JP2012196643A - Apparatus for producing hypochlorous acid water or the like - Google Patents

Apparatus for producing hypochlorous acid water or the like Download PDF

Info

Publication number
JP2012196643A
JP2012196643A JP2011063587A JP2011063587A JP2012196643A JP 2012196643 A JP2012196643 A JP 2012196643A JP 2011063587 A JP2011063587 A JP 2011063587A JP 2011063587 A JP2011063587 A JP 2011063587A JP 2012196643 A JP2012196643 A JP 2012196643A
Authority
JP
Japan
Prior art keywords
electrode
tank
diaphragm
hypochlorous acid
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011063587A
Other languages
Japanese (ja)
Inventor
Yoshihisa Ishii
義久 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011063587A priority Critical patent/JP2012196643A/en
Publication of JP2012196643A publication Critical patent/JP2012196643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing hypochlorous acid water or the like which can produce hypochlorous acid water or the like that has strong deodorizing power and strong sterilizing power and is used for deodorization, disinfection or the like and is weakly acidic or neutral and which is safe, simple and low cost.SOLUTION: The apparatus for producing hypochlorous acid water or the like by electrolysis of brine has a non-diaphragm electrolysis electrode and a diaphragm electrolysis electrode arranged in an electrolytic cell having the diaphragm. By setting respective electrolysis current values, electrolysis time and a ratio of them or the like by an electric controllers, desired concentration and pH of hypochlorous acid water or the like can be selected. Further pH of an anode side electrolyte is regulated by replacing a part of a cathode side electrolyte in the electrolytic cell or in the electrolytic cell where only diaphragm electrolysis is carried out.

Description

本発明は、除菌、消臭などに使用する消臭力、殺菌力の強い弱酸性から中性域の次亜塩素酸や次亜塩素酸塩の水溶液(次亜塩素酸や次亜塩素酸塩を総称して次亜塩素酸等、次亜塩素酸等の水溶液を次亜塩素酸水等と定義し、以下、呼称する。)の生成を行う次亜塩素酸水等の生成装置に関する。 The present invention relates to an aqueous solution (hypochlorous acid or hypochlorous acid) of a weakly acidic to neutral hypochlorous acid or hypochlorite used for sterilization, deodorization and the like. The present invention relates to an apparatus for producing hypochlorous acid water or the like, which generally produces salts such as hypochlorous acid and the like, and hypochlorous acid and the like as an aqueous solution of hypochlorous acid.

昨今、塩素ガス発生がなく、アルカリによる皮膚腐食のない弱酸性から中性付近の次亜塩素酸水等による強い殺菌、消臭力が注目されて、口内の殺菌、口臭予防、手指の洗浄などに使用する次亜塩素酸水等がボトルに詰められ販売されるようになってきている。 Recently, there is no generation of chlorine gas, there is no skin corrosion due to alkali, and strong sterilization and deodorizing power with hypochlorous acid water etc. near neutrality has attracted attention, sterilization of mouth, prevention of bad breath, washing of fingers, etc. Hypochlorous acid water used for sachets is packed in bottles and sold.

また、従来、食塩水を電気分解によって次亜塩素酸や次亜塩素酸塩の水溶液を生成する次亜塩素酸水等の生成装置が知られており、広く利用されている(例えば、特許文献1〜3)。 Further, conventionally, a device for producing hypochlorous acid water or the like that produces an aqueous solution of hypochlorous acid or hypochlorite by electrolysis of saline is known and widely used (for example, patent documents). 1-3).

特開平11−128941号公報Japanese Patent Laid-Open No. 11-128941 特開平10−128336号公報JP-A-10-128336 特開2005−125276号公報JP 2005-125276 A

しかし、特許文献1に開示する次亜塩素酸水等の生成装置にあっては、酸性水およびアルカリ性水が流れる通水路に流水量を調整するバルブを設け、流量比率でPHを決めているため、微量調整が難しく、バルブの流量経時変化もあり、PHを長時間安定させて使用することは難しく、PH計を備え自動調整するか頻繁にPHを測定し流量調整をしなければならなかった。特許文献2に開示する次亜塩素酸水等の生成装置にあっては、電解する原水に塩酸を添加することを要し、劇物である濃塩酸を希釈して用いるか、希塩酸を頻繁に取り扱わなければならず、次亜塩素酸水等の生成装置の利用者が限定された。特許文献3に開示する次亜塩素酸水等の生成装置にあっては、塩化ナトリウムなどの水溶液を使用し、隔膜電解法及び無隔膜電解法を組合わせて生成される2種類以上の電解水を混合し、中性域の次亜塩素酸水等を得るものであるが、電解槽を2つ以上持つため装置が大きくなり、またコストアップになるという欠点があった。 However, in the apparatus for generating hypochlorous acid water or the like disclosed in Patent Document 1, a valve for adjusting the flow rate is provided in a water flow path through which acidic water and alkaline water flow, and PH is determined by a flow rate ratio. It is difficult to adjust a minute amount, and the flow rate of the valve changes with time, so it is difficult to stabilize and use PH for a long time. . In the apparatus for generating hypochlorous acid water or the like disclosed in Patent Document 2, it is necessary to add hydrochloric acid to the raw water to be electrolyzed, dilute concentrated hydrochloric acid, which is a deleterious substance, or use dilute hydrochloric acid frequently. It must be handled and the number of users of generators such as hypochlorous acid water was limited. In the apparatus for generating hypochlorous acid water disclosed in Patent Document 3, an aqueous solution such as sodium chloride is used, and two or more kinds of electrolyzed water generated by combining the diaphragm electrolysis method and the non-diaphragm electrolysis method In order to obtain neutral hypochlorous acid water, etc., there are disadvantages that the apparatus becomes large and the cost increases because it has two or more electrolytic cells.

本発明は、上述の課題を解決するためになされたものであり、利用者が安全、簡易に、殺菌力の強い弱酸性から中性域の次亜塩素酸水等をつくることができる、低廉な次亜塩素酸水等の生成装置を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and allows a user to produce a hypochlorous acid water or the like in a neutral region from a weakly acidic, strong sterilizing power to a neutral region. An object of the present invention is to provide a device for producing hypochlorous acid water or the like.

このため第1の発明は、塩素イオンを含む電気分解液を電気分解して次亜塩素酸水等を生成する生成装置であって、隔膜でA槽とB槽に区切られた電解槽と、A槽内に設けられた電極1及び電極2と、前記隔膜を隔ててA槽内に設けられた電極3およびB槽内に設けられた電極4と、電極1及び電極2を陽極陰極として電極1及び電極2に直流の定電流値I1、電極3を陽極及び電極4を陰極として電極3および電極4に直流の定電流値I2を流す電気制御装置とからなることを特徴とする。 For this reason, the first invention is a generating device that electrolyzes an electrolytic solution containing chlorine ions to generate hypochlorous acid water and the like, and an electrolytic cell partitioned into a tank A and a tank B by a diaphragm, Electrode 1 and electrode 2 provided in tank A, electrode 3 provided in tank A and electrode 4 provided in tank B across the diaphragm, electrode 1 and electrode 2 as anode cathode 1 and the electrode 2 and the electrode 3 as an anode and the electrode 4 as a cathode, and the electrode 3 and the electrode 4 as an electric control device for causing the DC constant current value I2 to flow.

第2の発明は、前記定電流値I1と前記定電流値I2の比が、定電流値I2/定電流値I1=0.06〜10であり、前記電気制御装置に定電流値I1及び定電流値I2の通電時間制御が組み込まれていることを特徴とする。   In a second aspect of the invention, the ratio between the constant current value I1 and the constant current value I2 is constant current value I2 / constant current value I1 = 0.06 to 10, and the electric control device includes the constant current value I1 and the constant current value I2. It is characterized in that energization time control of the current value I2 is incorporated.

