JP3568291B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3568291B2
JP3568291B2 JP24491395A JP24491395A JP3568291B2 JP 3568291 B2 JP3568291 B2 JP 3568291B2 JP 24491395 A JP24491395 A JP 24491395A JP 24491395 A JP24491395 A JP 24491395A JP 3568291 B2 JP3568291 B2 JP 3568291B2
Authority
JP
Japan
Prior art keywords
electrolyzed water
cathode
anode
water
electrode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24491395A
Other languages
Japanese (ja)
Other versions
JPH0985250A (en
Inventor
信夫 阿知波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP24491395A priority Critical patent/JP3568291B2/en
Publication of JPH0985250A publication Critical patent/JPH0985250A/en
Application granted granted Critical
Publication of JP3568291B2 publication Critical patent/JP3568291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、次亜塩素酸、次亜塩素酸ナトリウム等を主要成分として含有し、殺菌作用、消毒作用を有する電解水を生成するための電解水生成装置に関する。
【0002】
【従来の技術】
次亜塩素酸、次亜塩素酸ナトリウム等を主要成分として含有して殺菌作用、消毒作用を有する電解水を生成するための電解水生成装置の一形式として、特公平7−8768号公報に示されているように、電解槽内を隔膜にて区画して形成された一対の隔室にそれぞれ電極を配置して陽極室と陰極室とを構成し、これら両電極室に供給される希薄食塩水を両電極間で電解する電解水生成装置がある。当該電解水生成装置においては、陽極室内で生成される陽極室側生成水が主として次亜塩素酸を含む酸性水であり、また陰極室内で生成される陰極室側生成水がアルカリ性水である。
【0003】
ところで、当該電解水生成装置にて生成される陽極室側の電解水はpHが2〜3と強い酸性を示すが、当該電解水の殺菌力は次亜塩素酸に大きく依存するもので、pHが3〜7の範囲の電解水が望ましい。また、本発明者の検討結果によれば、当該電解水においては殺菌力の保持性は相対的に低いが、pHが5前後においては相当の安定性を示するとの知見を得ている。
【0004】
従来、酸性の電解水のpHを調整する手段としては、上記した公報に示されているように、陽極室で生成された酸性の電解水に陰極室で生成されたアルカリ性の電解水を混合して調整する手段、特開平4−131184号公報に示されているように、被電解水である食塩水に予め塩酸を添加してpHを低くしてこれを無隔膜電解槽で電解する手段、次亜塩素酸塩を予め添加した水を陽極室に供給して電解する手段等が知られている。
【0005】
【発明が解決しようとする課題】
ところで、上記した各手段においては、予め必要な薬液を添加して被電解水を調製するか、あるいは生成された酸性の電解水に生成されたアルカリ性の電解水を添加して調製するものであって、電解水のpHの調製はかなり面倒である。従って、本発明の目的は、電解水生成装置の運転条件によりpHが3〜7、好ましくはpHが5前後の電解水を生成することができる電解水生成装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、次亜塩素酸、次亜塩素酸ナトリウム等を主要成分として含有して殺菌作用、消毒作用を有する電解水を生成するための電解水生成装置であって、当該電解水生成装置は、電解槽内に所定の間隔を保持して互いに並列的に配設されて対向する陽極および陰極と、同陰極に対して直列的かつ前記陽極に対して並列的に配設されて同陽極に対して所定の間隔を保持して対向する第2の陰極と、前記電解槽内を区画して前記陽極および陰極を収容する第1の電極室と前記第2の陰極を収容する第2の電極室とを形成する隔膜を有し、前記第1の電極室へ供給される食塩水を前記陽極と前記陰極間で電解する主電解工程と、同主電解工程で生成された電解水を前記陽極と前記第2の陰極間で電解する副電解工程を備えていることを特徴とするものである。
【0007】
【発明の作用・効果】
このように構成した電解水生成装置においては、第1の電極室に供給された食塩水は先づ陽極と陰極からなる主電解工程にて無隔膜状態で電解されて、第1の電極室内にて次亜塩素酸ソーダを主要成分とするpH8前後の電解水が生成される。この電解水は陽極と第2の陰極かなる副電解工程にて有隔膜状態で電解されて、第1の電極室側の電解水を酸性側に移行させるとともに、陰極室にアルカリ性の電解水を生成させる。
