JPH0494788A - Production of germicidal water containing hypochlorous acid by electrolysis - Google Patents

Production of germicidal water containing hypochlorous acid by electrolysis

Info

Publication number
JPH0494788A
JPH0494788A JP21327990A JP21327990A JPH0494788A JP H0494788 A JPH0494788 A JP H0494788A JP 21327990 A JP21327990 A JP 21327990A JP 21327990 A JP21327990 A JP 21327990A JP H0494788 A JPH0494788 A JP H0494788A
Authority
JP
Japan
Prior art keywords
water
chamber
anode chamber
electrolytic
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21327990A
Other languages
Japanese (ja)
Other versions
JP2892121B2 (en
Inventor
Tatsuo Okazaki
龍夫 岡崎
Yoshihiro Sasaki
佐々木 芳広
Hideyuki Kitamura
英之 北村
Katsue Oshima
大嶋 勝衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMUKO KK
Nippon Steel Corp
Original Assignee
OMUKO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMUKO KK, Nippon Steel Corp filed Critical OMUKO KK
Priority to JP21327990A priority Critical patent/JP2892121B2/en
Publication of JPH0494788A publication Critical patent/JPH0494788A/en
Application granted granted Critical
Publication of JP2892121B2 publication Critical patent/JP2892121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To safely and efficiently obtain a germicidal water having high germicidal power in low concentration with minimal additive quantities of chemicals by adding hypochlorite to water in an anode chamber, adding acids, such as hydrochloric acid, to water in a cathode chamber, performing electrolysis so that the pH value in the anode chamber and the pH value in the cathode chamber are regulated to values in practically specific ranges, respectively, and then mixing the resulting waters. CONSTITUTION:Hypochlorite is added to water in an anode chamber 3' of an electrolytic cell 1 and acid, such as hydrochloric acid, is added to water in a cathode chamber 2', and electrolysis is performed so that pH value of the water, as electrolytic product, in the anode chamber 3' and the pH value of the water, as electrolytic product, in the cathode chamber 2' are regulated to about 3-9 and 4-7, respectively, and the resulting electrolytic water in the anode chamber 3' and electrolytic water in the cathode chamber are joined and mixed and formed into germicidal water containing hypochlorous acid where pH is regulated to about 3-7. Because the electrolytic water neutralized to pH4-7 in the cathode chamber 2' is mixed with the electrolytic water containing hypochlorous acid of pH3-9 formed in the anode chamber 3', the germicidal water containing hypochlorous acid having high germicidal power in low concentration can be obtained without generating chlorine gas. This method is safe and efficient.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電解による次亜塩素酸含有殺菌水の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing sterilized water containing hypochlorous acid by electrolysis.

〔発明の背景〕[Background of the invention]

次亜塩素酸水溶液はp1]8以」−では次1111塩素
酸イオン(CIO−)となり、殺菌力が次亜塩素酸(1
−ICIO)の場合に電動して著しく減少する。
Hypochlorous acid aqueous solution becomes the next 1111 chlorate ion (CIO-) at p1]8 or higher, and the bactericidal power is hypochlorous acid (1)
-ICIO), it is electrically driven and decreases significantly.

しかしp143〜7の範囲ではHCl0の形で保たれ、
殺菌力が飛躍的に増大することが知られており(第2図
挙照)、従って、p I−13〜7の次亜塩素酸水は残
留塩素濃度が30〜60ppm程度の低濃度でもp H
8の残留塩素濃度200ppm程度の殺菌水と同等の殺
菌効果が得られる。
However, in the p143-7 range, it is kept in the form of HCl0,
It is known that the bactericidal power increases dramatically (see Figure 2), and therefore hypochlorous acid water with p I-13 to 7 has a low residual chlorine concentration of about 30 to 60 ppm. H
A sterilizing effect equivalent to that of sterilizing water with a residual chlorine concentration of about 200 ppm in No. 8 can be obtained.

このような殺菌水を得る方法としては従来より、水道水
等の原水に次亜塩素酸すl−+7ウム(NaC10)と
塩酸HCIを混合することが行われており、プール等の
殺菌に利用されている。
The conventional method for obtaining such sterilized water is to mix 1-7 um of hypochlorite (NaC10) and hydrochloric acid HCI with raw water such as tap water, and this method is used to sterilize swimming pools, etc. has been done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、原水に次亜塩素酸ナトリウムと塩酸を混
合して上記性質の殺菌水を得る場合は殺菌水のpH値を
5〜6に調整するのに次亜塩素酸ナトリウムが比較的多
く必要になり、コスト高になる。
However, when mixing sodium hypochlorite and hydrochloric acid with raw water to obtain sterilized water with the above properties, a relatively large amount of sodium hypochlorite is required to adjust the pH value of the sterilized water to 5 to 6. , the cost will be high.

また、単に次亜塩素酸ナトリウム(NaCIO)水溶液
に塩酸(I(CI水溶液)を直接混合する従来の方法は
混合時に危険な塩素ガス(CI2)が発生するという重
大な問題があり、さらにはp H調整が面倒であるなど
、工程管理に種々問題かある。
In addition, the conventional method of directly mixing hydrochloric acid (I (CI aqueous solution)) with sodium hypochlorite (NaCIO) aqueous solution has the serious problem of generating dangerous chlorine gas (CI2) during mixing, and furthermore, There are various problems with process control, such as the troublesome H adjustment.

本発明の目的は」−記の諸問題を解決するためになされ
たもので、混合式にくらへ次亜塩素酸及び塩酸等の薬剤
添加量が少なくてすみ、安全且つ効率的にI) Hが3
〜7、好ましくは5〜6.5の範囲の次亜塩素酸殺菌水
を製造する方法を提供することにある。
The purpose of the present invention has been made to solve the problems described in "I). The mixed method requires only a small amount of chemicals such as hypochlorous acid and hydrochloric acid to be added to the human body, and safely and efficiently." is 3
It is an object of the present invention to provide a method for producing hypochlorous acid sterilized water having a molecular weight of 5 to 7, preferably 5 to 6.5.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の−1−記目的は、陽電極と陰電極間に電解隔膜
を配した電解槽に水を導入し、陽極室の水に次亜塩素酸
塩を添加するとともに、陰極室の水に塩酸等の酸類を添
加し、陽極室に生成される電解次亜塩素酸水溶液のpH
がほぼ3〜9に、また、陰極室に生成される電解水のp
 Hがほぼ/1〜7になるように電解槽の水を電気分解
した後、陽極室と陰極室の電解生成水を混合し、p H
がほぼ3〜7の電解次亜塩素酸水溶液を得ることによっ
て達成される。
The object of the present invention is to introduce water into an electrolytic cell with an electrolytic diaphragm between the anode and the cathode, add hypochlorite to the water in the anode chamber, and add hypochlorite to the water in the cathode chamber. pH of electrolytic hypochlorous acid aqueous solution generated in the anode chamber by adding acids such as hydrochloric acid
is approximately 3 to 9, and the p of electrolyzed water generated in the cathode chamber is approximately 3 to 9.
After electrolyzing the water in the electrolytic cell so that H is approximately /1 to 7, the electrolytically generated water in the anode chamber and cathode chamber is mixed to adjust the pH.
is achieved by obtaining an electrolyzed aqueous hypochlorous acid solution of approximately 3-7.

〔発明の作用〕[Action of the invention]

本発明は電解隔膜で仕切った電解槽の陽極室の水にNa
Cl○を添加し、陰極室の水にHClを添加して電解す
ると陽極室のNaCl0の水溶液のp H値が下がり、
他方、陰極室のHCl水溶液は中和されてl) H値が
」二かることを利用するものである。
In the present invention, Na
When Cl○ is added and HCl is added to the water in the cathode chamber for electrolysis, the pH value of the NaCl0 aqueous solution in the anode chamber decreases.
On the other hand, this method takes advantage of the fact that the HCl aqueous solution in the cathode chamber is neutralized and has a H value of 2.