第3の発明は、前記電気制御装置が前記電極3及び前記電極4を流れる直流の極性を所定時間ごとに反転する機能を有することを特徴とする。 The third invention is characterized in that the electric control device has a function of inverting the polarity of the direct current flowing through the electrode 3 and the electrode 4 every predetermined time.

第4の発明は、前記B槽に塩水を加える装置を有し、所定時間毎にもしくは連続して前記B槽に塩水を加え、B槽から出水することを特徴とする。 4th invention has the apparatus which adds salt water to the said B tank, salt water is added to the said B tank every predetermined time or continuously, and it drains from B tank, It is characterized by the above-mentioned.

第5の発明は、塩素イオンを含む電気分解液を電気分解して次亜塩素酸水等を生成する生成装置であって、隔膜でA槽とB槽に区切られた電解槽と、前記隔膜を隔ててA槽内に設けられた電極3およびB槽内に設けられた電極4と、電極3を陽極及び電極4を陰極として電極3および電極4に直流の定電流を流す電気制御装置と、前記B槽に塩水を加える装置及び排水装置とからなり、所定時間毎にもしくは連続して前記B槽に塩水を加え、略同量のB槽電解液を排水し、電解電流量Q(クーロン)に対し前記排水量が0.016×Q(クーロン)ml以下であることを特徴とする。 5th invention is the production | generation apparatus which produces | generates hypochlorous acid water etc. by electrolyzing the electrolysis solution containing a chlorine ion, Comprising: The electrolytic cell divided into A tank and B tank by the diaphragm, The said diaphragm An electrode 3 provided in the A tank and an electrode 4 provided in the B tank, and an electric control device for passing a constant DC current to the electrodes 3 and 4 with the electrode 3 serving as an anode and the electrode 4 serving as a cathode. , A device for adding salt water to the B tank and a drainage device, adding salt water to the B tank every predetermined time or continuously, draining substantially the same amount of the B tank electrolyte, and the amount of electrolysis current Q (coulomb) ), The drainage amount is 0.016 × Q (Coulomb) ml or less.

第6の発明は、前記隔膜が陽イオン交換膜であることを特徴とする。 The sixth invention is characterized in that the diaphragm is a cation exchange membrane.

第7の発明は、前記隔膜または隔膜近傍に振動を与える装置を付設していることを特徴とする。 The seventh invention is characterized in that a device for applying vibration to the diaphragm or the vicinity of the diaphragm is attached.

本発明は、一つの電解槽内で、塩素イオンを含む電気分解液(以下、「電解液」と略称する。)の無隔膜電気分解(隔膜を隔てない陰陽2極による電気分解で、これを「無隔膜電解」と呼ぶ、以下呼称する。)及び有隔膜電気分解(隔膜で仕切られた2槽のそれぞれに配置した陽極と陰極による電気分解で、これを有隔膜電解と呼ぶ、以下呼称する。)または有隔膜電気分解のみを行い、無隔膜の電解電流値および電解時間と有隔膜の電解電流値および電解時間を調節することにより、またB槽アルカリ性の電解液を一部入れ換えることにより、PH,残留塩素濃度を設定できる、利用者が安全,簡易に殺菌力の強い弱酸性から中性域の次亜塩素酸水等をつくることができる次亜塩素酸水等の生成装置を提供することができる。 The present invention is a non-diaphragm electrolysis of an electrolytic solution containing chlorine ions (hereinafter abbreviated as “electrolytic solution”) in a single electrolytic cell. (Hereinafter referred to as “non-diaphragm electrolysis”) and diaphragm electrolysis (electrolysis by an anode and a cathode disposed in each of two tanks partitioned by a diaphragm, which is referred to as “diaphragm electrolysis”. .) Or by performing only electrolysis of the diaphragm, adjusting the electrolysis current value and electrolysis time of the non-diaphragm and the electrolysis current value and electrolysis time of the diaphragm, and by partially replacing the B-cell alkaline electrolyte, Providing a device for generating hypochlorite water, etc. that can set PH and residual chlorine concentration, and that allows users to safely and easily produce hypochlorous acid water in a neutral range from weakly acidic to strong acidity be able to.

また本発明は、電気分解により発生する気泡が隔膜に付着し通電を阻害するのを、隔膜に付着した気泡に動揺を与えて脱離させ、通電の阻害を防止することにより、安定した発生量の次亜塩素酸水等の生成装置を提供することができる。 In addition, the present invention prevents the bubbles generated by electrolysis from adhering to the diaphragm and impeding energization by swaying the bubbles adhering to the diaphragm and releasing them, thereby preventing the energization from being inhibited, thereby generating a stable amount of generation. An apparatus for producing hypochlorous acid water or the like can be provided.

本発明の第1の実施の形態に係る次亜塩素酸水等の生成装置を示す図である。It is a figure which shows production | generation apparatuses, such as hypochlorous acid water, concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る次亜塩素酸水等の生成装置の電極部分の別の実施例の図である。It is a figure of another Example of the electrode part of production | generation apparatuses, such as hypochlorous acid water, concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る次亜塩素酸水等の生成装置を示す図である。It is a figure which shows production | generation apparatuses, such as hypochlorous acid water, concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る次亜塩素酸水等の生成装置の電解槽部分の図である。It is a figure of the electrolytic cell part of production | generation apparatuses, such as hypochlorous acid water, concerning the 3rd Embodiment of this invention. 本発明の第2の実施の形態に係る電気分解によるPHとB槽電解液入換量の関係を示す図である。It is a figure which shows the relationship between PH by electrolysis which concerns on the 2nd Embodiment of this invention, and B tank electrolyte solution exchange amount.

以下、本発明を実施するための第1の形態について図1を用いて説明する。まず、構造の概略について説明する。電解槽ABには電解用電極1,2,3,4、電解槽AB内を2つに区切る隔膜5、アルカリ水出水管6、次亜塩素酸水等出水管7、アルカリ水出水管8、電解液水位センサー121,122が付設されている。また、電極への通電を制御する電気制御装置C、水槽に電解液を供給する電解液供給管131,132及び電解液タンク15が付設されている。 Hereinafter, a first embodiment for carrying out the present invention will be described with reference to FIG. First, an outline of the structure will be described. The electrolytic cell AB includes electrolysis electrodes 1, 2, 3, 4, a diaphragm 5 that divides the electrolytic cell AB into two, an alkaline water discharge pipe 6, a hypochlorite water discharge pipe 7, an alkaline water discharge pipe 8, Electrolyte water level sensors 121 and 122 are attached. Further, an electric control device C for controlling energization to the electrodes, electrolyte supply pipes 131 and 132 for supplying the electrolyte to the water tank, and an electrolyte tank 15 are provided.

