JP7212978B1 - electrolytic device - Google Patents

electrolytic device Download PDF

Info

Publication number
JP7212978B1
JP7212978B1 JP2022106367A JP2022106367A JP7212978B1 JP 7212978 B1 JP7212978 B1 JP 7212978B1 JP 2022106367 A JP2022106367 A JP 2022106367A JP 2022106367 A JP2022106367 A JP 2022106367A JP 7212978 B1 JP7212978 B1 JP 7212978B1
Authority
JP
Japan
Prior art keywords
electrode
water
chamber
current
intermediate chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022106367A
Other languages
Japanese (ja)
Other versions
JP2024005906A (en
Inventor
哲 八子
Original Assignee
株式会社ワンテンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワンテンス filed Critical 株式会社ワンテンス
Priority to JP2022106367A priority Critical patent/JP7212978B1/en
Application granted granted Critical
Publication of JP7212978B1 publication Critical patent/JP7212978B1/en
Publication of JP2024005906A publication Critical patent/JP2024005906A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

【課題】無駄な排水を発生させずに、所望のpH、特にpH6~6.5の電解次亜塩素酸を含む混合電解水を簡便に安定して生成し続けられる電解装置を提供すること。【解決手段】電解装置100は、電流負荷装置により、第三電極と第一電極及び/又は第二電極に流される電流を調整することができるので、生成される酸化水及び還元水のpHをコントロールすることができ、中間室18に電解質水溶液が循環供給され、運転初期の電解電圧を第三電極46の電圧で除算して得る基準電極電位と、運転中の電解電圧を第三電極46の電圧で除算して得る運転中電極電位に所定の差が生じたときに第三電極46にpH補正電流が流されるように構成されているので、電解質水溶液のpHが変化しても混合電解水のpHを安定させ易く、無駄な排水が生じない。【選択図】図1The present invention provides an electrolyzer capable of simply and stably continuously producing mixed electrolyzed water containing electrolyzed hypochlorous acid at a desired pH, particularly pH 6 to 6.5, without generating wasteful waste water. The electrolyzer (100) is capable of adjusting the current flowing through the third electrode and the first electrode and/or the second electrode by means of the current load device, so that the pH of the generated oxidized water and reduced water can be adjusted. The electrolyte aqueous solution is circulated and supplied to the intermediate chamber 18, and the reference electrode potential obtained by dividing the electrolysis voltage at the beginning of operation by the voltage of the third electrode 46, and the electrolysis voltage during operation of the third electrode 46 Since the pH correction current is applied to the third electrode 46 when a predetermined difference occurs in the electrode potential during operation obtained by dividing by the voltage, the mixed electrolyzed water is maintained even if the pH of the aqueous electrolyte solution changes. It is easy to stabilize the pH of water, and wasteful drainage does not occur. [Selection drawing] Fig. 1

Description

本発明は、電解水(還元水及び酸化水を含む。)を水の電気分解によって得るための電解装置に関する。 TECHNICAL FIELD The present invention relates to an electrolyzer for obtaining electrolyzed water (including reduced water and oxidized water) by electrolyzing water.

電解水を生成するための装置としては、隔膜のない1室型、1枚の隔膜で2槽に分割した2室型、及びアノード室、中間室、カソード室の3槽に分割した3室型がある。3室型の電解装置は、アノード室と中間室、カソード室と中間室のそれぞれの間に電極及びイオン交換膜が配設されている。3室型の電解装置は、水の電気分解を効率良く行えるとされている。 The apparatus for producing electrolyzed water includes a one-chamber type without a diaphragm, a two-chamber type divided into two chambers by one diaphragm, and a three-chamber type divided into three chambers, an anode chamber, an intermediate chamber, and a cathode chamber. There is In the three-chamber type electrolytic device, electrodes and ion-exchange membranes are arranged between the anode chamber and the intermediate chamber, and between the cathode chamber and the intermediate chamber, respectively. The three-chamber electrolyzer is said to be capable of efficiently electrolyzing water.

従来の3室型の電解装置では、陽極となるアノード室側の電極によってアノード室に給水される水の水分子(HO)が酸化され、酸素(O)と水素イオン(H)が生成され、中間室に給水された食塩(NaCl)などの電解質を含む水(以下、単に「電解質水溶液」という。)の塩素イオン(Cl)がアノード室側の電極によって酸化されて塩素(Cl)が発生し、水分子(HO)と反応して次亜塩素酸(HOCl)と塩酸(HCl)が生成され、酸化水が生成される。一方、陰極となるカソード室側の電極によってカソード室に給水される水の水分子(HO)が還元されて水素(H)と水酸化物イオン(OH)が生成され、中間室の電解質水溶液のナトリウムイオン(Na)と水酸化物イオン(OH)が反応して水酸化ナトリウム(NaOH)が生成され、還元水が生成される。 In the conventional three-chamber electrolysis apparatus, the water molecules (H 2 O) of the water supplied to the anode chamber are oxidized by the electrode on the anode chamber side, which serves as the anode, to form oxygen (O 2 ) and hydrogen ions (H + ). is generated, and chlorine ions (Cl ) in water containing an electrolyte such as common salt (NaCl) supplied to the intermediate chamber (hereinafter simply referred to as “aqueous electrolyte solution”) are oxidized by the electrode on the anode chamber side to produce chlorine ( Cl 2 ) is generated and reacts with water molecules (H 2 O) to generate hypochlorous acid (HOCl) and hydrochloric acid (HCl), thereby generating oxidized water. On the other hand, water molecules (H 2 O) of water supplied to the cathode chamber are reduced by the electrode on the cathode chamber side, which serves as a cathode, to generate hydrogen (H 2 ) and hydroxide ions (OH ). Sodium ions (Na + ) and hydroxide ions (OH ) in the aqueous electrolyte solution react with each other to generate sodium hydroxide (NaOH) and reduce water.

電解水は、そのpHによって、様々な用途に使用することができるため、任意のpHの電解水を得られる電解装置が開発されており、例えば、以下のものがある。 Since electrolyzed water can be used for various purposes depending on its pH, electrolyzers capable of obtaining electrolyzed water of any pH have been developed.

特開平8-229565号公報JP-A-8-229565 特開平9-85247号公報JP-A-9-85247 国際公開2019/163388号WO2019/163388 国際公開2017/051452号WO2017/051452

特許文献1には、3室型の電解装置で、アノード室と中間室とカソード室のそれぞれに電極を配設し、その内の1室又は隣合う2室を電解槽として構成し、当該電解槽と隣合う室を電気透析槽として構成した電解装置が開示されている。これによれば、酸性、中性、アルカリ性のそれぞれの電解水が同時に得られるとされている。 Patent Document 1 discloses a three-chamber electrolysis apparatus in which electrodes are arranged in each of an anode chamber, an intermediate chamber, and a cathode chamber, and one chamber or two adjacent chambers thereof are configured as an electrolytic cell, and the electrolysis is performed. An electrolysis apparatus is disclosed in which the chamber adjacent to the cell is configured as an electrodialysis cell. According to this, it is said that acidic, neutral and alkaline electrolyzed water can be obtained at the same time.

特許文献2には、3室型の電解装置で、アノード室又はカソード室の一方に所定間隔を保持して配設された一対の電極と、アノード室又はカソード室の他方に電極が配設され、第一の電極には正の極性、第二の電極には負の極性、第一及び第二の電極の間に位置し、第一の電極と同じ室に配設されている第三の電極には、第一及び第二の電極に印加される電圧の中間の電位の電圧が印加される電解装置が開示されている。これによれば、第二の電極と第三の電極に付与する電流を調整することにより、第一・第三の電極が配設されている室で生成される電解水のpHを酸性~中性の範囲で任意に調整することができるとされている。 Patent Document 2 discloses a three-chamber electrolysis apparatus in which a pair of electrodes are arranged in one of the anode chamber and the cathode chamber with a predetermined gap therebetween, and an electrode is arranged in the other of the anode chamber and the cathode chamber. , a first electrode of positive polarity, a second electrode of negative polarity, a third electrode positioned between the first and second electrodes and disposed in the same chamber as the first electrode. Electrolyzers are disclosed in which the electrodes are applied with a voltage at a potential intermediate to the voltages applied to the first and second electrodes. According to this, by adjusting the current applied to the second electrode and the third electrode, the pH of the electrolyzed water generated in the chamber where the first and third electrodes are arranged can be adjusted from acidic to medium. It is said that it can be arbitrarily adjusted within the range of sexuality.