【0008】
このため、当該電解水生成装置においては、副電解工程での電解の程度を調整することにより、主電解室にて生成される電解水のpHを任意に調整することができる。副電解工程での電解の程度を調整する手段としては、可変抵抗器を使用して主電解工程と副電解工程で付与する電気量を調整する手段、陰極室へ供給する水または食塩水の流速、導電率を調整する手段、隔膜の種類を選定して陽イオン透過能を調整する手段等を採用することができる。
【0009】
従って、当該電解水生成装置によれば、任意の運転条件を採用することにより、陽極室で生成される電解水のpHを任意に調整することができるため、pH3〜7、好ましくはpH5前後の電解水を容易に生成することができる。
【0010】
【発明の実施の形態】
以下本発明に係る電解水生成装置の一例を図面に基づいて説明するに、図1には当該電解水生成装置の概略構成が示されている。当該電解水生成装置は、電解槽11、陽極12a、第1,第2陰極12b,12c、隔膜13、および可変抵抗器14を備えている。
【0011】
電解槽11は、下端側に希薄食塩水の供給管路11aを備えているとともに、上端側に電解水の流出管路11bを備え、隔膜13は電解槽11の下流側に配設されて、電解槽11内を供給管路11aおよび流出管路11bが連通する第1電極室15aと、電解槽11の下流側の隅部に位置する第2電極室15bとに区画している。隔膜13は陽イオンを透過可能の陽イオン交換膜であって、第2電極室15bには水または希薄食塩水の供給管路11cと電解水の流出管路11dが形成されている。
【0012】
第1電極室15aには陽極12aと第1陰極12bが配設され、また第2電極室15bには第2陰極12cが配設されている。陽極12aと第1陰極12bとは、所定間隔を保持して互いに対向して位置しているとともに、第2陰極12cは第1陰極12bに対しては直列的に、かつ陽極12aに対して並列的に位置し、陽極12aとは隔膜13を挟んで所定間隔を保持して対向している。これらの各電極12a〜12cは直流電源16にそれぞれ接続されている。
【0013】
直流電源16に対して、陽極12aは正極に接続されているとともに、第1陰極12bおよび第2陰極12cは負極に接続されている。また、直流電源16と第2陰極12cとの接続回路には、可変抵抗器14が介装されている。これにより、陽極12aと第1陰極12b間には無隔膜の主電解工程が構成され、また陽極12aと第2陰極12c間には隔膜13を挟んで有隔膜の副電解工程が構成される。
【0014】
このように構成した電解水生成装置においては、第1電極室15aには供給管路11aを通して希薄食塩水が供給されるとともに、第2電極室15bには水または希薄食塩水が供給される。本実施の形態においては、水が供給される。また、各電極においては、陽極12aに正電圧が印加されるとともに、第1陰極12bおよび第2陰極12cには負電圧が印加される。
【0015】
この状態の電解槽11においては、先づ陽極12aと第1陰極12bからなる主電解工程にて無隔膜状態で電解されて、第1電極室15a内には次亜塩素酸ソーダを主要成分とするpH8前後の電解水が生成される。この電解水は陽極12aと第2陰極12cかなる副電解工程にて有隔膜状態で電解されて、第1電極室15aの電解水を酸性側に移行させるとともに、第2電極室15bにアルカリ性の電解水を生成させる。第1電極室15aの電解水は流出管路11bを通して流出され、かつ第2電極室15bの電解水は流出管路11dを介して流出される。
【0016】
このように、第1電極室15aの希薄食塩水は主電解工程で無隔膜電解された後に、さらに副電解工程で有隔膜電解されるため、一旦生成された電解水は有隔膜電解により酸性側へ移行する。この場合、電解水の酸性の程度は主として、副電解工程での電解の程度を調整することができる。当該電解水生成装置においては、可変抵抗器14により抵抗値を任意に調整し、陽極12aと第2陰極12c間に付与する電気量を調整して、副電解工程での電解の程度を設定している。これにより、当該電解水生成装置においては、pH5前後の電解水を容易に生成することができる。
【0017】
図2〜図4は、希薄食塩水を電解して生成された次亜塩素酸または次亜塩素酸ソーダを主要成分とするpHの異なる3種類の電解水における有効塩素量の経時的な変化を示すグラフであって、図2のグラフは電解水を室温25℃で開放状態で放置した場合、図3のグラフは電解水を室温40℃で開放状態で放置した場合、図4のグラフは電解水を室温50℃で開放状態で放置した場合の状態を示している。これらのグラフからは、電解水はpHが低い程有効塩素量の残存量は急速に低下することが明かであり、当該電解水の殺菌力と有効塩素の安定性とを考慮すれば、pH5前後の電解水が好ましいことが解る。
【図面の簡単な説明】
【図1】本発明の一例に係る電解水生成装置の概略構成図である。
【図2】各pHの電解水の室温25℃での有効塩素量の経時的変化を示すグラフである。
【図3】各pHの電解水の室温40℃での有効塩素量の経時的変化を示すグラフである。
【図4】各pHの電解水の室温50℃での有効塩素量の経時的変化を示すグラフである。
【符号の説明】