すなわち、陽極室に次亜塩素酸すトリウムを添加した水
をp I(か3〜9になるように電解するには通常高い
電解電圧が必要であるが、本発明では同時に陰極室の水
に塩酸I C+等の酸類を添加して電解するので陰極室
の塩酸MCIの一部が陽極室へ移動し、これにより陽極
室のp Hが下がる。
In other words, a high electrolysis voltage is usually required to electrolyze water to which thorium hypochlorite has been added to the anode chamber so that the p Since an acid such as hydrochloric acid I C+ is added for electrolysis, a portion of the hydrochloric acid MCI in the cathode chamber moves to the anode chamber, thereby lowering the pH of the anode chamber.

従って、陽極室の水はより小さい電流、すなわち、低い
電圧でpHを3〜9を達成できる。また、電解により陰
極室ではNa”が陽極室から移動して来るので、このN
 a ”の作用により陰極室のl−I C1水溶液のp
 H値が」−界する。すなわち、陰極室の水は、陽極室
の水に混合しても塩素ガスが発生しないp H4〜7値
に中和される。
Therefore, the water in the anode chamber can achieve a pH of 3-9 with less current, ie, lower voltage. In addition, Na'' moves from the anode chamber to the cathode chamber due to electrolysis, so this N
p of the l-I C1 aqueous solution in the cathode chamber due to the action of
The H value exceeds "-". That is, the water in the cathode chamber is neutralized to a pH value of 4 to 7, which does not generate chlorine gas even when mixed with water in the anode chamber.

従って、これら両型極室の電解水を混合することによっ
て、残留塩素のほぼ80%以」二がHCl0の形で存在
するT)83〜7の殺菌力の強い水が塩素ガスの発生を
伴わずに得られる。また、この電解水は使用原水の全量
が電解作用をうけている。
Therefore, by mixing the electrolyzed water of both types of electrode chambers, water with strong sterilizing power (T)83-7, in which approximately 80% or more of the residual chlorine exists in the form of HCl0, can be produced with the generation of chlorine gas. You can get it without getting it. In addition, the entire amount of raw water used in this electrolyzed water is subjected to electrolytic action.

すなわち、本発明はp !−1値が9よりも大きいNa
cIo溶液からpH3〜7の殺菌水を得るのに、まず、
電解の作用で前記陽極室の水をp H3〜9まで下げ、
次いで、この電解水と電解槽の陰極室に生成されたp 
H4〜7の電解水との混合作用で電解水全体をp 1−
13〜7に下げるのである。このため、電解作用だけで
p H3〜7まで下げる場合に比較すると電力は小さく
て済む。
That is, the present invention p! -1 value is greater than 9
To obtain sterilized water with a pH of 3 to 7 from the cIo solution, first,
The pH of the water in the anode chamber is lowered to 3 to 9 by the action of electrolysis,
Next, this electrolyzed water and the p generated in the cathode chamber of the electrolytic cell are
By mixing with the electrolyzed water of H4-7, the entire electrolyzed water becomes p 1-
It will be lowered to 13-7. Therefore, compared to the case where the pH is lowered to 3 to 7 only by electrolysis, less electric power is required.

ここで、陰極室のp H値を4〜7に特定する理由は、
p H値が4よりも小さいと混合時に塩素ガスが発生す
るおそれがあり、他方、pH値が7よりも大きいと陽極
室5からの電解水に混合したときに陽極室からの電解水
のp Hを下げる働きがなくなってしまうからである。
Here, the reason why the pH value of the cathode chamber is specified as 4 to 7 is as follows.
If the pH value is less than 4, chlorine gas may be generated during mixing, while if the pH value is greater than 7, when mixed with the electrolyzed water from the anode chamber 5, the electrolyzed water from the anode chamber This is because the effect of lowering H is lost.