特許文献3には、3室型の電解装置で、アノード室と中間室、カソード室と中間室のそれぞれの間に配設された一対の電極に対し、所定の時間間隔で、通電方向を繰り返し切り替える制御部を具えた電解装置が開示されている。これによれば、生成する電解水のpHを精度良く制御できるとされている。 Patent Document 3 describes a three-chamber electrolysis apparatus in which a pair of electrodes arranged between an anode chamber and an intermediate chamber, and between a cathode chamber and an intermediate chamber, are repeatedly energized at predetermined time intervals. An electrolysis device with a switching control is disclosed. According to this, it is said that the pH of the generated electrolyzed water can be accurately controlled.

特許文献4には、3室型の電解装置で、アノード室の内部に配置された陽極と、カソード室の内部に配置された陰極と、中間室の内部に配置された中間電極と、陽極と中間電極の間及び中間電極と陰極の間に、それぞれの電流を独立して制御しながら直流電流を流す電流制御手段を具えた電解装置が開示されている。これによれば、中間室に電解質水溶液を入れ、アノード室及びカソード室に水を入れ、この状態で陽極、陰極、中間電極に電流を流し、この電流を調整することで、任意のpHの電解水を生成できるとされている。 Patent Document 4 discloses a three-chamber electrolysis apparatus in which an anode arranged inside an anode chamber, a cathode arranged inside a cathode chamber, an intermediate electrode arranged inside an intermediate chamber, and an anode; An electrolyzer is disclosed which comprises current control means for applying a direct current between the intermediate electrodes and between the intermediate electrode and the cathode while independently controlling the respective currents. According to this method, an aqueous electrolyte solution is placed in the intermediate chamber, water is placed in the anode chamber and the cathode chamber, current is applied to the anode, the cathode and the intermediate electrode in this state, and by adjusting this current, electrolysis at any pH can be achieved. It is said to be able to produce water.

しかし、特許文献1の電解装置では、酸性、中性、アルカリ性のそれぞれの電解水が同時に得られるため、仮に酸性の電解水のみを必要としている場合、他の電解水が不要となり、排水せざるを得ない。特許文献2の電解装置では、第一・第三の電極が配設されている室で生成される電解水のpHを調整することができるとされているが、第二の電極が配設されている室で生成される電解水を使用しない場合、これを排水として処分することになるため、無駄である。 However, in the electrolyzer of Patent Document 1, since acidic, neutral, and alkaline electrolyzed water can be obtained at the same time, if only acidic electrolyzed water is required, other electrolyzed water becomes unnecessary and must be drained. do not get The electrolytic device of Patent Document 2 is supposed to be able to adjust the pH of the electrolyzed water generated in the chamber where the first and third electrodes are arranged, but the second electrode is arranged. If the electrolyzed water generated in the room where the water is stored is not used, it will be disposed of as waste water, which is wasteful.

この点、特許文献3と特許文献4の電解装置を用いて、アノード室及びカソード室から取得した電解水を混合させて混合電解水とすることにより、無駄な排水を生じさせ難くすることはできる。また、中間室の電解質水溶液を新たに供給しない貯留型の構成や、電解質水溶液が中間室を循環する構成とした場合、その排水を防止することができるが、電解質水溶液の濃度が経時的に変化し、生成される混合電解水のpHが安定しない可能性がある。これを防ぐために、中間室に常に新しい電解質水溶液を供給する方法をとると、その排水が生じることとなる。 In this respect, by using the electrolyzers of Patent Documents 3 and 4 to mix the electrolyzed water obtained from the anode chamber and the cathode chamber to obtain mixed electrolyzed water, it is possible to make it difficult to generate wasteful drainage. . In addition, in the case of a storage type configuration in which the electrolyte aqueous solution is not newly supplied to the intermediate chamber or a configuration in which the electrolyte aqueous solution circulates in the intermediate chamber, the drainage can be prevented, but the concentration of the electrolyte aqueous solution changes over time. However, the pH of the generated mixed electrolyzed water may not be stable. In order to prevent this, if a method of always supplying fresh electrolyte aqueous solution to the intermediate chamber is taken, the waste water will be generated.

ところで、混合電解水のpHが3.5~6.5の範囲であるとき、90%以上の割合で次亜塩素酸が存在することが知られている。混合電解水のpHが7.5になると、次亜塩素酸と次亜塩素酸イオンの存在比が1:1になり、それ以上のpHでは、次亜塩素酸イオンの割合が多くなる。次亜塩素酸イオンは次亜塩素酸に比べて殺菌力が大幅に低く、漂白性や皮膚に対する刺激性を持つ。一方、混合電解水のpHが3.5~5の酸性領域にある場合、使用対象の素材によっては、錆を発生させ易く、或いは、酸により素材を変質させる可能性がある。このため、殺菌力と安全性の観点から、pH6~6.5の次亜塩素酸水が望ましい。 By the way, it is known that hypochlorous acid is present at a rate of 90% or more when the pH of mixed electrolyzed water is in the range of 3.5 to 6.5. When the pH of the mixed electrolyzed water reaches 7.5, the abundance ratio of hypochlorous acid and hypochlorite ions becomes 1:1, and when the pH is higher than that, the ratio of hypochlorite ions increases. Hypochlorite ions have significantly lower bactericidal power than hypochlorous acid, and have bleaching and skin irritation properties. On the other hand, if the pH of the mixed electrolyzed water is in the acidic range of 3.5 to 5, depending on the material to be used, rust may easily occur, or the material may be altered by acid. Therefore, hypochlorous acid water with a pH of 6 to 6.5 is desirable from the viewpoint of sterilization power and safety.

そこで、本発明は、無駄な排水を発生させずに、所望のpH、特にpH6~6.5の電解次亜塩素酸を含む混合電解水を簡便に安定して生成し続けられる電解装置を提供することをその目的とする。 Therefore, the present invention provides an electrolyzer that can continue to simply and stably generate mixed electrolyzed water containing electrolyzed hypochlorous acid at a desired pH, particularly pH 6 to 6.5, without generating wasteful waste water. Its purpose is to

本発明は、アノード室、カソード室、前記アノード室とカソード室の間に位置する中間室、直流電源、演算手段、及び記憶手段を具え、
前記アノード室は、アノード室給水口とアノード室排水口を具え、
前記カソード室は、カソード室給水口とカソード室排水口を具え、
前記中間室は、中間室給水口と中間室排水口を具え、前記中間室給水口から給水され、前記中間室排水口から排水される電解質水溶液が循環して前記中間室に供給されるように構成され、
前記アノード室と中間室の間には、陰イオン交換膜及び第一電極が配設され、
前記カソード室と中間室の間には、陽イオン交換膜及び第二電極が配設され、
前記中間室の内部には、第三電極が配設され、
前記直流電源からの電流が、前記第一電極及び第二電極に流されるとともに、前記第一電極側及び/又は第二電極側に配設された電流負荷装置を介して第三電極にも流されるように構成され、
前記電流負荷装置によって、前記第三電極と前記第一電極及び/又は第二電極に流される電流を調整できるように構成され、
前記演算手段は、運転初期の電解電圧を運転初期の前記第三電極の電圧で除算して得る基準電極電位と、運転中の電解電圧を運転中の前記第三電極の電圧で除算して得る運転中電極電位を演算するように構成され、
前記記憶手段は、前記基準電極電位を記憶するように構成され、
前記基準電極電位と運転中電極電位に所定の差が生じたときに前記第三電極と前記第一電極及び/又は第二電極にpH補正電流が流されるように構成されていることを特徴とする電解装置によって前記課題を解決した。
The present invention comprises an anode chamber, a cathode chamber, an intermediate chamber positioned between the anode chamber and the cathode chamber, a DC power source, a computing means, and a storage means,
the anode chamber comprises an anode chamber water inlet and an anode chamber outlet;
The cathode chamber has a cathode chamber water supply port and a cathode chamber water discharge port,
The intermediate chamber has an intermediate chamber water supply port and an intermediate chamber drainage port, and water is supplied from the intermediate chamber water supply port and the electrolyte aqueous solution drained from the intermediate chamber drainage port is circulated and supplied to the intermediate chamber. configured,
An anion exchange membrane and a first electrode are disposed between the anode chamber and the intermediate chamber,
A cation exchange membrane and a second electrode are disposed between the cathode chamber and the intermediate chamber,
A third electrode is disposed inside the intermediate chamber,
A current from the DC power supply is passed through the first electrode and the second electrode, and is also passed through a third electrode via a current load device provided on the first electrode side and/or the second electrode side. configured to be
configured to adjust the current flowing through the third electrode and the first electrode and/or the second electrode by the current load device;
The calculating means obtains a reference electrode potential obtained by dividing the electrolysis voltage at the beginning of operation by the voltage of the third electrode at the beginning of operation, and a reference electrode potential obtained by dividing the electrolysis voltage during operation by the voltage of the third electrode during operation. configured to calculate the electrode potential during operation;
the storage means is configured to store the reference electrode potential;
It is characterized in that a pH correction current is applied to the third electrode and the first electrode and/or the second electrode when a predetermined difference occurs between the reference electrode potential and the electrode potential during operation. The above problem was solved by an electrolytic device that