11…電解槽、12a…第1電極、12b…第2電極、12c…第3電極、13…隔膜、14…可変抵抗器、15a…第1電極室、15b…第2電極室。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electrolyzed water generating apparatus for generating electrolyzed water having a bactericidal action and a disinfecting action, which contains, for example, hypochlorous acid and sodium hypochlorite as main components.
[0002]
[Prior art]
Japanese Patent Publication No. 7-8768 discloses a type of electrolyzed water generator for producing electrolyzed water having a bactericidal action and a disinfecting action by containing hypochlorous acid and sodium hypochlorite as main components. As described above, electrodes are arranged in a pair of compartments formed by partitioning the inside of the electrolytic cell with a diaphragm to form an anode compartment and a cathode compartment, and the dilute salt supplied to these two electrode compartments. There is an electrolyzed water generator for electrolyzing water between both electrodes. In the electrolyzed water generating apparatus, the generated water in the anode chamber generated in the anode chamber is mainly acidic water containing hypochlorous acid, and the generated water in the cathode chamber generated in the cathode chamber is alkaline water.
[0003]
By the way, the electrolyzed water on the anode chamber side generated by the electrolyzed water generator has a strong acidity of pH 2 to 3, but the sterilizing power of the electrolyzed water largely depends on hypochlorous acid. Is preferably in the range of 3 to 7. According to the results of the study by the present inventors, it has been found that the electrolyzed water has a relatively low bactericidal activity retention property, but exhibits a considerable stability at a pH of about 5.
[0004]
Conventionally, as a means for adjusting the pH of acidic electrolyzed water, as shown in the above publication, an alkaline electrolyzed water generated in a cathode chamber is mixed with an acidic electrolyzed water generated in an anode chamber. Means for adjusting the pH, as described in JP-A-4-131184, means for adding hydrochloric acid in advance to a saline solution to be electrolyzed to lower the pH, and electrolyzing the solution in a diaphragm-free electrolytic cell. Means and the like for supplying water to which hypochlorite is added in advance to the anode chamber to perform electrolysis are known.
[0005]
[Problems to be solved by the invention]
By the way, in each of the above-mentioned means, the electrolyzed water is prepared by adding a necessary chemical solution in advance, or is prepared by adding the generated alkaline electrolyzed water to the generated acidic electrolyzed water. Thus, adjusting the pH of the electrolyzed water is rather cumbersome. Therefore, an object of the present invention is to provide an electrolyzed water generation device capable of generating electrolyzed water having a pH of 3 to 7, preferably around 5, depending on the operating conditions of the electrolyzed water generation device.
[0006]
[Means for Solving the Problems]
The present invention is an electrolyzed water generating apparatus for generating electrolyzed water having a sterilizing action and a disinfecting action by containing hypochlorous acid, sodium hypochlorite and the like as main components. An anode and a cathode are disposed in parallel with each other while maintaining a predetermined interval in the electrolytic cell, and the anode and the cathode are disposed in series with the cathode and in parallel with the anode. A second cathode facing the electrode at a predetermined distance from the other, a first electrode chamber which partitions the inside of the electrolytic cell and houses the anode and the cathode, and a second electrode which houses the second cathode A main electrolysis step of electrolyzing a saline solution supplied to the first electrode chamber between the anode and the cathode, and the electrolyzed water generated in the main electrolysis step as the anode. And a sub-electrolysis step of electrolyzing between the second cathode and the second cathode. Than it is.
[0007]
[Action and Effect of the Invention]
In the electrolyzed water generating apparatus configured as described above, the saline solution supplied to the first electrode chamber is first electrolyzed in a non-diaphragm state in a main electrolysis step including an anode and a cathode, and is introduced into the first electrode chamber. Thus, electrolyzed water having a pH of about 8 containing sodium hypochlorite as a main component is generated. This electrolyzed water is electrolyzed in a diaphragm state in a sub-electrolysis step consisting of an anode and a second cathode, and the electrolyzed water on the first electrode chamber side is transferred to the acidic side, and alkaline electrolyzed water is supplied to the cathode chamber. Generate.
[0008]
For this reason, in the electrolyzed water generation device, the pH of the electrolyzed water generated in the main electrolysis chamber can be arbitrarily adjusted by adjusting the degree of electrolysis in the sub-electrolysis step. As means for adjusting the degree of electrolysis in the sub-electrolysis step, means for adjusting the amount of electricity applied in the main electrolysis step and the sub-electrolysis step using a variable resistor, the flow rate of water or saline supplied to the cathode chamber Means for adjusting the conductivity, means for selecting the type of the diaphragm and adjusting the cation permeability, etc. can be adopted.
[0009]
Therefore, according to the electrolyzed water generation device, since the pH of the electrolyzed water generated in the anode chamber can be arbitrarily adjusted by adopting any operation conditions, the pH can be adjusted to pH 3 to 7, preferably around pH 5. Electrolyzed water can be easily generated.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of the electrolyzed water generation device according to the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of the electrolyzed water generation device. The electrolyzed water generating apparatus includes an electrolytic cell 11, an anode 12a, first and second cathodes 12b and 12c, a diaphragm 13, and a variable resistor 14.
[0011]
The electrolytic cell 11 is provided with a supply line 11a of diluted saline at the lower end, and an outlet line 11b of electrolytic water at the upper end, and the diaphragm 13 is disposed downstream of the electrolytic cell 11, The inside of the electrolytic cell 11 is divided into a first electrode chamber 15a in which the supply conduit 11a and the outflow conduit 11b communicate with each other, and a second electrode chamber 15b located at a downstream corner of the electrolytic cell 11. The diaphragm 13 is a cation exchange membrane capable of transmitting cations, and a supply line 11c of water or diluted saline and an outlet line 11d of electrolytic water are formed in the second electrode chamber 15b.
[0012]
An anode 12a and a first cathode 12b are provided in the first electrode chamber 15a, and a second cathode 12c is provided in the second electrode chamber 15b. The anode 12a and the first cathode 12b are opposed to each other with a predetermined distance therebetween, and the second cathode 12c is in series with the first cathode 12b and in parallel with the anode 12a. And is opposed to the anode 12a with a predetermined interval therebetween with the diaphragm 13 interposed therebetween. These electrodes 12a to 12c are connected to a DC power supply 16, respectively.
[0013]
With respect to the DC power supply 16, the anode 12a is connected to the positive electrode, and the first cathode 12b and the second cathode 12c are connected to the negative electrode. Further, a variable resistor 14 is interposed in a connection circuit between the DC power supply 16 and the second cathode 12c. As a result, a main electrolysis step of a non-diaphragm is formed between the anode 12a and the first cathode 12b, and a sub-electrolysis step of a diaphragm is interposed between the anode 12a and the second cathode 12c with the diaphragm 13 interposed therebetween.
[0014]
In the electrolyzed water generator configured as described above, the diluted saline is supplied to the first electrode chamber 15a through the supply pipe 11a, and water or the diluted saline is supplied to the second electrode chamber 15b. In the present embodiment, water is supplied. In each electrode, a positive voltage is applied to the anode 12a, and a negative voltage is applied to the first cathode 12b and the second cathode 12c.
[0015]
In the electrolytic cell 11 in this state, first, electrolysis is performed in a non-diaphragm state in the main electrolysis step including the anode 12a and the first cathode 12b, and sodium hypochlorite is contained in the first electrode chamber 15a as a main component. PH of around 8 is generated. This electrolyzed water is electrolyzed in a diaphragm state in a sub-electrolysis step consisting of the anode 12a and the second cathode 12c to transfer the electrolyzed water in the first electrode chamber 15a to the acidic side, and to transfer the alkaline water to the second electrode chamber 15b. Generate electrolyzed water. The electrolyzed water in the first electrode chamber 15a flows out through the outflow pipe 11b, and the electrolyzed water in the second electrode chamber 15b flows out through the outflow pipe 11d.
[0016]
As described above, since the diluted saline solution in the first electrode chamber 15a is subjected to non-diaphragm electrolysis in the main electrolysis step, and further subjected to electro-diaphragm in the sub-electrolysis step, the electrolyzed water once generated is subjected to the electrolysis on the acidic side by the electro-diaphragm. Move to. In this case, the degree of acidity of the electrolyzed water can be adjusted mainly by adjusting the degree of electrolysis in the sub-electrolysis step. In the electrolyzed water generating apparatus, the resistance is arbitrarily adjusted by the variable resistor 14, the amount of electricity applied between the anode 12a and the second cathode 12c is adjusted, and the degree of electrolysis in the sub electrolysis step is set. ing. Thereby, in the electrolyzed water generation device, electrolyzed water having a pH of about 5 can be easily generated.
[0017]
FIG. 2 to FIG. 4 show changes over time of the effective chlorine amount in three types of electrolyzed water having different pHs containing hypochlorous acid or sodium hypochlorite as a main component generated by electrolyzing a dilute saline solution. 2 is a graph showing the case where the electrolyzed water is left open at room temperature 25 ° C., the graph of FIG. 3 is a case where the electrolyzed water is left open at room temperature 40 ° C., and the graph of FIG. This shows a state in which water is left open at room temperature of 50 ° C. From these graphs, it is clear that the lower the pH of the electrolyzed water, the more the residual amount of available chlorine rapidly decreases, and considering the sterilizing power of the electrolyzed water and the stability of available chlorine, the pH is around pH 5. It is understood that electrolyzed water is preferable.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electrolyzed water generation device according to an example of the present invention.
FIG. 2 is a graph showing the change over time of the effective chlorine amount at room temperature and 25 ° C. of electrolytic water of each pH.
FIG. 3 is a graph showing the change over time in the amount of available chlorine at room temperature and 40 ° C. of electrolytic water of each pH.
FIG. 4 is a graph showing the change over time of the available chlorine amount at room temperature and 50 ° C. of electrolytic water of each pH.
[Explanation of symbols]
11 electrolyzer, 12a first electrode, 12b second electrode, 12c third electrode, 13 diaphragm, 14 variable resistor, 15a first electrode chamber, 15b second electrode chamber.

Claims (1)

電解槽内に所定の間隔を保持して互いに並列的に配設されて対向する陽極および陰極と、同陰極に対して直列的かつ前記陽極に対して並列的に配設されて同陽極に対して所定の間隔を保持して対向する第2の陰極と、前記電解槽内を区画して前記陽極および陰極を収容する第1の電極室と前記第2の陰極を収容する第2の電極室とを形成する隔膜を有し、前記第1の電極室へ供給される食塩水を前記陽極と前記陰極間で電解する主電解工程と、同主電解工程で生成された電解水を前記陽極と前記第2の陰極間で電解する副電解工程を備えていることを特徴とする電解水生成装置。An anode and a cathode are disposed in parallel with each other while maintaining a predetermined interval in the electrolytic cell, and the anode and the cathode are arranged in series with the cathode and in parallel with the anode. And a second electrode chamber which partitions the inside of the electrolytic cell to accommodate the anode and the cathode, and a second electrode chamber which accommodates the second cathode. A main electrolysis step of electrolyzing a saline solution supplied to the first electrode chamber between the anode and the cathode, and the electrolyzed water generated in the main electrolysis step as the anode An electrolyzed water generating apparatus comprising a sub-electrolysis step of electrolyzing between the second cathodes.
JP24491395A 1995-09-22 1995-09-22 Electrolyzed water generator Expired - Fee Related JP3568291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24491395A JP3568291B2 (en) 1995-09-22 1995-09-22 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24491395A JP3568291B2 (en) 1995-09-22 1995-09-22 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH0985250A JPH0985250A (en) 1997-03-31
JP3568291B2 true JP3568291B2 (en) 2004-09-22

Family

ID=17125840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24491395A Expired - Fee Related JP3568291B2 (en) 1995-09-22 1995-09-22 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3568291B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314639B1 (en) * 2008-11-21 2013-10-04 솔브레인 주식회사 Sterilizing system
JP2012196643A (en) * 2011-03-23 2012-10-18 Yoshihisa Ishii Apparatus for producing hypochlorous acid water or the like
WO2016114372A1 (en) * 2015-01-14 2016-07-21 株式会社 東芝 Electrolyzed water generating device, electrode unit, and electrolyzed water generating method
JP7280854B2 (en) * 2020-05-26 2023-05-24 株式会社日本トリム Electrolyzed water generator and hypochlorous acid water generation method

Also Published As

Publication number Publication date
JPH0985250A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
US4129493A (en) Swimming pool chlorinator system
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
JPH0442077B2 (en)
JPH07155760A (en) Device for producing electrolyzed water
JPH08229565A (en) Electrolyzed water producing device
JP4031877B2 (en) Hypochlorous acid aqueous solution generator
JP3568291B2 (en) Electrolyzed water generator
JP3667405B2 (en) Electrolyzed water generator
JP3575713B2 (en) Method and apparatus for generating electrolyzed water
JP3568290B2 (en) Electrolyzed water generator
JP3802580B2 (en) Electrolyzed water generator
JP2001191079A (en) Electrolytic water forming device
JP2003034889A (en) Method for electrolysis in device for generating strong- electrolyzed water
JP3893693B2 (en) Electrolyzed water production equipment
JP3575712B2 (en) Electrolyzed water generator
EP1226094B1 (en) Device for electrolysis
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3637114B2 (en) Electrolyzed water generator
JP3677331B2 (en) Electrolyzed water generator
JP2892121B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JPH09108677A (en) Electrolytic water generator
JPH0970581A (en) Ionic water producing device
JP2000093966A (en) Electrolytic apparatus
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees