JP2892121B2 - Method for producing sterile water containing hypochlorous acid by electrolysis - Google Patents

Method for producing sterile water containing hypochlorous acid by electrolysis

Info

Publication number
JP2892121B2
JP2892121B2 JP21327990A JP21327990A JP2892121B2 JP 2892121 B2 JP2892121 B2 JP 2892121B2 JP 21327990 A JP21327990 A JP 21327990A JP 21327990 A JP21327990 A JP 21327990A JP 2892121 B2 JP2892121 B2 JP 2892121B2
Authority
JP
Japan
Prior art keywords
water
electrolytic
electrolysis
chamber
hypochlorous acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21327990A
Other languages
Japanese (ja)
Other versions
JPH0494788A (en
Inventor
龍夫 岡崎
芳広 佐々木
英之 北村
勝衛 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMUKO KK
Nippon Steel Corp
Original Assignee
OMUKO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMUKO KK, Nippon Steel Corp filed Critical OMUKO KK
Priority to JP21327990A priority Critical patent/JP2892121B2/en
Publication of JPH0494788A publication Critical patent/JPH0494788A/en
Application granted granted Critical
Publication of JP2892121B2 publication Critical patent/JP2892121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電解による次亜塩素酸含有殺菌水の製造方法
に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing sterilized water containing hypochlorous acid by electrolysis.

〔発明の背景〕 次亜塩素酸水溶液はpH8以上では次亜塩素酸イオン(C
O-)となり、殺菌力が次亜塩素酸(HClO)の場合に比効
して著しく減少する。しかしpH3〜7の範囲ではHClOの
形で保たれ、殺菌力が飛躍的に増大することが知られて
おり(第2図参照)、従って、pH3〜7の次亜塩素酸水
は残留塩素濃度が30〜60ppm程度の低濃度でもpH8の残留
塩素濃度200ppm程度の殺菌水と同等の殺菌効果が得られ
る。
[Background of the Invention] An aqueous solution of hypochlorous acid has a pH of 8 or more and hypochlorite ion (C
O ), and the bactericidal activity is significantly reduced in comparison with the case of hypochlorous acid (HClO). However, it is known that in the range of pH 3 to 7, it is kept in the form of HClO and the bactericidal activity is drastically increased (see FIG. 2). However, even at a low concentration of about 30 to 60 ppm, a sterilizing effect equivalent to sterilizing water with a residual chlorine concentration of about 200 at pH 8 can be obtained.

このような殺菌水を得る方法としては従来より、水道
水等の原水に次亜塩素酸ナトリウム(NaClO)と塩酸HCl
を混合することが行われており、プール等の殺菌に利用
されている。
As a method for obtaining such sterilizing water, sodium hypochlorite (NaClO) and hydrochloric acid HCl have been conventionally added to raw water such as tap water.
Is used for sterilization of pools and the like.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、原水に次亜塩素酸ナトリウムと塩酸を
混合して上記性質の殺菌水を得る場合は殺菌水のpH値を
5〜6に調整するのに次亜塩素酸ナトリウムが比較的多
く必要になり、コスト高になる。
However, if sodium hypochlorite and hydrochloric acid are mixed with raw water to obtain sterilizing water having the above properties, relatively large amounts of sodium hypochlorite are required to adjust the pH value of sterilizing water to 5 to 6. , The cost is high.

また、単に次亜塩素酸ナトリウム(NaClO)水溶液に
塩酸(HCl水溶液)を直接混合する従来の方法は混合時
に危険な塩素ガス(Cl2)が発生するという重大ん問題
があり、さらにはpH調整が面倒であるなど、工程管理に
種々問題がある。
In addition, the conventional method of simply mixing hydrochloric acid (HCl aqueous solution) directly with sodium hypochlorite (NaClO) aqueous solution has a serious problem that dangerous chlorine gas (Cl 2 ) is generated at the time of mixing, and furthermore, pH adjustment. However, there are various problems in the process management, for example, it is troublesome.