本発明の電解装置では、中間室給水口から食塩水などの電解質水溶液が供給され、中間室排水口から排出され、循環して中間室に供給されるように構成されている。このため、電解質水溶液の無駄な排水が生じない。一方、アノード室給水口及びカソード室給水口からは、中性の水が供給され、電解水がアノード室排水口及びカソード室排水口から排出される。本発明は、上記の構成を具えるので、電流負荷装置により、第三電極と第一電極及び/又は第二電極に流される電流を調整することができる。具体的には、第一電極側に配設された電流負荷装置を介して第三電極に通電されると、第一電極に流される電流は、第二電極に流される電流よりも低くなるので、第一電極の電気分解量を抑制してアノード室で生成される酸化水のpHを高めることができる。逆に、第二電極側に配設された電流負荷装置を介して第三電極に通電されると、第二電極に流される電流は、第一電極に流される電流よりも低くなるので、第二電極の電気分解量を抑制してカソード室で生成される還元水のpHを低めることができるので、所望のpHの混合電解水を得ることができる。さらに、運転継続中に混合電解水のpHが変化し、基準電極電位と運転中電極電位に所定の差が生じたときに第三電極と第一電極及び/又は第二電極にpH補正電流が流されるように構成されているので、運転中に電解質水溶液の濃度やpHの変化が生じても、酸化水と還元水、延いては混合電解水のpHを所定の値に維持させ易くすることができる。よって、本発明では、無駄な排水を発生させずに任意のpHの電解水をより簡便に安定して生成し続けることができる。 In the electrolysis apparatus of the present invention, an aqueous electrolyte solution such as saline is supplied from the water supply port of the intermediate chamber, discharged from the drain port of the intermediate chamber, circulated and supplied to the intermediate chamber. Therefore, wasteful drainage of the aqueous electrolyte solution does not occur. On the other hand, neutral water is supplied from the anode chamber water supply port and the cathode chamber water supply port, and electrolyzed water is discharged from the anode chamber water discharge port and the cathode chamber water discharge port. Since the present invention has the above configuration, the current load device can adjust the current flowing through the third electrode, the first electrode and/or the second electrode. Specifically, when the third electrode is energized via a current load device disposed on the first electrode side, the current flowing through the first electrode becomes lower than the current flowing through the second electrode. , the amount of electrolysis of the first electrode can be suppressed to increase the pH of the oxidized water produced in the anode chamber. Conversely, when the third electrode is energized via the current loading device provided on the second electrode side, the current flowing through the second electrode becomes lower than the current flowing through the first electrode. Since the amount of electrolysis of the two electrodes can be suppressed and the pH of the reduced water produced in the cathode chamber can be lowered, mixed electrolyzed water with a desired pH can be obtained. Furthermore, when the pH of the mixed electrolyzed water changes during continuous operation and a predetermined difference occurs between the reference electrode potential and the electrode potential during operation, a pH correction current is applied to the third electrode and the first electrode and/or the second electrode. To easily maintain the pH of oxidized water, reduced water, and mixed electrolyzed water at a predetermined value even if the concentration or pH of the aqueous electrolyte solution changes during operation because it is configured to flow. can be done. Therefore, in the present invention, it is possible to continue generating electrolyzed water of any pH more easily and stably without generating wasteful waste water.

また、記憶手段が、前記運転中電極電位と前記基準電極電位の比及び生成する酸化水、還元水、又は混合電解水の所望のpHを得る前記pH補正電流によって決定される所定の補正係数をさらに記憶するように構成され、演算手段が、pH補正電流の値Xを、X=(1-(運転中電極電位/基準電極電位))×補正係数、によって決定するように構成すれば、pH補正電流の値を求め易い。 Further, the storage means stores a predetermined correction coefficient determined by the pH correction current for obtaining a desired pH of the oxidized water, the reduced water, or the mixed electrolyzed water, and the ratio of the electrode potential during operation to the reference electrode potential. Further, if the calculation means is configured to determine the value X of the pH correction current by X=(1−(electrode potential during operation/reference electrode potential)) × correction coefficient, pH It is easy to obtain the value of the correction current.

また、電流負荷装置がpH補正電流の値に基づいて調整した電流を第三電極と第一電極及び/又は第二電極に流す構成とすれば、pH補正電流を流すための別の電源などの装置が不要となり、シンプルな構成で製造コストを下げることができる。 In addition, if the current load device is configured to flow the current adjusted based on the value of the pH correction current to the third electrode and the first electrode and/or the second electrode, a separate power supply for flowing the pH correction current, etc. No equipment is required, and the manufacturing cost can be reduced with a simple configuration.

本発明の第一実施形態の電解装置の模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the electrolysis apparatus of 1st embodiment of this invention. 第一電極側に配設された電流負荷装置を介して第三電極に通電したときの酸化水のpHの変化を表すグラフ。4 is a graph showing changes in pH of oxidized water when current is applied to the third electrode via a current load device provided on the first electrode side. 第二電極側に配設された電流負荷装置を介して第三電極に通電したときの還元水のpHの変化を表すグラフ。4 is a graph showing changes in pH of reduced water when the third electrode is energized via a current load device provided on the second electrode side. 第一電極側に配設された電流負荷装置を介して第三電極に通電したときの酸化水と還元水を混合させた電解水のpHの変化を表すグラフ。4 is a graph showing changes in pH of electrolyzed water obtained by mixing oxidized water and reduced water when the third electrode is energized via a current load device provided on the first electrode side. 第二電極側に配設された電流負荷装置を介して第三電極に通電したときの酸化水と還元水を混合させた電解水のpHの変化を表すグラフ。5 is a graph showing changes in pH of electrolyzed water obtained by mixing oxidized water and reduced water when the third electrode is energized via a current load device provided on the second electrode side. 第三電極を第一電極寄りに配設した状態で、第一電極側に配設された電流負荷装置を介して第三電極に通電したときの酸化水と還元水を混合させた電解水のpHの変化を表すグラフ。Electrolyzed water in which oxidized water and reduced water are mixed when the third electrode is arranged near the first electrode and the third electrode is energized through the current load device arranged on the first electrode side. Graph showing changes in pH. 第三電極を第一電極寄りに配設した状態で、第二電極側に配設された電流負荷装置を介して第三電極に通電したときの酸化水と還元水を混合させた電解水のpHの変化を表すグラフ。Electrolyzed water in which oxidized water and reduced water are mixed when the third electrode is arranged near the first electrode and the third electrode is energized through the current load device arranged on the second electrode side. Graph showing changes in pH.

以下、本発明の実施形態を図1~7を参照して説明する。但し、本発明はこの実施形態に限定されるものではない。 Embodiments of the present invention will be described below with reference to FIGS. However, the present invention is not limited to this embodiment.