。 また、陽極室のp H値を3〜9に特定する理由は、p
II値が3より小さいと+−I CI Oが不安定にな
り、他方、p H値が9より大きいと陰極室の弱い酸性
水と混合した場合に所望のp l(値、すなわちp H
3〜7が得られなくなるからである。
. Also, the reason why the pH value of the anode chamber is specified as 3 to 9 is that
A II value less than 3 makes the +-I CIO unstable, while a pH value greater than 9 does not result in the desired p l (value, i.e. pH
This is because 3 to 7 cannot be obtained.

この種の殺菌水はp H値が7より大きいとC10−が
増加して殺菌効果が低下し、他方、p T(値が3より
小さいとHCI Oの存在が不安定となるが、本発明で
は」二足のようにp H3〜7の範囲にで水分子のクラ
スターが小さくなり浸透作用が良い。
In this type of sterilizing water, when the pH value is greater than 7, C10- increases and the sterilizing effect decreases, while on the other hand, when the pH value is less than 3, the presence of HCIO becomes unstable, but the present invention In the pH range of 3 to 7, the clusters of water molecules become smaller and the osmotic effect is better.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の詳細な説明する概略図であり、電解槽
1は陰電極2と陽電極3を対向配設し、画電極2,3間
を電解用隔膜4によ−)で陰極室2′と陽極室3′に仕
切ってなり、給水管5から導入した水道水などの原水を
電解し、両型極室に生成された電解水を一対の排出管路
6.7から排水するとともに、抽水管路6,7を、好ま
しくは流11比率制御か可能なバルブ混合器8を介して
合流させ、殺菌水取水管路9から排水するようになって
いる。
FIG. 1 is a schematic diagram illustrating the present invention in detail, and an electrolytic cell 1 has a cathode 2 and an anode 3 facing each other, and an electrolytic diaphragm 4 is used between the picture electrodes 2 and 3 to connect the cathode to the cathode. It is divided into a chamber 2' and an anode chamber 3', and raw water such as tap water introduced from the water supply pipe 5 is electrolyzed, and the electrolyzed water generated in the bipolar electrode chamber is drained from a pair of discharge pipes 6.7. At the same time, the water extraction pipes 6 and 7 are preferably merged via a valve mixer 8 capable of controlling the flow rate 11, and drained from the sterilized water intake pipe 9.

しかして、本発明は図のように、電解槽1の陽極室3′
の水に、好ましくは次亜塩素酸ナトリウムNaCl0な
どの次亜塩素酸塩を添加するとともに、陰極室2′の水
に、好ましくは塩酸HC1などの酸を添加し、且つ、陽
極室3′の電解生成水のp +(がほぼ3〜9に、また
、陰極室2′の電解生成水のp l(か4〜7になるよ
うに電解槽の水を電気分解し、得られた陽極室3′の電
解水と陰極室の電解水を合流、混合してp Hがほぼ3
〜7、好ましくは5〜6.5の次亜塩素酸含有殺菌水と
して生成するものである。
Therefore, the present invention provides an anode chamber 3' of an electrolytic cell 1 as shown in the figure.
A hypochlorite salt, preferably sodium hypochlorite NaCl0, is added to the water in the cathode chamber 2', and an acid, preferably hydrochloric acid HC1, is added to the water in the anode chamber 3'. The water in the electrolytic cell was electrolyzed so that p + (of the electrolytically produced water) was approximately 3 to 9, and p l (of the electrolytically produced water in the cathode chamber 2' was approximately 4 to 7. The electrolyzed water in 3' and the electrolyzed water in the cathode chamber are combined and mixed until the pH is approximately 3.
7, preferably 5 to 6.5, is produced as hypochlorous acid-containing sterilized water.

このため、次亜塩素酸ナトリウム溶液タンク10と陽極
室3′間にパイプ10aが配管され、ポンプ10b、定
量バルブIOCを介して陽極室3′にN a CI O
溶液が注入されるようになっているとともに、同様に、
塩酸タンク11と陰極室2′間にもパイプIlaか配管
され、ポンプIjb、定量バルブIICを介して陰極室
2′にI−I CIが注入されるようになっている。
For this purpose, a pipe 10a is installed between the sodium hypochlorite solution tank 10 and the anode chamber 3', and N a CIO is supplied to the anode chamber 3' via the pump 10b and metering valve IOC.
As well as allowing the solution to be injected,
A pipe Ila is also connected between the hydrochloric acid tank 11 and the cathode chamber 2', and I-I CI is injected into the cathode chamber 2' via a pump Ijb and a metering valve IIC.

第1図のように電解槽1は連続的に水を給排水しなから
電解を行う通水式電解槽でもまた、バッチ式電解槽でも
よいが、図のように連続通水式の電解槽を用いる場合は
給水路5に定流量バルブ12を設けるとともに、陰極室
と陽極室の流量比を、例えば、1対2、あるいは1対3
のように予め設定しておき、電解槽に導入される単位時
間当りの原水量がわかるようにしておく。また、望まし
くは、殺菌水利用側の排出管路6,7にpH測定器14
.13を設けておいてもよい。
As shown in Figure 1, the electrolytic cell 1 may be a water-flow type electrolytic cell in which electrolysis is performed without continuously supplying and draining water, or it may be a batch-type electrolytic cell. When used, a constant flow valve 12 is provided in the water supply channel 5, and the flow rate ratio between the cathode chamber and the anode chamber is set to, for example, 1:2 or 1:3.
It is set in advance as follows, so that the amount of raw water introduced into the electrolytic cell per unit time can be known. Also, desirably, a pH measuring device 14 is provided in the discharge pipes 6 and 7 on the sterilized water usage side.
.. 13 may be provided.

次亜塩素酸すトリウム(NaCIO)は例えば市販の1
2%溶液を使用し、これを電解槽の陽極室3′に添加し
、電解槽1の水に所定の割合で混合されるように定流量
バルブを]Ocを介して投入される。
For example, sodium hypochlorite (NaCIO) is commercially available.
A 2% solution is used and added to the anode chamber 3' of the electrolytic cell through a constant flow valve ]Oc so that it is mixed with the water of the electrolytic cell 1 at a predetermined ratio.

このように、陽極室3′の水にN a CI Oを、ま
た陰極室2′の水にHCIを添加して電解槽1の電極2
,3に直流電圧を印加し、陽極室3′の電解水がp H
3〜9に、また、陰極室2′の水がp H/l〜7にな
るように電解する。
In this way, by adding N a CIO to the water in the anode chamber 3' and HCI to the water in the cathode chamber 2', the electrode 2 of the electrolytic cell 1 is heated.
, 3, the electrolyzed water in the anode chamber 3' becomes pH
3 to 9, and the water in the cathode chamber 2' is electrolyzed to pH/l to 7.

そして塩酸””の添加量は、電解後に混合した両型解水
の全体がp H3〜7になるように調整する。
The amount of hydrochloric acid added is adjusted so that the total pH of both types of decomposed water mixed after electrolysis is 3 to 7.

−1−記の電解により陽極室3′の水に添加したNac
IoからナトリウムイオンNa”が解離し、電解隔膜4
を通して陰極室2′に移動し、陽極室3′の水には第2
図のように残留遊離塩素が次亜塩素酸(I(CIO)ま
たは0CI−″の形で存在することになる。
Nac added to the water in the anode chamber 3' by the electrolysis described in -1-
Sodium ion Na'' is dissociated from Io, and the electrolytic diaphragm 4
The water in the anode chamber 3' is transferred to the cathode chamber 2' through the
As shown in the figure, residual free chlorine exists in the form of hypochlorous acid (I(CIO) or 0CI-'').

他方、陰極室2′の水に添加されたHCIは電解により
II”とCI  に解離され、C1−は電解隔膜4を通
して陽極室3′に移動し、陽極室の電解水のp Hを下
げるとともに、陰極室2′の電解水自体は中和作用によ
りp ](4〜7に中和される。
On the other hand, HCI added to the water in the cathode chamber 2' is dissociated into II'' and CI by electrolysis, and C1- moves to the anode chamber 3' through the electrolytic diaphragm 4, lowering the pH of the electrolyzed water in the anode chamber and lowering the pH of the electrolyzed water in the anode chamber. The electrolyzed water itself in the cathode chamber 2' is neutralized to p ] (4 to 7) by the neutralizing action.

−1ユ記の電解において、陽極室3′の電解水のp11
調整は陰極室2′へのT−i CIの添加量と電解電圧
の調節によってなされる。すなわち、陰極室2′に導入
されたHCIは電解によりI4°とC1−に解離され、
CI−は陽極室3′に移動して陽極室3′の電解水中に
おけるH CI Oの生成に供されるほか、陽極室の水
をp I−13〜9に下げる働きをするので電解電圧は
その分だけ低(てすむ。
- In the electrolysis described in U, p11 of the electrolyzed water in the anode chamber 3'
Adjustments are made by adjusting the amount of T-i CI added to the cathode chamber 2' and the electrolytic voltage. That is, HCI introduced into the cathode chamber 2' is dissociated into I4° and C1- by electrolysis,
CI- moves to the anode chamber 3' and is used to generate HCIO in the electrolyzed water in the anode chamber 3', and also serves to lower the water in the anode chamber to p I-13 to 9, so the electrolytic voltage is That's why it's so low.

尚、殺菌水のp H測定値に基づいて塩酸の供給量が自
動的に制御するようにするのがより望ましい。
It is more desirable that the amount of hydrochloric acid supplied be automatically controlled based on the measured pH value of the sterilized water.

しかして、本発明は」二足の電解によって生じたp H
3〜9の陽極室側電解水とpII/I〜7の陰極室側電
解水を、比率制御が可能な混合バルブ8を介して合流、
混合することによって取水管路9からp Hがほぼ3〜
7、好ましくは5〜6.5の次亜塩素酸殺菌水を生成す
るものである。
Therefore, the present invention is directed to the pH generated by two-leg electrolysis.
3 to 9 of the anode chamber side electrolyzed water and pII/I to 7 of the cathode chamber side electrolyzed water are combined via a mixing valve 8 whose ratio can be controlled,
By mixing, the pH from the water intake pipe 9 is approximately 3~3.
7, preferably 5 to 6.5, to produce hypochlorous acid sterilized water.

〜60ppm程度の低濃度でも充分に効果のある殺菌水
として供し得る。
Even at a low concentration of ~60 ppm, it can be used as sufficiently effective sterilizing water.

〔発明の効果〕〔Effect of the invention〕

本発明は陽極室に生成されるp +−13〜9の電解次
亜塩素酸水に、pH4〜7に中和された1+2極室の電
解水を混合するので塩素ガスを発生させずに低濃度で殺
菌力の強い次亜塩素酸殺菌水を得ることが可能になり、
安全且つ効率的である。
The present invention mixes the electrolyzed hypochlorous acid water with p+-13 to 9 generated in the anode chamber with the electrolyzed water in the 1+2 electrode chamber that has been neutralized to pH 4 to 7, so it does not generate chlorine gas and has a low It is now possible to obtain hypochlorous acid sterilized water with strong sterilizing power due to its concentration.
Safe and efficient.

特に、本発明は陰極室へのMCIの添加により、比較的
低電圧で陽極室のp Hを下げる効果があるか、加えて
、陽極室の電解水がpH8,9のアルカリ側の場合でも
陰極室の電解水を合流させることでp H3〜7に調整
されるのでそれだけ電解電圧が低くて済み、電力を節約
できる。
In particular, the present invention shows that the addition of MCI to the cathode chamber has the effect of lowering the pH of the anode chamber at a relatively low voltage. By combining the electrolyzed water in the chamber, the pH is adjusted to 3 to 7, so the electrolysis voltage can be lowered accordingly, and power can be saved.

また、本発明の殺菌水1.を全量が電解作用をうけてい
るので水分子のクラスターが微細になり浸透作用が良い
。従って、食品なとの殺菌には特に効果か大である。
In addition, the sterilized water of the present invention 1. Since the entire amount is subjected to electrolytic action, the clusters of water molecules become fine and the penetration effect is good. Therefore, it is particularly effective in sterilizing foods.

さらに、NaCl0等の添加量によってI−I C10
の量が決まるので、原水の供給量とこれに対するNaC
l0の添加4nから次亜塩素酸水の残留塩素濃度の所望
最低保証値を計算によって簡単にηることがてき、且つ
電解電流の変化でp tl値の警報信号をひろえるので
II) H値の状況を常に把握することかでき、管理か
し易い。
Furthermore, depending on the amount of NaCl0 etc. added, I-I C10
Since the amount of NaC is determined, the amount of raw water supplied and the NaC
From the addition 4n of 10, the desired minimum guaranteed value of the residual chlorine concentration in hypochlorous acid water can be easily calculated η, and the alarm signal of the p tl value can be obtained by changing the electrolytic current, so II) H value You can always know the situation and it is easy to manage.

【図面の簡単な説明】 第1図は本発明の詳細な説明するための概略図、第2図
は次亜塩素酸水溶液の残留遊離塩素存在比と溶液のp 
Hの関係を示すグラフである。 1・・・電解槽、 2′・・・陰極室、 3′・・・陽
極室、4・・電解隔膜、 5・・・給水管路、 6,7
・・排出管路、8・・・流量比率制御バルブ混合器、 
9・・取水管路、1O−NaCIOタンク、  l l
 ・I−I Clタンク。 特許出願人 株式会社オ 11  コ 外I名代理人 
  弁上゛佐 藤 直 義 弟1図 〆 第2図 残留遊離塩素の存在比(%)
[Brief Description of the Drawings] Figure 1 is a schematic diagram for explaining the present invention in detail, and Figure 2 is a diagram showing the residual free chlorine abundance ratio of an aqueous hypochlorous acid solution and the p of the solution.
It is a graph showing the relationship between H. 1... Electrolytic cell, 2'... Cathode chamber, 3'... Anode chamber, 4... Electrolytic diaphragm, 5... Water supply pipe, 6, 7
...Discharge pipe line, 8...Flow rate ratio control valve mixer,
9... Water intake pipe, 1O-NaCIO tank, l l
・I-I Cl tank. Patent Applicant: O Co., Ltd. 11 Co., Ltd. Named Agent
Benjo Sato Naoto Brother-in-law 1 Figure 2 Residual free chlorine abundance ratio (%)

Claims (1)

【特許請求の範囲】[Claims] 陽電極と陰電極間に電解隔膜を配した電解槽に原水を導
入し、陽極室の水に次亜塩素酸塩を添加するとともに、
陰極室の水に塩酸等の酸類を添加し、陽極室に生成され
る電解次亜塩素酸水溶液のpHがほぼ3〜9に、また、
陰極室に生成される電解水のpHがほぼ4〜7になるよ
うに電解槽の水を電気分解した後、陽極室と陰極室の電
解生成水を混合し、pHがほぼ3〜7の電解次亜塩素酸
水溶液を得ることを特徴とする電解による次亜塩素酸含
有殺菌水の製造方法。
Raw water is introduced into an electrolytic tank with an electrolytic diaphragm placed between the anode and cathode, and hypochlorite is added to the water in the anode chamber.
By adding acids such as hydrochloric acid to the water in the cathode chamber, the pH of the electrolyzed hypochlorous acid aqueous solution produced in the anode chamber is approximately 3 to 9, and
After electrolyzing the water in the electrolytic cell so that the pH of the electrolyzed water produced in the cathode chamber is approximately 4 to 7, the electrolyzed water in the anode and cathode chambers is mixed to produce an electrolyzed water with a pH of approximately 3 to 7. A method for producing hypochlorous acid-containing sterilizing water by electrolysis, the method comprising obtaining a hypochlorous acid aqueous solution.
JP21327990A 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis Expired - Lifetime JP2892121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21327990A JP2892121B2 (en) 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21327990A JP2892121B2 (en) 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis

Publications (2)

Publication Number Publication Date
JPH0494788A true JPH0494788A (en) 1992-03-26
JP2892121B2 JP2892121B2 (en) 1999-05-17

Family

ID=16636478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21327990A Expired - Lifetime JP2892121B2 (en) 1990-08-10 1990-08-10 Method for producing sterile water containing hypochlorous acid by electrolysis

Country Status (1)

Country Link
JP (1) JP2892121B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098870A1 (en) 2008-02-08 2009-08-13 Noguchi Dental Medical Research Institute Dental sterilizing water, method for producing the water, and device for producing the water
JP2014050839A (en) * 2008-10-01 2014-03-20 Gojo Industries Inc ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS
CN115077169A (en) * 2022-07-15 2022-09-20 珠海格力电器股份有限公司 Refrigerator and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098870A1 (en) 2008-02-08 2009-08-13 Noguchi Dental Medical Research Institute Dental sterilizing water, method for producing the water, and device for producing the water
JP2014050839A (en) * 2008-10-01 2014-03-20 Gojo Industries Inc ELECTROLYTIC DEVICE FOR GENERATION OF pH-CONTROLLED HYPOHALOUS ACID AQUEOUS SOLUTIONS FOR DISINFECTANT APPLICATIONS
CN115077169A (en) * 2022-07-15 2022-09-20 珠海格力电器股份有限公司 Refrigerator and control method thereof

Also Published As

Publication number Publication date
JP2892121B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP2627100B2 (en) Method and apparatus for producing sterilized water
JP2619756B2 (en) Sterilized water production method
JP2004267956A (en) Method for producing mixed electrolytic water
US20010022273A1 (en) Electrochemical treatment of water and aqueous salt solutions
JPH02149395A (en) Apparatus and method of preparing aqueous disinfectant
JP2007007502A (en) Manufacturing method of low sodium chloride electrolytic water and manufacturing device thereof
EP1461291B1 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
KR101326272B1 (en) A production system of sodium hypochlorite for reducing byproduct
JP2009136814A (en) Preparation method of weak acidic electrolytic water
JPH03258392A (en) Production of sterilizing water containing hypochlorous acid by electrolysis
JPH0494788A (en) Production of germicidal water containing hypochlorous acid by electrolysis
JP2627101B2 (en) Additive chemicals for the production of electrolytic hypochlorous acid sterilized water
KR20200001254A (en) Sodium Hypochlorite generation device for removing Bromide ion
JP3390878B2 (en) Electrolyzed water generator
JPH06206074A (en) Method and apparatus for producing sterilizing water
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
EP1226094B1 (en) Device for electrolysis
JP3568291B2 (en) Electrolyzed water generator
JP2007160196A (en) Electrolytic sterilizer for water tank
RU213139U1 (en) Electrochemical membrane generator of sodium hypochlorite solution
JPH06246266A (en) Device for producing electrolyte
JP2004008973A (en) Method for making electrolytic water
CN217947747U (en) Subacid electrolyzed water generator capable of automatically adjusting hypochlorous acid content
JP3401294B2 (en) Electrolytic water treatment method
KR20000032639A (en) Acidic water generator for medical application

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12