽とからなる電解水混合装置であって、前記流水管は、流水感知センサーと原水取出口と電解水受入口を備えた流水管であり、前記電解槽は、多数の孔を有する陽電極板、陰イオン交換膜製隔膜、及び多数の孔を有する陰電極板を順次に積層し一体構造になした電極によって区切られた陽極室と陰極室を有し、前記陰極室は電解質溶液で満たされており、前記陽極室は原水を導入する原水導入口と、該原水を電解した電解水を排出する電解水排出口を備えた電解槽であり、前記流水管の原水取出口と前記電解槽の原水導入口とが、流水感知センサーの流水感知で作動する定量ポンプを介して管で接続しており、また前記電解槽の電解水排出口と前記流水管の電解水受入口とが管で接続していることを特徴とする電解水混合装置である。定量ポンプはダイアフラムポンプが好ましい。上記の流水管の原水取出口と電解水受入口とは近接させて設置するのが好ましい。 The present invention is an electrolyzed water mixing device comprising a water pipe and an electrolysis tank, wherein the water pipe is a water pipe provided with a water flow sensor, a raw water outlet and an electrolyzed water inlet, A positive electrode plate having a large number of holes, a membrane made of an anion exchange membrane, and a negative electrode plate having a large number of holes sequentially laminated to have an anode chamber and a cathode chamber separated by an integrated structure, The cathode chamber is filled with an electrolyte solution, and the anode chamber is an electrolytic cell having a raw water inlet for introducing raw water and an electrolytic water outlet for discharging electrolytic water obtained by electrolyzing the raw water, The raw water outlet and the raw water inlet of the electrolytic cell are connected by a pipe via a metering pump that operates by detecting the flow of water from the flow sensor, and the electrolytic water discharge port of the electrolytic cell and the electrolysis of the flow pipe are Electrolyzed water characterized in that it is connected to the water inlet by a pipe A coupling device. The metering pump is preferably a diaphragm pump. The raw water outlet and the electrolyzed water inlet of the above-described water pipe are preferably installed close to each other.

また、本発明は、流水管と電解槽とからなる電解水混合装置であって、前記流水管は、流水感知センサーと原水取出口と電解水受入口を備えた流水管であり、前記電解槽は、多数の孔を有する陽電極板、陽イオン交換膜製隔膜、及び多数の孔を有する陰電極板を順次に積層し一体構造になした電極によって区切られた陽極室と陰極室を有し、前記陽極室は電解質溶液で満たされており、前記陰極室は原水を導入する原水導入口と、該原水を電解した電解水を排出する電解水排出口を備えた電解槽であり、前記流水管の原水取出口と前記電解槽の原水導入口とが、流水感知センサーの流水感知で作動する定量ポンプを介して管で接続しており、また前記電解槽の電解水排出口と前記流水管の電解水受入口とが管で接続していることを特徴とする電解水混合装置である。定量ポンプはダイアフラムポンプが好ましい。上記の流水管の原水取出口と電解水受入口とは近接させて設置するのが好ましい。 Further, the present invention is an electrolyzed water mixing apparatus comprising a water pipe and an electrolytic cell, wherein the water pipe is a water pipe provided with a water flow sensor, a raw water outlet, and an electrolytic water inlet, Has a positive electrode plate having a large number of holes, a cation-exchange membrane diaphragm, and a negative electrode plate having a large number of holes sequentially laminated to have an anode chamber and a cathode chamber separated by an integrated electrode. The anode chamber is filled with an electrolyte solution, and the cathode chamber is an electrolytic cell provided with a raw water inlet for introducing raw water and an electrolytic water outlet for discharging electrolytic water obtained by electrolyzing the raw water, The raw water outlet of the pipe and the raw water inlet of the electrolyzer are connected by a pipe via a metering pump that operates by sensing the flow of water, and the electrolyzed water outlet of the electrolyzer and the water pipe It is characterized by being connected to the electrolytic water inlet It is the solution water mixing device. The metering pump is preferably a diaphragm pump. The raw water outlet and the electrolyzed water inlet of the above-described water pipe are preferably installed close to each other.

本発明の電解水混合装置によれば、流水管中を流れる原水例えば水道水を、その水圧に影響されることなく、安定に電解槽に供給し、安定に電解水を生成させることができ、またこの生成した電解水を再び流水管を流れる原水に返して、原水と電解水とを円滑に混合することができる。本発明の電解水混合装置は、手洗器、シャワー、トイレなどで使用する洗浄水、歯科ユニットのウォーターシリンジなどに適用することができる。 According to the electrolyzed water mixing apparatus of the present invention, the raw water flowing in the water pipe, for example, tap water, can be stably supplied to the electrolytic cell without being affected by the water pressure, and the electrolyzed water can be generated stably. Further, the generated electrolyzed water is returned again to the raw water flowing through the water pipe, so that the raw water and the electrolyzed water can be mixed smoothly. The electrolyzed water mixing device of the present invention can be applied to washing water used in a hand-washer, shower, toilet, etc., a water syringe of a dental unit, and the like.