本発明の目的は上記の諸問題を解決するためになされ
たもので、混合式にくらべ次塩素酸及び塩酸等の薬剤添
加量が少なくてすみ、安全且つ効率的にpHが3〜7、好
ましくは5〜6.5の範囲の次亜塩素酸殺菌水を製造する
方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and requires less addition of chemicals such as hypochloric acid and hydrochloric acid as compared with the mixing method, and the pH is 3 to 7 safely and efficiently, preferably. Is to provide a method for producing a hypochlorous acid sterilizing water in the range of 5 to 6.5.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の上記目的は、陽電極と陰電極間に電解隔膜を
配した電解槽に水を導入し、陽極室の水に次亜塩素酸塩
を添加するとともに、陰極室の水に塩酸等の酸類を添加
し、陽極室に生成される電解次亜塩素酸水溶液のpHがほ
ぼ3〜9に、また、陰極室に生成される電解水のpHがほ
ぼ4〜7になるように電解槽の水を電気分解した後、陽
極室と陰極室の電解生成水を混合し、pHがほぼ3〜7の
電解次亜塩素酸水溶液を得ることによって達成される。
The object of the present invention is to introduce water into an electrolytic cell having an electrolytic membrane disposed between a positive electrode and a negative electrode, add hypochlorite to water in an anode compartment, and add hydrochloric acid or the like to water in a cathode compartment. The acid is added, and the pH of the electrolytic hypochlorous acid aqueous solution generated in the anode chamber is adjusted to approximately 3 to 9, and the pH of the electrolytic water generated in the cathode chamber is adjusted to approximately 4 to 7. After the water is electrolyzed, the electrolyzed water in the anode chamber and the cathode chamber is mixed to obtain an aqueous electrolytic hypochlorous acid solution having a pH of about 3 to 7.

〔発明の作用〕[Function of the invention]

本発明は電解隔膜で仕切った電解槽の陽極室の水にNa
ClOを添加し、陰極室の水にHClを添加して電解すると陽
極室のNaClOの水溶液のpH値が下がり、他方、陰極室のH
Cl水溶液は中和されてpH値が上がることを利用するもの
である。
In the present invention, Na is added to water in the anode chamber of an electrolytic cell partitioned by an electrolytic diaphragm.
When ClO is added and HCl is added to the water in the cathode compartment and electrolysis is performed, the pH value of the aqueous solution of NaClO in the anode compartment decreases, while the H value in the cathode compartment decreases.
The aqueous Cl solution utilizes the fact that the pH value is increased by neutralization.

すなわち、陽極室に次亜塩素酸ナトリウムを添加した
水をpHが3〜9になるように電解するには通常高い電解
電圧が必要であるが、本発明では同時に陰極室の水に塩
酸HCl等の酸類を添加して電解するので陰極室の塩酸HCl
等の一部が陽極室へ移動し、これにより陽極室のpHが下
がる。従って、陽極室の水はより小さい電流、すなわ
ち、低い電圧でpHを3〜9を達成できる。また、電解に
より陰極室ではNa+が陽極室から移動して来るので、こ
のNa+の作用により陰極室のHCl水溶液のpH値が上昇す
る。すなわち、陰極室の水は、陽極室の水に混合しても
塩素ガスが発生しないpH4〜7値に中和される。
That is, a high electrolysis voltage is usually required to electrolyze water containing sodium hypochlorite added to the anode chamber so that the pH becomes 3 to 9. However, in the present invention, the water in the cathode chamber is simultaneously added with hydrochloric acid such as HCl. Hydrochloric acid HCl in the cathode compartment
Some of them move to the anode compartment, which lowers the pH of the anode compartment. Thus, the water in the anode compartment can achieve a pH of 3-9 at a lower current, ie, a lower voltage. In addition, since Na + moves from the anode chamber in the cathode chamber due to electrolysis, the pH value of the aqueous HCl solution in the cathode chamber increases due to the action of Na + . That is, the water in the cathode compartment is neutralized to a pH of 4 to 7 at which no chlorine gas is generated even when mixed with the water in the anode compartment.

従って、これら両電極室の電解水を混合することによ
って、残留塩素のほぼ80%以上がHClOの形で存在するpH
3〜7の殺菌力の強い水が塩素ガスの発生を伴わずに得
られる。また、この電解水は使用原水の全量が電解作用
をうけている。
Therefore, by mixing the electrolyzed water in both electrode chambers, the pH at which almost 80% or more of the residual chlorine is present in the form of HClO
Water having a strong sterilizing power of 3 to 7 can be obtained without generating chlorine gas. In this electrolyzed water, the entire amount of raw water used is subjected to electrolysis.

すなわち、本発明はpH値が9よりも大きいNaClO溶液
からpH3〜7の殺菌水を得るのに、まず、電解の作用で
前記陽極室の水をpH3〜9まで下げ、次いで、この電解
水と電解槽の陰極室に生成されたpH4〜7の電解水との
混合作用で電解水全体をpH3〜7に下げるのである。こ
のため、電解作用だけでpH3〜7まで下げる場合に比較
すると電力は小さくて済む。
That is, according to the present invention, in order to obtain sterilized water having a pH value of 3 to 7 from a NaClO solution having a pH value larger than 9, first, the water in the anode chamber is lowered to pH 3 to 9 by the action of electrolysis, and then the electrolytic water and The entire electrolyzed water is lowered to pH 3 to 7 by the mixing action with the electrolyzed water having a pH of 4 to 7 generated in the cathode chamber of the electrolytic cell. For this reason, the electric power can be reduced as compared with the case where the pH is lowered to 3 to 7 only by the electrolytic action.

ここで、陰極室のpH値を4〜7に特定する理由は、pH
値が4よりも小さいと混合時に塩素ガスが発生するおそ
れがあり、他方、pH値が7よりも大きいと陽極室5から
の電解水に混合したときに陽極室からの電解水のpHを下
げる働きがなくなってしまうからである。
Here, the reason for specifying the pH value of the cathode chamber at 4 to 7 is that
If the value is less than 4, chlorine gas may be generated at the time of mixing. On the other hand, if the pH value is more than 7, the pH of the electrolytic water from the anode chamber is lowered when mixed with the electrolytic water from the anode chamber 5. This is because work is lost.

また、陽極室のpH値を3〜9に特定する理由は、pH値
が3より小さいとHClOが不安定になり、他方、pH値が9
より大きいと陰極室の弱い酸性水と混合した場合に所望
のpH値、すなわちpH3〜7が得られなくなるからであ
る。
Further, the reason for specifying the pH value of the anode chamber to be 3 to 9 is that if the pH value is smaller than 3, HClO becomes unstable, while the pH value is 9 to 9.
If it is larger, the desired pH value, that is, pH 3 to 7, cannot be obtained when mixed with weak acidic water in the cathode chamber.

この種の殺菌水はpH値が7より大きいとClO-が増加し
て殺菌効果が低下し、他方、pH値が3より小さいとHClO
の存在が不安定となるが、本発明では上記のようにpH3
〜7の範囲にあるので水中の残留塩素はその80%以上が
HClOの形で存在し、殺菌効果が高いものとなる。しか
も、原水の全量が電解作用をうけているので水分子のク
ラスターが小さくなり浸透作用が良い。
Sterile water of this kind pH value greater than 7 and ClO - decreased bactericidal effect increases, while, pH value is less than 3 and HClO
Is unstable, but in the present invention, pH 3
Of the remaining chlorine in the water is more than 80%
It exists in the form of HClO and has a high bactericidal effect. In addition, since the entire amount of raw water is subjected to the electrolytic action, clusters of water molecules are reduced and the penetrating action is good.

〔発明の実施例〕(Example of the invention)

以下、本発明の実施例を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の方法を説明する概略図であり、電解
槽1は陰電極2と陽電極3を対向配設し、両電極2,3間
を電解用隔膜4によって陰極室2′と陽極室3′に仕切
ってなり、給水管5から導入した水道水などの原水を電
解し、両電極室に生成された電解水を一対の排出管路6,
7から排水するとともに、排水管路6,7を、好ましくは流
量比率制御が可能なバルブ混合器8を介して合流させ、
殺菌水取水管路9から排水するようになっている。
FIG. 1 is a schematic view for explaining the method of the present invention. In an electrolytic cell 1, a negative electrode 2 and a positive electrode 3 are arranged to face each other. An anode chamber 3 'is partitioned, the raw water such as tap water introduced from the water supply pipe 5 is electrolyzed, and the electrolyzed water generated in both electrode chambers is separated into a pair of discharge pipes 6,
While draining from 7, the drain lines 6, 7 are merged, preferably via a valve mixer 8 capable of controlling the flow rate,
The water is drained from the sterilizing water intake pipe 9.

しかして、本発明は図のように、電解槽1の陽極室
3′の水に、好ましくは次亜塩素酸ナトリウムNaClOな
どの次亜塩素酸塩を添加するとともに、陰極室2′の水
に、好ましくは塩酸HClなどの酸を添加し、且つ、陽極
室3′の電解生成水のpHがほぼ3〜9に、また、陰極室
2′の電解生成水のpHが4〜7になるように電解槽の水
を電気分解し、得られた陽極室3′の電解水と陰極室の
電解水を合流、混合してpHがほぼ3〜7、好ましくは5
〜6.5の次亜塩素酸含有殺菌水として生成するものであ
る。
Thus, according to the present invention, as shown in the figure, the hypochlorite such as sodium hypochlorite NaClO is preferably added to the water in the anode chamber 3 'of the electrolytic cell 1, and the water in the cathode chamber 2' is added to the water. Preferably, an acid such as hydrochloric acid HCl is added, and the pH of the electrolyzed water in the anode chamber 3 'is about 3 to 9 and the pH of the electrolyzed water in the cathode chamber 2' is 4 to 7. The electrolyzed water in the electrolytic cell is electrolyzed, and the obtained electrolyzed water in the anode chamber 3 'and the electrolyzed water in the cathode chamber are combined and mixed to have a pH of about 3 to 7, preferably 5 to 5.
It is produced as hypochlorite-containing sterilizing water of ~ 6.5.

このため、次亜塩素酸ナトリウム溶液タンク10と陽極
室3′間にパイプ10aが配管され、ポンプ10b、定量バル
ブ10cを介して陽極室3′にNaClO溶液が注入されるよう
になっているとともに、同様に、塩酸タンク11と陰極室
2′間にもパイプ11aが配管され、ポンプ11b、定量バル
ブ11cを介して陰極室2′にHClが注入されるようになっ
ている。
For this reason, a pipe 10a is provided between the sodium hypochlorite solution tank 10 and the anode chamber 3 ', and the NaClO solution is injected into the anode chamber 3' via the pump 10b and the metering valve 10c. Similarly, a pipe 11a is also provided between the hydrochloric acid tank 11 and the cathode chamber 2 ', and HCl is injected into the cathode chamber 2' via a pump 11b and a metering valve 11c.

第1図のように電解槽1は連続的に水を給排水しなが
ら電解を行う通水式電解槽でもまた、バツチ式電解槽で
もよいが、図のように連続通水式の電解槽を用いる場合
は給水路5に定流量バルブ12を設けるとともに、陰極室
と陽極室の流量比を、例えば、1対2、あるいは1対3
のように予め設定しておき、電解槽に導入される単位時
間当りの原水量がわかるようにしておく。また、望まし
くは、殺菌水利用側の排出管路6,7にpH測定器14,13を設
けておいてもよい。
As shown in FIG. 1, the electrolytic cell 1 may be a flow-through type electrolytic cell for performing electrolysis while continuously supplying and discharging water, or may be a batch type electrolytic cell. In this case, a constant flow valve 12 is provided in the water supply passage 5 and the flow ratio between the cathode chamber and the anode chamber is set to, for example, 1: 2 or 1: 3.
And the amount of raw water introduced into the electrolytic cell per unit time is known. Further, desirably, pH measuring devices 14 and 13 may be provided in the discharge pipes 6 and 7 on the sterile water use side.

次亜塩素酸ナトリウム(NaClO)は例えば市販の12%
溶液を使用し、これを電解槽の陽極室3′に添加し、電
解槽1の水に所定の割合で混合されるように定流量バル
ブを10cを介して投入される。
Sodium hypochlorite (NaClO) is, for example, 12%
A solution is used, and the solution is added to the anode chamber 3 'of the electrolytic cell, and a constant flow valve is charged through the constant flow valve 10c so as to be mixed with the water of the electrolytic cell 1 at a predetermined ratio.

このように、陽極室3′の水にNaClOを、また陰極室
2′の水にHClを添加して電解槽1の電極2,3に直流電圧
を印加し、陽極室3′の電解水がpH3〜9に、また、陰
極室2′の水がpH4〜7になるように電解する。
Thus, NaClO is added to the water in the anode chamber 3 'and HCl is added to the water in the cathode chamber 2', and a DC voltage is applied to the electrodes 2 and 3 of the electrolytic cell 1, so that the electrolytic water in the anode chamber 3 ' Electrolysis is performed so that the water in the cathode chamber 2 ′ becomes pH 4 to 7 and the pH in the cathode chamber 2 ′ becomes pH 4 to 7.

そして塩酸HClの添加量は、電解後に混合した両電解
水の全体がpH3〜7になるように調整する。
The addition amount of hydrochloric acid HCl is adjusted so that the whole of the two electrolyzed waters mixed after the electrolysis has a pH of 3 to 7.

上記の電解により陽極室3′の水に添加したNaClOか
らナトリウムイオンNa+が解離し、電解隔膜4を通して
陰極室2′に移動し、陽極室3′の水には第2図のよう
に残留遊離塩素が次亜塩素酸(HClO)またはOCl-の形で
存在することになる。
As a result of the above electrolysis, sodium ions Na + are dissociated from NaClO added to the water in the anode compartment 3 ′ and move to the cathode compartment 2 ′ through the electrolytic diaphragm 4, and remain in the water in the anode compartment 3 ′ as shown in FIG. free chlorine hypochlorous acid (HClO) or OCl - will be present in the form of.

他方、陰極室2′の水に添加されたHClは電解によりH
+とCl-に解離され、Cl-は電解隔膜4を通して陽極室
3′に移動し、陽極室の電解水のpHを下げるとともに、
陰極室2′の電解水自体は中和作用によりpH4〜7に中
和される。
On the other hand, HCl added to the water in the cathode chamber 2 '
+ And Cl - are dissociated into, Cl - together are moved to the anode chamber 3 'through the electrolyte membrane 4, lowering the pH of the electrolytic water of the anode chamber,
The electrolyzed water itself in the cathode chamber 2 'is neutralized to a pH of 4 to 7 by a neutralizing action.

上記の電解において、陽極室3′の電解水のpH調整は
陰極室2′へのHClの添加量と電解電圧の調節によって
なされる。すなわち、陰極室2′に導入されたHClは電
解によりH+とCl-に解離され、Cl-は陽極室3′に移動し
て陽極室3′の電解水中におけるHClOの生成に供される
ほか、陽極室の水をpH3〜9に下げる働きをするので電
解電圧はその分だけ低くてすむ。
In the above electrolysis, the pH of the electrolytic water in the anode chamber 3 'is adjusted by adjusting the amount of HCl added to the cathode chamber 2' and the electrolysis voltage. That is, the cathode compartment 2 'HCl introduced in the H + and Cl by electrolysis - dissociated into, Cl - anode chamber 3' addition to being provided to move the the generation of HClO in the electrolytic water in the anode chamber 3 ' Since the water in the anode chamber is reduced to a pH of 3 to 9, the electrolysis voltage can be lowered accordingly.

尚、殺菌水のpH測定値に基づいて塩酸の供給量が自動
的に制御するようにするのがより望ましい。
It is more desirable that the supply amount of hydrochloric acid be automatically controlled based on the measured pH value of the sterilizing water.

しかして、本発明は上記の電解によって生じたpH3〜
9の陽極室側電解水とpH4〜7の陰極室側電解水を、比
率制御が可能な混合バルブ8を介して合流、混合するこ
とによってを取水管路9からpHがほぼ3〜7、好ましく
は5〜6.5の次亜塩素酸殺菌水を生成するものである。
Thus, the present invention provides a pH of 3 to
By mixing and mixing the anode chamber-side electrolyzed water 9 and the cathode chamber-side electrolyzed water having a pH of 4 to 7 through a mixing valve 8 whose ratio can be controlled, the pH is almost 3 to 7, preferably from the water pipe 9. Produces 5-6.5 hypochlorite sterilized water.

この次亜塩素酸水は残留遊離塩素の80%以上、好まし
くは95%以上がHClOの形で存在するので殺菌力が高く、
このため残留塩素濃度が30〜60ppm程度の低濃度でも充
分に効果のある殺菌水として供し得る。
This hypochlorous acid water has a high bactericidal activity because 80% or more, preferably 95% or more of the residual free chlorine is present in the form of HClO.
Therefore, even if the residual chlorine concentration is as low as about 30 to 60 ppm, it can be provided as a sufficiently effective sterilizing water.

〔発明の効果〕〔The invention's effect〕

本発明は陽極室に生成されるpH3〜9の電解次亜塩素
酸水に、pH4〜7に中和された陰極室の電解水を混合す
るので塩素ガスを発生させずに低濃度で殺菌力の強い次
亜塩素酸殺菌水を得ることが可能になり、安全且つ効率
的である。
The present invention mixes the electrolyzed hypochlorous acid solution of pH 3 to 9 generated in the anode compartment with the electrolyzed water of the cathode compartment neutralized to pH 4 to 7, so that the germicidal activity can be performed at a low concentration without generating chlorine gas. It is possible to obtain a hypochlorous acid sterilizing water having high strength, and it is safe and efficient.

特に、本発明は陰極室へのHClの添加により、比較的
低電圧で陽極室のpHを下げる効果があるが、加えて、陽
極室の電解水がpH8,9のアルカリ側の場合でも陰極室の
電解水を合流させることでpH3〜7に調整されるのでそ
れだけ電解電圧が低くて済み、電力を節約できる。
In particular, although the present invention has the effect of lowering the pH of the anode compartment at a relatively low voltage by adding HCl to the cathode compartment, in addition, even when the electrolyzed water in the anode compartment is on the alkaline side of pH 8,9, the cathodic compartment is added. The pH is adjusted to 3 to 7 by merging the electrolyzed waters, so that the electrolysis voltage can be lowered accordingly and power can be saved.

また、本発明の殺菌水は全量が電解作用をうけている
ので水分子のクラスターが微細になり浸透作用が良い。
従って、食品などの殺菌には特に効果が大である。
Further, since the whole amount of the sterilized water of the present invention is subjected to the electrolytic action, the clusters of water molecules become fine and the osmotic action is good.
Therefore, it is particularly effective for sterilizing foods and the like.

さらに、NaClO等の添加量によってHClOの量が決まる
ので、原水の供給量とこれに対するNaClOの添加量から
次亜塩素酸水の残留塩素濃度の所望最低保証値を計算に
よって簡単に知ることができ、且つ電解電流の変化でpH
値の警報信号をひろえるのでpH値の状況を常に把握する
ことができ、管理がし易い。
Furthermore, since the amount of HClO is determined by the amount of addition of NaClO, etc., the desired minimum guaranteed value of the residual chlorine concentration of hypochlorous acid water can be easily obtained by calculation from the supply amount of raw water and the amount of NaClO added thereto. And the pH of the electrolytic current changes
Since the alarm signal of the value is provided, the condition of the pH value can be always grasped, and the management is easy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法を説明するための概略図、第2図
は次亜塩素酸水溶液の残留遊離塩素存在比と溶液のpHの
関係を示すグラフである。 1……電解槽、2′……陰極室、3′……陽極室、4…
…電解隔膜、5……給水管路、6,7……排出管路、8…
…流量比率制御バルブ混合器、9……取水管路、10……
NaClOタンク、11……HClタンク。
FIG. 1 is a schematic diagram for explaining the method of the present invention, and FIG. 2 is a graph showing the relationship between the residual free chlorine abundance ratio of an aqueous solution of hypochlorous acid and the pH of the solution. 1 ... Electrolyzer, 2 '... Cathode room, 3' ... Anode room, 4 ...
... Electrolysis membrane, 5 ... Water supply line, 6,7 ... Drainage line, 8 ...
… Flow ratio control valve mixer, 9… Intake line, 10…
NaClO tank, 11… HCl tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 英之 岩手県釜石市鈴子町23―15 新日本製鐵 株式會社釜石製鐵所内 (72)発明者 大嶋 勝衛 東京都千代田区大手町2丁目6番3号 新日本製鐵株式會社内 (56)参考文献 特開 平3−258392(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 1/46 - 1/48 C02F 1/76 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideyuki Kitamura 23-15 Suzukocho, Kamaishi City, Iwate Prefecture Inside Nippon Steel Corporation Kamaishi Works (72) Inventor Katsue Oshima 2-6 Otemachi, Chiyoda-ku, Tokyo No. 3 In-house Nippon Steel Corporation (56) References JP-A-3-258392 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 1/46-1/48 C02F 1/76

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】陽電極と陰電極間に電解隔膜を配した電解
槽に原水を導入し、陽極室の水に次亜塩素酸塩を添加す
るとともに、陰極室の水に塩酸等の酸類を添加し、陽極
室に生成される電解次亜塩素酸水溶液のpHがほぼ3〜9
に、また、陰極室に生成される電解水のpHがほぼ4〜7
になるように電解槽の水を電気分解した後、陽極室と陰
極室の電解生成水を混合し、pHがほぼ3〜7の電解次亜
塩素酸水溶液を得ることを特徴とする電解による次亜塩
素酸含有殺菌水の製造方法。
(1) Raw water is introduced into an electrolytic cell having an electrolytic diaphragm disposed between a positive electrode and a negative electrode, hypochlorite is added to water in an anode chamber, and acids such as hydrochloric acid are added to water in a cathode chamber. And the pH of the electrolytic hypochlorous acid aqueous solution generated in the anode chamber is approximately 3 to 9
In addition, the pH of the electrolyzed water generated in the cathode chamber is approximately 4 to 7
After electrolyzing the water in the electrolytic cell, the electrolyzed water in the anode chamber and the cathode chamber is mixed to obtain an electrolytic aqueous solution of hypochlorous acid having a pH of about 3 to 7. A method for producing chlorite-containing sterilized water.
JP21327990A 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis Expired - Lifetime JP2892121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21327990A JP2892121B2 (en) 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21327990A JP2892121B2 (en) 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis

Publications (2)

Publication Number Publication Date
JPH0494788A JPH0494788A (en) 1992-03-26
JP2892121B2 true JP2892121B2 (en) 1999-05-17

Family

ID=16636478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21327990A Expired - Lifetime JP2892121B2 (en) 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis

Country Status (1)

Country Link
JP (1) JP2892121B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909641A (en) 2008-02-08 2010-12-08 帕菲克特佩里奥株式会社 Dental sterilizing water, method for producing the water, and device for producing the water
US20100078331A1 (en) * 2008-10-01 2010-04-01 Scherson Daniel A ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS
CN115077169A (en) * 2022-07-15 2022-09-20 珠海格力电器股份有限公司 Refrigerator and control method thereof

Also Published As

Publication number Publication date
JPH0494788A (en) 1992-03-26

Similar Documents

Publication Publication Date Title
JP2627100B2 (en) Method and apparatus for producing sterilized water
JP2619756B2 (en) Sterilized water production method
JPH0442077B2 (en)
US20010022273A1 (en) Electrochemical treatment of water and aqueous salt solutions
JP2004267956A (en) Method for producing mixed electrolytic water
EP1461291B1 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JPH0673675B2 (en) Method for producing sterilized water containing hypochlorous acid by electrolysis
JP2892121B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
KR100250539B1 (en) System for generating hypochlorons acid
JPH06206076A (en) Method and apparatus for producing sterilizing water
JP2627101B2 (en) Additive chemicals for the production of electrolytic hypochlorous acid sterilized water
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JPH0938655A (en) Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor
JPH06206074A (en) Method and apparatus for producing sterilizing water
EP1226094B1 (en) Device for electrolysis
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPH05179475A (en) Production of hypochlorite
JPH0428438B2 (en)
JPH06238281A (en) Sterilization system for water tank
JP7212978B1 (en) electrolytic device
JPH09262587A (en) Method for simultaneously preparing hypochloric acid sterilizing water and strong alkali water in electrolytic cell and addition chemical solution used therein
US20230373833A1 (en) The process of using demineralized water for chlorate reduction in on-site brine electrochlorination systems
JPH06312189A (en) Electrolytic sterilized water making apparatus
JP3401294B2 (en) Electrolytic water treatment method
JPH11319831A (en) Production of electrolytic function water and its apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080226

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12