図1に示されているように、本発明の第一実施形態の電解装置100は、電解槽12を具えている。電解槽12は、アノード室14、カソード室16、アノード室14とカソード室16の間に位置する中間室18に分割されている。アノード室14と中間室18の間には、陰イオン交換膜52及び第一電極42が配設され、カソード室16と中間室18の間には、陽イオン交換膜54及び第二電極44が配設されている。 As shown in FIG. 1, the electrolysis apparatus 100 of the first embodiment of the invention comprises an electrolytic cell 12 . The electrolytic cell 12 is divided into an anode compartment 14 , a cathode compartment 16 and an intermediate compartment 18 located between the anode compartment 14 and the cathode compartment 16 . An anion exchange membrane 52 and a first electrode 42 are arranged between the anode chamber 14 and the intermediate chamber 18, and a cation exchange membrane 54 and a second electrode 44 are arranged between the cathode chamber 16 and the intermediate chamber 18. are arranged.

アノード室14は、アノード室給水口22とアノード室排水口32を具え、カソード室16は、カソード室給水口24とカソード室排水口34を具え、中間室18は、中間室給水口26と中間室排水口36を具えている。 Anode chamber 14 includes anode chamber water inlet 22 and anode chamber water outlet 32, cathode chamber 16 includes cathode chamber water inlet 24 and cathode chamber water outlet 34, and intermediate chamber 18 includes intermediate chamber water inlet 26 and intermediate chamber water inlet. A room drain port 36 is provided.

また、中間室18の内部、すなわち、陰イオン交換膜52及び第一電極42と陽イオン交換膜54及び第二電極44の間には、第三電極46が配設されている。電解装置100では、第三電極46は、第一電極42と第二電極44の中間に位置している。 A third electrode 46 is arranged inside the intermediate chamber 18 , that is, between the anion exchange membrane 52 and the first electrode 42 and the cation exchange membrane 54 and the second electrode 44 . In electrolyzer 100 , third electrode 46 is positioned intermediate first electrode 42 and second electrode 44 .

第一電極42は、直流電源Vに対し陽極側に、第二電極44は、直流電源Vに対し陰極側に接続されている。第三電極46は、第一電極42側に配設された第一電流負荷装置62と第二電極44側に配設された第二電流負荷装置64を介して直流電源Vに接続されている。なお、第一・第二電流負荷装置62のいずれかを設けずに、第三電極46を第一電極42側又は第二電極44側と接続しない構成もあり得る。 The first electrode 42 is connected to the DC power supply V on the anode side, and the second electrode 44 is connected to the DC power supply V on the cathode side. The third electrode 46 is connected to the DC power supply V through a first current load device 62 arranged on the first electrode 42 side and a second current load device 64 arranged on the second electrode 44 side. . Note that there is also a configuration in which either the first or second current load device 62 is not provided and the third electrode 46 is not connected to the first electrode 42 side or the second electrode 44 side.

直流電源Vが稼働すると、直流電源Vからの電流は、第一電極42及び第二電極44に流されるとともに、第一電極42側及び/又は第二電極44側に配設された第一・第二電流負荷装置62,64を介して第三電極46にも流れる。第三電極46に流れる電流は、第一・第二電流負荷装置62,64の負荷をコントロールすることにより調整できるように構成する。これにより、第三電極46と第一電極42及び/又は第二電極44に流される電流を第一・第二電流負荷装置62,64によって調整できる。 When the DC power supply V operates, the current from the DC power supply V flows through the first electrode 42 and the second electrode 44, and also flows through the first electrode 42 side and/or the second electrode 44 side. It also flows through the third electrode 46 via the second current loads 62,64. The current flowing through the third electrode 46 is configured to be adjustable by controlling the loads of the first and second current load devices 62 and 64 . Thereby, the current flowing through the third electrode 46 and the first electrode 42 and/or the second electrode 44 can be adjusted by the first and second current loading devices 62,64.

電解装置100は、コントローラ70を具えている。コントローラ70は、直流電源V、第一・第二電流負荷装置62,64と電気的に接続されており、制御手段76によってこれらを制御することができるように構成されている。コントローラ70は、さらに、記憶手段72と演算手段74を有する。これらの機能は後述する。 The electrolysis device 100 has a controller 70 . The controller 70 is electrically connected to the DC power source V and the first and second current load devices 62 and 64 and is configured to be able to control them by the control means 76 . The controller 70 further has storage means 72 and calculation means 74 . These functions are described later.

アノード室14とカソード室16には、それぞれ、アノード室給水口22とカソード室給水口24から純水や水道水などの中性の水が給水され、アノード室排水口32とカソード室排水口34から排水される。ここで、アノード室排水口32とカソード室排水口34に連結された混合槽(図示省略)などの混合手段をさらに有する構成とすれば、アノード室14で生成された酸化水とカソード室16で生成された還元水を混合して所望のpHの混合電解水、特に、pH6~6.5の電解次亜塩素酸を含む混合電解水を無駄な排水を発生させずに簡便に生成することができる。 Neutral water such as pure water or tap water is supplied to the anode chamber 14 and the cathode chamber 16 from an anode chamber water supply port 22 and a cathode chamber water supply port 24, respectively. drained from Here, if a mixing means such as a mixing tank (not shown) connected to the anode chamber drain port 32 and the cathode chamber drain port 34 is further provided, the oxidized water produced in the anode chamber 14 and the cathode chamber 16 can be By mixing the generated reduced water, mixed electrolyzed water having a desired pH, in particular, mixed electrolyzed water containing electrolyzed hypochlorous acid having a pH of 6 to 6.5 can be easily generated without generating wasteful wastewater. can.

また、図示しての説明は省略するが、カソード室排水口34とアノード室給水口22を連結し、カソード室排水口34から排水された還元水がアノード室14に給水されるように構成してもよい。本構成とすれば、カソード室16で生成された還元水をアノード室14へ流入させ、アノード室14で生成される酸化水と混合させて所望のpHの電解水を得られるため、無駄な排水を生じさせない、コンパクトな電解装置100とすることができる。 Although not shown, the cathode chamber drain port 34 and the anode chamber water supply port 22 are connected so that the reduced water drained from the cathode chamber drain port 34 is supplied to the anode chamber 14 . may With this configuration, the reduced water produced in the cathode chamber 16 is allowed to flow into the anode chamber 14 and mixed with the oxidized water produced in the anode chamber 14 to obtain electrolyzed water having a desired pH. It can be a compact electrolytic device 100 that does not cause

中間室18には、中間室給水口26から電解質水溶液が給水され、中間室排水口36から排水される。電解質は、塩素イオンを含むものであり、電解質水溶液としては、塩化ナトリウム等の塩素イオンを含む素材を添加した水を使用することができる。図示は省略するが、電解装置100では、中間室給水口26と中間室排水口36は、図示しないタンクを介して連結され、電解質水溶液が循環するように構成されている。このため、電解質水溶液の無駄な排水が生じない。 The electrolyte aqueous solution is supplied to the intermediate chamber 18 from the intermediate chamber water supply port 26 and drained from the intermediate chamber drain port 36 . The electrolyte contains chlorine ions, and water to which a material containing chlorine ions such as sodium chloride is added can be used as the aqueous electrolyte solution. Although illustration is omitted, in the electrolytic device 100, the intermediate chamber water supply port 26 and the intermediate chamber drain port 36 are connected via a tank (not shown) so that the aqueous electrolyte solution circulates. Therefore, wasteful drainage of the aqueous electrolyte solution does not occur.

第一乃至第三電極42,44,46は、網目状とすることができる。このとき、第三電極46の網目が第一・第二電極42,44の網目よりも荒い構成とすれば、電解電圧が上昇して電解ができなくなるという現象を防ぐことができる。 The first to third electrodes 42, 44, 46 can be meshed. At this time, if the mesh of the third electrode 46 is made coarser than the meshes of the first and second electrodes 42, 44, it is possible to prevent the phenomenon that the electrolysis voltage rises and the electrolysis becomes impossible.