本発明の電解水混合装置の一例を示す模式図The schematic diagram which shows an example of the electrolyzed water mixing apparatus of this invention 本発明の電解水混合装置における電解槽の電極の一例の断面図Sectional drawing of an example of the electrode of the electrolytic cell in the electrolyzed water mixing apparatus of this invention

本発明の電解水混合装置の一例を図1に示す。図1は、本発明の電解水混合装置を手洗器に適用した場合の模式図である。1は流水管である。流水管1の元は例えば水道管につながっており、流水管1の先は、この例では、手洗器7のノズル6につながっている。2は流水感知センサーである。3は原水(例えば、水道水)取出口で、流水管1に接続している。4は電解水受入口で、流水管1に接続している。5は止水弁である。8は電解槽である。9は電極である。電解槽は電極9によって、陽極室10と陰極室11とに2分されている。12は陽極室10に原水を導入するための原水導入口であり,13は生成した電解水を陽極室10から排出させるための電解水排出口である。流水管1の原水取出口3は、定量ポンプ17を介して、陽極室10の原水導入口12に接続している。また、陽極室10の電解水排出口13は、流水管1の電解水受入口4に接続している。図2は、電極9の断面図である。この電極9は、多数の孔を有する陽電極板91、陰イオン交換膜製隔膜92、及び多数の孔を有する陰電極板93を順次に積層し一体構造になした電極である。 An example of the electrolyzed water mixing apparatus of the present invention is shown in FIG. FIG. 1 is a schematic view when the electrolyzed water mixing device of the present invention is applied to a hand-washing machine. 1 is a flowing water pipe. The origin of the flowing water pipe 1 is connected to, for example, a water pipe, and the tip of the flowing water pipe 1 is connected to the nozzle 6 of the hand-washer 7 in this example. Reference numeral 2 denotes a running water detection sensor. Reference numeral 3 denotes a raw water (for example, tap water) outlet, which is connected to the flowing water pipe 1. Reference numeral 4 denotes an electrolytic water receiving port connected to the flowing water pipe 1. 5 is a water stop valve. 8 is an electrolytic cell. 9 is an electrode. The electrolytic cell is divided into an anode chamber 10 and a cathode chamber 11 by an electrode 9. Reference numeral 12 denotes a raw water inlet for introducing the raw water into the anode chamber 10, and reference numeral 13 denotes an electrolytic water outlet for discharging the generated electrolytic water from the anode chamber 10. The raw water outlet 3 of the flowing water pipe 1 is connected to the raw water inlet 12 of the anode chamber 10 via a metering pump 17. Further, the electrolyzed water discharge port 13 of the anode chamber 10 is connected to the electrolyzed water receiving port 4 of the flowing water pipe 1. FIG. 2 is a cross-sectional view of the electrode 9. The electrode 9 is an electrode in which a positive electrode plate 91 having a large number of holes, an anion exchange membrane diaphragm 92, and a negative electrode plate 93 having a large number of holes are sequentially laminated to form an integral structure.

定量ポンプ17は、原水を電解槽に常時一定の水量で供給するために用いられる。この定量ポンプとしては、構造が簡単なダイアフラムポンプのような逆止弁を用いた方式のポンプが好ましい。そして、このようなポンプを使用する場合、ポンプの入口の水圧が高いと、ポンプの入口及び出口に設けられている逆止弁を通過して、過剰の水量が送水され、また逆にポンプ出口の水圧が高いと、ポンプの送水量が不足する。そのため、このポンプを用いて常時一定の水量を送るようにするには、ポンプの入口とポンプの出口との圧力差をなくするのが好ましく、それには、流水管1の原水取出口3と電解水受入口4との取り付け位置は近接していることが望ましい。 The metering pump 17 is used to constantly supply raw water to the electrolytic cell with a constant amount of water. As this metering pump, a pump using a check valve such as a diaphragm pump having a simple structure is preferable. And when using such a pump, if the water pressure at the inlet of the pump is high, an excessive amount of water is passed through the check valves provided at the inlet and outlet of the pump, and conversely the pump outlet If the water pressure is high, the pump will not have enough water. Therefore, in order to always send a constant amount of water using this pump, it is preferable to eliminate the pressure difference between the inlet of the pump and the outlet of the pump. It is desirable that the attachment position with the water receiving port 4 is close.

14は、陰極室11に電解質水溶液を導入するための電解質水溶液導入口であり、15は、陰極室11から電解質水溶液を排出させるための電解質水溶液排出口である。16は電解質水溶液貯蔵容器である。陰極室11の電解質水溶液導入口14は、循環ポンプ18を介して電解質水溶液貯蔵容器16に接続している。陰極室11の電解質水溶液排出口15は、電解質水溶液貯蔵容器16に接続している。したがって、循環ポンプ18を作動させることにより、電解質水溶液を、陰極室11と電解質水溶液貯蔵容器16との間で循環させて、陰極室11に電解質水溶液を満たした状態にすることができる。この例では、循環ポンプ18を作動させて電解質水溶液を循環させているが、循環ポンプ18を用い循環させることなく、電解質水溶液を陰極室11に存在させるだけでもよい。電解質には、塩素イオンを含有する塩酸、塩化ナトリウムや塩化カリウムなどが用いられる。 14 is an electrolyte aqueous solution introduction port for introducing the electrolyte aqueous solution into the cathode chamber 11, and 15 is an electrolyte aqueous solution discharge port for discharging the electrolyte aqueous solution from the cathode chamber 11. Reference numeral 16 denotes an electrolyte aqueous solution storage container. The electrolyte aqueous solution inlet 14 of the cathode chamber 11 is connected to the electrolyte aqueous solution storage container 16 via a circulation pump 18. The electrolyte aqueous solution outlet 15 of the cathode chamber 11 is connected to the electrolyte aqueous solution storage container 16. Therefore, by operating the circulation pump 18, the electrolyte aqueous solution can be circulated between the cathode chamber 11 and the electrolyte aqueous solution storage container 16 so that the cathode chamber 11 is filled with the electrolyte aqueous solution. In this example, the circulation pump 18 is operated to circulate the electrolyte aqueous solution. However, the electrolyte aqueous solution may be present in the cathode chamber 11 without being circulated using the circulation pump 18. As the electrolyte, hydrochloric acid containing sodium chloride, sodium chloride, potassium chloride, or the like is used.

手洗器を使用すべく、止水弁5を開き、ノズル6から原水(例えば、水道水)を流出させる。これにより流水管1中を原水が流水する。この流水管1中の流水を流水感知センサー2が感知すると電源スイッチが働き、定量ポンプ17及び循環ポンプ18の作動を開始させ、また電解槽の稼働を開始させる。すなわち、定量ポンプ17の作動によって、流水管1中を流れる原水の一部が、原水取出口3から取り出されて原水導入口12から陽極室10に送られる。一方、陰極室には、循環ポンプ18の作動によって電解質水溶液貯蔵容器16から食塩水が送られ、満たされる。また、電解槽に直流電流が負荷され、陽極室10に入った原水は電気分解されて電解水(次亜塩素酸を含む電解酸性水)となり、電解水排出口13から排出される。この排出された電解水は、流水管1の電解水受入口4から流水管1に戻されて、流水管1中で原水と混合する。この混合された水は、殺菌力の有る次亜塩素酸水を含む水となりノズル6から流出する。 In order to use the handwasher, the water stop valve 5 is opened, and raw water (for example, tap water) is allowed to flow out from the nozzle 6. Thereby, the raw water flows through the flowing water pipe 1. When the flowing water detection sensor 2 detects the flowing water in the flowing water pipe 1, the power switch is activated to start the operation of the metering pump 17 and the circulation pump 18, and to start the operation of the electrolytic cell. That is, by the operation of the metering pump 17, a part of the raw water flowing in the flowing water pipe 1 is taken out from the raw water outlet 3 and sent from the raw water inlet 12 to the anode chamber 10. On the other hand, the saline solution is sent to the cathode chamber from the electrolyte aqueous solution storage container 16 by the operation of the circulation pump 18 and is filled. In addition, a direct current is applied to the electrolytic cell, and the raw water entering the anode chamber 10 is electrolyzed to become electrolyzed water (electrolytic acid water containing hypochlorous acid), and is discharged from the electrolyzed water discharge port 13. The discharged electrolyzed water is returned from the electrolyzed water receiving port 4 of the water pipe 1 to the water pipe 1 and mixed with raw water in the water pipe 1. The mixed water becomes water containing hypochlorous acid water having sterilizing power and flows out from the nozzle 6.

そして、手洗器の使用を中止すべく止水弁5を閉じると、流水管1中を原水が流水しなくなり、この流水中止を流水感知センサー2が感知し、この感知が定量ポンプ17及びポンプ18の作動を中止させ、また電解槽の稼働を中止させる。このときは、電解水受入口4とノズル6との間の流水管1は、原水と電解水が混合された殺菌力の有る次亜塩素酸水を含む水が満たされ滞留した状態にある。そして、手洗器を使用すべく、止水弁5を開くと、この滞留した水がノズル6から流出するとともに上述した動作が開始される。したがって、止水弁5を開くときは、絶えずノズル6から電解水が混合した水道水、すなわち殺菌力の有る次亜塩素酸水を含む水を流出させることができる。 When the water stop valve 5 is closed to stop the use of the hand-washer, the raw water stops flowing in the water pipe 1, and the water flow sensor 2 detects this water flow stop, and this detection is detected by the metering pump 17 and the pump 18. Is stopped, and the operation of the electrolytic cell is stopped. At this time, the flowing water pipe 1 between the electrolyzed water inlet 4 and the nozzle 6 is in a state where it is filled and filled with water containing hypochlorous acid water having sterilizing power in which raw water and electrolyzed water are mixed. When the water stop valve 5 is opened to use the handwasher, the accumulated water flows out from the nozzle 6 and the operation described above is started. Therefore, when the water stop valve 5 is opened, tap water mixed with electrolyzed water, that is, water containing hypochlorous acid water having a sterilizing power, can be continuously discharged from the nozzle 6.

上記の図1の例は、陰極室を電解質水溶液(食塩水)で満たし、陽極室で電解水(次亜塩素酸を含む電解酸性水)を生成させ、ノズル6から、原水(水道水)と電解水(次亜塩素酸を含む電解酸性水)を流出させる例である。これとは逆に、陽極室を電解質水溶液で満たし、陰極室で電解水を生成させることもできる。すなわち、隔膜として陰イオン交換膜製隔膜に代えて陽イオン交換膜製隔膜を使用し、陽極室を電解質水溶液で満たし、陰極室に通水して電解する。この場合は、ノズル6からは、原水(水道水)と電解水(水酸化ナトリウムと水素ガスを含む電解アルカリ性水)とが混合されたアルカリ洗浄水が流出する。このとき、電解質にナトリウムやカリウムイオンを含有する炭酸化合物や炭酸水素化合物、例えば炭酸水素ナトリウム水溶液を使用した場合は、陰極室で強アルカリ性の電解水が生成する。また電解質にクエン酸やリンゴ酸等の有機酸を使用した場合は、陰極室で弱アルカリ性の電解水が生成する。この例では、ノズル6をアルカリ水取水器として利用できる。 In the example of FIG. 1 described above, the cathode chamber is filled with an aqueous electrolyte solution (saline solution), and electrolyzed water (electrolytic acid water containing hypochlorous acid) is generated in the anode chamber. This is an example in which electrolytic water (electrolytic acid water containing hypochlorous acid) flows out. On the contrary, the anode chamber can be filled with an aqueous electrolyte solution, and electrolyzed water can be generated in the cathode chamber. That is, a cation exchange membrane diaphragm is used as a diaphragm instead of an anion exchange membrane diaphragm, the anode chamber is filled with an aqueous electrolyte solution, and water is passed through the cathode chamber for electrolysis. In this case, alkaline cleaning water in which raw water (tap water) and electrolytic water (electrolytic alkaline water containing sodium hydroxide and hydrogen gas) are mixed flows out from the nozzle 6. At this time, when a carbonate compound or hydrogen carbonate compound containing sodium or potassium ions, for example, an aqueous sodium hydrogen carbonate solution is used as the electrolyte, strong alkaline electrolyzed water is generated in the cathode chamber. When an organic acid such as citric acid or malic acid is used as the electrolyte, weak alkaline electrolyzed water is generated in the cathode chamber. In this example, the nozzle 6 can be used as an alkaline water intake.

図2は、前述のとおり、本発明で使用する電解槽の電極9の断面図であるが、多数の孔を有する陽電極板91の孔94の形状は、任意であり、円形が好ましく、円形の場合の直径は1〜5mmが好ましい。陽極板の材料としては、チタン、金、白金、酸化鉄、グラファイト等が挙げられるが、チタンを母材にして白金族のコーティングをしたものが好ましい。特に有効塩素の発生効率を高めるための触媒として酸化イリジウムやパラジウム、ルテニウム等の白金族を使用することが更に望ましい。使用する金属の厚みは0.1〜5ミリメートル程度が適当である。陰極板93にも、陽極板91と同様の多数の孔が穿たれている。陰極板93の素材には、陽極板91と同じ材料が使用できるが、溶液がアルカリ性の場合、酸には腐蝕されやすい鉄、ステンレス、スズ、銅等でも短期間使用目的なら使用可能である。また、隔膜は、陰極室で電解水を生成させる場合には、陰イオン交換膜製隔膜に代えて陽イオン交換膜製隔膜が用いられる。 FIG. 2 is a cross-sectional view of the electrode 9 of the electrolytic cell used in the present invention as described above. The shape of the hole 94 of the positive electrode plate 91 having a large number of holes is arbitrary, and a circular shape is preferable. In this case, the diameter is preferably 1 to 5 mm. Examples of the material for the anode plate include titanium, gold, platinum, iron oxide, graphite, and the like, and those obtained by coating a platinum group using titanium as a base material are preferable. In particular, it is more desirable to use a platinum group such as iridium oxide, palladium and ruthenium as a catalyst for increasing the generation efficiency of effective chlorine. The thickness of the metal used is suitably about 0.1 to 5 millimeters. The cathode plate 93 is also provided with a number of holes similar to the anode plate 91. As the material of the cathode plate 93, the same material as that of the anode plate 91 can be used. However, when the solution is alkaline, iron, stainless steel, tin, copper or the like that is easily corroded by acid can be used for a short-term use purpose. Further, when the electrolyzed water is generated in the cathode chamber, a cation exchange membrane diaphragm is used instead of the anion exchange membrane diaphragm.

また、陽極板91と陰イオン交換膜製隔膜92との間に、非導電性材料からなるシートにスリット状切れ目を設けた保護膜を配置するのが好ましい。保護膜は、非導電性材料からなるシートにスリット状切れ目を設けたものである。スリット状切れ目の向きは、上下、左右、斜めなどどの方向でもよい。更に微細な孔を多数設けてもよい。スリット状切れ目の間隔は、任意であるが、あまり細かいとスリット状切れ目間に目開きが生じて塩素ガスが陰イオン交換膜製隔膜に接触するチャンスを増やすことになり、少ないと、ガスや液体の排出が不十分となり、電解電圧上昇の原因となる。一般には、その間隔は1〜7mmが好ましい。この保護膜は、陽極板面で発生する塩素ガスが陰イオン交換膜製隔膜に直接接触するのを防止し、陰イオン交換膜製隔膜が塩素ガスで劣化するのを防ぐもので、保護膜と陰イオン交換膜製隔膜との中間に液体またはガスが貯まると保護膜が多少変形し、中の液体またはガスを排出させる機能を持たせたものである。保護膜の材質はアスベスト、グラスウール、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポリエステル繊維、芳香族ポリアミド繊維、フッ素系繊維或はそれらの不織布であり、紙、セロハン紙なども用いられる。イオン透過性の良い不織布が特に望ましい。   Moreover, it is preferable to arrange | position the protective film which provided the slit-shaped cut | interruption in the sheet | seat consisting of a nonelectroconductive material between the anode plate 91 and the anion exchange membrane diaphragm 92. Protective film, a sheet made of non-conductive material is provided with a slit-shaped cut. Orientation of the slit-shaped cuts, vertical, lateral, or in any direction such as diagonally. Further, many fine holes may be provided. The interval between the slit-like cuts is arbitrary, but if it is too fine, openings will occur between the slit-like cuts, increasing the chance that chlorine gas will come into contact with the anion-exchange membrane diaphragm. of emissions is insufficient, cause of electrolysis voltage rises. In general, the interval is preferably 1 to 7 mm. This protective membrane prevents chlorine gas generated on the anode plate surface from coming into direct contact with the anion exchange membrane diaphragm, and prevents the anion exchange membrane diaphragm from being deteriorated by chlorine gas. When liquid or gas is stored in the middle of the anion-exchange membrane diaphragm, the protective membrane is somewhat deformed and has a function of discharging the liquid or gas therein. The material of the protective film is asbestos, glass wool, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyester fiber, aromatic polyamide fiber, fluorine fiber, or non-woven fabric thereof, and paper, cellophane paper, etc. are also used. Nonwoven fabrics with good ion permeability are particularly desirable.

通常の電解水の生成装置は、流水管から水を取水して少量の電解質を添加し、電解装置により電解酸性水および電解アルカリ性水を同時に生成する。生成した電解水は貯水タンクや流し等の開放空間に排出されるのが通常である。従って生成したいずれか一方の電解水を流水に返水する場合には、返水しようとする電解水を一旦貯水タンクに貯めてからポンプで流水ラインに返水する必要があり、貯水タンクはレベル計により貯水量を監視し電解槽の稼動をコントロールする等システムは複雑になる。本発明では、一旦流水管から水を取水し、電解処理して生成した電解水を再び流水管に返水するシステムを取っている。そして、電解酸性水或いは電解アルカリ性水のどちらか一種類だけの電解水を生成するに適した電解槽、すなわち、多数の孔を有する陽電極板、イオン交換膜及び多数の孔を有する陰電極板をこの順に積層し一体構造になした電極によって仕切られた陽極室と陰極室を有する型式の電解槽を使用し、一方の電解室に電気分解をしようとする電解用水を通水し、他方の電解室に電解質水溶液を通水する方式としている。また、流水管中の水の流れ(流水)を流水感知センサーで感知し、この感知が、電解槽に直流電流を負荷して稼動させ、電解槽の電解質に原水を供給する定量ポンプや電解質水溶液を循環させる循環ポンプを駆動させる。流水管から取り出された原水は、定量ポンプによって常時一定の水量で電解槽に供給されるので、安定した電解が行える。解槽の電解室に供給された原水は、電解処理後に再び取水位置の近傍に返水する。この方式の採用により、複雑な流量制御システムや電解水貯蔵槽を使用せずに、流水の水圧の変動に左右されることがなく、円滑な電解水混合が行える。 A typical electrolyzed water generator takes water from a water pipe, adds a small amount of electrolyte, and simultaneously produces electrolytic acidic water and electrolytic alkaline water by the electrolyzer. The generated electrolyzed water is usually discharged into an open space such as a water storage tank or a sink. Therefore, when either one of the generated electrolyzed water is returned to the running water, the electrolyzed water to be returned must be temporarily stored in the storage tank and then returned to the running water line by a pump. The system becomes complicated, such as monitoring the amount of water stored by the meter and controlling the operation of the electrolytic cell. In the present invention, a system is adopted in which water is once taken from the water pipe and the electrolytic water generated by the electrolytic treatment is returned to the water pipe again. An electrolytic cell suitable for producing only one type of electrolytic acid water or electrolytic alkaline water, that is, a positive electrode plate having a large number of holes, an ion exchange membrane, and a negative electrode plate having a large number of holes. Are used in this order, and an electrolytic cell of a type having an anode chamber and a cathode chamber partitioned by an electrode having an integrated structure is used, and water for electrolysis to be electrolyzed is passed through one electrolytic chamber, The electrolytic solution is passed through the electrolytic chamber. In addition, the flow of water in the water pipe (flowing water) is detected by a water flow sensor, and this detection loads a direct current to the electrolytic cell and operates it, and a metering pump that supplies raw water to the electrolytic cell and an aqueous electrolyte solution Drive the circulation pump that circulates. Since the raw water taken out from the flowing water pipe is always supplied to the electrolytic cell with a constant amount of water by the metering pump, stable electrolysis can be performed. The raw water supplied to the electrolytic chamber of the thawing tank is returned to the vicinity of the water intake position again after the electrolytic treatment. By adopting this method, smooth electrolysis water mixing can be performed without using a complicated flow control system or electrolyzed water storage tank and without being influenced by fluctuations in the water pressure of running water.

図1に示す装置を用いた。電極9には、電極面積が20平方センチメートルである多数の孔(孔の大きさ1.5mm径、孔の数400)を有する陽電極板と、陰イオン交換膜製隔膜と、多数の孔(孔の大きさ1.5mm径、孔の数400)を有する陰電極板が順に積層配置し一体構造になした電極を用いた。陰極室11には、食塩とクエン酸を混合した電解質水溶液を存在させた。流水管1を水道水ラインに接続した。止水弁5が開き、流水管1に取り付けた流水感知センサー2で流水が検知すると、振動式定量ポンプ17が駆動して流水管1の水道水取出口3より180cc/分の水量の水が取水され、電解槽8の陽極室10に送られた。4アンペアの直流電流を電極に負荷して電気分解させた。陽極室10で酸素ガスおよび塩素ガスが発生し、塩素ガスは水と反応して次亜塩素酸を形成した。生成した次亜塩素酸を含む電解水は、電解水排出口13から電解水受入口4を通して流水管1に戻した。これによって、流水管1内で水道水と次亜塩素酸を含む電解水が混合し、この電解水混合水はノズル6からは手洗器7に流出し、手洗いに用いられた。水道水の量を1.5リットル/分程度に調節すると、約20ppmの次亜塩素酸を含有する殺菌用水が流出した。 The apparatus shown in FIG. 1 was used. The electrode 9 has a positive electrode plate having a large number of holes (hole size: 1.5 mm diameter, number of holes: 400) having an electrode area of 20 square centimeters, an anion exchange membrane diaphragm, and a large number of holes (holes). An electrode in which negative electrode plates having a diameter of 1.5 mm and a number of holes of 400) are sequentially laminated to form an integral structure was used. In the cathode chamber 11, an aqueous electrolyte solution in which sodium chloride and citric acid were mixed was present. The running water pipe 1 was connected to the tap water line. When the water stop valve 5 is opened and the water flow is detected by the water flow sensor 2 attached to the water flow pipe 1, the vibration metering pump 17 is driven and water of 180 cc / min is supplied from the tap water outlet 3 of the water flow pipe 1. Water was taken and sent to the anode chamber 10 of the electrolytic cell 8. A 4 ampere direct current was applied to the electrodes to cause electrolysis. Oxygen gas and chlorine gas were generated in the anode chamber 10, and the chlorine gas reacted with water to form hypochlorous acid. The produced electrolyzed water containing hypochlorous acid was returned from the electrolyzed water discharge port 13 to the flowing water pipe 1 through the electrolyzed water receiving port 4. Thereby, the tap water and the electrolyzed water containing hypochlorous acid were mixed in the flowing water pipe 1, and this electrolyzed water mixed water flowed out from the nozzle 6 to the hand washing device 7 and used for hand washing. When the amount of tap water was adjusted to about 1.5 liters / minute, sterilizing water containing about 20 ppm of hypochlorous acid flowed out.

1 流水管、2 流水感知センサー、3 原水取出口、4 電解水受入口、5 止水弁、6 ノズル、7 手洗器、8 電解槽、9 電極、10 陽極室、11 陰極室、12 原水導入口、13 電解水排出口、14 電解質水溶液導入口、15 電解質水溶液排出口、16 電解質水溶液貯蔵容器、17 定量ポンプ、18 循環ポンプ、91 陽電極板、92 陰イオン交換膜製隔膜、93 陰電極板、94 孔 1 Flow pipe, 2 Flow sensor, 3 Raw water outlet, 4 Electrolyzed water inlet, 5 Water stop valve, 6 Nozzle, 7 Hand basin, 8 Electrolyzer, 9 Electrode, 10 Anode room, 11 Cathode room, 12 Raw water introduction Mouth, 13 Electrolyzed water outlet, 14 Electrolyte aqueous solution inlet, 15 Electrolyte aqueous solution outlet, 16 Electrolyte aqueous solution storage container, 17 Metering pump, 18 Circulation pump, 91 Positive electrode plate, 92 Anion exchange membrane diaphragm, 93 Negative electrode Board, 94 holes

Claims (4)

流水管と電解槽とからなる電解水混合装置であって、前記流水管は、流水感知センサーと原水取出口と電解水受入口を備えた流水管であり、前記電解槽は、多数の孔を有する陽電極板、陰イオン交換膜製隔膜、及び多数の孔を有する陰電極板を順次に積層し一体構造になした電極によって区切られた陽極室と陰極室を有し、前記陰極室は電解質溶液で満たされており、前記陽極室は原水を導入する原水導入口と、該原水を電解した電解水を排出する電解水排出口を備えた電解槽であり、前記流水管の原水取出口と前記電解槽の原水導入口とが、流水感知センサーの流水感知で作動する定量ポンプを介して管で接続しており、また前記電解槽の電解水排出口と前記流水管の電解水受入口とが管で接続していることを特徴とする電解水混合装置。 An electrolyzed water mixing apparatus comprising a water pipe and an electrolyzer, wherein the water pipe is a water pipe provided with a water flow sensor, a raw water outlet and an electrolyzed water inlet, and the electrolyzer has a number of holes. A positive electrode plate, an anion exchange membrane diaphragm, and a negative electrode plate having a large number of holes, which are sequentially laminated to have an anode chamber and a cathode chamber separated by an electrode, and the cathode chamber is an electrolyte. The anode chamber is an electrolytic cell having a raw water inlet for introducing raw water and an electrolytic water outlet for discharging electrolytic water obtained by electrolyzing the raw water, and a raw water outlet of the water pipe; A raw water inlet of the electrolyzer is connected by a pipe via a metering pump that is activated by flow of water detected by a flow sensor, and an electrolyzed water outlet of the electrolyzer and an electrolyzed water inlet of the water pipe The electrolyzed water mixing apparatus characterized by connecting with a pipe. 流水管と電解槽とからなる電解水混合装置であって、前記流水管は、流水感知センサーと原水取出口と電解水受入口を備えた流水管であり、前記電解槽は、多数の孔を有する陽電極板、陽イオン交換膜製隔膜、及び多数の孔を有する陰電極板を順次に積層し一体構造になした電極によって区切られた陽極室と陰極室を有し、前記陽極室は電解質溶液で満たされており、前記陰極室は原水を導入する原水導入口と、該原水を電解した電解水を排出する電解水排出口を備えた電解槽であり、前記流水管の原水取出口と前記電解槽の原水導入口とが、流水感知センサーの流水感知で作動する定量ポンプを介して管で接続しており、また前記電解槽の電解水排出口と前記流水管の電解水受入口とが管で接続していることを特徴とする電解水混合装置。 An electrolyzed water mixing apparatus comprising a water pipe and an electrolyzer, wherein the water pipe is a water pipe provided with a water flow sensor, a raw water outlet and an electrolyzed water inlet, and the electrolyzer has a number of holes. A positive electrode plate, a cation exchange membrane diaphragm, and a negative electrode plate having a large number of holes, which are sequentially laminated to have an anode chamber and a cathode chamber separated by an electrode, and the anode chamber is an electrolyte. The cathode chamber is an electrolytic cell having a raw water inlet for introducing raw water and an electrolytic water outlet for discharging electrolytic water obtained by electrolyzing the raw water, and a raw water outlet of the water pipe; A raw water inlet of the electrolyzer is connected by a pipe via a metering pump that is activated by flow of water detected by a flow sensor, and an electrolyzed water outlet of the electrolyzer and an electrolyzed water inlet of the water pipe The electrolyzed water mixing apparatus characterized by connecting with a pipe. 定量ポンプがダイアフラムポンプである請求項1又は2記載の電解水混合装置。 The electrolyzed water mixing device according to claim 1 or 2, wherein the metering pump is a diaphragm pump. 流水管の原水取出口と電解水受入口とが近接している請求項1〜3のいずれかに記載の電解水混合装置。 The electrolyzed water mixing apparatus according to any one of claims 1 to 3, wherein the raw water outlet of the flowing water pipe and the electrolyzed water inlet are close to each other.
JP2009161745A 2009-07-08 2009-07-08 Electrolyzed water mixing device Expired - Fee Related JP5244038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161745A JP5244038B2 (en) 2009-07-08 2009-07-08 Electrolyzed water mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161745A JP5244038B2 (en) 2009-07-08 2009-07-08 Electrolyzed water mixing device

Publications (2)

Publication Number Publication Date
JP2011016065A true JP2011016065A (en) 2011-01-27
JP5244038B2 JP5244038B2 (en) 2013-07-24

Family

ID=43594281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161745A Expired - Fee Related JP5244038B2 (en) 2009-07-08 2009-07-08 Electrolyzed water mixing device

Country Status (1)

Country Link
JP (1) JP5244038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102865A1 (en) * 2012-12-27 2014-07-03 Osaka Electro-Communication University Device and method for producing electrolyzed liquid
US9546428B2 (en) 2013-03-01 2017-01-17 Osaka Electro-Communication University Producing electrolyzed liquid
CN113802146A (en) * 2021-10-14 2021-12-17 中国华能集团清洁能源技术研究院有限公司 Electrolytic cell diaphragm integrity online test system and use method
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132800U (en) * 1986-02-14 1987-08-21
JPS63166491A (en) * 1986-12-26 1988-07-09 Tome Sangyo Kk Pipeline sterilizing system
JPH02149395A (en) * 1988-11-30 1990-06-07 Jipukomu Kk Apparatus and method of preparing aqueous disinfectant
JPH10314740A (en) * 1997-05-19 1998-12-02 Permelec Electrode Ltd Electrolytic bath for acidic water production
JP2000005757A (en) * 1998-06-19 2000-01-11 Morinaga Milk Ind Co Ltd Economical production of electrolytic sterilizing water
JP3113645B2 (en) * 1999-03-01 2000-12-04 ファースト・オーシャン株式会社 Electrolyzed water production method
JP2004058006A (en) * 2002-07-31 2004-02-26 First Ocean Kk Method of manufacturing electrolytic water
JP4024278B2 (en) * 2005-05-20 2007-12-19 ファースト・オーシャン株式会社 Batch type acidic electrolyzed water production apparatus and method for producing acid electrolyzed water using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132800U (en) * 1986-02-14 1987-08-21
JPS63166491A (en) * 1986-12-26 1988-07-09 Tome Sangyo Kk Pipeline sterilizing system
JPH02149395A (en) * 1988-11-30 1990-06-07 Jipukomu Kk Apparatus and method of preparing aqueous disinfectant
JPH10314740A (en) * 1997-05-19 1998-12-02 Permelec Electrode Ltd Electrolytic bath for acidic water production
JP2000005757A (en) * 1998-06-19 2000-01-11 Morinaga Milk Ind Co Ltd Economical production of electrolytic sterilizing water
JP3113645B2 (en) * 1999-03-01 2000-12-04 ファースト・オーシャン株式会社 Electrolyzed water production method
JP2004058006A (en) * 2002-07-31 2004-02-26 First Ocean Kk Method of manufacturing electrolytic water
JP4024278B2 (en) * 2005-05-20 2007-12-19 ファースト・オーシャン株式会社 Batch type acidic electrolyzed water production apparatus and method for producing acid electrolyzed water using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102865A1 (en) * 2012-12-27 2014-07-03 Osaka Electro-Communication University Device and method for producing electrolyzed liquid
US9487875B2 (en) 2012-12-27 2016-11-08 Osaka Electro-Communication University Producing electrolyzed liquid
US9546428B2 (en) 2013-03-01 2017-01-17 Osaka Electro-Communication University Producing electrolyzed liquid
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
CN113802146A (en) * 2021-10-14 2021-12-17 中国华能集团清洁能源技术研究院有限公司 Electrolytic cell diaphragm integrity online test system and use method
CN113802146B (en) * 2021-10-14 2024-03-26 中国华能集团清洁能源技术研究院有限公司 Electrolytic cell diaphragm integrity online test system and use method

Also Published As

Publication number Publication date
JP5244038B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US6632336B2 (en) Acidic liquid atomizer
TWI608129B (en) Electrolysis device and electrolytic ozone water production device
JP3716042B2 (en) Acid water production method and electrolytic cell
KR100706215B1 (en) Generation-system for antiseptic solution including clorine
KR100802361B1 (en) Electrolysis sterilization disinfecting possibility supply apparatus
KR101896201B1 (en) Sink with sterilizing and rinsing water generating system
JP5244038B2 (en) Electrolyzed water mixing device
KR101027538B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
KR100883894B1 (en) Apparatus for manufacturing of weak-acidic hypochlorous acid water and manufacturing method of weak-acidic hypochlorous acid water
KR20090048153A (en) Different kind liquids mixing device and disinfectant generator by electrolysis using that
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
JP4394941B2 (en) Electrolytic ozonizer
KR101371616B1 (en) Naocl dilution structure of generation-system for antiseptic solution including chlorine
KR100841102B1 (en) An electrolytic water creating device
JP2012196643A (en) Apparatus for producing hypochlorous acid water or the like
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP2004223309A (en) Apparatus for generating electrolytic water
JP2014042863A (en) Sterilization water generator
JP2004223306A (en) Apparatus for generating electrolytic water
JP2013085979A (en) Apparatus for manufacturing aqueous hypochlorous acid
KR200309987Y1 (en) Electrolysis apparatus
KR100694846B1 (en) Electrolysis sterilization disinfecting possibility supply system
KR101054266B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
JP6675112B2 (en) Electrolysis raw water storage type electrolyzer
CN108602695B (en) Electrolyzed water generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5244038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees