JPH02149395A - Apparatus and method of preparing aqueous disinfectant - Google Patents
Apparatus and method of preparing aqueous disinfectantInfo
- Publication number
- JPH02149395A JPH02149395A JP63300997A JP30099788A JPH02149395A JP H02149395 A JPH02149395 A JP H02149395A JP 63300997 A JP63300997 A JP 63300997A JP 30099788 A JP30099788 A JP 30099788A JP H02149395 A JPH02149395 A JP H02149395A
- Authority
- JP
- Japan
- Prior art keywords
- water
- raw water
- dilution
- flow rate
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000645 desinfectant Substances 0.000 title abstract 2
- 238000000034 method Methods 0.000 title description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 312
- 239000000460 chlorine Substances 0.000 claims abstract description 80
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 80
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 76
- 239000012895 dilution Substances 0.000 claims abstract description 61
- 238000010790 dilution Methods 0.000 claims abstract description 61
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 57
- 239000011780 sodium chloride Substances 0.000 claims abstract description 28
- 238000007865 diluting Methods 0.000 claims abstract description 17
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 16
- 239000000243 solution Substances 0.000 claims abstract description 16
- 230000001954 sterilising effect Effects 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 4
- 239000002351 wastewater Substances 0.000 claims description 2
- 238000001139 pH measurement Methods 0.000 claims 3
- 230000000249 desinfective effect Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007864 aqueous solution Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 12
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 9
- 239000005708 Sodium hypochlorite Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 239000008399 tap water Substances 0.000 description 5
- 235000020679 tap water Nutrition 0.000 description 5
- -1 chlorine ions Chemical class 0.000 description 4
- 238000010411 cooking Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008223 sterile water Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、調理環境衛生用0手洗い用1食品材料用及び
おしぼり用等の殺菌水の製造装置及び殺菌水の製造方法
に関し、さらに詳しくは、塩化ナトリウム水溶液の有隔
膜電解によりアノード側に生成する残留塩素濃度の高い
水を、さらに希釈用原水及び/またはカソード側生成水
で混合希釈し、安全な殺菌水を低コストで製造できる装
置及び該殺菌水の製造方法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to an apparatus and method for producing sterilized water for use in cooking environment hygiene, hand washing, food materials, wet towels, etc. , an apparatus that can produce safe sterilized water at low cost by further mixing and diluting water with a high residual chlorine concentration generated on the anode side with raw water for dilution and/or water generated on the cathode side by diaphragm electrolysis of an aqueous sodium chloride solution, and The present invention relates to a method for producing the sterilized water.
(従来の技術)
従来、細菌の殺菌装置としては種々の装置が知られてい
る。例えば、熱処理、アルコール処理、紫外線照射、オ
ゾンによる酸化等を利用した装置、また、食器や食品あ
るいは水道水の殺菌には次亜塩素酸や次亜塩素酸ナトリ
ウムの希釈水溶液を利用した装置が広く用いられている
。(Prior Art) Conventionally, various devices are known as bacteria sterilization devices. For example, devices that use heat treatment, alcohol treatment, ultraviolet irradiation, oxidation with ozone, etc., and devices that use diluted aqueous solutions of hypochlorous acid or sodium hypochlorite to sterilize tableware, food, and tap water are widely used. It is used.
ところで、海水及び高濃度の塩化ナトリウム水溶液を無
隔膜電解することにより、次亜塩素酸ナトリウムを製造
したり、あるいは有隔膜電解にょリアノード側で塩素ガ
ス、カソード側で苛性ソーダを製造することは、工業的
に従来から行なわれている。また、「淡水に近い低濃度
食塩水溶液の無隔膜直接電解による次亜塩素酸塩の生成
」が電気化学および工業物理化学56.N05(198
8)に報告されている。さらに特開昭61−28339
1号には、水道水中に少量含まれる塩素イオンを塩素に
変換することによる飲料水の殺菌方法が示されている。By the way, it is industrially possible to produce sodium hypochlorite by non-diaphragm electrolysis of seawater and a highly concentrated sodium chloride aqueous solution, or to produce chlorine gas on the anode side and caustic soda on the cathode side in diaphragm electrolysis. This has been traditionally done. In addition, "Generation of hypochlorite by non-diaphragm direct electrolysis of a low-concentration saline solution close to fresh water" is covered in Electrochemistry and Industrial Physical Chemistry 56. N05 (198
8). Furthermore, JP-A-61-28339
No. 1 describes a method for sterilizing drinking water by converting small amounts of chlorine ions contained in tap water into chlorine.
このように、塩素ガスを水に注入したり、次亜塩素酸ナ
トリウムの希釈水溶液を使用したりするいわゆる塩素殺
菌の場合は、水溶液のpHにより残留塩素の存在比が変
化しく第1O図参照)、それに伴って同一の残留塩素濃
度でも殺菌効果が変動する。殺菌効果が最も大きいとい
われている次亜塩素酸(HCI20)の存在比の高いp
H範囲、すなわちpH3〜7好ましくはpH4〜6にす
れば低い残留塩素濃度でも大きな殺菌効果を発揮するこ
とができる。In this way, in the case of so-called chlorine sterilization, which involves injecting chlorine gas into water or using a dilute aqueous solution of sodium hypochlorite, the abundance ratio of residual chlorine changes depending on the pH of the aqueous solution (see Figure 1O). Accordingly, the sterilizing effect varies even with the same residual chlorine concentration. P with a high abundance of hypochlorous acid (HCI20), which is said to have the greatest bactericidal effect.
H range, that is, pH 3 to 7, preferably pH 4 to 6, a large sterilizing effect can be exhibited even at a low residual chlorine concentration.
(発明が解決しようとする課題)
ところが、通常使用される水道水(以下、「原水」とい
う、)のpHは、5.8〜8.6の範囲で一般的にはp
H7前後が多い。そのため、単に塩素ガスを水に注入し
たり、あるいは次亜塩素酸や次亜塩素酸ナトリウムの水
溶液を添加するのみでは、上記のpH範囲にコントロー
ルすることはできない。したがって、例えば殺菌抵抗の
強い芽胞菌等を殺菌するためには残留塩素濃度を高める
か、あるいは塩酸等の酸をさらに適量添加しpT(をコ
ントロールする必要がある。(Problem to be Solved by the Invention) However, the pH of commonly used tap water (hereinafter referred to as "raw water") is generally within the range of 5.8 to 8.6.
Most are around H7. Therefore, it is not possible to control the pH within the above range simply by injecting chlorine gas into water or adding an aqueous solution of hypochlorous acid or sodium hypochlorite. Therefore, for example, in order to sterilize spore-forming bacteria that have strong sterilization resistance, it is necessary to increase the residual chlorine concentration or to control pT by adding an appropriate amount of an acid such as hydrochloric acid.
また、一般に、次亜塩素酸ナトリウムの水溶液は、使用
場所とは別の場所で製造され容器に入れられた状態で供
給されるため、別の容器に水道水と次亜塩素酸ナトリウ
ム水溶液を入れ所定濃度に混合希釈後便用する例が多く
、いわゆる溜置き式となり連続的に殺菌水を使用するこ
とができない。In addition, generally, an aqueous solution of sodium hypochlorite is manufactured in a place other than where it is used and is supplied in a container, so tap water and an aqueous sodium hypochlorite solution are placed in separate containers. In many cases, sterilized water is mixed and diluted to a predetermined concentration and then used as a toilet, which is a so-called reservoir type, and sterilized water cannot be used continuously.
このため、料理店の厨房や食品工場等で食器調理器具1
食品類1手洗い、おしぼり等の殺菌に用いるには、操作
性、安全性及び殺菌効果等の点で問題があった。For this reason, tableware and cooking utensils 1 are used in restaurant kitchens, food factories, etc.
When used for sterilizing food items 1 such as hand washing and wet towels, there were problems in terms of operability, safety, sterilizing effect, etc.
一方、塩化ナトリウム水溶液を無隔膜電解により次亜塩
素酸ナトリウムを製造する装置では、その構造上アノー
ド側及びカソード側の生成物が、直ちに中和反応を起こ
すことから、pHを原水よりも酸性側にすることは不可
能である。On the other hand, in a device that produces sodium hypochlorite from an aqueous sodium chloride solution by non-diaphragm electrolysis, due to its structure, the products on the anode and cathode sides immediately undergo a neutralization reaction, so the pH is set to be more acidic than the raw water. It is impossible to do so.
また、特開昭61−283391号に示される水道水中
に少量含まれる塩素イオンを塩素に変換する方法では、
電気伝導率が小さいので少電流しか流せず、残留塩素濃
度を高くするには長時間を要し、また、無隔膜のためp
Hをコントロールすることができない。In addition, in the method of converting a small amount of chlorine ions contained in tap water into chlorine, disclosed in JP-A No. 61-283391,
Because the electrical conductivity is low, only a small current can flow, and it takes a long time to increase the residual chlorine concentration.
I can't control H.
本発明は、上記した問題点を解消し、食器、調理器具1
食品類1手洗い及びおしぼり等の殺菌に適した残留塩素
濃度とpHを有する殺菌水を連続的に製造することがで
きる殺菌水製造装置及び殺菌水製造方法を提供すること
を目的とする。The present invention solves the above-mentioned problems and provides tableware and cooking utensils.
An object of the present invention is to provide a sterilizing water producing device and a sterilizing water producing method capable of continuously producing sterilizing water having a residual chlorine concentration and pH suitable for sterilizing food items 1, hand washing, wet towels, etc.
(課題を解決するための手段)
本発明者らは、上記目的を達成するため鋭意研究を重ね
た結果、塩化ナトリウム水溶液を右隅膜電解して、アノ
ード側に生成する残留塩素濃度の高い水を、希釈用原水
及び/またはカソード側に生成するアルカリ水で混合希
釈することにより、殺菌に適した残留塩素濃度とpHを
有する殺菌水を製造することができることを見出し、本
発明を完成するに至った。(Means for Solving the Problems) As a result of extensive research to achieve the above object, the present inventors electrolyzed a sodium chloride aqueous solution with the right corner membrane to produce water with a high concentration of residual chlorine on the anode side. It has been discovered that sterilizing water having a residual chlorine concentration and pH suitable for sterilization can be produced by mixing and diluting with raw water for dilution and/or alkaline water generated on the cathode side, and in completing the present invention. It's arrived.
すなわち、本発明の殺菌水製造装置は、電解用直流電源
装置ニアノードとカソード及び両電極の間に隔膜を有し
、アノード室とカソード室とに分離された電解槽;原水
導入管から供給される原水と、塩化ナトリウム水溶液添
加手段から供給される塩化ナトリウム水溶液とを混合し
て成る被電解水を、該アノード室とカソード室に供給す
る導入管;該アノード室とカソード室のそれぞれから生
成水な取り出す導出管;該アノード室から取り出された
生成水と、該原水導入管から分岐させた希釈用原水導管
から供給される原水及び/または前記カソード室から取
り出される生成水とを混合希釈する手段;を有すること
を特徴とし、また、本発明の殺菌水製造方法は、塩化ナ
トリウム水溶液と原水導入管から供給される原水とを混
合して成る被電解水を、アノード室とカソード室とを有
する電解槽に供給して電解し、ついで、該アノード室か
ら取り出された生成水を、該原水導入管の中途で分岐さ
せた希釈用原水導管から供給される原水及び/またはカ
ソード室から取り出される生成水で混合希釈することを
特徴とする。That is, the sterilized water production device of the present invention has a DC power supply for electrolysis, a near node and a cathode, and a diaphragm between both electrodes, and an electrolytic cell separated into an anode chamber and a cathode chamber; supplied from a raw water introduction pipe. An introduction pipe that supplies electrolyzed water, which is a mixture of raw water and a sodium chloride aqueous solution supplied from a sodium chloride aqueous solution adding means, to the anode chamber and the cathode chamber; an extraction pipe; a means for mixing and diluting the produced water taken out from the anode chamber with raw water supplied from a dilution raw water conduit branched from the raw water introduction pipe and/or produced water taken out from the cathode chamber; The method for producing sterilized water of the present invention is characterized in that the water to be electrolyzed, which is a mixture of an aqueous sodium chloride solution and raw water supplied from a raw water introduction pipe, is subjected to an electrolysis process having an anode chamber and a cathode chamber. Raw water supplied to the tank for electrolysis, and then taken out from the anode chamber, is supplied from a dilution raw water conduit branched in the middle of the raw water introduction pipe, and/or generated water taken out from the cathode chamber. It is characterized by mixing and diluting with.
原水で希釈する手段を設けると、アノード側に生成する
残留塩素濃度の高い生成水を所定の濃度まで希釈すると
ともに、pHを制御でき、さらに殺菌水の量をアノード
側生成水量の数倍に増加させることが可能となる。By providing a means for diluting with raw water, it is possible to dilute the water with a high residual chlorine concentration generated on the anode side to a predetermined concentration, control the pH, and further increase the amount of sterilizing water to several times the amount of water generated on the anode side. It becomes possible to do so.
一方、カソード側生成水で希釈する手段を設けるのは、
主としてpHを制御するためである。しかしながら、カ
ソード側生成水は、少量添加しただけでpHを上昇させ
るので、殺菌水の量をあまり増加させることができない
。On the other hand, providing a means for diluting with water produced on the cathode side is
This is mainly for controlling pH. However, since the cathode-side generated water increases the pH even when added in a small amount, the amount of sterilizing water cannot be increased much.
また、原水とカソード側生成水の双方を添加する手段を
設けることにより、pHの制御及び殺菌水量を種々に調
節でき殺菌水製造装置としてより有利である。Furthermore, by providing means for adding both raw water and cathode-side produced water, the pH can be controlled and the amount of sterilized water can be adjusted in various ways, making it more advantageous as a sterilized water production device.
なお、これらの操作は、手動でもまた殺菌水中の残留塩
素濃度及びpHを連続的に測定する装置を設け、それぞ
れの値が設定範囲内に保持されるように自動制御しても
よい。自動制御にすれば、原水の供給圧力、pH,電気
伝導率等の変化にかかわらず性状の安定した殺菌水を人
手を要さずにしかも容易に供給することができる。Note that these operations may be performed manually or may be automatically controlled by providing a device that continuously measures the residual chlorine concentration and pH in the sterilized water so that each value is maintained within a set range. If automatic control is used, sterilized water with stable properties can be easily supplied without the need for manpower, regardless of changes in the supply pressure, pH, electrical conductivity, etc. of raw water.
次に図面に基づいて詳細に説明する。Next, a detailed explanation will be given based on the drawings.
第1図〜第3図は手動操作による本発明の殺菌水製造装
置の例を示す。1 to 3 show an example of the sterilized water production apparatus of the present invention which is manually operated.
第1図は、アノード側生成水を、希釈用原水のみで混合
希釈する場合の概略系統図、第2図は、希釈用原水及び
カソード側生成水の双方で希釈する場合の概略系統図、
第3図は、カソード側生成水のみで希釈する場合の概略
系統図である。FIG. 1 is a schematic system diagram when the anode side generated water is mixed and diluted with only the dilution raw water, and FIG. 2 is a schematic system diagram when the anode side generated water is mixed and diluted with both the dilution raw water and the cathode side generated water.
FIG. 3 is a schematic system diagram in the case of dilution with only the water produced on the cathode side.
まず、電解槽について説明する。電解槽はケーシング1
2a、12b、アノード13、スペーサー15a、15
b、隔膜16及びカソード14により構成されている。First, the electrolytic cell will be explained. The electrolytic cell is casing 1
2a, 12b, anode 13, spacer 15a, 15
b, a diaphragm 16 and a cathode 14.
図では単槽平板式の場合を示すが、これらの数量を増し
た複槽平板式あるいは円筒式でもよい。製作加工の面か
らは平板式が好ましい。Although the figure shows a single-vessel flat plate type, a multi-vessel flat plate type or cylindrical type in which the number of these types is increased may also be used. From the viewpoint of manufacturing and processing, a flat plate type is preferable.
スペーサー15は、電極間距離を設定するとともに被電
解水の流路を確保する役割を担っている。スペーサーを
薄くして電極間距離を小さくすれば低い電圧で電解可能
となるが、被電解水の流速が大きくなり圧力損失が大き
くなるので、双方の条件を考慮して厚さを選定する。図
に示した例では、スペーサーの厚みを3mmとし電極間
距離を設定した。The spacer 15 plays the role of setting the distance between the electrodes and ensuring a flow path for the water to be electrolyzed. If the spacer is made thinner and the distance between the electrodes is reduced, electrolysis can be performed at a lower voltage, but the flow rate of the water to be electrolyzed will increase and the pressure loss will increase, so both conditions should be considered when selecting the thickness. In the example shown in the figure, the thickness of the spacer was 3 mm and the distance between the electrodes was set.
隔膜16は、陽イオン及び陰イオンの双方を通過させる
中性膜を使用し、その材質はアノード側に生成する塩素
ガスに冒されないフッ素系とするのが好ましい。炭化水
素系の隔膜は塩素ガスに冒され易く、実用的でない。ま
た、透水性の大きなものは、隔膜の効果を減少させるの
で小さいものが好ましい。The diaphragm 16 uses a neutral membrane that allows both cations and anions to pass through, and its material is preferably a fluorine-based material that is not affected by chlorine gas generated on the anode side. Hydrocarbon-based diaphragms are susceptible to chlorine gas and are not practical. Moreover, a material with high water permeability reduces the effect of the diaphragm, so a material with a small water permeability is preferable.
アノード13の材質は、電解効率に大きく影響するので
、塩素過電圧が小さく酸素過電圧が太きいものが好まし
い。図に示した例においては、触媒作用の大きいチタン
板に白金、イリジウム系をコーティングしたものを使用
し、塩素イオンの酸化反応が進行し易くなるようにして
殺菌に有効な遊離塩素が効率よく発生するようにした。The material of the anode 13 has a large effect on the electrolysis efficiency, so it is preferable that the material has a small chlorine overvoltage and a large oxygen overvoltage. In the example shown in the figure, a titanium plate with a strong catalytic effect coated with platinum and iridium is used to facilitate the oxidation reaction of chlorine ions and efficiently generate free chlorine, which is effective for sterilization. I decided to do so.
カソード14は、耐食性を考慮してチタンを用いている
が、ステンレスでも構わない。Although titanium is used for the cathode 14 in consideration of corrosion resistance, stainless steel may also be used.
本発明の製造装置を構成している各要素は次のように接
続されている。Each element constituting the manufacturing apparatus of the present invention is connected as follows.
まず、アノード13とカソード14及び直流電源装置1
7は、電気的に接続されている。First, the anode 13, cathode 14 and DC power supply 1
7 is electrically connected.
電解槽のアノード室及びカソード室と原水導入管3とは
、アノード側被電解水導入管8及びカソード側被電解水
導入管9並びに被電解水導入管5を介して接続される。The anode chamber and cathode chamber of the electrolytic cell and the raw water introduction pipe 3 are connected via an anode-side electrolyzed water introduction pipe 8 , a cathode-side electrolyzed water introduction pipe 9 , and an electrolyzed water introduction pipe 5 .
被電解水導入管5の流路へは塩化ナトリウム水溶液を供
給するため、塩化ナトリウム水溶液貯蔵タンク10が塩
化ナトリウム水溶液添加ポンプ11を介して接続される
。前記アノード室及びカソード室にはそれぞれアノード
側生成水導出管18及びカソード側生成水導出管19が
接続される。さらに、混合希釈部26へはアノード側生
成水導出管18と希釈用原水導管24及び/またはカソ
ード側生成水混合管23が接続される。希釈用水導管2
4の一方は原水分岐部4に接続される。A sodium chloride aqueous solution storage tank 10 is connected to the flow path of the electrolyzed water introduction pipe 5 via a sodium chloride aqueous solution addition pump 11 in order to supply the sodium chloride aqueous solution. An anode side generated water outlet pipe 18 and a cathode side generated water outlet pipe 19 are connected to the anode chamber and the cathode chamber, respectively. Furthermore, the anode-side produced water outlet pipe 18 , the dilution raw water conduit 24 , and/or the cathode-side produced water mixing pipe 23 are connected to the mixing/dilution section 26 . Dilution water conduit 2
4 is connected to the raw water branch 4.
また、希釈用原水導管24.カソード側生成水混合管2
3.カソード側生成水排水管22の各流路には、それぞ
れの適宜位置に流量調節弁25゜21.20が設けられ
ている。In addition, the dilution raw water conduit 24. Cathode side generated water mixing pipe 2
3. Each flow path of the cathode-side generated water drain pipe 22 is provided with a flow rate control valve 25°21.20 at an appropriate position.
第4図〜第6図は、第1図〜第3図の装置に殺菌水の残
留塩素濃度及びpHの自動制御回路を設けた装置を示す
。FIGS. 4 to 6 show an apparatus in which the apparatus shown in FIGS. 1 to 3 is provided with an automatic control circuit for the residual chlorine concentration and pH of the sterilizing water.
すなわち、混合希釈部26に接続される殺菌水吐出管2
7の流路に、残留塩素濃度測定装置30及びpH測定装
置33を配設する。That is, the sterile water discharge pipe 2 connected to the mixing dilution section 26
A residual chlorine concentration measuring device 30 and a pH measuring device 33 are disposed in the flow path No. 7.
そして、希釈用原水のみで希釈する場合は、第4図に示
すように、残留塩素濃度測定装置30゜コントローラー
31.調節計32と直流電源装置17間及びpH測定装
置33.コントローラー34、調節計35と希釈用原水
流量調節弁25間をそれぞれ電気的に接続して構成する
。When diluting with only raw water for dilution, as shown in FIG. 4, the residual chlorine concentration measuring device 30° controller 31. Between the controller 32 and the DC power supply device 17 and the pH measuring device 33. The controller 34, the controller 35, and the dilution raw water flow rate control valve 25 are electrically connected to each other.
希釈用原水及びカソード側生成水の両者で希釈する場合
は、第5図に示すように、残留塩素濃度測定装置30.
コントローラー31.調節計32と直流電源装置17間
、pH測定装置33.コントローラー34.調節計35
と希釈用原水流量調節弁25間、pH測定装置33.コ
ントローラー34、調節計35とカソード側生成水流量
調節弁21間及びpH測定装置33.コントローラー3
4、調節計35とカソード側生成水排水流量調節弁20
間をそれぞれ電気的に接続して構成する。When diluting with both raw water for dilution and water produced on the cathode side, as shown in FIG. 5, a residual chlorine concentration measuring device 30.
Controller 31. Between the controller 32 and the DC power supply 17, the pH measuring device 33. Controller 34. Controller 35
and the dilution raw water flow rate control valve 25, and the pH measuring device 33. Between the controller 34, the controller 35 and the cathode-side generated water flow rate control valve 21, and the pH measuring device 33. controller 3
4. Controller 35 and cathode side generated water drainage flow rate control valve 20
The two are electrically connected to each other.
また、カソード側生成水のみで希釈する場合は、第6図
に示すように、残留塩素濃度測定装置30、コントロー
ラー31.調節計32と直流電源装置17間、pH測定
装置33.コントローラー34.調節計35とカソード
側生成水流量調節弁21間及びpH測定装置33゜コン
トローラー34、調節計35とカソード側生成水排水流
量調節弁20間をそれぞれ電気的に接続して構成する。In addition, when diluting with only the cathode-side generated water, as shown in FIG. 6, a residual chlorine concentration measuring device 30, a controller 31. Between the controller 32 and the DC power supply 17, the pH measuring device 33. Controller 34. The controller 35 and the cathode side generated water flow rate control valve 21 are electrically connected to each other, the pH measuring device 33° controller 34, and the controller 35 and the cathode side generated water drainage flow rate control valve 20 are electrically connected to each other.
すなわち、前記残留塩素濃度測定装置30及びpH測定
装置33からの信号を、あらかじめ設定しておいた値と
比較し、電解電流並びに希釈用原水流量及び/またはカ
ソード側生成水混合流量と排水流量とを制御し、常に殺
菌水の残留塩素濃度及びpHを設定範囲内に保持するよ
うにした構成である。That is, the signals from the residual chlorine concentration measuring device 30 and the pH measuring device 33 are compared with preset values, and the electrolytic current, the dilution raw water flow rate, the cathode side produced water mixing flow rate, and the drainage flow rate are determined. The configuration is such that the residual chlorine concentration and pH of the sterilized water are always maintained within a set range.
このように、殺菌水の残留塩素濃度及びpHを測定しフ
ィードバックして自動制御することにより原水の供給圧
力、pH,電気伝導率等の変化に対しても殺菌水の性状
を安定に保つことができる。In this way, by measuring and feeding back the residual chlorine concentration and pH of sterilizing water and automatically controlling it, the properties of sterilizing water can be kept stable even when changes in raw water supply pressure, pH, electrical conductivity, etc. can.
第7図〜第9図は、自動制御のブロック図を示す。第7
図は第4図に、第8図は第5図に、第9図は第6図にそ
れぞれ示した装置に対応する。ここで示した殺菌水の残
留塩素濃度の制御方法は、電解電流を制御する方法であ
り、精度がよくかつシステム化も容易な方法である。図
示しないが、これ以外にも塩化ナトリウム水溶液濃度、
被電解水量等の電解条件や希釈用原水流量を制御する方
法がある。ただし、それらの方法は、図示した方法より
も構成が複雑になる。なお、ここでは、塩化ナトリウム
水溶液濃度、被電解水量は一定としている。7 to 9 show block diagrams of automatic control. 7th
The figures correspond to the apparatus shown in FIG. 4, FIG. 8 to FIG. 5, and FIG. 9 to FIG. 6, respectively. The method of controlling the residual chlorine concentration of sterilizing water shown here is a method of controlling the electrolytic current, and is a method that is highly accurate and easy to systemize. Although not shown, in addition to this, the concentration of sodium chloride aqueous solution,
There is a method of controlling electrolysis conditions such as the amount of water to be electrolyzed and the flow rate of raw water for dilution. However, those methods are more complex than the illustrated method. Note that here, the concentration of the sodium chloride aqueous solution and the amount of water to be electrolyzed are constant.
殺菌水の残留塩素濃度を自動制御する電気回路は、残留
塩素濃度測定装置30.電気信号を変換するコントロー
ラー31.調節計32及び直流電源装置17から構成さ
れる。一方、殺菌水のpHを自動制御する電気回路は、
pH測定装置33゜電気信号を変換するコントローラー
34.調節計35並びに希釈用水量調節弁25及び/ま
たはカソード側生成水流量調節弁21とカソード側生成
水排水流量調節弁20から構成される。The electric circuit that automatically controls the residual chlorine concentration of sterilizing water is the residual chlorine concentration measuring device 30. Controller 31 that converts electrical signals. It is composed of a controller 32 and a DC power supply device 17. On the other hand, the electric circuit that automatically controls the pH of sterilized water is
pH measuring device 33. Controller 34 for converting electrical signals. It is composed of a controller 35, a dilution water amount control valve 25, a cathode side generated water flow rate control valve 21, and a cathode side generated water drainage flow rate control valve 20.
また、装置の故障等で殺菌水の残留塩素濃度やpHが設
定範囲を大幅に逸脱したときは、例えば警報等で知らせ
るようにしてもよい。Further, if the residual chlorine concentration or pH of the sterilizing water significantly deviates from the set range due to equipment failure or the like, an alarm may be issued, for example.
原水の時間的な供給圧力変動に伴う被電解電流の変動、
あるいは季節的な原水のpH及び電気伝導率の変動とい
った外乱が多い場合は、自動制御回路を設けた装置を使
用することが好ましい。Fluctuations in the electrolyzed current due to temporal fluctuations in the supply pressure of raw water,
Alternatively, if there are many disturbances such as seasonal fluctuations in the pH and electrical conductivity of raw water, it is preferable to use a device equipped with an automatic control circuit.
殺菌水中の残留塩素濃度は、残留塩素濃度測定装置30
によって連続的に測定される。濃度信号はコントローラ
ー31を経由し調節計32にフィードバックされる。調
節計32では基準となる残留塩素濃度設定値とフィード
バック信号とを比較し、偏差に応じて直流電源装置17
へ制御信号を送り電解電流を制御する。この演算に用い
る残留塩素濃度とOXX電電流関係は、第11図及び第
13図から得られる。The residual chlorine concentration in the sterilized water is measured using the residual chlorine concentration measuring device 30.
Continuously measured by The concentration signal is fed back to the controller 32 via the controller 31. The controller 32 compares the reference residual chlorine concentration set value with the feedback signal, and adjusts the DC power supply 17 according to the deviation.
to control the electrolytic current. The relationship between the residual chlorine concentration and the OXX current used in this calculation can be obtained from FIGS. 11 and 13.
殺菌水中のpHは、pH測定装置33により連続的に測
定される。pH信号はコントローラー34を経由し調節
計35にフィードバックされる。調節計35では基準と
なるpH設定値とコントローラー34で変換されたフィ
ードバック信号とを比較し偏差に応じて希釈用原水流量
調節弁25及び/またはカソード側生成水流量調節弁2
1とカソード側生成水排水流量調節弁20へ制御信号を
送り混合希釈水量を制御する。この演算に用いるpHと
Ox比電電流関係は第12図及び第14図から得られる
。The pH in the sterilized water is continuously measured by the pH measuring device 33. The pH signal is fed back to the controller 35 via the controller 34. The controller 35 compares the reference pH setting value with the feedback signal converted by the controller 34, and depending on the deviation, controls the dilution raw water flow rate control valve 25 and/or the cathode side generated water flow rate control valve 2.
1 and the cathode side produced water drainage flow rate control valve 20 to control the amount of mixing and dilution water. The relationship between pH and Ox specific electric current used in this calculation can be obtained from FIGS. 12 and 14.
(作用)
本発明の装置によれば、塩化ナトリウム水溶液を右隅膜
電解することにより殺菌水を製造することができるが、
電解槽における反応は以下のとおりである。(Function) According to the apparatus of the present invention, sterilized water can be produced by electrolyzing a sodium chloride aqueous solution with the right corner membrane.
The reaction in the electrolytic cell is as follows.
被電解水は、直流電流により電解される。アノード側で
は塩素イオンが次の反応により次亜塩素酸となり、カソ
ード側ではナトリウムイオンと水の反応で苛性ソーダと
水素ガスが生じる。また、この反応で、アノード側は酸
性になりカソード側はアルカリ性になる。The water to be electrolyzed is electrolyzed by direct current. On the anode side, chlorine ions become hypochlorous acid through the following reaction, and on the cathode side, sodium ions and water react to produce caustic soda and hydrogen gas. Also, in this reaction, the anode side becomes acidic and the cathode side becomes alkaline.
アノード側:
2 CI2− = CI2 g + 2 eCβ、+H
iO−IH”+Cβ−+HCl20カソード側:
2 N a ” + 2 Ht O+ 26−2NaO
H+H* T
なお、次亜塩素酸(HCJ20)の存在比は前述した如
<pHによって変化する。Anode side: 2 CI2- = CI2 g + 2 eCβ, +H
iO-IH"+Cβ-+HCl20 cathode side: 2 Na" + 2 Ht O+ 26-2NaO
H+H*T Note that the abundance ratio of hypochlorous acid (HCJ20) changes depending on the pH as described above.
また、アノード側生成水の残留塩素濃度及びpHは被電
解水量と電解電流により(以下、「OXX電電流という
)変化し、Ox比電電流大きくすれば残留塩素濃度は大
きくなり、pl(は低くなる。Ox比電電流小さくすれ
ば残留塩素濃度は小さくなり、pHは中性に近づく (
第11図、第12図参照)。ここで、ox比電電流次式
により算出される。In addition, the residual chlorine concentration and pH of the water produced on the anode side change depending on the amount of water to be electrolyzed and the electrolytic current (hereinafter referred to as "OXX current"), and as the Ox specific current increases, the residual chlorine concentration increases, and the PL (pl) decreases. By decreasing the Ox specific electric current, the residual chlorine concentration will decrease, and the pH will approach neutrality (
(See Figures 11 and 12). Here, ox specific electric current is calculated by the following formula.
OXX電電流クーロン/I2)
アノード側被電解水量(I2/m1nlただし、Ox比
電電流量過大にするとジュール熱による水温上昇が大き
く危険である。OXX electric current coulomb/I2) Anode side electrolyzed water amount (I2/mlnl) However, if the Ox specific electric current amount is excessive, the water temperature will rise due to Joule heat, which is dangerous.
アノード側で生成した残留塩素濃度の高い水は、原水分
岐部で分岐された希釈用原水及び/またはカソード側生
成水と合流し混合希釈されて、残留塩素濃度及びpHが
設定範囲内に制御され殺菌水として装置より吐出される
。カソード側生成水は、混合しない場合あるいは混合量
が少なく余った場合には、カソード側生成排水流量調節
弁を経由し装置外に排出される。The water with a high residual chlorine concentration generated on the anode side is combined with the raw water for dilution branched off at the raw water branch and/or the water generated on the cathode side, where it is mixed and diluted, and the residual chlorine concentration and pH are controlled within the set range. It is discharged from the device as sterile water. When the cathode-side generated water is not mixed or when the mixed amount is small and there is a surplus, the cathode-side generated water is discharged to the outside of the apparatus via the cathode-side generated wastewater flow rate control valve.
以下、本発明の作用を第1図〜第3図に基づきさらに詳
細に説明する。Hereinafter, the operation of the present invention will be explained in more detail based on FIGS. 1 to 3.
まず、塩化ナトリウム水溶液は、例えば5〜10%濃度
とし、貯蔵クンク10から添加ポンプ11により被電解
水導入管5に所定の濃度になるように添加される。First, the sodium chloride aqueous solution has a concentration of, for example, 5 to 10%, and is added from the storage tank 10 to the water to be electrolyzed inlet pipe 5 by the addition pump 11 so as to have a predetermined concentration.
被電解水は、アノード側被電解水導入管8、カソード側
被電解水導入管9を経由し電解槽2に供給され、直流電
源装置17により印加電解される。そして、それぞれ酸
性水及びアルカリ水となり、アノード側生成水導出管1
8、カソード側生成水導出管19から排出される。被電
解水量の調節は、調節弁6.7で行ない、電解電流は直
流電源装置17によって調整する。この直流電源装置1
7は、原水の電気伝導率等の変化に対応できるように定
電制御装置を有しており、設定した電解電流に保持する
ことができる。The water to be electrolyzed is supplied to the electrolytic cell 2 via an anode-side electrolyzed water introduction pipe 8 and a cathode-side electrolyzed water introduction pipe 9, and is electrolyzed by a DC power supply 17. Then, they become acidic water and alkaline water, respectively, and the generated water outlet pipe 1 on the anode side
8. The generated water is discharged from the cathode side discharge pipe 19. The amount of water to be electrolyzed is adjusted by a control valve 6.7, and the electrolysis current is adjusted by a DC power supply 17. This DC power supply device 1
No. 7 has a constant current control device so as to be able to respond to changes in the electrical conductivity of raw water, etc., and can maintain the electrolytic current at a set value.
原水分岐部4で分かれた希釈用原水は、塩化ナトリウム
水溶液を添加せず、かつ電解槽2を通過させずに希釈用
原水導管24を経由させ、混合希釈部26でアノード側
で生成した残留塩素濃度の高い水を混合希釈する。The raw water for dilution separated in the raw water branching section 4 is passed through the raw water conduit 24 for dilution without adding an aqueous sodium chloride solution and without passing through the electrolytic cell 2, and the residual chlorine generated on the anode side is removed in the mixing dilution section 26. Mix and dilute with highly concentrated water.
希釈用原水の流量は、流量調節弁25により、殺菌水が
所定の残留塩素濃度及びpHの範囲になるように調整す
る。また、第2図及び第3図に示すようにカソード側生
成水により混合する場合は、カソード側生成水流量調節
弁21及びカソード側生成水排水流量調節弁20を調節
して混合希釈部26で合流させればpHの調整を行うこ
とができる。The flow rate of the raw water for dilution is adjusted by the flow control valve 25 so that the sterilized water has a predetermined residual chlorine concentration and pH range. In addition, as shown in FIGS. 2 and 3, when mixing with cathode-side generated water, adjust the cathode-side generated water flow rate control valve 21 and the cathode-side generated water drainage flow rate control valve 20 and use the mixing dilution section 26. By merging them together, the pH can be adjusted.
その結果、残留塩素濃度とpHが所定の範囲内に調整さ
れた殺菌水が製造され、殺菌水吐出管27から排出され
る。As a result, sterilized water whose residual chlorine concentration and pH are adjusted within a predetermined range is produced and discharged from the sterilized water discharge pipe 27.
(実施例)
以下、第1表に示す仕様を有する本発明の製造装置によ
り製造された殺菌水の例を説明する。(Example) Hereinafter, an example of sterilized water produced by the production apparatus of the present invention having specifications shown in Table 1 will be described.
第1表
夾癒炭ユ
電気伝導率138uS/cm、pH7,6,残留塩素濃
度0.lppmの原水に5%濃度の塩化ナトリウム水溶
液を、アノード側被電解水量12/min 、カソード
側被電解水量IJ2/minの計2β/minに50c
c/min添加し、塩化ナトリウム濃度を1250 p
pmとした。これにより被電解水の電気伝導率は約22
00μS/cmまで上昇した。First surface: Charcoal-charcoal conductivity: 138 uS/cm, pH: 7.6, residual chlorine concentration: 0. A 5% concentration sodium chloride aqueous solution was added to lppm raw water at a rate of 2β/min, anode side electrolyzed water amount 12/min, cathode side electrolyzed water amount IJ2/min, at 50 c.
c/min to bring the sodium chloride concentration to 1250 p.
It was set as pm. As a result, the electrical conductivity of the water to be electrolyzed is approximately 22
It rose to 00 μS/cm.
この被電解水を電圧7V、電解電流6Aで電解すると、
アノード側生成水はpH2,7,残留塩素濃度70pp
m、カソード側生成水はpH11,4,残留塩素濃度0
.3ppmであった。When this electrolyzed water is electrolyzed with a voltage of 7V and an electrolytic current of 6A,
The water produced on the anode side has a pH of 2.7 and a residual chlorine concentration of 70pp.
m, the cathode side generated water has a pH of 11.4 and a residual chlorine concentration of 0.
.. It was 3 ppm.
このアノード側生成水II2に、希釈水として原水を4
f2混合したところ、pH6,1,残留塩素濃度15p
pmの殺菌水5氾が得られた。Add raw water to this anode side generated water II2 as dilution water.
When f2 was mixed, the pH was 6.1 and the residual chlorine concentration was 15p.
5 pm of sterile water was obtained.
裏腹1
実施例1で得られたアノード側生成水1βに、希釈水と
して原水を42及びカソード側生成水を0.312混合
したところ、pH7,0,残留塩素濃度15ppmの殺
菌水5.3βが得られた。Contrary 1 When the anode-side produced water 1β obtained in Example 1 was mixed with 42% of raw water and 0.312% of the cathode-side produced water as dilution water, 5.3β of sterilized water with a pH of 7.0 and a residual chlorine concentration of 15 ppm was obtained. Obtained.
!族週1
実施例1で得られたアノード側生成水1℃に、希釈水と
してカソード側生成水を0.6君混合したところ、pH
6,9,残留塩素濃度50ppmの殺菌水1.62が得
られた。! Group 1 When 0.6 degrees of the cathode side generated water was mixed as dilution water to 1°C of the anode side generated water obtained in Example 1, the pH
6,9, 1.62 sterilized water with a residual chlorine concentration of 50 ppm was obtained.
夾胤廻A
電気伝導率139μS/cm、pH7,4,残留塩素濃
度0.lppmの原水に5%濃度の塩化ナトリウム水溶
液を、アノード側被電解水量II2/min 、カソー
ド側被電解水量II2/minの計2℃/minに50
cc/ min添加し、塩化ナトリウム濃度を125
0ppmとした。これにより被電解水の電気伝導率は約
2200μS/cmまで上昇した。Kyotane Mawari A Electrical conductivity 139 μS/cm, pH 7.4, residual chlorine concentration 0. A 5% concentration sodium chloride aqueous solution was added to lppm raw water at a rate of 2°C/min, the amount of electrolyzed water on the anode side II2/min and the amount of electrolyzed water on the cathode side II2/min at 50°C.
cc/min, and the sodium chloride concentration was 125
It was set to 0 ppm. As a result, the electrical conductivity of the water to be electrolyzed increased to about 2200 μS/cm.
この被電解水を電圧12V、電解電流11Aで電解する
とアノード側生成水は、pH2,8,残留塩素濃度16
0ppm、カソード側生成水はpH11,5゜残留塩素
濃度0.3ppmであった。When this water to be electrolyzed is electrolyzed with a voltage of 12V and an electrolytic current of 11A, the water produced on the anode side has a pH of 2.8 and a residual chlorine concentration of 16.
The pH of the water produced on the cathode side was 11.5°, and the residual chlorine concentration was 0.3 ppm.
このアノード側生成水1βに、希釈水として原水を3℃
混合したところ、p)I!5.8.残留塩素濃度40p
pmの殺菌水4I2が得られた。Add raw water as dilution water to this anode-side generated water 1β at 3°C.
When mixed, p) I! 5.8. Residual chlorine concentration 40p
pm sterilized water 4I2 was obtained.
K旌丞1
実施例4で得られたアノード側生成水II2に、希釈水
として原水を312及びカソード側生成水を0.312
混合したところ、pH6,6,残留塩素濃度40 pp
mの殺菌水4.3℃が得られた。K Jyojo 1 To the anode side generated water II2 obtained in Example 4, 312% of raw water and 0.312% of cathode side generated water were added as dilution water.
When mixed, the pH was 6.6 and the residual chlorine concentration was 40 pp.
m of sterilized water at 4.3°C was obtained.
夾胤±l
実施例4で得られたアノード側生成水II2に、希釈水
としてカソード側生成水を0.6℃混合したところ、p
H6,8,残留塩素濃度100 ppmの殺菌水1.6
12が得られた。When the anode side generated water II2 obtained in Example 4 was mixed with the cathode side generated water at 0.6°C as dilution water, p
H6.8, sterilized water with residual chlorine concentration 100 ppm 1.6
12 were obtained.
なお、第2表及び第3表にこれらの殺菌水を使った殺菌
試験結果を示す。Note that Tables 2 and 3 show the results of sterilization tests using these sterilized waters.
(発明の効果)
本発明の装置によれば、塩化ナトリウム水溶液を有限膜
電解し、アノード側に残留塩素濃度の高い水を生成させ
、それを希釈用原水及び/またはカソード側生成水で混
合希釈することにより、残留塩素濃度及びpHを所定の
範囲にコントロールした殺菌水を連続的に製造できる。(Effects of the Invention) According to the apparatus of the present invention, a sodium chloride aqueous solution is subjected to finite membrane electrolysis to generate water with a high residual chlorine concentration on the anode side, which is mixed and diluted with raw water for dilution and/or water produced on the cathode side. By doing so, sterilized water with residual chlorine concentration and pH controlled within a predetermined range can be continuously produced.
殺菌効果の大きい次亜塩素酸の存在比の高いpH4〜6
で使用できるため次亜塩素酸希釈水溶液よりも低い残留
塩素濃度でも従来と同等の殺菌効果を発揮できる。pH 4 to 6 with a high abundance of hypochlorous acid, which has a large bactericidal effect
Because it can be used with aqueous diluted hypochlorous acid solution, it can exhibit the same sterilizing effect as conventional methods even with a lower residual chlorine concentration than diluted hypochlorous acid aqueous solution.
また、簡単な操作で殺菌水の製造ができるので安全性及
び操作性の点で優れており、しかも使用場所で必要量だ
け殺菌水を連続的に供給することができるという点でも
非常に優れている。したがって、調理環境衛生用1手洗
い用3食品材料用、おしぼり用等の殺菌水を始め、食品
加工流通分野、飲用水、プール用水、医療分野等、広範
囲の分野に適用可能な殺菌水を低コストで供給可能であ
る。In addition, it is superior in terms of safety and operability because it can produce sterilized water with simple operations, and it is also extremely superior in that it can continuously supply the required amount of sterilized water at the place of use. There is. Therefore, we can provide low-cost sterilized water that can be used in a wide range of fields, including sterilized water for cooking environment hygiene, 1 for hand washing, 3 for food ingredients, and for wet towels, as well as food processing and distribution fields, drinking water, pool water, and medical fields. Available in
さらに、殺菌水の残留塩素濃度及びpHを自動制御する
回路を設ければ、原水の供給圧力。Furthermore, if a circuit is installed to automatically control the residual chlorine concentration and pH of sterilized water, the supply pressure of raw water can be reduced.
pH,電気伝導率等の変化にかかわらず安定した殺菌水
を供給することが可能で、殺菌効果をより高めることが
できる。また、各流量調整、電流調整等の調整監視作業
が不要となり省力化できる。Stable sterilizing water can be supplied regardless of changes in pH, electrical conductivity, etc., and the sterilizing effect can be further enhanced. Further, adjustment and monitoring work such as flow rate adjustment and current adjustment is not required, resulting in labor savings.
第1図〜第3図は本発明の殺菌水製造装置の概略系統図
であり、第4図〜第9図は自動制御回路を設けた殺菌水
製造装置の概略系統図及び電気回路ブロック図であり、
第10図は遊離塩素濃度存在比とpHの関係を表わす図
であり、第’11図はOx比電電流残留塩素濃度の関係
の一例を表わす図であり、第12図はOx比電電流pH
の関係の一例を表わす図であり、第13図は希釈倍率と
残留塩素濃度の関係の一例を表わす図であり、第14図
は希釈倍率とpHの関係の一例を表わす図である。
l:殺菌水製造装置、2:電解槽、3:原水導入管、4
:原水分岐部、5:被電解水導入管、6:アノード側電
解水流量調節弁、7:カソド側電解水流量調節弁、8ニ
アノード側被電解水導入管、9:カソード側被電解水導
入管、lO:塩化ナトリウム水溶液貯蔵タンク、ll:
塩化ナトリウム水溶液添加ポンプ、12a、12b:電
解槽ケーシング、13ニアノード、14:カソード、1
5a、15bニスペーサ−116:隔膜、17:直流電
解装置、18ニアノード側生成水導出管、19:カソー
ド側生成水導出管、20:カソード側生成水排水流量調
節弁、21:カソード側生成水流量調節弁、22:カソ
ード側生成水排水管、23:カソード側生成水混合管、
24:希釈用原水導管、25:希釈用原水流量調節弁、
26:混合希釈部、27:殺菌水吐出管、30:残留塩
素濃度測定装置、31:コントローラー、32:調節計
、33:pH測定装置、34:コントローラー、35:
調節計Figures 1 to 3 are schematic system diagrams of the sterilized water production apparatus of the present invention, and Figures 4 to 9 are schematic system diagrams and electric circuit block diagrams of the sterilized water production apparatus equipped with an automatic control circuit. can be,
Figure 10 is a diagram showing the relationship between free chlorine concentration abundance ratio and pH, Figure 11 is a diagram showing an example of the relationship between Ox specific electric current and residual chlorine concentration, and Figure 12 is a diagram showing an example of the relationship between Ox specific electric current and residual chlorine concentration.
FIG. 13 is a diagram showing an example of the relationship between dilution ratio and residual chlorine concentration, and FIG. 14 is a diagram showing an example of the relationship between dilution ratio and pH. l: Sterilized water production device, 2: Electrolytic cell, 3: Raw water introduction pipe, 4
: Raw water branch, 5: Electrolyzed water introduction pipe, 6: Anode side electrolyzed water flow control valve, 7: Cathode side electrolyzed water flow control valve, 8 Near node side electrolyzed water introduction pipe, 9: Cathode side electrolyzed water introduction Tube, lO: Sodium chloride aqueous solution storage tank, l:
Sodium chloride aqueous solution addition pump, 12a, 12b: Electrolytic cell casing, 13 near node, 14: cathode, 1
5a, 15b spacer - 116: diaphragm, 17: DC electrolyzer, 18 near node side generated water outlet pipe, 19: cathode side generated water outlet pipe, 20: cathode side generated water drainage flow rate control valve, 21: cathode side generated water flow rate Control valve, 22: Cathode side generated water drain pipe, 23: Cathode side generated water mixing pipe,
24: Raw water conduit for dilution, 25: Raw water flow rate control valve for dilution,
26: Mixing dilution section, 27: Sterilizing water discharge pipe, 30: Residual chlorine concentration measuring device, 31: Controller, 32: Controller, 33: pH measuring device, 34: Controller, 35:
controller
Claims (9)
ード室とカソード室とに分離された電解槽; 原水導入管から供給される原水と、塩化ナトリウム水溶
液添加手段から供給される塩化ナトリウム水溶液とを混
合して成る被電解水を、該アノード室とカソード室に供
給する導入管; 該アノード室とカソード室のそれぞれから生成水を取り
出す導出管; 該アノード室から取り出された生成水と、該原水導入管
の中途で分岐させた希釈用原水導管から供給される原水
とを混合希釈する手段; を有することを特徴とする殺菌水製造装置。(1) DC power supply device for electrolysis; An electrolytic cell that has a diaphragm between the anode and cathode and both electrodes and is separated into an anode chamber and a cathode chamber; Raw water supplied from the raw water introduction pipe and addition of an aqueous sodium chloride solution An inlet pipe for supplying electrolyzed water mixed with an aqueous sodium chloride solution supplied from the means to the anode chamber and the cathode chamber; an outlet pipe for taking out produced water from each of the anode chamber and the cathode chamber; the anode chamber A device for producing sterilized water, comprising: means for mixing and diluting produced water taken out from the source and raw water supplied from a dilution raw water conduit branched midway through the raw water introduction pipe.
ード室から取り出された生成水と、該原水導入管の中途
で分岐させた希釈用原水導管から供給される原水とを混
合希釈する手段に代えて、該アノード室から取り出され
た生成水と、該原水導入管の中途で分岐させた希釈用原
水導管から供給される原水及びカソード室から取り出さ
れた生成水とを混合希釈する手段を有する殺菌水製造装
置。(2) In the sterilized water production apparatus according to claim 1, means for mixing and diluting the produced water taken out from the anode chamber and the raw water supplied from the dilution raw water conduit branched midway through the raw water introduction pipe. Instead, a means for mixing and diluting the produced water taken out from the anode chamber with the raw water supplied from the dilution raw water conduit branched in the middle of the raw water introduction pipe and the produced water taken out from the cathode chamber is provided. Sterilized water production equipment.
ード室から取り出された生成水と、該原水導入管の中途
で分岐させた希釈用原水導管から供給される原水とを混
合希釈する手段に代えて、該アノード室から取り出され
た生成水と、カソード室から取り出された生成水とを混
合希釈する手段を有する殺菌水製造装置。(3) In the sterilized water production apparatus according to claim 1, means for mixing and diluting the produced water taken out from the anode chamber and the raw water supplied from the dilution raw water conduit branched midway through the raw water introduction pipe. Instead, a sterilized water production device has means for mixing and diluting the produced water taken out from the anode chamber and the produced water taken out from the cathode chamber.
原水導管の流路に流量調節弁を設け、かつ、混合希釈部
の後に接続される殺菌水吐出管の流路に殺菌水の残留塩
素濃度を測定する装置とpHを測定する装置を配設し、
該残留塩素濃度測定装置と直流電源装置間及び該pH測
定装置と希釈用原水流量調節弁間をそれぞれ電気的に接
続し、該残留塩素濃度測定装置及び該pH測定装置から
の信号をあらかじめ設定しておいた値と比較して、電解
電流及び希釈用原水流量を制御し、常に殺菌水の残留塩
素濃度及びpHを設定範囲内に保持する自動制御回路を
設けたことを特徴とする殺菌水製造装置。(4) In the sterilized water production device according to claim 1, a flow rate control valve is provided in the flow path of the raw water conduit for dilution, and sterilized water remains in the flow path of the sterilized water discharge pipe connected after the mixing and dilution section. A device to measure chlorine concentration and a device to measure pH are installed.
Electrically connect the residual chlorine concentration measuring device and the DC power supply device and the pH measuring device and the dilution raw water flow rate control valve, respectively, and set the signals from the residual chlorine concentration measuring device and the pH measuring device in advance. Sterilizing water production characterized by being equipped with an automatic control circuit that controls the electrolytic current and the flow rate of raw water for dilution and always maintains the residual chlorine concentration and pH of the sterilizing water within a set range by comparing them with the set values. Device.
原水導管の流路とカソード側生成水導出管の流路にそれ
ぞれ希釈用原水流量調節弁及びカソード側生成水流量調
節弁とカソード側生成水排水流量調節弁を設け、かつ、
混合希釈部の後に接続される殺菌水吐出管の流路に殺菌
水の残留塩素濃度を測定する装置とpHを測定する装置
を配設し、該残留塩素濃度測定装置と直流電源装置間、
該pH測定装置と希釈用原水流量調節弁間、該pH測定
装置とカソード側生成水流量調節弁間及び該pH測定装
置とカソード側生成水排水流量調節弁間をそれぞれ電気
的に接続し、該残留塩素濃度測定装置及び該pH測定装
置からの信号をあらかじめ設定しておいた値と比較して
、電解電流、希釈用原水流量、カソード側生成水混合流
量及びカソード側生成水排水流量を制御し、常に殺菌水
の残留塩素濃度及びpHを設定範囲内に保持する自動制
御回路を設けたことを特徴とする殺菌水製造装置。(5) In the sterilized water production device according to claim 2, there is a dilution raw water flow rate control valve in the flow path of the dilution raw water conduit and a flow path of the cathode side generated water outlet pipe, and a cathode side generated water flow rate control valve and the cathode side generated water flow rate control valve. A generated water drainage flow rate control valve is installed, and
A device for measuring the residual chlorine concentration of the sterilizing water and a device for measuring the pH are installed in the flow path of the sterilizing water discharge pipe connected after the mixing dilution section, and between the residual chlorine concentration measuring device and the DC power supply device,
Electrically connect the pH measurement device and the dilution raw water flow rate control valve, the pH measurement device and the cathode side generated water flow rate control valve, and the pH measurement device and the cathode side generated water drainage flow rate control valve, respectively. The signals from the residual chlorine concentration measuring device and the pH measuring device are compared with preset values to control the electrolytic current, the flow rate of raw water for dilution, the mixing flow rate of produced water on the cathode side, and the flow rate of waste water produced on the cathode side. A sterilized water production device characterized by being provided with an automatic control circuit that always maintains the residual chlorine concentration and pH of the sterilized water within a set range.
ド側生成水導出管の流路にカソード側生成水流量調節弁
及びカソード側生成水排水流量調節弁を設け、かつ、混
合希釈部の後に接続される殺菌水吐出管の流路に殺菌水
の残留塩素濃度を測定する装置とpHを測定する装置を
配設し、該残留塩素濃度測定装置と直流電源装置間、p
H測定装置とカソード側生成水流量調節弁間及びpH測
定装置とカソード側生成水排水流量調節弁間をそれぞれ
電気的に接続し、該残留塩素濃度測定装置及び該pH測
定装置からの信号をあらかじめ設定しておいた値と比較
して、電解電流、カソード側生成水混合流量及びカソー
ド側生成水排水流量を制御し、常に殺菌水の残留塩素濃
度及びpHを設定範囲内に保持する自動制御回路を設け
たことを特徴とする殺菌水製造装置。(6) In the sterilized water production device according to claim 3, a cathode-side produced water flow rate control valve and a cathode-side produced water drainage flow rate control valve are provided in the flow path of the cathode-side produced water outlet pipe, and after the mixing and dilution section. A device for measuring the residual chlorine concentration of the sterilizing water and a device for measuring the pH are installed in the flow path of the sterilizing water discharge pipe to be connected, and between the residual chlorine concentration measuring device and the DC power supply device,
The H measuring device and the cathode side generated water flow rate control valve are electrically connected, and the pH measuring device and the cathode side generated water drainage flow rate control valve are electrically connected, respectively, and the signals from the residual chlorine concentration measuring device and the pH measuring device are connected in advance. An automatic control circuit that compares the electrolytic current, cathode side generated water mixing flow rate, and cathode side generated water drainage flow rate with the set values, and always maintains the residual chlorine concentration and pH of the sterilizing water within the set range. A sterilized water production device characterized by being provided with.
る原水とを混合して成る被電解水を、アノード室とカソ
ード室とを有する電解槽に供給して電解し、ついで、該
アノード室から取り出された生成水を、該原水導入管の
中途で分岐させた希釈用原水導管から供給される原水で
混合希釈することを特徴とする殺菌水の製造方法。(7) Water to be electrolyzed, which is a mixture of an aqueous sodium chloride solution and raw water supplied from the raw water introduction pipe, is supplied to an electrolytic cell having an anode chamber and a cathode chamber for electrolysis, and then taken out from the anode chamber. A method for producing sterilized water, characterized in that the produced water is mixed and diluted with raw water supplied from a dilution raw water conduit branched midway through the raw water introduction pipe.
用原水導管から供給される原水で混合希釈する構成に代
えて、希釈用原水導管から供給される原水及びカソード
室から取り出された生成水で混合希釈する構成を有する
殺菌水の製造方法。(8) In the method for producing sterilized water according to claim 7, instead of mixing and diluting with the raw water supplied from the dilution raw water conduit, raw water supplied from the dilution raw water conduit and generated water taken out from the cathode chamber A method for producing sterilizing water having a configuration of mixing and diluting with water.
用原水導管から供給される原水で混合希釈する構成に代
えて、カソード室から取り出された生成水で混合希釈す
る構成を有する殺菌水の製造方法。(9) In the method for producing sterilized water according to claim 7, the sterilized water has a configuration in which the sterilized water is mixed and diluted with produced water taken out from the cathode chamber, instead of being mixed and diluted with raw water supplied from the dilution raw water conduit. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63300997A JPH02149395A (en) | 1988-11-30 | 1988-11-30 | Apparatus and method of preparing aqueous disinfectant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63300997A JPH02149395A (en) | 1988-11-30 | 1988-11-30 | Apparatus and method of preparing aqueous disinfectant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02149395A true JPH02149395A (en) | 1990-06-07 |
JPH0442077B2 JPH0442077B2 (en) | 1992-07-10 |
Family
ID=17891585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63300997A Granted JPH02149395A (en) | 1988-11-30 | 1988-11-30 | Apparatus and method of preparing aqueous disinfectant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02149395A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04197488A (en) * | 1990-11-28 | 1992-07-17 | Japan Storage Battery Co Ltd | Electrolytic water maker |
JPH04330986A (en) * | 1991-04-30 | 1992-11-18 | Yukiaki Matsuo | Production of free chlorine water and equipment therefor |
JPH06335684A (en) * | 1993-05-28 | 1994-12-06 | Corona Kogyo Kk | Sterilized water producing device |
JPH07171204A (en) * | 1993-12-20 | 1995-07-11 | Mizu Kk | Sterilization and cleaning apparatus and method for sterilization and cleaning |
JPH07214063A (en) * | 1994-02-05 | 1995-08-15 | Permelec Electrode Ltd | Production of electrolytic acidic water and producting device therefor |
JPH07299126A (en) * | 1994-03-09 | 1995-11-14 | Hoshizaki Electric Co Ltd | Method for cleaning and sterilization |
JPH11239791A (en) * | 1998-02-24 | 1999-09-07 | Fuji Electric Co Ltd | Electrolytic water supply apparatus |
JP2002205067A (en) * | 2001-01-12 | 2002-07-23 | Hoshizaki Electric Co Ltd | Washing water having sterilizing ability and its manufacturing method |
JP2002210466A (en) * | 2001-01-16 | 2002-07-30 | Asahi Pretec Corp | Method and device for generating electrolytic water by which discharge quantity of drainage is reduced |
JP2007195539A (en) * | 2005-12-27 | 2007-08-09 | Tominaga Oil Pump Mfg Co Ltd | Method and system for cleaning and sterilizing egg shell |
JP2010075192A (en) * | 2005-12-27 | 2010-04-08 | Tominaga Oil Pump Mfg Co Ltd | Method for cleaning and sterilizing |
JP2011016065A (en) * | 2009-07-08 | 2011-01-27 | First Ocean Kk | Electrolytic water mixing apparatus |