直流電源Vの電流を11.5Aとし、アノード室14とカソード室16への純水を1分間あたり2Lの流量で給排水させ、第一電極42側に配設された第一電流負荷装置62の負荷をコントロールして、第三電極46に流れる電流を変化させたときの酸化水と還元水のpHの変化を表1に示す。 The current of the DC power supply V is set to 11.5 A, and pure water is supplied to and discharged from the anode chamber 14 and the cathode chamber 16 at a flow rate of 2 L per minute. Table 1 shows changes in the pH of the oxidized water and the reduced water when the current flowing through the third electrode 46 is changed by controlling the load.

Figure 0007212978000002
Figure 0007212978000002

図2にも示すとおり、第三電極46に電流が流れていない場合、酸化水のpHは2.77であるが、第三電極46に流される電流が増加するにつれて、酸化水のpHが上がるという結果を得られた。なお、還元水のpHは変化していない。 As shown in FIG. 2, when no current is flowing through the third electrode 46, the pH of the oxidized water is 2.77, but as the current flowing through the third electrode 46 increases, the pH of the oxidized water increases. The result was obtained. Note that the pH of the reduced water did not change.

第一電極42側に配設された第一電流負荷装置62の負荷をコントロールして、第三電極46に電流を流した場合、第一電流負荷装置62の負荷に応じて第一電極42に流れる電流が増減するので、第一電極42による電気分解量を増減させることができ、アノード室14で生成される酸化水のpHをコントロールすることができる。このとき、第二負荷装置64を通じて電流は流れず、第三電極46は陽極として機能するので、中間室18でも陰イオンが生成されるが、多くは中間室排水口36から排出される。 When the load of the first current load device 62 arranged on the first electrode 42 side is controlled and current is passed through the third electrode 46, the load on the first electrode 42 changes depending on the load of the first current load device 62. Since the flowing current increases or decreases, the amount of electrolysis by the first electrode 42 can be increased or decreased, and the pH of the oxidized water produced in the anode chamber 14 can be controlled. At this time, no current flows through the second load device 64 and the third electrode 46 functions as an anode, so negative ions are also produced in the intermediate chamber 18 , but most are discharged through the intermediate chamber drain port 36 .

このように、第一電極42側に配設された第一電流負荷装置62を介して第三電極46に通電されると、第一電極42に流される電流は、第二電極44に流される電流よりも低くなるので、第一電極42の電気分解量を抑制してアノード室14で生成される酸化水のpHを高めることができる。 Thus, when the third electrode 46 is energized via the first current load device 62 arranged on the first electrode 42 side, the current flowing through the first electrode 42 is passed through the second electrode 44. Since it is lower than the electric current, the amount of electrolysis of the first electrode 42 can be suppressed and the pH of the oxidized water generated in the anode chamber 14 can be increased.

同条件で、第二電極44側に配設された第二電流負荷装置64の負荷をコントロールして、第三電極46に流れる電流を変化させたときの酸化水と還元水のpHの変化を表2に示す。 Under the same conditions, the load of the second current load device 64 arranged on the side of the second electrode 44 is controlled to change the pH of the oxidized water and the reduced water when the current flowing through the third electrode 46 is changed. Table 2 shows.

Figure 0007212978000003
Figure 0007212978000003

図3にも示すとおり、第三電極46に電流が流れていない場合、還元水のpHは10.3であるが、第三電極46に流される電流が増加するにつれて、還元水のpHが下がるという結果を得られた。なお、酸化水のpHは変化していない。 As shown in FIG. 3, the pH of the reduced water is 10.3 when no current flows through the third electrode 46, but the pH of the reduced water decreases as the current flowing through the third electrode 46 increases. The result was obtained. Note that the pH of the oxidized water did not change.

第二電極44側に配設された第二電流負荷装置64の負荷をコントロールして、第三電極46に電流を流した場合、第二電流負荷装置64の負荷に応じて第二電極44に流れる電流が増減するので、第二電極44による電気分解量を増減させることができ、カソード室16で生成される還元水のpHをコントロールすることができる。このとき、第一負荷装置62を通じて電流は流れず、第三電極46は陰極として機能するので、中間室18でも陽イオンが生成されるが、多くは中間室排水口36から排出される。 When the load of the second current load device 64 arranged on the side of the second electrode 44 is controlled and current is passed through the third electrode 46, the load on the second electrode 44 according to the load of the second current load device 64 Since the flowing current increases or decreases, the amount of electrolysis by the second electrode 44 can be increased or decreased, and the pH of the reduced water generated in the cathode chamber 16 can be controlled. At this time, no current flows through the first load device 62 and the third electrode 46 functions as a cathode, so positive ions are also produced in the intermediate chamber 18 , but most are discharged through the intermediate chamber drain 36 .

このように、第二電極44側に配設された第二電流負荷装置64を介して第三電極46に通電されると、第二電極44に流される電流は、第一電極42に流される電流よりも低くなるので、第二電極44の電気分解量を抑制してカソード室16で生成される還元水のpHを低めることができる。 Thus, when the third electrode 46 is energized via the second current load device 64 arranged on the side of the second electrode 44, the current flowing through the second electrode 44 is passed through the first electrode 42. Since it is lower than the electric current, the amount of electrolysis of the second electrode 44 can be suppressed and the pH of the reduced water generated in the cathode chamber 16 can be lowered.

以上に説明したとおり、電解装置100では、第一・第二電流負荷装置62,64を操作することにより、酸化水と還元水のpHを変化させることができるので、任意のpHの電解水をより簡便に生成することができる。 As described above, in the electrolyzer 100, the pH of the oxidized water and the reduced water can be changed by operating the first and second current load devices 62, 64. It can be generated more easily.

次に、同条件で、アノード室14で生成された酸化水とカソード室16で生成された還元水を混合して混合電解水とした場合のpHの変化を表3及び表4に示す。第一電極42側に配設された第一電流負荷装置62の負荷をコントロールして、第三電極46に流れる電流を変化させたときの結果が表3である。図4にも示すとおり、第一電流負荷装置62の負荷をコントロールすることにより、混合電解水のpHを6.6~7.86の範囲で変化させることができた。 Next, Tables 3 and 4 show changes in pH when the oxidized water produced in the anode chamber 14 and the reduced water produced in the cathode chamber 16 are mixed under the same conditions to obtain mixed electrolyzed water. Table 3 shows the results when the current flowing through the third electrode 46 was changed by controlling the load of the first current load device 62 arranged on the first electrode 42 side. As shown in FIG. 4, by controlling the load of the first current load device 62, the pH of the mixed electrolyzed water could be changed within the range of 6.6 to 7.86.

Figure 0007212978000004
Figure 0007212978000004

第二電極44側に配設された第二電流負荷装置64の負荷をコントロールして、第三電極46に流れる電流を変化させたときの結果が表4である。図5にも示すとおり、第二電流負荷装置64の負荷をコントロールすることにより、混合電解水のpHを4.5~6.6の範囲で変化させることができた。 Table 4 shows the results when the current flowing through the third electrode 46 was changed by controlling the load of the second current load device 64 arranged on the second electrode 44 side. As shown in FIG. 5, by controlling the load of the second current load device 64, the pH of the mixed electrolyzed water could be varied within the range of 4.5 to 6.6.

Figure 0007212978000005
Figure 0007212978000005

図4,5に示すとおり、第二電流負荷装置64を介して第三電極46に2.5A以上の電流を流した場合を除き、混合電解水のpHを略一次線形で変化させることができた。このように、電解装置100では、第一・第二電流負荷装置62,64を操作することにより、任意のpHの電解水をより簡便に生成することができる。特に、次亜塩素酸を含む電解水を生成する場合、電解水のpHを4.0~6.5程度、特にpH5~6.5にすることが好ましく、還元水に対し、より多くの酸化水をアノード室排水口32とカソード室排水口34に連結された混合槽(図示省略)などの混合手段で混合させることで次亜塩素酸を含む電解水を生成することができる。よって、このような電解水を無駄な排水を生じさせずに、簡便に生成することができる。 As shown in FIGS. 4 and 5, except when a current of 2.5 A or more is applied to the third electrode 46 via the second current load device 64, the pH of the mixed electrolyzed water can be changed substantially linearly. rice field. Thus, in the electrolyzer 100, by operating the first and second current loading devices 62, 64, electrolyzed water of any pH can be generated more easily. In particular, when generating electrolyzed water containing hypochlorous acid, it is preferable to set the pH of the electrolyzed water to about 4.0 to 6.5, particularly pH 5 to 6.5, so that more oxidation is performed for reduced water. Electrolyzed water containing hypochlorous acid can be produced by mixing water in a mixing tank (not shown) connected to the anode chamber drain port 32 and the cathode chamber drain port 34 . Therefore, such electrolyzed water can be easily generated without generating wasteful drainage.

ここで、カソード室排水口34とアノード室給水口22が連結された構成とすれば、カソード室16で生成された還元水をアノード室14へ流入させ、アノード室14で生成される酸化水と混合させて所望のpHの電解水を得られるため、無駄な排水を生じさせない、コンパクトな電解装置100とすることができる。 Here, if the cathode chamber drain port 34 and the anode chamber water supply port 22 are connected, the reduced water produced in the cathode chamber 16 is allowed to flow into the anode chamber 14, and the oxidized water produced in the anode chamber 14 Since electrolyzed water having a desired pH can be obtained by mixing, the electrolyzer 100 can be compact and does not waste water.

次に、第三電極46を第一電極42寄りに配設し、他はこれまでと同条件で、アノード室14で生成された酸化水とカソード室16で生成された還元水を混合して混合電解水とした場合のpHの変化を表5及び表6に示す。第一電極42側に配設された第一電流負荷装置62の負荷をコントロールして、第三電極46に流れる電流を変化させたときの結果が表5である。図6にも示すとおり、第一電流負荷装置62の負荷をコントロールすることにより、混合電解水のpHを5.6~6.68の範囲で変化させることができた。 Next, the third electrode 46 is arranged near the first electrode 42, and under the same conditions as before, the oxidized water produced in the anode chamber 14 and the reduced water produced in the cathode chamber 16 are mixed. Tables 5 and 6 show changes in pH when mixed electrolyzed water is obtained. Table 5 shows the results when the current flowing through the third electrode 46 was changed by controlling the load of the first current load device 62 arranged on the first electrode 42 side. As shown in FIG. 6, by controlling the load of the first current load device 62, the pH of the mixed electrolyzed water could be changed within the range of 5.6 to 6.68.

Figure 0007212978000006
Figure 0007212978000006

第二電極44側に配設された第二電流負荷装置64の負荷をコントロールして、第三電極46に流れる電流を変化させたときの結果が表6である。図7にも示すとおり、第二電流負荷装置64の負荷をコントロールすることにより、混合電解水のpHを3.5~5.6の範囲で変化させることができた。 Table 6 shows the results when the current flowing through the third electrode 46 was changed by controlling the load of the second current load device 64 arranged on the second electrode 44 side. As shown in FIG. 7, by controlling the load of the second current load device 64, the pH of the mixed electrolyzed water could be changed within the range of 3.5 to 5.6.

Figure 0007212978000007
Figure 0007212978000007

図6,7に示すとおり、第二電流負荷装置64を介して第三電極46に電流を流した場合の、混合電解水のpHの変化が一次線形ではなくなった。すなわち、第三電極46を第一電極42と第二電極44の中間に位置させた方が混合電解水のpHの変動を安定させ易くすることができる。 As shown in FIGS. 6 and 7, the change in pH of the mixed electrolyzed water was no longer linear when a current was passed through the third electrode 46 via the second current load device 64 . That is, positioning the third electrode 46 between the first electrode 42 and the second electrode 44 makes it easier to stabilize the pH fluctuation of the mixed electrolyzed water.

以上の例では、第一電極42側に配設された第一電流負荷装置62の負荷をコントロールして、第三電極46に電流を流した場合、第二電流負荷装置64を介して第三電極46に電流は流れないようにし、逆に、第二電極44側に配設された第二電流負荷装置64の負荷をコントロールして、第三電極46に電流を流した場合、第一電流負荷装置62を介して第三電極46に電流は流れないようにした。しかし、酸化水及び還元水のpHは、第一電極42と第二電極44に流れる電流の差によって変化すると考えられるため、第一電極42と第二電極44に流れる電流の差を生じさせることができれば、第一電流負荷装置62と第二電流負荷装置64の負荷は適宜変更することも可能である。 In the above example, when the load of the first current load device 62 arranged on the first electrode 42 side is controlled and current is passed through the third electrode 46, the third No current flows through the electrode 46. Conversely, when the load of the second current load device 64 provided on the second electrode 44 side is controlled to allow current to flow through the third electrode 46, the first current No current was allowed to flow through the load device 62 to the third electrode 46 . However, since it is considered that the pH of the oxidized water and the reduced water changes depending on the difference between the currents flowing through the first electrode 42 and the second electrode 44, the difference between the currents flowing through the first electrode 42 and the second electrode 44 should be generated. If possible, the loads of the first current load device 62 and the second current load device 64 can be changed as appropriate.

以上では、直流電源Vの電流を11.5Aとし、アノード室14とカソード室16への純水を1分間あたり2Lの流量で給排水させ、第三電極46に流れる電流を0A~3Aの範囲で変化させたが、これ以外の条件としてもよい。 In the above, the current of the DC power supply V is set to 11.5 A, the pure water is supplied to and discharged from the anode chamber 14 and the cathode chamber 16 at a flow rate of 2 L per minute, and the current flowing through the third electrode 46 is set in the range of 0 A to 3 A. Although it is changed, other conditions may be used.

上述したように、電解装置100では、中間室給水口26と中間室排水口36は、図示しないタンクを介して連結され、電解質水溶液が循環するように構成されている。電解装置100の運転を長期間継続させると、電解質水溶液のpHが徐々に変化し、それによって酸化水と還元水のpHが変化し、延いては混合電解水のpHも変化してしまうという現象が起こる。これは、運転中に電解質水溶液で消費されるNaイオンとCLイオンの量が異なるため、NaイオンとCLイオンの比率が徐々に変化することが原因として考えられる。 As described above, in the electrolytic device 100, the intermediate chamber water supply port 26 and the intermediate chamber drainage port 36 are connected via a tank (not shown) so that the electrolytic aqueous solution circulates. When the operation of the electrolytic device 100 is continued for a long period of time, the pH of the aqueous electrolyte solution gradually changes, which causes the pH of the oxidized water and the reduced water to change, which in turn causes the pH of the mixed electrolyzed water to change. happens. This is probably because the amounts of Na + ions and CL ions consumed in the aqueous electrolyte solution differ during operation, so that the ratio of Na + ions and CL ions gradually changes.

酸化水、還元水、及び混合電解水のpHを安定化させるために、生成された直後の酸化水と還元水のpHを計測し、対応することが考えられるが、流水状態の酸化水や還元水のpHを正確に計測することは困難である。そこで、電解装置100では、電解質水溶液のpHが変化したことによって酸化水、還元水、及び混合電解水のpHが変化したとき、第三電極46の電圧も相関して変化するという現象に着目し、pHと相関関係にあると考えられる電解電圧及び第三電極46の電圧(以下、単に、「第三電極電圧」という。)を測定し、酸化水、還元水、及び混合電解水のpHを安定化させている。以下に詳述する。 In order to stabilize the pH of the oxidized water, the reduced water, and the mixed electrolyzed water, it is conceivable to measure the pH of the oxidized water and the reduced water immediately after they are generated and take appropriate measures. Accurately measuring the pH of water is difficult. Therefore, in the electrolytic device 100, attention is focused on the phenomenon that when the pH of the aqueous electrolyte solution changes and the pH of the oxidized water, the reduced water, and the mixed electrolyzed water changes, the voltage of the third electrode 46 also changes in correlation. , the electrolysis voltage and the voltage of the third electrode 46 (hereinafter simply referred to as "third electrode voltage"), which are considered to be correlated with pH, are measured, and the pH of oxidized water, reduced water, and mixed electrolyzed water is measured. I am stabilizing. Details are given below.

まず、コントローラ70の演算手段74が、運転初期、すなわち、新規の電解質水溶液で運転を開始したときの電解電圧を運転初期の第三電極電圧で除算して得る基準電極電位と、運転中の電解電圧を運転中の第三電極電圧で除算して得る運転中電極電位を演算するように構成されている。電解電圧は、直流電源Vの電圧を計測するように設けられた電解電圧測定手段82により、第三電極電圧は、第二電極44と第三電極46の間に設けられた第三電極電圧測定手段84により計測される。なお、第三電極電圧測定手段84は、第一電極42と第三電極46の間に設けた構成としてもよい。電解電圧測定手段82及び第三電極電圧測定手段84は、公知の電圧計やその機能を有する装置とすればよい。基準電極電位は、記憶手段72によって記憶される。運転中電極電位は、運転中に常時演算される。 First, the computing means 74 of the controller 70 divides the electrolysis voltage at the beginning of operation, that is, when operation is started with a new electrolyte aqueous solution, by the third electrode voltage at the beginning of operation, and It is configured to calculate an operating electrode potential obtained by dividing the voltage by the operating third electrode voltage. The electrolysis voltage is measured by the electrolysis voltage measuring means 82 arranged to measure the voltage of the DC power supply V, and the third electrode voltage is measured by the third electrode voltage measurement provided between the second electrode 44 and the third electrode 46. Measured by means 84 . The third electrode voltage measuring means 84 may be arranged between the first electrode 42 and the third electrode 46 . The electrolytic voltage measuring means 82 and the third electrode voltage measuring means 84 may be a known voltmeter or a device having that function. The reference electrode potential is stored by storage means 72 . The operating electrode potential is constantly calculated during operation.

そして、基準電極電位と運転中電極電位に所定の差が生じたときに、指令手段76によって第三電極46と第一電極42及び/又は第二電極44にpH補正電流が流されるように構成されている。基準電極電位と運転中電極電位にどの程度の差が生じたときに、第三電極46と第一電極42及び/又は第二電極44にどの程度のpH補正電流を流すかは、生成する酸化水、還元水、又は混合電解水の所望のpHによって変動する。pH補正電流は、図示しない別の電源を用いて生じさせることも可能ではあるが、別の電源を接続すると、第三電極46の電圧などの状態検出がし難くなり、これを防止すべく切換回路などを追加すると、複雑になるので、好適ではない。 Then, when a predetermined difference occurs between the reference electrode potential and the operating electrode potential, the command means 76 causes the pH correction current to flow through the third electrode 46 and the first electrode 42 and/or the second electrode 44. It is The amount of pH correction current to be applied to the third electrode 46 and the first electrode 42 and/or the second electrode 44 when there is a difference between the reference electrode potential and the electrode potential during operation depends on the amount of oxidation to be generated. It depends on the desired pH of water, reduced water, or mixed electrolyzed water. Although it is possible to generate the pH correction current by using another power source (not shown), if another power source is connected, it becomes difficult to detect the state of the third electrode 46, such as the voltage. Adding a circuit or the like complicates the system and is not suitable.

そこで、pH補正電流は、第一電流負荷装置62又は第二電流負荷装置64がコントロールされることにより、pH補正電流の値に基づいて調整した電流が第三電極46と第一電極42及び/又は第二電極44に流されるように構成するのがよい。具体的には、まず、記憶手段72が運転初期の第一電流負荷装置62及び/又は第二電流負荷装置64によって第三電極46と第一電極42及び/又は第二電極44に流される電流であるpH基準電流を記憶するように構成する。そして、演算手段74により、pH補正電流とpH基準電流に基づいて調整した電流を算出し、指令手段76によって、第一電流負荷装置62及び/又は第二電流負荷装置64が演算手段74によって算出された電流を第三電極46と第一電極42及び/又は第二電極44に流すように構成することができる。本構成とすれば、シンプルな構成で製造コストを下げることができる。 Therefore, the pH-corrected current is adjusted based on the value of the pH-corrected current by controlling the first current loading device 62 or the second current loading device 64 so that the third electrode 46 and the first electrode 42 and/or Alternatively, it is preferable to configure so as to flow to the second electrode 44 . Specifically, first, the storage means 72 stores the current flowing through the third electrode 46 and the first electrode 42 and/or the second electrode 44 by the first current loading device 62 and/or the second current loading device 64 at the initial stage of operation. is configured to store a pH reference current. Then, the calculation means 74 calculates the current adjusted based on the pH correction current and the pH reference current, and the command means 76 causes the first current load device 62 and/or the second current load device 64 to be calculated by the calculation means 74. can be configured to pass the applied current through the third electrode 46 and the first electrode 42 and/or the second electrode 44 . With this configuration, the manufacturing cost can be reduced with a simple configuration.

コントローラ70の記憶手段72が、補正係数をさらに記憶するように構成され、演算手段74により、pH補正電流の値Xが、X=(1-(運転中電極電位/基準電極電位))×補正係数、によって決定されるように構成すれば、pH補正電流の値を求め易くすることができる。補正係数は、生成する酸化水、還元水、又は混合電解水の所望のpHによって決定すればよい。ここで、補正係数を2.5とし、電解装置100と塩分濃度16%の電解質水溶液を用いて、純水流量を2L/minとし、第三電極電流を一定にして運転させた状態で、電解質水溶液のpHを変化させたときの、電解電圧、第三電極電圧、基準電極電位、運転中電極電位、混合電解水のpH(補正前)、pH補正電流、及び補正後の混同電解水のpHを表7に示す。 The storage means 72 of the controller 70 is configured to further store the correction coefficient, and the calculation means 74 calculates the value X of the pH correction current as X=(1−(electrode potential during operation/reference electrode potential)) × correction , the value of the pH correction current can be easily obtained. The correction coefficient may be determined according to the desired pH of the generated oxidized water, reduced water, or mixed electrolyzed water. Here, the correction coefficient is set to 2.5, the pure water flow rate is set to 2 L/min using the electrolytic device 100 and the electrolyte aqueous solution having a salt concentration of 16%, and the third electrode current is kept constant. Electrolysis voltage, third electrode voltage, reference electrode potential, electrode potential during operation, pH of mixed electrolyzed water (before correction), pH correction current, and pH of mixed electrolyzed water after correction when the pH of the aqueous solution is changed are shown in Table 7.

Figure 0007212978000008
Figure 0007212978000008

表7に示す実測値では、新規の塩分濃度16%の電解質水溶液を用いて測定したものが、電解質水溶液pH6の行である。このため、基準電極電位は、その行の0.46839となり、他の行の電極電位は運転中電極電位となる。この基準電極電位と運転中電極電位、及び補正係数2.5を用いてpH補正電流を算出している。なお、pH補正電流の値は、小数点第二位で四捨五入している。表7からも明らかなように、pH補正電流は、基準電極電位と運転中電極電位の差によっては第三電極46に対して流されない場合もある。このように、補正係数を2.5とすれば、pH6~6.5の混合電解水を安定的に生成することができる。 In the measured values shown in Table 7, the row of the electrolyte aqueous solution pH 6 is the value measured using the new electrolyte aqueous solution with a salt concentration of 16%. Therefore, the reference electrode potential will be 0.46839 for that row, and the electrode potential for the other rows will be the operating electrode potential. Using this reference electrode potential, the electrode potential during operation, and a correction factor of 2.5, the pH-corrected current is calculated. In addition, the value of the pH correction current is rounded off to the second decimal place. As is clear from Table 7, the pH correction current may not flow to the third electrode 46 depending on the difference between the reference electrode potential and the operating electrode potential. Thus, if the correction factor is set to 2.5, it is possible to stably generate mixed electrolyzed water with a pH of 6 to 6.5.

以上に説明したように、本発明によれば、任意のpH、特にpH6~6.5の混合電解水を無駄な排水を発生させずにより簡便に生成でき、且つ、連続運転させても安定的に所望のpHの混合電解水を生成可能な電解装置を提供することができる。 As described above, according to the present invention, mixed electrolyzed water of any pH, particularly pH 6 to 6.5, can be generated more easily without generating waste water, and can be stably operated continuously. It is possible to provide an electrolytic device capable of producing mixed electrolyzed water having a desired pH.

100 電解装置
14 アノード室
16 カソード室
18 中間室
22 アノード室給水口
24 カソード室給水口
26 中間室給水口
32 アノード室排水口
34 カソード室排水口
36 中間室排水口
42 第一電極
44 第二電極
46 第三電極
52 陰イオン交換膜
54 陽イオン交換膜
62 第一電流負荷装置
64 第二電流負荷装置
72 記憶手段
74 演算手段
V 直流電源

100 Electrolyzer 14 Anode Chamber 16 Cathode Chamber 18 Intermediate Chamber 22 Anode Chamber Water Supply Port 24 Cathode Chamber Water Supply Port 26 Intermediate Chamber Water Supply Port 32 Anode Chamber Drain Port 34 Cathode Chamber Drain Port 36 Intermediate Chamber Drain Port 42 First Electrode 44 Second Electrode 46 third electrode 52 anion exchange membrane 54 cation exchange membrane 62 first current load device 64 second current load device 72 storage means 74 calculation means V DC power supply

Claims (1)

アノード室、カソード室、前記アノード室とカソード室の間に位置する中間室、直流電
源、演算手段、及び記憶手段を具え、
前記アノード室は、アノード室給水口とアノード室排水口を具え、
前記カソード室は、カソード室給水口とカソード室排水口を具え、
前記中間室は、中間室給水口と中間室排水口を具え、前記中間室給水口から給水され、前記中間室排水口から排水される電解質水溶液が循環して前記中間室に供給されるように構成され、
前記アノード室と中間室の間には、陰イオン交換膜及び第一電極が配設され、
前記カソード室と中間室の間には、陽イオン交換膜及び第二電極が配設され、
前記中間室の内部には、第三電極が配設され、
前記直流電源からの電流が、前記第一電極及び第二電極に流されるとともに、前記第一電極側及び/又は第二電極側に配設された電流負荷装置を介して第三電極にも流されるように構成され、
前記電流負荷装置によって、前記第三電極と前記第一電極及び/又は第二電極に流される電流を調整できるように構成され、
前記演算手段は、運転初期の電解電圧を運転初期の前記第三電極の電圧で除算して得る基準電極電位と、運転中の電解電圧を運転中の前記第三電極の電圧で除算して得る運転中電極電位を演算するように構成され、
前記記憶手段は、前記基準電極電位を記憶するように構成され、
前記基準電極電位と運転中電極電位に所定の差が生じたときに前記第三電極と前記第一電極及び/又は第二電極にpH補正電流が流されるように構成されていることを特徴とする、
電解装置。
comprising an anode chamber, a cathode chamber, an intermediate chamber positioned between the anode chamber and the cathode chamber, a DC power source, a computing means, and a storage means,
the anode chamber comprises an anode chamber water inlet and an anode chamber outlet;
The cathode chamber has a cathode chamber water supply port and a cathode chamber water discharge port,
The intermediate chamber has an intermediate chamber water supply port and an intermediate chamber drainage port, and water is supplied from the intermediate chamber water supply port and the electrolyte aqueous solution drained from the intermediate chamber drainage port is circulated and supplied to the intermediate chamber. configured,
An anion exchange membrane and a first electrode are disposed between the anode chamber and the intermediate chamber,
A cation exchange membrane and a second electrode are disposed between the cathode chamber and the intermediate chamber,
A third electrode is disposed inside the intermediate chamber,
A current from the DC power supply is passed through the first electrode and the second electrode, and is also passed through a third electrode via a current load device provided on the first electrode side and/or the second electrode side. configured to be
configured to adjust the current flowing through the third electrode and the first electrode and/or the second electrode by the current load device;
The calculating means obtains a reference electrode potential obtained by dividing the electrolysis voltage at the beginning of operation by the voltage of the third electrode at the beginning of operation, and a reference electrode potential obtained by dividing the electrolysis voltage during operation by the voltage of the third electrode during operation. configured to compute an electrode potential during operation;
the storage means is configured to store the reference electrode potential;
It is characterized in that a pH correction current is applied to the third electrode and the first electrode and/or the second electrode when a predetermined difference occurs between the reference electrode potential and the electrode potential during operation. do,
electrolytic device.
JP2022106367A 2022-06-30 2022-06-30 electrolytic device Active JP7212978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022106367A JP7212978B1 (en) 2022-06-30 2022-06-30 electrolytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022106367A JP7212978B1 (en) 2022-06-30 2022-06-30 electrolytic device

Publications (2)

Publication Number Publication Date
JP7212978B1 true JP7212978B1 (en) 2023-01-26
JP2024005906A JP2024005906A (en) 2024-01-17

Family

ID=85035365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022106367A Active JP7212978B1 (en) 2022-06-30 2022-06-30 electrolytic device

Country Status (1)

Country Link
JP (1) JP7212978B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200338145Y1 (en) 2003-08-21 2004-01-13 바이오닉스(주) making apparatus of electrolysis water
KR20050020298A (en) 2003-08-21 2005-03-04 바이오닉스(주) making apparatus of electrolysis water
JP2007190548A (en) 2005-12-21 2007-08-02 Midori Anzen Co Ltd Effective chlorine concentration adjusting method of electrolyzed water, ph adjusting method of electrolyzed water, and electrolyzed water forming apparatus
US20100270172A1 (en) 2007-11-20 2010-10-28 Ecolab Usa Inc. Electrolyzer cell for producing acidic or alkaline electrolyzed water
JP2012110809A (en) 2010-11-22 2012-06-14 Masaaki Arai Membrane holding structure, electrode, apparatus and method for producing electrolysis water using the same
US20180166760A1 (en) 2015-05-01 2018-06-14 Stc.Unm Biological and Stand-Alone Super-Capacitors for Water Treatment
JP2019162607A (en) 2018-03-20 2019-09-26 株式会社東芝 Electrolytic water generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3150355B2 (en) * 1991-03-23 2001-03-26 コニカ株式会社 Bipolar three-dimensional electrode type electrolytic cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200338145Y1 (en) 2003-08-21 2004-01-13 바이오닉스(주) making apparatus of electrolysis water
KR20050020298A (en) 2003-08-21 2005-03-04 바이오닉스(주) making apparatus of electrolysis water
JP2007190548A (en) 2005-12-21 2007-08-02 Midori Anzen Co Ltd Effective chlorine concentration adjusting method of electrolyzed water, ph adjusting method of electrolyzed water, and electrolyzed water forming apparatus
US20100270172A1 (en) 2007-11-20 2010-10-28 Ecolab Usa Inc. Electrolyzer cell for producing acidic or alkaline electrolyzed water
JP2012110809A (en) 2010-11-22 2012-06-14 Masaaki Arai Membrane holding structure, electrode, apparatus and method for producing electrolysis water using the same
US20180166760A1 (en) 2015-05-01 2018-06-14 Stc.Unm Biological and Stand-Alone Super-Capacitors for Water Treatment
JP2019162607A (en) 2018-03-20 2019-09-26 株式会社東芝 Electrolytic water generator

Also Published As

Publication number Publication date
JP2024005906A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US20060076248A1 (en) Apparatus and method for producing electrolyzed water
KR19990072981A (en) Apparatus for producing electrolytic solution
US20080047844A1 (en) Method of generating electrolyzed water and electrolyzed water generation apparatus therefor
CA2315355A1 (en) Electrochemical treatment of an aqueous solution
US20110189302A1 (en) Electrochemical device
WO2014034329A1 (en) Apparatus for producing electrolyzed water and method for producing electrolyzed water
JP2008086885A (en) Electrolytic water generator
JPH09253650A (en) Sterilized water making apparatus
JP7212978B1 (en) electrolytic device
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2004041829A (en) Method and apparatus for preparing electrolytic water, and water
JP2008086886A (en) Electrolytic water generator
JPH06312185A (en) Electrolytic water forming apparatus
JP2001191079A (en) Electrolytic water forming device
JP4068267B2 (en) Electrolyzed water generator
JP2892121B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
CN110872143A (en) Electrolyzed water production device and electrolyzed water production method
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP3575712B2 (en) Electrolyzed water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3637114B2 (en) Electrolyzed water generator
JP3297828B2 (en) Electrolyzed water generator and method for controlling chloride ion concentration in the electrolyzed water generator
JPH11319831A (en) Production of electrolytic function water and its apparatus
JP2019005679A (en) Electrolyzed water generator
JP2005342702A (en) Method for manufacturing bactericidal water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230106

R150 Certificate of patent or registration of utility model

Ref document number: 7212978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150