次に構造の詳細について説明する。電気分解を行う電解槽ABは隔膜5によりA槽とB槽に区切られている。電解により、A槽には次亜塩素酸水等が生成され、B槽内の水はアルカリ性となる。A槽には電極1および電極2が対峙して設けられ、また、前記隔膜を隔ててA槽に電極3、B槽に電極4が設けられている。ここで対峙してとは液抵抗を大きくしない配置をすることを言い、厳密に向き合うことを要しない。電極1と電極2の極性は陰陽どちらも可能であるが、電極3を陽極とすることから隔膜5寄りの電極2を陽極とするのが好ましい。図1ではA槽内の陰陽電極のうち前記隔膜に近い側の電極2を陽極とし、電極2の背面を電極3として用い、該隔膜5を隔てて近接してB槽の電極4に陰極を設け、1つの電極で電極2と電極3の2つの役割をさせているが、図2のように別々に電極2と電極3を設けてもかまわない。 Next, details of the structure will be described. The electrolytic cell AB that performs electrolysis is divided into a tank A and a tank B by a diaphragm 5. By electrolysis, hypochlorous acid water or the like is generated in the A tank, and the water in the B tank becomes alkaline. Electrode 1 and electrode 2 are provided opposite to each other in tank A, and electrode 3 is provided in tank A and electrode 4 is provided in tank B across the diaphragm. Here, confronting means that the liquid resistance is not increased, and it is not necessary to face each other strictly. The polarity of the electrode 1 and the electrode 2 can be either yin or yang. However, since the electrode 3 is an anode, the electrode 2 near the diaphragm 5 is preferably an anode. In FIG. 1, the electrode 2 on the side close to the diaphragm among the Yin and Yang electrodes in the tank A is used as the anode, the back surface of the electrode 2 is used as the electrode 3, and the cathode is connected to the electrode 4 in the tank B in close proximity with the diaphragm 5 interposed therebetween. The two electrodes, the electrode 2 and the electrode 3, are provided by one electrode, but the electrode 2 and the electrode 3 may be separately provided as shown in FIG.

電極2、電極3など陽極は強い酸化環境の中でも耐久性を求められることから、チタン基材に白金または酸化イリジウムなどの白金族酸化物の被覆をして用いる。電極1は陽極として用いる場合にはチタン基材に白金または酸化イリジウムなどの白金族酸化物の被覆をして用い、陰極として用いる場合には陽極と同じ材質であっても良いがチタン材でも良い。食塩などの電解質を溶解するとき、逆浸透膜通過水、イオン交換樹脂通過水のようにカルシウムイオン、マグネシウムイオンなどのスケール成分を含まない水を用いた場合には、スケール除去のための逆電解が不要なので電極1、電極4の材質はチタン材でもよい。使用する水がスケール成分を含む場合には電極4の材質は直流の極性反転をするため陽極と同じ白金または白金族酸化物の被覆材など耐久性素材を用いる。 Since the anodes such as the electrodes 2 and 3 are required to have durability even in a strong oxidizing environment, the titanium base material is used after being coated with a platinum group oxide such as platinum or iridium oxide. When the electrode 1 is used as an anode, the titanium base material is coated with a platinum group oxide such as platinum or iridium oxide. When the electrode 1 is used as a cathode, the same material as the anode may be used, but a titanium material may be used. . When dissolving electrolytes such as salt, water that does not contain scale components such as calcium ions and magnesium ions, such as reverse osmosis membrane passing water and ion exchange resin passing water, is used for reverse electrolysis to remove the scale. Is unnecessary, the material of the electrodes 1 and 4 may be a titanium material. When the water to be used contains a scale component, the electrode 4 is made of a durable material such as platinum or a platinum group oxide covering material that is the same as the anode in order to reverse the polarity of the direct current.

隔膜5はイオン泳動ができ、液が容易に行き来できない素材、たとえば、素焼き板、不織布、イオン交換膜などを用いる。不織布、イオン交換膜は耐久性の点からフッ素樹脂製のものが良い。不織布はPE,PP,PET製など次亜塩素酸水等に耐える他の素材あっても良い。撥水性の素材は湿潤処理をして用いる。隔膜5は電解電圧を低くするため、薄くし補強の支材51を用いて形成すると良いが、支材51は無くても良い。 The diaphragm 5 is made of a material that can perform ion migration and the liquid cannot easily move, such as an unglazed plate, a nonwoven fabric, and an ion exchange membrane. Nonwoven fabrics and ion exchange membranes are preferably made of fluororesin from the viewpoint of durability. The nonwoven fabric may be made of other materials that can withstand hypochlorous acid water, such as PE, PP, and PET. The water-repellent material is used after wet treatment. The diaphragm 5 is preferably formed using a thin reinforcing reinforcement member 51 in order to reduce the electrolysis voltage, but the support member 51 may be omitted.

A槽B槽に食塩などの塩素イオンを含む電解液を入れ、電極1、電極2に直流電流を流して電気分解を行う。また、電極3,電極4に直流電流を流して電気分解を行う。隔膜5を陽イオン交換膜にするとB槽に発生したOHイオンの通過が防止され、A槽はより酸性に傾きやすくなる。 An electrolytic solution containing chlorine ions such as salt is placed in the A tank and the B tank, and a direct current is passed through the electrodes 1 and 2 to perform electrolysis. Further, a direct current is passed through the electrodes 3 and 4 to perform electrolysis. When the diaphragm 5 is a cation exchange membrane, the passage of OH ions generated in the B tank is prevented, and the A tank tends to be more acidic.

電気分解により水素ガス、酸素ガスが発生し、隔膜5に気泡が付着して通電を阻害するので、隔膜5の補強支材51には隔膜5から気泡を脱離させるため振動装置16が付設されている。気泡を脱離させるための振動装置は、本実施例では電磁石を用い補強支材51への打撃を利用したが、オルゴールのように弾く方法であっても良く、隔膜5付近の電解槽容器を叩いても良く、水流、気流で隔膜5および付近に動揺を与えても良い。 Hydrogen gas and oxygen gas are generated by electrolysis, and bubbles are attached to the diaphragm 5 to inhibit energization. Therefore, the reinforcing support member 51 of the diaphragm 5 is provided with a vibration device 16 for detaching the bubbles from the diaphragm 5. ing. In the present embodiment, the vibration device for detaching the bubbles uses an electromagnet to hit the reinforcing support member 51. However, the vibrating device may be repelled like a music box. It may be struck, and the diaphragm 5 and the vicinity thereof may be shaken with a water flow or an air flow.

電気制御装置Cには、電源へのコンセント、電極、振動装置、開閉弁、水位センサーなど電装部品と繋ぐ配線、電流値制御ボタン、時間制御ボタン、各種表示が設けられている。また、電解電流値、電解時間、その他電装部品を制御する電気回路が設けられている。無隔膜電解電流値、有隔膜電解電流値、電流値比の設定は、本実施例では無隔膜電解電流値、有隔膜電解電流値で設定しているが、無隔膜電解電流値と電流値比で設定するなど別の組合せで設定する構造としても良い。 The electrical control device C is provided with a power outlet, an electrode, a vibration device, an on-off valve, a wiring connecting to an electrical component such as a water level sensor, a current value control button, a time control button, and various displays. In addition, an electric circuit for controlling the electrolysis current value, electrolysis time, and other electrical components is provided. The setting of the diaphragm electrolysis current value, the diaphragm electrolysis current value, and the current value ratio is set by the diaphragm electrolysis current value and the diaphragm electrolysis current value in this embodiment, but the ratio of the diaphragm electrolysis current value and the current value ratio is set. It is good also as a structure set with another combination, such as setting by.

A槽,B槽に付設され、電解槽に入る液量を制御する電解液水位センサー121,122はチタンなどの耐食性金属を用い、一方を水位に一方を深く沈めて、2極の通電の有無で電気制御装置Cにより電解液水位が所定水位にあることを判断している。本例では電解液水位センサーに電極式を用いているが、フロート式、超音波式その他の方法であっても良い。また、本実施例では水位センサーを設けているが、定量ポンプなどで電解液流量を制御できる場合には水位センサーを設けなくても良い。 Electrolyte water level sensors 121 and 122 attached to the A and B tanks to control the amount of liquid entering the electrolyzer use a corrosion-resistant metal such as titanium. Thus, it is determined by the electric control device C that the electrolyte water level is at the predetermined water level. In this example, an electrode type is used for the electrolyte water level sensor, but a float type, an ultrasonic type, or other methods may be used. In this embodiment, the water level sensor is provided. However, when the electrolyte flow rate can be controlled by a metering pump or the like, the water level sensor may not be provided.

A槽,B槽への電解液の供給のため電解液供給管131,132及び電解液タンク15が設けられ、電解液供給管131,132にはそれぞれ電磁弁141,142が設けられており、電解液水位センサー121,122の信号を受けて電気制御装置Cが電磁弁141,142の開閉を行う構造となっている。本例では電磁弁を用いたが、ポンプ、定量ポンプその他の方法であっても良い。また、電解液は少量の濃厚塩水を定量ポンプで入れ、浄水を加える方法であっても良い。 Electrolyte supply pipes 131 and 132 and an electrolyte tank 15 are provided for supplying electrolyte to the A and B tanks, and electromagnetic valves 141 and 142 are provided in the electrolyte supply pipes 131 and 132, respectively. The electric control device C is configured to open and close the electromagnetic valves 141 and 142 in response to signals from the electrolyte water level sensors 121 and 122. In this example, an electromagnetic valve is used, but a pump, a metering pump, or other method may be used. Further, the electrolytic solution may be a method of adding a small amount of concentrated salt water with a metering pump and adding purified water.

また、A槽には次亜塩素酸水等出水管7, B槽にはアルカリ水出水管8が設けられ、それぞれに電磁弁9、10が付設され、電気制御装置Cの指示により開閉を行う構造となっている。本実施例では弁に電磁弁を用いているが、モーターによる開閉、レバーによる開閉など他の方法による開閉であっても良く、これにより本発明は制限されない。また、電解液水位センサー121,122、電解液供給管131,132及び電解液タンク15、次亜塩素酸水等出水管7, アルカリ水出水管8の付設は必ずしも必要でなく、手動で供給、排出を行うなど電解液の供給、排出を他の方法で行っても本発明を免れるものではない。また、B槽の電解液のアルカリ濃度の過上昇防止およびA槽の電解液PH制御のためB槽の電解液の一部入れ換えを行うが、この排出のため排水装置を設けている。排水装置は排水できる構造物であれば良く、本実施例ではアルカリ水出水管6を設けている。なお、電解電流量に比し、B槽容量が大きい場合には水酸化物イオン濃度が高くならないのでアルカリ水出水管6は無くても良い。 The tank A is provided with a discharge pipe 7 for hypochlorous acid water, the tank B is provided with an alkaline water discharge pipe 8, and electromagnetic valves 9 and 10 are respectively attached to the tank B and are opened and closed according to instructions from the electric control device C. It has a structure. In this embodiment, an electromagnetic valve is used as the valve, but it may be opened and closed by other methods such as opening and closing by a motor, opening and closing by a lever, and the present invention is not limited thereby. Further, it is not always necessary to provide the electrolyte water level sensors 121, 122, the electrolyte supply pipes 131, 132, the electrolyte tank 15, the hypochlorous acid water discharge pipe 7, and the alkaline water discharge pipe 8, and supply them manually. Even if the electrolytic solution is supplied and discharged by other methods such as discharging, the present invention is not spared. Further, in order to prevent an excessive increase in the alkali concentration of the electrolyte solution in the B tank and to control the electrolyte solution PH in the A tank, a part of the electrolyte solution in the B tank is replaced. A drainage device is provided for this discharge. The drainage device may be any structure that can drain water, and in this embodiment, an alkaline water discharge pipe 6 is provided. In addition, since the hydroxide ion density | concentration does not become high when B tank capacity | capacitance is large compared with the amount of electrolysis electric current, the alkaline water drain pipe 6 does not need to be.

次に動作について図1に基づいて説明する。電磁弁141,142が開き電解液タンク15より電解液が電解液供給管131,132を通って電解槽ABに供給される。電解液には塩化ナトリウム、塩化カリウムなどの塩化物塩を水道水などの浄水、精製水、逆浸透膜通過水など不純物の少ない水に溶解して用いる。電解液が所定水位に達すると電解液水位センサー121,122の信号により電磁弁141,142が閉じ電解液の供給が停止する。電気制御装置Cの指示により電極1,電極2に所定電流値I1、電極3,電極4に所定電流値I2、が流れ電解液の電気分解が始まる。電気分解を継続すると電極から発生した酸素ガスと水素ガスの一部が隔膜5に付着するので、振動装置16に通電して振動を起こし気泡を脱離する。振動装置16への必要な通電間隔は電解電流に左右されるが、10分程度の間隔で気泡を脱離してやればほとんど問題ない。電解中のB槽の電解液の水酸化物イオン濃度の変化でA槽の電解液のPHが左右されるのを防ぐため、所定時間間隔で所定量の電解液を電磁弁141を開いて供給し、またアルカリ水出水管6から同量を排出する。所定時間電解液の電気分解を行った後、電気制御装置Cの指示により電気分解は停止する。電気分解終了後、A槽の次亜塩素酸水等は電磁弁9が開き、次亜塩素酸水等出水管7を通って出水され容器に貯えもしくは直接利用に供される。B槽のアルカリ水は電磁弁10が開き、出水管8を通って出水され、油脂汚れ洗浄剤などとして利用されるか、廃棄される。回分式で説明したが本発明は回分式に限らず、小刻みの供給出水、連続供給出水する方法であっても良い。ここで前記定電流値I1,定電流値I2は所要電解時間内の平均電流値であって、所要電解時間内、一定電流値であることが望ましいが、所要電解時間に比し短時間内での電流値変化があっても、本発明を免れるものではない。 Next, the operation will be described with reference to FIG. The electromagnetic valves 141 and 142 are opened, and the electrolytic solution is supplied from the electrolytic solution tank 15 to the electrolytic cell AB through the electrolytic solution supply pipes 131 and 132. For the electrolytic solution, a chloride salt such as sodium chloride or potassium chloride is dissolved in water with few impurities such as purified water such as tap water, purified water, and reverse osmosis membrane passing water. When the electrolyte reaches a predetermined water level, the solenoid valves 141 and 142 are closed by the signals of the electrolyte water level sensors 121 and 122, and the supply of the electrolyte is stopped. In response to an instruction from the electric control device C, a predetermined current value I1 flows through the electrodes 1 and 2, and a predetermined current value I2 flows through the electrodes 3 and 4, so that electrolysis of the electrolyte starts. If the electrolysis is continued, part of oxygen gas and hydrogen gas generated from the electrodes adheres to the diaphragm 5, so that the vibration device 16 is energized to vibrate and desorb bubbles. The necessary energization interval to the vibration device 16 depends on the electrolysis current, but there is almost no problem if bubbles are detached at intervals of about 10 minutes. In order to prevent the pH of the electrolyte solution in the A tank from being affected by the change in the hydroxide ion concentration in the electrolyte solution in the B tank during electrolysis, a predetermined amount of the electrolyte solution is supplied by opening the electromagnetic valve 141 at predetermined time intervals. In addition, the same amount is discharged from the alkaline water discharge pipe 6. After the electrolytic solution is electrolyzed for a predetermined time, the electrolysis is stopped by an instruction from the electric control device C. After the electrolysis is completed, the hypochlorous acid water in the tank A is opened by the electromagnetic valve 9 and discharged through the discharge pipe 7 such as hypochlorous acid water and stored in a container or used directly. The alkaline water in the B tank is opened by the electromagnetic valve 10 and discharged through the water discharge pipe 8, and is used as a fat and oil stain cleaner or discarded. Although the batch method has been described, the present invention is not limited to the batch method, and may be a method of supplying and discharging in small increments or continuous supply and discharge. Here, the constant current value I1 and the constant current value I2 are average current values within the required electrolysis time, and are preferably constant current values within the required electrolysis time, but within a shorter time than the required electrolysis time. Even if there is a change in the current value, the present invention is not spared.

次に本発明を実施するための第2の形態について図3を用いて説明する。この場合、第1の実施形態と異なる部分について特に説明する。本実施形態では第1の実施形態のうち、A槽の電極1を除いた構造をしている。電極1、電極2を用いる電気分解がなくなるので、それに必要な電気回路も不必要となり低コスト化できる。その反面A槽の電解液の次亜塩素酸水等のPH調整範囲は5〜7程度に抑えられ、次亜塩素酸水等の濃度とPHを選択する範囲が狭められる。本実施例ではB槽の電解液の入換によりB槽の電解液の水酸化物イオン濃度を調整し、これによりA槽の電解液のPHを調整するので、B槽の電解液の入換は必須であり、B槽容量は少ないほうが有利である。B槽の電解液の入換はB槽の電解液の水酸化物イオン濃度が大きく変化しない程度の水量で行う。一度の供給出水は同量であることを要しないが、B槽の水酸化物イオン濃度、電解液量の変化を避けるため、略同量とし、同量とすることがさらに好ましい。 Next, a second embodiment for carrying out the present invention will be described with reference to FIG. In this case, a different part from 1st Embodiment is demonstrated especially. In this embodiment, the structure which remove | excluded the electrode 1 of A tank among 1st Embodiment is carried out. Since the electrolysis using the electrode 1 and the electrode 2 is eliminated, an electric circuit necessary for the electrode 1 is unnecessary and the cost can be reduced. On the other hand, the pH adjustment range of hypochlorous acid water or the like of the electrolyte solution in the tank A is suppressed to about 5 to 7, and the range for selecting the concentration and PH of hypochlorous acid water or the like is narrowed. In this embodiment, the hydroxide ion concentration of the electrolyte solution in the B tank is adjusted by replacing the electrolyte solution in the B tank, and thus the pH of the electrolyte solution in the A tank is adjusted. Is essential, and it is advantageous that the B tank capacity is small. Replacement of the electrolytic solution in the B tank is performed with an amount of water that does not greatly change the hydroxide ion concentration of the electrolytic solution in the B tank. Although it is not necessary for the amount of water supplied and discharged once to be the same, in order to avoid changes in the hydroxide ion concentration and the amount of the electrolyte in the tank B, the amounts are substantially the same, and more preferably the same.

次に本発明を実施するための第3の形態について図4を用いて説明する。この場合、第1の実施形態と異なる部分について特に説明する。本実施形態では第1の実施形態を横向きにした構造をしている。本実施形態では回分式としても使用できるが、連続して次亜塩素酸水等を生成する場合に適する。電気分解により酸素ガス、水素ガスが発生し、同じ電流量なら塩濃度が低いほどガス発生量が多くなるが、ガスの発生量が多い場合には、電極面が立て向きになるよう配置し上方に気泡を逃がし、排気ガス口を設けると良い。 Next, a third embodiment for carrying out the present invention will be described with reference to FIG. In this case, a different part from 1st Embodiment is demonstrated especially. In the present embodiment, the first embodiment is structured horizontally. In this embodiment, it can be used as a batch system, but is suitable for continuously producing hypochlorous acid water or the like. Oxygen gas and hydrogen gas are generated by electrolysis. If the amount of current is the same, the amount of gas generated increases as the salt concentration decreases. However, if the amount of gas generated is large, the electrode surface is placed upright. It is advisable to provide an exhaust gas outlet by letting bubbles escape.

次に本発明の生成装置を用いて生成した次亜塩素酸水等性状等について、前記生成装置の仕様及び電解条件とともに表す。ここで使用した水道水は埼玉県熊谷市の浄水(水道水)である。残留塩素濃度測定には柴田科学(株)製の機種名AQ−102、PH測定には堀場製作所製の機種名B−211を用いた。PH標準液は東亜ディケーケー(株)製の中性燐酸塩標準液(PH6.86)を用いた。残留塩素は塩素、次亜塩素酸及び次亜塩素酸ソーダを塩素に換算し加算したものであるが、弱酸性から中性付近では塩素の比率は極めて低いので残留塩素測定値は次亜塩素酸及び次亜塩素酸ソーダの和であるとして説明する。本実施例で用いた電解電極はチタン基材に酸化イリジウムで表面被覆。電極1、電極2の電解面積2cm、面間隔10mm、電極3、電極4の電解面積2cm2、面間隔20mm、電解液の温度は8±2℃である。 Next, properties such as hypochlorous acid water produced using the production apparatus of the present invention are shown together with specifications of the production apparatus and electrolysis conditions. The tap water used here is clean water (tap water) in Kumagaya City, Saitama Prefecture. The model name AQ-102 manufactured by Shibata Kagaku Co., Ltd. was used for residual chlorine concentration measurement, and the model name B-211 manufactured by Horiba Seisakusho was used for PH measurement. As the PH standard solution, a neutral phosphate standard solution (PH 6.86) manufactured by Toa Decay Co., Ltd. was used. Residual chlorine is the sum of chlorine, hypochlorous acid and sodium hypochlorite converted to chlorine, but the residual chlorine measurement is hypochlorous acid because the ratio of chlorine is very low from weakly acidic to neutral. And the sum of sodium hypochlorite. The electrolytic electrode used in this example is a titanium base material coated with iridium oxide. Electrode area of electrode 1 and electrode 2 is 2 cm 2 , surface interval is 10 mm, electrode 3 and electrode 4 is electrolysis area 2 cm 2 , surface interval is 20 mm, and the temperature of the electrolyte is 8 ± 2 ° C.

Figure 2012196643
Figure 2012196643

無隔膜電解電流値を350mAとし、有隔膜電解電流値を変化させたときのA槽電解液のPHの変化を表1に示す。食塩濃度10g/l、食塩溶解にはRO水(逆浸透膜を通過した水)を使用、液量:A槽B槽とも1000ml、電流値比は有隔膜電解電流値を無隔膜電解電流値350mAで割った値、0H〜10Hは電解時間、空欄は測定せず。無隔膜電解電流値(電極1と電極2による電解の電流値I1、以下同じ)と有隔膜電解電流値(電極3と電極4による電解の電流値I2、以下同じ)の電流値比I2/I1を変化させることによりA槽電解液のPHを約3.5〜8.3の範囲で変化させることができる。また、次亜塩素酸水等発生量は総電解電流量にほぼ比例して増減するので、無隔膜電解電流値と前記電流値比I2/I1を調整することにより、PH5.8〜8.3の範囲で次亜塩素酸水等濃度とPHを独立にほぼ自由に変えることができる。更にPH6.2〜7.6の範囲でより精度良く設定することができる。 Table 1 shows changes in PH of the A-cell electrolyte when the diaphragm electrolysis current value was 350 mA and the diaphragm electrolysis current value was changed. Salt concentration is 10g / l, RO water (water that has passed through reverse osmosis membrane) is used for salt dissolution, Liquid volume: 1000ml for both tank A and tank B, current value ratio is diaphragm membrane current value 350mA The value divided by, 0H to 10H is the electrolysis time, and the blank is not measured. Current value ratio I2 / I1 between the diaphragm electrolysis current value (current value I1 of electrolysis by electrodes 1 and 2; the same applies hereinafter) and the diaphragm electrolysis current value (current value I2 of electrolysis by electrodes 3 and 4; the same applies hereinafter) By changing the pH of the A tank electrolyte, it can be changed in the range of about 3.5 to 8.3. In addition, since the amount of hypochlorous acid water and the like generated increases or decreases in proportion to the total amount of electrolysis current, the pH 5.8 to 8.3 can be adjusted by adjusting the diaphragm electrolysis current value and the current value ratio I2 / I1. In the range, the concentration of hypochlorous acid water and the like and the pH can be varied almost independently. Furthermore, it can set more accurately in the range of PH 6.2 to 7.6.

Figure 2012196643
Figure 2012196643

無隔膜電解と有隔膜電解の電解時間を変え、また、電流値比I2/I1を大きく変化させたときのA槽電解液のPHの変化を表2に示す。食塩濃度10g/l、食塩溶解にはRO水(逆浸透膜を通過した水)を使用、液量:A槽B槽とも1000ml、電流値比は有隔膜電解電流値を無隔膜電解電流値で割った値、0H〜10Hは電解時間、無隔膜電解時間は連続10時間、−欄は有隔膜電解をしていない時間帯、−数値(例:−10.7)は有隔膜電解を始める直前のA槽の電解液のPH、*1は無隔膜電解9時間30分後に無隔膜電解とともに有隔膜電解を30分行った。表2からわかるように、電流値比及びそれぞれの電解時間、電流値を制御することにより、A槽電解液のPHを弱酸性から中性付近に制御できる。 Table 2 shows the change in pH of the A-cell electrolyte when the electrolysis time of the diaphragm electrolysis and the diaphragm electrolysis is changed and the current value ratio I2 / I1 is greatly changed. Salt concentration is 10 g / l, RO water (water that has passed through reverse osmosis membrane) is used for salt dissolution, liquid volume: 1000 ml for both tank A and tank A, current value ratio is the diaphragm electrolysis current value as the diaphragm electrolysis current value Divided values, 0H to 10H are electrolysis time, non-diaphragm electrolysis time is continuous 10 hours,-column is a time zone when diaphragm electrolysis is not performed,-numerical value (example: -10.7) is just before starting electrolysis of diaphragm The pH of the electrolyte in tank A, * 1, was 9 hours and 30 minutes after the diaphragm electrolysis, and the diaphragm electrolysis was performed for 30 minutes together with the diaphragm electrolysis. As can be seen from Table 2, by controlling the current value ratio, each electrolysis time, and the current value, the pH of the A tank electrolyte can be controlled from weakly acidic to near neutral.

Figure 2012196643
Figure 2012196643

前記電極3及び前記電極4を流れる直流の極性を所定時間ごとに反転し電気分解を続けたときの、前記有隔膜電解電流値と前記電極4の電解面に析出するスケールとの関係を表3に示す。食塩濃度10g/l、食塩溶解には熊谷市水道水を使用、液量:A槽B槽とも1000ml、無隔膜電解電流値350mA、電流値比は有隔膜電解電流値を無隔膜電解電流値で割った値、0H〜10Hは電解時間、電解時間は無隔膜電解、有隔膜電解とも連続10時間。有隔膜電解は電極3を陽極(正電解)として60分、陰極(逆電解)として6分の繰り返し。有隔膜電解電流値50mA〜200mAの範囲で電極4の電解面に析出するスケールは認められなかった。 Table 3 shows the relationship between the diaphragm electrolysis current value and the scale deposited on the electrolytic surface of the electrode 4 when the polarity of the direct current flowing through the electrodes 3 and 4 is reversed every predetermined time and electrolysis is continued. Shown in Salt concentration 10g / l, Kumagaya City tap water is used for salt dissolution, liquid volume: 1000ml for both tank A and tank B, diaphragm electrolysis current value 350mA, current ratio is the diaphragm electrolysis current value as the diaphragm electrolysis current value Divided values, 0H to 10H are electrolysis time, electrolysis time is continuous 10 hours for both diaphragm electrolysis and diaphragm electrolysis. The diaphragm electrolysis was repeated for 60 minutes using the electrode 3 as the anode (positive electrolysis) and 6 minutes using the cathode (reverse electrolysis). The scale which deposits on the electrolysis surface of the electrode 4 in the range of the diaphragm electrolysis electric current value 50mA-200mA was not recognized.

Figure 2012196643
Figure 2012196643

前記電極3及び前記電極4を流れる直流の極性を所定時間ごとに反転し電気分解を続けたときに、前記電極4が陽極となる時間と前記電極4の電解面に析出するスケールとの関係を表4に示す。食塩濃度10g/l、食塩溶解には熊谷市水道水を使用、液量:A槽B槽とも1000ml、無隔膜電解電流値350mA、有隔膜電解電流値150mA、0H〜10Hは電解時間、電解時間は無隔膜電解、有隔膜電解とも連続10時間。有隔膜電解は電極3を陽極(正電解)として60分、陰極(逆電解)としてx分の繰り返し、x分を1〜60分とした。逆電解時間1〜60分の範囲で電極4の電解面に析出するスケールは認められなかった。 When the polarity of the direct current flowing through the electrode 3 and the electrode 4 is reversed every predetermined time and electrolysis is continued, the relationship between the time when the electrode 4 becomes an anode and the scale deposited on the electrolytic surface of the electrode 4 Table 4 shows. Salt concentration 10g / l, use Kumagaya City tap water for salt dissolution, liquid volume: 1000ml for both A and B tanks, non-diaphragm electrolysis current value 350mA, diaphragm electrolysis current value 150mA, 0H-10H are electrolysis time, electrolysis time Is continuous 10 hours for both diaphragm electrolysis and diaphragm electrolysis. In the diaphragm electrolysis, electrode 3 was used as an anode (positive electrolysis) for 60 minutes, and cathode (reverse electrolysis) was used for x minutes, where x was 1 to 60 minutes. No scale was observed that deposited on the electrolytic surface of the electrode 4 in the range of reverse electrolysis time of 1 to 60 minutes.

Figure 2012196643
Figure 2012196643

電気分解中、前記B槽の電解液に60分毎に所定量の塩水を加え、同量を排水したときの加える塩水量とA槽の電解液のPHの関係を表5に示す。電解液:食塩濃度10g/l、食塩溶解には熊谷市水道水を使用、液量:A槽1000ml、B槽370ml、無隔膜電解電流値350mA、有隔膜電解電流値250mA、電解時間は無隔膜電解、有隔膜電解とも連続10時間。有隔膜電解は電極3を陽極として60分、陰極として4.2分の繰り返し。加える塩水は電解液と同じもの。B槽への塩水の追加、同量の排水(B槽入換液量と呼ぶ、以下同じ)により、B槽入換液量の増加とともにA槽の電解液PHが低い方へ変化している。 Table 5 shows the relationship between the amount of salt water to be added and the pH of the electrolyte solution in the A tank when a predetermined amount of salt water is added to the electrolyte solution in the B tank during the electrolysis and the same amount is drained. Electrolyte solution: salt concentration 10 g / l, use Kumagaya City tap water for salt dissolution, liquid volume: A tank 1000 ml, B tank 370 ml, diaphragm electrolysis current value 350 mA, diaphragm electrolysis current value 250 mA, electrolysis time is diaphragm Continuous 10 hours for both electrolysis and diaphragm electrolysis. The diaphragm electrolysis was repeated for 60 minutes using the electrode 3 as the anode and 4.2 minutes as the cathode. The salt water to add is the same as the electrolyte. Due to the addition of salt water to the B tank and the same amount of drainage (referred to as the B tank replacement liquid amount, hereinafter the same), the electrolytic solution PH of the A tank changes to a lower one as the B tank replacement liquid amount increases. .

Figure 2012196643
Figure 2012196643

無隔膜電解の無い、A槽とB槽の液量を変えておこなった場合の、電気分解中前記B槽の電解液に60分毎に所定量の塩水を加え、同量を排水したときの加える塩水量とA槽の電解液のPHの関係を表6に示す。電解液:食塩濃度10g/l、食塩溶解には熊谷市水道水を使用、液量:A槽850ml、B槽85ml、有隔膜電解電流値350mA、連続10時間。有隔膜電解は電極3を陽極として60分、陰極として4.2分の繰り返し。加える塩水は電解液と同じもの、空欄は測定せず。B槽への塩水の追加、同量の排水により、A槽の電解液PHがB槽入換液量の増加とともに低い方へ変化している。食塩濃度50g/l(有隔膜電解電流値350mA△印)、食塩濃度10g/l(有隔膜電解電流値350mA○印)、食塩濃度5g/l(有隔膜電解電流値300mA□印)、食塩濃度2g/l(有隔膜電解電流値150mA×印)のPHとB槽入換液量(すべて電解電流量1260クーロンに換算)の関係を図5に示す。PHが弱酸性から中性付近の条件はB槽電解液の排水量が20ml以下であり、0.016×電解電流量(クーロン)ml以下が適する。(0.35A×3600Sec=1260クーロン、20ml/1260クーロン≒0.016ml/クーロンが得られる。)また、低電圧で電解するためと所定PHに達する時間を短くするために食塩濃度5g/l以上がさらに適する。ここでは塩に食塩を用いたが塩化カリウムなど他の塩化物塩であっても良い。B槽入換液として用いた塩水はここでは電解液を用いたが、必ずしも電解液と同じものでなくても良く、通常電解圧が確保できる導電率の塩水であれば良い。 When there is no diaphragm electrolysis and the amount of liquid in tank A and tank B is changed, a predetermined amount of salt water is added to the electrolyte in tank B during electrolysis every 60 minutes, and the same amount is drained. Table 6 shows the relationship between the amount of salt water to be added and the pH of the electrolytic solution in tank A. Electrolyte solution: Salt concentration of 10 g / l, Kumagaya city tap water was used for salt dissolution, Liquid volume: A tank 850 ml, B tank 85 ml, diaphragm electrolysis current value 350 mA, continuous 10 hours. The diaphragm electrolysis was repeated for 60 minutes using the electrode 3 as the anode and 4.2 minutes as the cathode. The salt water to be added is the same as the electrolyte, and the blank is not measured. Due to the addition of salt water to the B tank and the same amount of drainage, the electrolytic solution PH in the A tank changes to the lower side as the amount of the B tank replacement liquid increases. Salt concentration 50 g / l (diaphragm electrolysis current value 350 mA), salt concentration 10 g / l (diaphragm electrolysis current value 350 mA), salt concentration 5 g / l (diaphragm electrolysis current value 300 mA □), salt concentration FIG. 5 shows the relationship between the pH of 2 g / l (diaphragm electrolysis current value 150 mA × mark) and the B tank replacement liquid amount (all converted to electrolysis current amount 1260 coulombs). As for the condition where PH is weakly acidic to near neutral, the amount of drainage of B tank electrolyte is 20 ml or less, and 0.016 × electrolytic current amount (coulomb) ml or less is suitable. (0.35A × 3600Sec = 1260 coulomb, 20ml / 1260 coulomb ≈ 0.016ml / coulomb is obtained.) Also, a salt concentration of 5g / l or more is required for electrolysis at a low voltage and for shortening the time to reach a predetermined pH. Is more suitable. Although salt is used as the salt here, other chloride salts such as potassium chloride may be used. Although the electrolytic solution is used here as the salt water used as the B tank replacement solution, it is not necessarily the same as the electrolytic solution, and any salt water having conductivity that can usually ensure an electrolytic pressure may be used.

本発明の次亜塩素酸水等の生成装置は、塩酸などの劇物を使用することなく、塩酸ガスの発生もなく、また、小型化、低コストにできるので、清掃、除菌、消臭を要する調理場、介護施設などに適する。 The apparatus for producing hypochlorous acid water or the like of the present invention does not use deleterious substances such as hydrochloric acid, does not generate hydrochloric acid gas, and can be reduced in size and cost. Suitable for kitchens and nursing care facilities that require cooking.

AB 電解槽
A 隔膜で区切られた電解槽の1部分A槽
B 隔膜で区切られた電解槽の1部分B槽
C 電気制御装置
1、2、3、4 電極
5 隔膜
51 支材
6 アルカリ水出水管
7 次亜塩素酸水等出水管
8 アルカリ水出水管
9、10 電磁弁
111、112 水位センサー配線
121、122 電解液水位センサー
131、132 電解液供給管
141、142 電磁弁
15 電解液タンク
16 振動装置
AB Electrolyzer A A Part of an electrolytic cell separated by a diaphragm A Tank B A part of an electrolytic cell separated by a diaphragm B Tank C Electric control device 1, 2, 3, 4 Electrode 5 Diaphragm 51 Support material 6 Alkaline water discharge Water pipe 7 Water discharge pipe 8 such as hypochlorous acid water Alkaline water water discharge pipe 9, 10 Electromagnetic valve 111, 112 Water level sensor wiring 121, 122 Electrolyte water level sensor 131, 132 Electrolyte supply pipe 141, 142 Electromagnetic valve 15 Electrolyte tank 16 Vibration device

Claims (7)

塩素イオンを含む電気分解液を電気分解して次亜塩素酸水等を生成する生成装置であって、隔膜でA槽とB槽に区切られた電解槽と、A槽内に設けられた電極1及び電極2と、前記隔膜を隔ててA槽内に設けられた電極3およびB槽内に設けられた電極4と、電極1及び電極2を陽極陰極として電極1及び電極2に直流の定電流値I1、電極3を陽極及び電極4を陰極として電極3および電極4に直流の定電流値I2を流す電気制御装置とからなることを特徴とする次亜塩素酸水等の生成装置。   An apparatus for electrolyzing an electrolyzed liquid containing chlorine ions to produce hypochlorous acid water, etc., comprising an electrolytic cell divided into a tank A and a tank B by a diaphragm, and an electrode provided in the tank A 1 and the electrode 2, the electrode 3 provided in the tank A and the electrode 4 provided in the tank B across the diaphragm, the electrode 1 and the electrode 2 as the anode cathode, and the electrode 1 and the electrode 2 with a direct current. An apparatus for producing hypochlorous acid water or the like, comprising: an electric control device for passing a DC constant current value I2 to the electrode 3 and the electrode 4 using the current value I1, the electrode 3 as an anode and the electrode 4 as a cathode. 前記定電流値I1と前記定電流値I2の比が、定電流値I2/定電流値I1=0.06〜10であり、前記電気制御装置に定電流値I1及び定電流値I2の通電時間制御が組み込まれていることを特徴とする請求項1記載の次亜塩素酸水等の生成装置。   The ratio between the constant current value I1 and the constant current value I2 is constant current value I2 / constant current value I1 = 0.06 to 10, and the energization time of the constant current value I1 and the constant current value I2 is supplied to the electric control device. 2. The apparatus for producing hypochlorous acid water or the like according to claim 1, wherein control is incorporated. 前記電気制御装置が、前記電極3及び前記電極4を流れる直流の極性を所定時間ごとに反転する機能を有することを特徴とする請求項1乃至請求項2に記載の次亜塩素酸水等の生成装置。 3. The hypochlorous acid water or the like according to claim 1, wherein the electric control device has a function of inverting the polarity of a direct current flowing through the electrode 3 and the electrode 4 every predetermined time. Generator. 前記B槽に塩水を加える装置を有し、所定時間毎にもしくは連続して前記B槽に塩水を加え、B槽から出水することを特徴とする請求項1乃至請求項3のいずれかに記載の次亜塩素酸水等の生成装置。 4. The apparatus according to claim 1, further comprising a device for adding salt water to the B tank, adding salt water to the B tank every predetermined time or continuously, and discharging water from the B tank. Equipment for producing hypochlorous acid water. 塩素イオンを含む電気分解液を電気分解して次亜塩素酸水等を生成する生成装置であって、隔膜でA槽とB槽に区切られた電解槽と、前記隔膜を隔ててA槽内に設けられた電極3およびB槽内に設けられた電極4と、電極3を陽極及び電極4を陰極として電極3および電極4に直流の定電流を流す電気制御装置と、前記B槽に塩水を加える装置及び排水装置とからなり、所定時間毎にもしくは連続して前記B槽に塩水を加え、略同量のB槽電解液を排水し、電解電流量Q(クーロン)に対し前記排水量が0.016×Q(クーロン)ml以下であることを特徴とする次亜塩素酸水等の生成装置。 A generator for electrolyzing an electrolytic solution containing chlorine ions to produce hypochlorous acid water, etc., comprising an electrolytic cell partitioned into a tank A and a tank B by a diaphragm, and the inside of the tank A across the diaphragm The electrode 3 provided in the B tank, the electrode 4 provided in the B tank, the electric control device for passing a constant DC current to the electrode 3 and the electrode 4 using the electrode 3 as the anode and the electrode 4 as the cathode, and the salt water in the B tank. And a drainage device, adding salt water to the tank B every predetermined time or continuously, draining the same amount of the tank B electrolyte, and the amount of drainage with respect to the amount of electrolysis current Q (coulomb). An apparatus for producing hypochlorous acid water or the like characterized by being 0.016 × Q (coulomb) ml or less. 前記隔膜が陽イオン交換膜であることを特徴とする請求項1乃至請求項5のいずれかに記載の次亜塩素酸水等の生成装置。 The apparatus for producing hypochlorous acid water or the like according to any one of claims 1 to 5, wherein the diaphragm is a cation exchange membrane. 前記隔膜または隔膜近傍に振動を与える装置を付設していることを特徴とする請求項1乃至請求項6のいずれかに記載の次亜塩素酸水等の生成装置。 The apparatus for generating hypochlorous acid water or the like according to any one of claims 1 to 6, further comprising a device for applying vibration to the diaphragm or the vicinity of the diaphragm.
JP2011063587A 2011-03-23 2011-03-23 Apparatus for producing hypochlorous acid water or the like Pending JP2012196643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063587A JP2012196643A (en) 2011-03-23 2011-03-23 Apparatus for producing hypochlorous acid water or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063587A JP2012196643A (en) 2011-03-23 2011-03-23 Apparatus for producing hypochlorous acid water or the like

Publications (1)

Publication Number Publication Date
JP2012196643A true JP2012196643A (en) 2012-10-18

Family

ID=47179412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063587A Pending JP2012196643A (en) 2011-03-23 2011-03-23 Apparatus for producing hypochlorous acid water or the like

Country Status (1)

Country Link
JP (1) JP2012196643A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209454A1 (en) * 2013-01-28 2014-07-31 Yoshihisa ISHII Deodorization and sterilization apparatus
KR101579044B1 (en) * 2015-09-10 2015-12-21 주식회사 동일그린시스 Apparatus for Generating Electrolyzed Water
CN113355683A (en) * 2021-05-21 2021-09-07 珠海格力电器股份有限公司 Solution electrolysis circuit, control method thereof and solution electrolysis system
JP2021188065A (en) * 2020-05-26 2021-12-13 株式会社日本トリム Electrolytic water generating device and hypochlorous acid water generating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165985A (en) * 1992-11-30 1994-06-14 Nippon Intetsuku Kk Ionized water forming device
JPH06246266A (en) * 1993-02-22 1994-09-06 Nippon Intetsuku Kk Device for producing electrolyte
JPH0985250A (en) * 1995-09-22 1997-03-31 Hoshizaki Electric Co Ltd Electrolytic water preparation device
JPH09122649A (en) * 1995-11-01 1997-05-13 Hoshizaki Electric Co Ltd Method and apparatus for producing electrolytic water
JP2003088865A (en) * 2001-09-18 2003-03-25 Sanyo Electric Co Ltd Water treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165985A (en) * 1992-11-30 1994-06-14 Nippon Intetsuku Kk Ionized water forming device
JPH06246266A (en) * 1993-02-22 1994-09-06 Nippon Intetsuku Kk Device for producing electrolyte
JPH0985250A (en) * 1995-09-22 1997-03-31 Hoshizaki Electric Co Ltd Electrolytic water preparation device
JPH09122649A (en) * 1995-11-01 1997-05-13 Hoshizaki Electric Co Ltd Method and apparatus for producing electrolytic water
JP2003088865A (en) * 2001-09-18 2003-03-25 Sanyo Electric Co Ltd Water treatment apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140209454A1 (en) * 2013-01-28 2014-07-31 Yoshihisa ISHII Deodorization and sterilization apparatus
JP2014144031A (en) * 2013-01-28 2014-08-14 Yoshihisa Ishii Deodorant sterilization device
US9222180B2 (en) * 2013-01-28 2015-12-29 Yoshihisa ISHII Deodorization and sterilization apparatus
TWI582360B (en) * 2013-01-28 2017-05-11 石井義久 Deodorization and sterilization apparatus
KR101579044B1 (en) * 2015-09-10 2015-12-21 주식회사 동일그린시스 Apparatus for Generating Electrolyzed Water
JP2021188065A (en) * 2020-05-26 2021-12-13 株式会社日本トリム Electrolytic water generating device and hypochlorous acid water generating method
JP7280854B2 (en) 2020-05-26 2023-05-24 株式会社日本トリム Electrolyzed water generator and hypochlorous acid water generation method
CN113355683A (en) * 2021-05-21 2021-09-07 珠海格力电器股份有限公司 Solution electrolysis circuit, control method thereof and solution electrolysis system

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
TWI608129B (en) Electrolysis device and electrolytic ozone water production device
JP5716100B2 (en) Electrolysis apparatus and electrolysis method
JP4090665B2 (en) Electrolyzed water production method
JP2003024943A (en) Water treatment apparatus
JP5597855B2 (en) Apparatus and method for preparing toilet flush water
JP6268383B2 (en) ELECTROLYTIC WATER GENERATION DEVICE AND METHOD FOR OPERATING THE SAME
JP2014046227A (en) Electrolyzed water generating apparatus and electrolyzed water generating method
US20200140295A1 (en) Electrochemical cell
JP2012196643A (en) Apparatus for producing hypochlorous acid water or the like
JP2003024941A (en) Method and apparatus for generating hypochlorous acid
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP5244038B2 (en) Electrolyzed water mixing device
JP2005177671A (en) Electrolysis type ozonizer
KR20170104893A (en) Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
JP6831570B2 (en) Electrolyzed water generator
JP2003034889A (en) Method for electrolysis in device for generating strong- electrolyzed water
JP6675112B2 (en) Electrolysis raw water storage type electrolyzer
WO2022014127A1 (en) Electrolyzed water generation device
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP2004223497A (en) Method for cleaning electrode of running water type apparatus for forming strongly acidic water
JP6896259B1 (en) Sterilization wash water production equipment and sterilization wash water production method
KR20070075624A (en) Electrolytic water generation apparatus
JP2005152867A (en) Electrolytic water manufacturing means
JP2005081345A (en) Electrolytic cell comprising two or more electrolytic chambers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150421