US8834445B2 (en) | 2006-01-20 | 2014-09-16 | Oculus Innovative Sciences, Inc. | Methods of treating or preventing peritonitis with oxidative reductive potential water solution |
US8840873B2 (en) | 2005-03-23 | 2014-09-23 | Oculus Innovative Sciences, Inc. | Method of treating second and third degree burns using oxidative reductive potential water solution |
JP2015147177A (en) * | 2014-02-06 | 2015-08-20 | 株式会社コスモ技研 | Mixing device of electrolytic water |
US9162904B2 (en) | 2011-03-04 | 2015-10-20 | Tennant Company | Cleaning solution generator |
US9168318B2 (en) | 2003-12-30 | 2015-10-27 | Oculus Innovative Sciences, Inc. | Oxidative reductive potential water solution and methods of using the same |
US9498548B2 (en) | 2005-05-02 | 2016-11-22 | Oculus Innovative Sciences, Inc. | Method of using oxidative reductive potential water solution in dental applications |
US9556526B2 (en) | 2012-06-29 | 2017-01-31 | Tennant Company | Generator and method for forming hypochlorous acid |
JP2017156089A (en) * | 2016-02-29 | 2017-09-07 | 株式会社日立ハイテクノロジーズ | Electrolyte analyzer |
US10342825B2 (en) | 2009-06-15 | 2019-07-09 | Sonoma Pharmaceuticals, Inc. | Solution containing hypochlorous acid and methods of using same |
JP7381808B1 (en) * | 2022-03-17 | 2023-11-16 | 株式会社エナジックインターナショナル | Electrolyzed water generator and control method for electrolyzed water generator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167600A (en) * | 2010-02-16 | 2011-09-01 | Hoshizaki Electric Co Ltd | Electrolytic water generator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102890A (en) * | 1985-10-28 | 1987-05-13 | Toyo Kagaku Kenkyusho:Kk | Device for producing sterile water |
JPH01317591A (en) * | 1988-06-17 | 1989-12-22 | Kondo Susumu | Production of treated water and device therefor |
-
1988
- 1988-11-30 JP JP63300997A patent/JPH02149395A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102890A (en) * | 1985-10-28 | 1987-05-13 | Toyo Kagaku Kenkyusho:Kk | Device for producing sterile water |
JPH01317591A (en) * | 1988-06-17 | 1989-12-22 | Kondo Susumu | Production of treated water and device therefor |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04197488A (en) * | 1990-11-28 | 1992-07-17 | Japan Storage Battery Co Ltd | Electrolytic water maker |
JPH0534079B2 (en) * | 1990-11-28 | 1993-05-21 | Japan Storage Battery Co Ltd | |
JPH04330986A (en) * | 1991-04-30 | 1992-11-18 | Yukiaki Matsuo | Production of free chlorine water and equipment therefor |
JPH06335684A (en) * | 1993-05-28 | 1994-12-06 | Corona Kogyo Kk | Sterilized water producing device |
JPH07171204A (en) * | 1993-12-20 | 1995-07-11 | Mizu Kk | Sterilization and cleaning apparatus and method for sterilization and cleaning |
JPH07214063A (en) * | 1994-02-05 | 1995-08-15 | Permelec Electrode Ltd | Production of electrolytic acidic water and producting device therefor |
JPH07299126A (en) * | 1994-03-09 | 1995-11-14 | Hoshizaki Electric Co Ltd | Method for cleaning and sterilization |
JPH11239791A (en) * | 1998-02-24 | 1999-09-07 | Fuji Electric Co Ltd | Electrolytic water supply apparatus |
JP2002205067A (en) * | 2001-01-12 | 2002-07-23 | Hoshizaki Electric Co Ltd | Washing water having sterilizing ability and its manufacturing method |
JP2002210466A (en) * | 2001-01-16 | 2002-07-30 | Asahi Pretec Corp | Method and device for generating electrolytic water by which discharge quantity of drainage is reduced |
US9168318B2 (en) | 2003-12-30 | 2015-10-27 | Oculus Innovative Sciences, Inc. | Oxidative reductive potential water solution and methods of using the same |
US10016455B2 (en) | 2003-12-30 | 2018-07-10 | Sonoma Pharmaceuticals, Inc. | Method of preventing or treating influenza with oxidative reductive potential water solution |
US9642876B2 (en) | 2003-12-30 | 2017-05-09 | Sonoma Pharmaceuticals, Inc. | Method of preventing or treating sinusitis with oxidative reductive potential water solution |
US8840873B2 (en) | 2005-03-23 | 2014-09-23 | Oculus Innovative Sciences, Inc. | Method of treating second and third degree burns using oxidative reductive potential water solution |
US9498548B2 (en) | 2005-05-02 | 2016-11-22 | Oculus Innovative Sciences, Inc. | Method of using oxidative reductive potential water solution in dental applications |
JP2007195539A (en) * | 2005-12-27 | 2007-08-09 | Tominaga Oil Pump Mfg Co Ltd | Method and system for cleaning and sterilizing egg shell |
JP2010075192A (en) * | 2005-12-27 | 2010-04-08 | Tominaga Oil Pump Mfg Co Ltd | Method for cleaning and sterilizing |
US9072726B2 (en) | 2006-01-20 | 2015-07-07 | Oculus Innovative Sciences, Inc. | Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution |
US8834445B2 (en) | 2006-01-20 | 2014-09-16 | Oculus Innovative Sciences, Inc. | Methods of treating or preventing peritonitis with oxidative reductive potential water solution |
US9782434B2 (en) | 2006-01-20 | 2017-10-10 | Sonoma Pharmaceuticals, Inc. | Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution |
US10342825B2 (en) | 2009-06-15 | 2019-07-09 | Sonoma Pharmaceuticals, Inc. | Solution containing hypochlorous acid and methods of using same |
JP2011016065A (en) * | 2009-07-08 | 2011-01-27 | First Ocean Kk | Electrolytic water mixing apparatus |
US9162904B2 (en) | 2011-03-04 | 2015-10-20 | Tennant Company | Cleaning solution generator |
US9556526B2 (en) | 2012-06-29 | 2017-01-31 | Tennant Company | Generator and method for forming hypochlorous acid |
JP2015147177A (en) * | 2014-02-06 | 2015-08-20 | 株式会社コスモ技研 | Mixing device of electrolytic water |
JP2017156089A (en) * | 2016-02-29 | 2017-09-07 | 株式会社日立ハイテクノロジーズ | Electrolyte analyzer |
JP7381808B1 (en) * | 2022-03-17 | 2023-11-16 | 株式会社エナジックインターナショナル | Electrolyzed water generator and control method for electrolyzed water generator |
Also Published As
Publication number | Publication date |
---|---|
JPH0442077B2 (en) | 1992-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02149395A (en) | Apparatus and method of preparing aqueous disinfectant | |
US3616355A (en) | Method of generating enhanced biocidal activity in the electroylsis of chlorine containing solutions and the resulting solutions | |
US8425756B2 (en) | Apparatus and method for producing electrolyzed water | |
KR100210292B1 (en) | Electrolytic ionized water producing apparatus | |
KR0156000B1 (en) | Method and apparatus for producing sterilized water | |
US7749370B2 (en) | Manufacturing method of oxidative water to be employed for sterilization | |
JPH078768B2 (en) | Sterilized water | |
JP3051175B2 (en) | Electrolyzer for generating sterilizing solution with high ozone content | |
CN101426734B (en) | Process for producing a disinfectant by electrochemical activation (eca) of water, disinfectant produced in such a manner and use thereof | |
US8025784B2 (en) | System and method for controlling the generation of a biocidal liquid | |
CA2394859A1 (en) | Method and device for electrochemically disinfecting fluids | |
JP2000226680A (en) | Production of sterilizing electrolytic water and device therefor | |
KR20120028515A (en) | Device and method for generating sterilizer | |
JPH1076270A (en) | Method for simultaneous generation of strongly alkaline water and hypochlorous acid sterilizing water by electrolysis | |
EP0802164B1 (en) | Process for producing bactericide and for sterilizing water | |
JP3721489B2 (en) | Method and apparatus for producing sterilized cleaning water | |
JPH08318279A (en) | Sterilizing water for spore bacteria and sterilization of spore bacteria | |
KR101436111B1 (en) | Method and device for generating sterilizing agent | |
JP2892121B2 (en) | Method for producing sterile water containing hypochlorous acid by electrolysis | |
US20230132694A1 (en) | Methods and apparatuses for oxidant concentration control | |
JP3297828B2 (en) | Electrolyzed water generator and method for controlling chloride ion concentration in the electrolyzed water generator | |
JP2005125276A (en) | Sterilizing electrolytic water making apparatus | |
CN215799933U (en) | A generate device for hypochlorous acid water | |
WO2016028765A1 (en) | Apparatus for production of anolyte solution | |
JPH09295911A (en) | Production of disinfection aqueous solution and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |