JP6896259B1 - Sterilization wash water production equipment and sterilization wash water production method - Google Patents

Sterilization wash water production equipment and sterilization wash water production method Download PDF

Info

Publication number
JP6896259B1
JP6896259B1 JP2020040963A JP2020040963A JP6896259B1 JP 6896259 B1 JP6896259 B1 JP 6896259B1 JP 2020040963 A JP2020040963 A JP 2020040963A JP 2020040963 A JP2020040963 A JP 2020040963A JP 6896259 B1 JP6896259 B1 JP 6896259B1
Authority
JP
Japan
Prior art keywords
water
ion exchange
sterilizing
unit
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020040963A
Other languages
Japanese (ja)
Other versions
JP2021143356A (en
Inventor
正之 平兼
正之 平兼
理善 西
理善 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohzai Chemical Industry Co Ltd
Doctorsman Co Ltd
Original Assignee
Tohzai Chemical Industry Co Ltd
Doctorsman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohzai Chemical Industry Co Ltd, Doctorsman Co Ltd filed Critical Tohzai Chemical Industry Co Ltd
Priority to JP2020040963A priority Critical patent/JP6896259B1/en
Application granted granted Critical
Publication of JP6896259B1 publication Critical patent/JP6896259B1/en
Publication of JP2021143356A publication Critical patent/JP2021143356A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】塩化物イオン源を添加する必要がなく、かつ、原水の水質によらずに高濃度の殺菌洗浄水を得られる殺菌洗浄水製造装置及び殺菌洗浄水製造方法を実現する。【解決手段】塩素型陰イオン交換樹脂を有し、水を流通させたときに当該水と塩素型陰イオン交換樹脂とが接触するように構成されたイオン交換部3と、イオン交換部3を流通させた水を電気分解可能な電気分解部5と、を備える。【選択図】図1PROBLEM TO BE SOLVED: To realize a sterilizing washing water manufacturing apparatus and a sterilizing washing water manufacturing method which can obtain a high concentration sterilizing washing water regardless of the water quality of raw water without adding a chloride ion source. SOLUTION: An ion exchange unit 3 having a chlorine-type anion exchange resin and configured so that the water and the chlorine-type anion exchange resin come into contact with each other when water is circulated, and an ion exchange unit 3. It is provided with an electrolysis unit 5 capable of electrolyzing the circulated water. [Selection diagram] Fig. 1

Description

本発明は、殺菌洗浄水製造装置及び殺菌洗浄水製造方法に関する。 The present invention relates to a sterilizing washing water manufacturing apparatus and a sterilizing washing water manufacturing method.

残留塩素濃度が2mgCl/L以上の殺菌洗浄水は、高い殺菌効果を有することから、バイオフイルムの予防的洗浄液として、飲料水供給装置、手洗い装置、温浴装置などの装置系内配管の殺菌洗浄に幅広く利用されている。この用途の殺菌洗浄水として、通常は次亜塩素酸ナトリウム水溶液の希釈液をpH調整した殺菌洗浄液が用いられてきたが、殺菌洗浄の都度、次亜塩素酸ナトリウム水溶液の希釈液を調製する手間を要していた。この手間を解消した装置の一つとして、塩化物イオンを含む水を電気分解して次亜塩素酸を含む殺菌洗浄水を得る電気分解装置が公知となっている。 Since sterilizing and washing water with a residual chlorine concentration of 2 mgCl 2 / L or more has a high sterilizing effect, sterilizing and cleaning of piping inside equipment such as drinking water supply equipment, hand washing equipment, and hot bath equipment as a preventive cleaning liquid for biofilms. Widely used in. As the sterilizing and cleaning water for this purpose, a sterilizing and cleaning solution in which the pH of the diluted solution of the sodium hypochlorite aqueous solution is usually adjusted has been used, but it is troublesome to prepare the diluted solution of the sodium hypochlorite aqueous solution each time the sterilizing and cleaning is performed. Was required. As one of the devices that eliminates this trouble, an electrolysis device that electrolyzes water containing chloride ions to obtain sterilizing washing water containing hypochlorous acid is known.

電気分解により次亜塩素酸を含む殺菌洗浄水を得る方法に係る化学反応は、以下の通りである。まず、塩化物イオンを含む水を電気分解すると、陽極において水中の塩化物イオン(Cl)から塩素(Cl)が発生する(式(1))。式(1)の反応により発生した塩素は、ただちに水と反応し、塩化水素及び次亜塩素酸が生じる(式(2))。
2Cl → Cl+2e (1)
Cl+HO → HCl+HClO (2)
The chemical reaction according to the method for obtaining sterilizing washing water containing hypochlorous acid by electrolysis is as follows. First, when water containing chloride ions is electrolyzed, chlorine (Cl 2 ) is generated from chloride ions (Cl − ) in the water at the anode (Equation (1)). Chlorine generated by the reaction of formula (1) immediately reacts with water to produce hydrogen chloride and hypochlorous acid (formula (2)).
2Cl → Cl 2 + 2e (1)
Cl 2 + H 2 O → HCl + HClO (2)

このように、電気分解により次亜塩素酸を含む殺菌洗浄水を得る反応は、水中の塩化物イオンを出発原料とする。かかる塩化物イオンを含む原水としては、特開2018−47059号公報(特許文献1)の装置で用いられている水道水や、特開2018−103167号公報(特許文献2)の装置で用いられている塩酸、塩化カリウム水溶液、塩化ナトリウム水溶液などが例示される。 As described above, the reaction for obtaining sterilizing washing water containing hypochlorous acid by electrolysis uses chloride ions in water as a starting material. As the raw water containing such chloride ions, tap water used in the apparatus of JP-A-2018-47059 (Patent Document 1) and the apparatus of JP-A-2018-103167 (Patent Document 2) are used. Examples thereof include hydrochloric acid, an aqueous solution of potassium chloride, and an aqueous solution of sodium chloride.

特開2018−47059号公報JP-A-2018-47059 特開2018−103167号公報JP-A-2018-103167

水道水を直接利用する場合は、残留塩素が2mgCl/Lを超えるような濃度が高い殺菌洗浄水を公共水道水から得ることが難しい場合がある。たとえば日本国では、水道法及び水道法施行規則により、遊離残留塩素濃度は0.1mgCl/L以上を保持するように塩素消毒をすべき旨が定められているが、その一方で、厚生労働省が定める水道水質基準における水質管理目標設定項目として、残留塩素濃度の目標値が1.0mgCl/L以下とされている。 When tap water is used directly, it may be difficult to obtain sterilizing wash water with a high concentration of residual chlorine exceeding 2 mgCl 2 / L from public tap water. For example, in Japan, the Waterworks Law and the Enforcement Regulations of the Waterworks Law stipulate that chlorine disinfection should be performed so that the free residual chlorine concentration remains 0.1 mgCl 2 / L or more, but on the other hand, the Ministry of Health, Labor and Welfare As a water quality management target setting item in the tap water quality standard set by the above, the target value of the residual chlorine concentration is 1.0 mgCl 2 / L or less.

さらには、特許文献1のように水道水を利用して電気分解で残留塩素濃度を高めようとする場合には、水道水中の塩化物イオン濃度が地域などの条件によって異なるという課題がある。たとえば日本国内において、水道水中の塩化物イオン濃度は数mg/L〜100mg/L程度の幅があるものの、2013年の水道統計データでは5mg/L以下が27%、5〜10mg/Lが34%であり、すなわち日本国内の水道水のおよそ6割において10mg/L以下という塩化物イオン濃度なのである。このような塩化物イオン濃度の水道水を電気分解に供したとしても、前述の一般的な水道水程度の残留塩素濃度(0.1mgCl/L以上1.0mgCl/L以下)しか得られず、水道水としての菌汚染防止用滅菌水にはなりえても、殺菌洗浄水としては利用できなかった。 Further, when trying to increase the residual chlorine concentration by electrolysis using tap water as in Patent Document 1, there is a problem that the chloride ion concentration in tap water differs depending on the conditions such as the region. For example, in Japan, the chloride ion concentration in tap water ranges from several mg / L to 100 mg / L, but according to the 2013 water supply statistics data, 27% is 5 mg / L or less, and 34 is 5 to 10 mg / L. %, That is, the chloride ion concentration is 10 mg / L or less in about 60% of tap water in Japan. Even if tap water having such a chloride ion concentration is subjected to electrolysis, only the residual chlorine concentration (0.1 mgCl 2 / L or more and 1.0 mgCl 2 / L or less) equivalent to that of the above-mentioned general tap water can be obtained. However, although it could be sterilized water for preventing bacterial contamination as tap water, it could not be used as sterilized washing water.

一方、特許文献2の装置のように塩酸などの塩化物イオン源を用いる方法では、殺菌洗浄水を製造する都度、塩化物イオン源となる物質を原水に添加する必要があった。そのため、殺菌洗浄水を製造する際の作業が煩雑だった。 On the other hand, in the method using a chloride ion source such as hydrochloric acid as in the apparatus of Patent Document 2, it is necessary to add a substance serving as a chloride ion source to the raw water each time the sterilizing washing water is produced. Therefore, the work for producing the sterilizing washing water is complicated.

そこで、塩酸などの塩化物イオン源を添加する必要がなく、かつ、原水の水質によらずに高濃度の殺菌洗浄水を得られる殺菌洗浄水製造装置及び殺菌洗浄水製造方法の実現が求められていた。 Therefore, it is required to realize a sterilizing washing water production device and a sterilizing washing water manufacturing method that do not require the addition of a chloride ion source such as hydrochloric acid and can obtain a high concentration of sterilizing washing water regardless of the quality of the raw water. Was there.

本発明に係る殺菌洗浄水製造装置は、塩素型陰イオン交換樹脂を有し、水を流通させたときに当該水と前記塩素型陰イオン交換樹脂とが接触するように構成されたイオン交換部と、前記イオン交換部を流通させた水を電気分解可能な電気分解部と、を備えることを特徴とする。 The sterilizing and washing water production apparatus according to the present invention has a chlorine-type anion exchange resin, and is an ion exchange unit configured so that the water and the chlorine-type anion exchange resin come into contact with each other when water is circulated. It is characterized by including an electrolyzer that can electrolyze the water that has passed through the ion exchange unit.

また、本発明に係る殺菌洗浄水製造方法は、水と塩素型陰イオン交換樹脂とを接触させるイオン交換工程と、前記イオン交換工程を経た水を電気分解する電気分解工程と、を有することを特徴とする。 Further, the method for producing sterilizing and washing water according to the present invention includes an ion exchange step of bringing water into contact with a chlorine-type anion exchange resin and an electrolysis step of electrolyzing the water that has undergone the ion exchange step. It is a feature.

これらの構成によれば、電気分解に先立って塩酸などの塩化物イオン源を添加することなく、かつ原水の水質によらずに高濃度の殺菌洗浄水を得られる。 According to these configurations, a high-concentration sterilizing washing water can be obtained without adding a chloride ion source such as hydrochloric acid prior to electrolysis and regardless of the water quality of the raw water.

以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the scope of the present invention is not limited by the preferred embodiments described below.

本発明に係る殺菌洗浄水製造装置は、一態様として、水の供給元から、前記イオン交換部を経ずに前記電気分解部に至る流路であるバイパス部と、前記供給元から供給された水を、前記イオン交換部と前記バイパス部とに分配可能な分配部と、をさらに備えることが好ましい。 As one aspect, the sterilizing and washing water production apparatus according to the present invention is supplied from a water supply source, a bypass portion which is a flow path from the water supply source to the electrolysis portion without passing through the ion exchange portion, and the supply source. It is preferable to further include a distribution unit capable of distributing water to the ion exchange unit and the bypass unit.

この構成によれば、イオン交換部に流通させる水の量を変更できる。これによって、たとえば原水の塩化物イオン濃度が高い場合は、イオン交換部に流通させる水の量を減らせるので、塩素型陰イオン交換樹脂の過剰な使用を防止しうる。 According to this configuration, the amount of water circulated to the ion exchange unit can be changed. As a result, for example, when the chloride ion concentration of the raw water is high, the amount of water circulated to the ion exchange unit can be reduced, so that excessive use of the chlorine-type anion exchange resin can be prevented.

本発明に係る殺菌洗浄水製造装置は、一態様として、前記イオン交換部は、前記塩素型陰イオン交換樹脂より上流の部分にオリフィスを有することが好ましい。 As one aspect of the sterilizing washing water production apparatus according to the present invention, it is preferable that the ion exchange unit has an orifice in a portion upstream of the chlorine type anion exchange resin.

この構成によれば、イオン交換部における水の流量が過剰にならないので、水と塩素型陰イオン交換樹脂との接触時間を十分に確保できる。これによって、十分なイオン交換がなされやすい。 According to this configuration, since the flow rate of water in the ion exchange section does not become excessive, a sufficient contact time between water and the chlorine-type anion exchange resin can be secured. As a result, sufficient ion exchange is likely to occur.

本発明に係る殺菌洗浄水製造装置は、一態様として、前記イオン交換部は、少なくとも前記塩素型陰イオン交換樹脂を有する部分において、鉛直方向下方から上方に水が流通する上向流方式に設けられていることが好ましい。 As one aspect of the sterilization washing water production apparatus according to the present invention, the ion exchange unit is provided in an upward flow system in which water flows from the lower side to the upper side in the vertical direction at least in a portion having the chlorine type anion exchange resin. It is preferable that it is.

この構成によれば、水の流速が緩やかであってもイオン交換部の塩素型陰イオン交換樹脂を有する部分において水が均一に浮上移動することができるので、水と塩素型陰イオン交換樹脂との接触時間を十分に確保することができる。これによって、十分なイオン交換がなされやすい。 According to this configuration, even if the flow velocity of water is slow, water can float and move uniformly in the portion of the ion exchange section having the chlorine-type anion exchange resin, so that the water and the chlorine-type anion exchange resin can be used together. It is possible to secure a sufficient contact time. As a result, sufficient ion exchange is likely to occur.

本発明に係る殺菌洗浄水製造装置は、一態様として、前記電気分解部は、次亜塩素酸水を製造可能な電気分解装置を有することが好ましい。 As one aspect of the sterilization washing water production apparatus according to the present invention, it is preferable that the electrolysis unit has an electrolysis apparatus capable of producing hypochlorite water.

この構成によれば、次亜塩素酸を生成するために適切に設計された電気分解装置を用いて電気分解を行うことができるので、次亜塩素酸を生成する電気化学反応が進行しやすい。 According to this configuration, electrolysis can be performed using an electrolyzer appropriately designed to produce hypochlorous acid, so that the electrochemical reaction for producing hypochlorous acid can easily proceed.

本発明に係る殺菌洗浄水製造装置は、一態様として、前記電気分解装置は、一つの水槽に正極と負極とを有する電気分解装置であることが好ましい。 As one aspect of the sterilization washing water production apparatus according to the present invention, it is preferable that the electrolysis apparatus is an electrolysis apparatus having a positive electrode and a negative electrode in one water tank.

この構成によれば、連続して一定濃度の殺菌洗浄水が得られやすい。 According to this configuration, it is easy to continuously obtain a constant concentration of sterilizing washing water.

本発明に係る殺菌洗浄水製造装置は、一態様として、前記電気分解装置は、正極が設けられた正極水槽と、負極が設けられた負極水槽と、前記正極水槽と前記負極水槽との間を仕切るイオン交換膜と、を有する電気分解装置であることが好ましい。 As one aspect of the sterilization washing water production apparatus according to the present invention, in the electrolysis apparatus, a positive electrode water tank provided with a positive electrode, a negative electrode water tank provided with a negative electrode, and a space between the positive electrode water tank and the negative electrode water tank are provided. It is preferable that the electrolyzer has an ion exchange membrane for partitioning.

この構成によれば、公知の酸性電解水製造の電気分解装置を適用できる。 According to this configuration, a known electrolyzer for producing acidic electrolyzed water can be applied.

本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the present invention will be further clarified by the following illustration of exemplary and non-limiting embodiments described with reference to the drawings.

本発明の実施形態に係る水素水サーバの構成図Configuration diagram of hydrogen water server according to the embodiment of the present invention 本発明の実施形態に係るイオン交換部の塩素型陰イオン交換樹脂を充填した状態の概略図Schematic diagram of the ion exchange section according to the embodiment of the present invention in a state of being filled with a chlorine-type anion exchange resin. 本発明の実施形態に係る水素水サーバの変形例を示す構成図A block diagram showing a modified example of the hydrogen water server according to the embodiment of the present invention.

本発明に係る殺菌洗浄水製造装置及び殺菌洗浄水製造方法の実施形態について、図面を参照して説明する。以下では、本発明に係る殺菌洗浄水製造装置を、水素水サーバSの原水供給部Saに設けられた殺菌洗浄水製造装置1に適用した例について説明する。 An embodiment of the sterilizing washing water manufacturing apparatus and the sterilizing washing water manufacturing method according to the present invention will be described with reference to the drawings. Hereinafter, an example in which the sterilizing washing water producing apparatus according to the present invention is applied to the sterilizing cleaning water producing apparatus 1 provided in the raw water supply unit Sa of the hydrogen water server S will be described.

〔水素水サーバの構成〕
水素水サーバSは、水素水を取水する場合に、上水道(水の供給元の例)から減圧弁Rにより減圧された水道水を受容し、活性炭フィルタFによりろ過した原水を下流工程に供給する原水供給部Saと、原水供給部Saから供給される原水に水素を溶解して水素水を製造する水素水製造部Sbとを備える(図1)。活性炭フィルタFは、水道水中に含まれる残留塩素等の酸化性物質を除去する。これによって、活性炭フィルタFより下流の領域には、殺菌成分である次亜塩素酸等の残留塩素が除去された水が流通するため、当該領域では雑菌などが比較的繁殖しやすい環境が形成される。そこで、活性炭フィルタFより下流の系内領域を定期的に殺菌洗浄するために殺菌洗浄水製造装置1が設けられている。
[Hydrogen water server configuration]
When hydrogen water is taken in, the hydrogen water server S receives tap water decompressed by the pressure reducing valve R from the water supply (example of a water supply source), and supplies the raw water filtered by the activated charcoal filter F to the downstream process. A raw water supply unit Sa and a hydrogen water production unit Sb for producing hydrogen water by dissolving hydrogen in raw water supplied from the raw water supply unit Sa are provided (FIG. 1). The activated carbon filter F removes oxidizing substances such as residual chlorine contained in tap water. As a result, water from which residual chlorine such as hypochlorous acid, which is a bactericidal component, has been removed flows in the region downstream of the activated carbon filter F, so that an environment in which germs and the like are relatively easy to propagate is formed in the region. To. Therefore, a sterilizing washing water production apparatus 1 is provided in order to periodically sterilize and wash the region in the system downstream of the activated carbon filter F.

水素水サーバSでは、活性炭フィルタFより下流の領域に殺菌洗浄水製造装置1により製造した殺菌洗浄水を流通させる殺菌運転を定期的(たとえば、1日1回、1週間に1回、など。)に行うことによって、当該領域を殺菌洗浄する。かかる殺菌運転は、水素水の製造及び供給が行われていないタイミングで実施される。たとえば、不図示の制御部によって、深夜などの時間帯に殺菌運転が自動的に行われるように制御される。 In the hydrogen water server S, a sterilization operation for distributing the sterilization wash water produced by the sterilization wash water production apparatus 1 to a region downstream of the activated carbon filter F is periodically performed (for example, once a day, once a week, etc.). ) To sterilize and clean the area. Such a sterilization operation is carried out at a timing when hydrogen water is not produced and supplied. For example, a control unit (not shown) controls the sterilization operation to be automatically performed at a time such as midnight.

かかる制御を可能にするべく、減圧弁Rにより減圧された水道水の流通を制御する自動開閉弁CV1、CV2が設けられている。自動開閉弁CV1を開放すると活性炭フィルタFに水道水が供給される。自動開閉弁CV2は、殺菌洗浄水製造装置1の入口部分に設けられており、これを開放すると、殺菌洗浄水製造装置1内に水道水が供給される。制御部は、水素水の製造及び供給を行うときには自動開閉弁CV1を開放して自動開閉弁CV2を閉止し、殺菌運転を行うときに自動開閉弁CV2を開放して自動開閉弁CV1を閉止するように制御を行う。 In order to enable such control, automatic on-off valves CV1 and CV2 for controlling the flow of tap water decompressed by the pressure reducing valve R are provided. When the automatic on-off valve CV1 is opened, tap water is supplied to the activated carbon filter F. The automatic on-off valve CV2 is provided at the inlet portion of the sterilization washing water production device 1, and when this is opened, tap water is supplied into the sterilization washing water production device 1. The control unit opens the automatic on-off valve CV1 to close the automatic on-off valve CV2 when producing and supplying hydrogen water, and opens the automatic on-off valve CV2 to close the automatic on-off valve CV1 when performing the sterilization operation. Control as follows.

〔殺菌洗浄水製造装置の構成〕
殺菌洗浄水製造装置1は、分配部2と、イオン交換部3と、バイパス部4と、電気分解部5と、を有する。以下では、各部の構成について順に説明する。
[Structure of sterilization washing water production equipment]
The sterilization washing water production apparatus 1 includes a distribution unit 2, an ion exchange unit 3, a bypass unit 4, and an electrolysis unit 5. Hereinafter, the configuration of each part will be described in order.

殺菌洗浄水製造装置1の入口部分には、減圧弁Rにより減圧された水道水の流通を制御する自動開閉弁CV2が設けられており、自動開閉弁CV2が開くことによって、減圧された水道水が殺菌洗浄水製造装置1内に供給される。自動開閉弁CV2の後には分配部2が設けられている。分配部2には調整弁21及び調整弁22が設けられており、調整弁21及び調整弁22の開度によってイオン交換部3とバイパス部4とに向けて水道水が分配される。より具体的には、調整弁21の開度を調整することにより、イオン交換部3に流入する水の量を規定できる。同様に、調整弁22の開度を調整することにより、バイパス部4に流入する水の量を規定できる。 An automatic on-off valve CV2 for controlling the flow of tap water decompressed by the pressure reducing valve R is provided at the inlet of the sterilization washing water production apparatus 1, and the tap water is decompressed by opening the automatic on-off valve CV2. Is supplied into the sterilizing washing water production apparatus 1. A distribution unit 2 is provided after the automatic on-off valve CV2. The distribution section 2 is provided with a regulating valve 21 and a regulating valve 22, and tap water is distributed toward the ion exchange section 3 and the bypass section 4 according to the opening degree of the regulating valve 21 and the regulating valve 22. More specifically, the amount of water flowing into the ion exchange unit 3 can be defined by adjusting the opening degree of the adjusting valve 21. Similarly, by adjusting the opening degree of the adjusting valve 22, the amount of water flowing into the bypass portion 4 can be specified.

イオン交換部3は、ビーズ状の塩素型陰イオン交換樹脂31が充填された筒状の部材として構成されている(図2)。イオン交換部3は、その筒状構造の長手方向が鉛直方向に向くように設けられている。上水道から供給され、分配部2(調整弁21)を経てイオン交換部3に流入した水は、イオン交換部3の下方に設けられた入口32から、ストレーナー34を通ってイオン交換部3に流入する。イオン交換部3に流入した水は、塩素型陰イオン交換樹脂31と接触したのち、ストレーナー35を通過して、イオン交換部3の上方に設けられた出口33から流出する。すなわち、イオン交換部3は、上下のストレーナー34、35間に塩素型陰イオン交換樹脂31が挟まれた状態で、鉛直方向下方から上方に水が流通する上向流方式に構成されている。なお、ストレーナー34、35は、塩素型陰イオン交換樹脂31の流出を防ぐために設けられたものである。 The ion exchange unit 3 is configured as a tubular member filled with a bead-shaped chlorine-type anion exchange resin 31 (FIG. 2). The ion exchange unit 3 is provided so that the longitudinal direction of the tubular structure faces the vertical direction. The water supplied from the water supply and flowing into the ion exchange section 3 through the distribution section 2 (regulatory valve 21) flows into the ion exchange section 3 from the inlet 32 provided below the ion exchange section 3 through the strainer 34. To do. The water that has flowed into the ion exchange unit 3 comes into contact with the chlorine-type anion exchange resin 31, passes through the strainer 35, and flows out from the outlet 33 provided above the ion exchange unit 3. That is, the ion exchange unit 3 is configured in an upward flow system in which water flows from the lower side in the vertical direction to the upper side with the chlorine type anion exchange resin 31 sandwiched between the upper and lower strainers 34 and 35. The strainers 34 and 35 are provided to prevent the outflow of the chlorine-type anion exchange resin 31.

塩素型陰イオン交換樹脂31は、トリメチルアンモニウム基、ジメチルエタノールアンモニウム基などのカチオン性官能基側鎖を有するポリマーにより構成されており、カチオン性官能基側鎖の対イオンは、塩化物イオンである。かかる塩素型陰イオン交換樹脂31としては市販の製品を用いることができ、たとえば、ミニパールSAシリーズ(東西化学産業株式会社製)、ダイヤイオン(登録商標)SAシリーズ及びPAシリーズ(三菱ケミカル株式会社製)、アンバーライト(登録商標)IRAシリーズ(オルガノ株式会社製)、ダウエックス(登録商標)シリーズ(ダウ・ケミカル株式会社製)、Lewatit(登録商標)シリーズ(Lanxess社製)、ならびにPurolite(登録商標)シリーズ(Purolite社製)などが例示されるが、これらに限定されない。 The chlorine-type anion exchange resin 31 is composed of a polymer having a cationic functional group side chain such as a trimethylammonium group and a dimethylethanolammonium group, and the counterion of the cationic functional group side chain is a chloride ion. .. Commercially available products can be used as the chlorine-type anion exchange resin 31, for example, Minipearl SA series (manufactured by Tozai Kagaku Sangyo Co., Ltd.), Diaion (registered trademark) SA series and PA series (Mitsubishi Chemical Co., Ltd.). , Amberlite (registered trademark) IRA series (manufactured by Organo Co., Ltd.), Dowex (registered trademark) series (manufactured by Dow Chemical Co., Ltd.), Lewattit (registered trademark) series (manufactured by Lanxess), and Purple (registered) (Trademark) series (manufactured by Purplete) and the like are exemplified, but the present invention is not limited thereto.

また、本実施形態では、イオン交換部3の筒状構造の最下部、すなわち入口32と調整弁21との間にオリフィス(不図示)を設けて、水が過剰に流れないようにしてある。この構成によって、イオン交換部3に流入した水が塩素型陰イオン交換樹脂31に接触する時間を十分に確保でき、これによって十分なイオン交換が行われるようにできる。本実施形態では、イオン交換部3の筒状構造の内径が42mmであり、直径1.0mmの開口孔を有するオリフィスを設けてある。これによって、その通過流量を0.2MPa水圧下において800mL/min以下に規定している。 Further, in the present embodiment, an orifice (not shown) is provided at the lowermost part of the tubular structure of the ion exchange unit 3, that is, between the inlet 32 and the regulating valve 21 to prevent excessive flow of water. With this configuration, it is possible to secure a sufficient time for the water flowing into the ion exchange unit 3 to come into contact with the chlorine-type anion exchange resin 31, so that sufficient ion exchange can be performed. In the present embodiment, the cylindrical structure of the ion exchange unit 3 has an inner diameter of 42 mm and is provided with an orifice having an opening hole with a diameter of 1.0 mm. As a result, the passing flow rate is specified to be 800 mL / min or less under 0.2 MPa water pressure.

バイパス部4は、上水道から、イオン交換部3を経ずに電気分解部5に至る流路である。分配部2(調整弁22)を経てバイパス部4に流入した水は、イオン交換部3の出口33の下流において、イオン交換部3から流出した水と合流し、電気分解部5に至る。 The bypass section 4 is a flow path from the water supply to the electrolysis section 5 without passing through the ion exchange section 3. The water that has flowed into the bypass unit 4 via the distribution unit 2 (regulatory valve 22) merges with the water that has flowed out from the ion exchange unit 3 downstream of the outlet 33 of the ion exchange unit 3 and reaches the electrolysis unit 5.

電気分解部5は、イオン交換部3またはバイパス部4を経て電気分解部5に流入した水を電気分解可能に構成されている。図1に示す電気分解部5は、一電解槽内に正極51と負極52とを挿入した電気分解装置5aである。 The electrolysis unit 5 is configured to be able to electrolyze the water that has flowed into the electrolysis unit 5 via the ion exchange unit 3 or the bypass unit 4. The electrolysis unit 5 shown in FIG. 1 is an electrolysis device 5a in which a positive electrode 51 and a negative electrode 52 are inserted in one electrolytic cell.

電気分解部5から流出した水は、電気分解により生じた次亜塩素酸を含む殺菌洗浄水である。 The water flowing out from the electrolysis unit 5 is sterilizing and washing water containing hypochlorous acid generated by electrolysis.

〔殺菌洗浄水の製造方法〕
次に、上記に説明した各機能部の機能に基づいて、殺菌洗浄水製造装置1を用いた殺菌洗浄水の製造方法について説明する。
[Manufacturing method of sterilizing washing water]
Next, a method for producing sterilizing washing water using the sterilizing washing water manufacturing apparatus 1 will be described based on the functions of the functional units described above.

殺菌洗浄水製造装置1により製造される殺菌洗浄水は、有効成分として次亜塩素酸(HClO)を含む。電気分解部5において次亜塩素酸を発生させる反応は、前述の式(1)及び式(2)に示したように、水中の塩化物イオンを出発原料とする。したがって、十分な殺菌効果を有するに足る次亜塩素酸濃度の殺菌洗浄水を得るためには、電気分解部5に供給される水(以下、「電気分解原水」という。)が所定量以上(たとえば10mg/L以上)の塩化物イオンを有することが求められる。しかし、上水道から受容される水道水の塩化物イオン濃度は地域などにより異なり、上記の所定量未満の場合がある。 The sterilizing washing water produced by the sterilizing washing water manufacturing apparatus 1 contains hypochlorous acid (HClO) as an active ingredient. As shown in the above formulas (1) and (2), the reaction for generating hypochlorous acid in the electrolysis unit 5 uses chloride ions in water as a starting material. Therefore, in order to obtain sterilizing and washing water having a hypochlorous acid concentration sufficient to have a sufficient sterilizing effect, the amount of water supplied to the electrolysis unit 5 (hereinafter referred to as "electrolyzed raw water") is equal to or more than a predetermined amount (hereinafter referred to as "electrolyzed raw water"). For example, it is required to have a chloride ion (10 mg / L or more). However, the chloride ion concentration of tap water received from the water supply varies depending on the region and the like, and may be less than the above-mentioned predetermined amount.

そこで、殺菌洗浄水製造装置1では、イオン交換部3において水中の陰イオン(たとえば硫酸イオン(SO 2−)など)を、塩素型陰イオン交換樹脂31によって塩化物イオンに交換する。塩素型陰イオン交換樹脂31のカチオン性官能基側鎖がトリメチルアンモニウム基である場合を例にすると、かかる陰イオン交換反応は以下の式(3)で表される。このイオン交換反応により、水がイオン交換部3を通過すると、塩化物イオン濃度が上昇する。

Figure 0006896259
なお、式中のRは、塩素型陰イオン交換樹脂31の高分子主鎖を表す。 Therefore, the sterilizing cleaning water production apparatus 1, the water anion in the ion exchange unit 3 (e.g. Sulfate ion (SO 4 2-), etc.), to replace the chloride ions by chlorine-type anion-exchange resin 31. Taking the case where the cationic functional group side chain of the chlorine-type anion exchange resin 31 is a trimethylammonium group as an example, such an anion exchange reaction is represented by the following formula (3). Due to this ion exchange reaction, when water passes through the ion exchange unit 3, the chloride ion concentration increases.
Figure 0006896259
In addition, R in the formula represents a polymer main chain of a chlorine type anion exchange resin 31.

ただし、上述したように水道水の塩化物イオン濃度は地域などにより異なるため、水道水の塩化物イオン濃度と、電気分解に好ましい塩化物イオン濃度との乖離幅は、都度異なる。そこで、殺菌洗浄水製造装置1では、水道水の塩化物イオン濃度に応じて、イオン交換反応に供する水の量(割合)を変化させられるように構成されている。具体的には、上水道から供給される水を、イオン交換部3とバイパス部4とに分配することによって、最終的に電気分解部5に供給されることになる水の一部のみをイオン交換反応に供することができる。すなわち、イオン交換部3に分配された水はイオン交換反応により塩化物イオン濃度が上昇するが、バイパス部4に分配された水は塩化物イオン濃度が上昇しないため、その分配比を調整することによって、合流後の水(電気分解原水)の塩化物イオン濃度を任意に調整できる。 However, as described above, since the chloride ion concentration of tap water differs depending on the region and the like, the difference between the chloride ion concentration of tap water and the chloride ion concentration preferable for electrolysis differs each time. Therefore, the sterilizing and washing water production apparatus 1 is configured so that the amount (ratio) of water to be subjected to the ion exchange reaction can be changed according to the chloride ion concentration of tap water. Specifically, by distributing the water supplied from the water supply to the ion exchange unit 3 and the bypass unit 4, only a part of the water finally supplied to the electrolysis unit 5 is ion-exchanged. It can be used for the reaction. That is, the chloride ion concentration of the water distributed to the ion exchange unit 3 increases due to the ion exchange reaction, but the chloride ion concentration of the water distributed to the bypass unit 4 does not increase, so the distribution ratio should be adjusted. The chloride ion concentration of the water (electrolyzed raw water) after merging can be arbitrarily adjusted.

より具体的には、電気分解原水の塩化物イオン濃度が10mg/L以上であると、電気分解により有効量の次亜塩素酸が得られうる。そこで、電気分解原水の塩化物イオン濃度が10mg/L程度になるように、イオン交換部3とバイパス部4とに分配される水の流量を調整する。なお、電気分解原水の塩化物イオン濃度が高いほど得られる殺菌洗浄水の殺菌効果が高くなるが、その一方で、イオン交換部3に分配される水の量が多いと塩素型陰イオン交換樹脂31が劣化しやすくなり、より頻繁に塩素型陰イオン交換樹脂31を再生する必要が生じる。この事情に鑑み、必要十分な殺菌効果を得られる電気分解原水の塩化物イオン濃度(10mg/L程度)が実現される限りにおいて、できる限り少ない量の水道水がイオン交換部3に分配されるようにするのがよい。 More specifically, when the chloride ion concentration of the electrolyzed raw water is 10 mg / L or more, an effective amount of hypochlorous acid can be obtained by electrolysis. Therefore, the flow rate of the water distributed to the ion exchange section 3 and the bypass section 4 is adjusted so that the chloride ion concentration of the electrolyzed raw water is about 10 mg / L. The higher the chloride ion concentration of the electrolyzed raw water, the higher the bactericidal effect of the obtained sterilizing wash water, but on the other hand, if the amount of water distributed to the ion exchange unit 3 is large, the chlorine-type anion exchange resin 31 tends to deteriorate, and it becomes necessary to regenerate the chlorine-type anion exchange resin 31 more frequently. In view of this situation, as long as the chloride ion concentration (about 10 mg / L) of the electrolyzed raw water that can obtain the necessary and sufficient bactericidal effect is realized, as little tap water as possible is distributed to the ion exchange unit 3. It is better to do so.

水道水の塩化物イオン濃度が10mg/Lを大きく下回る(たとえば5mg/L)場合は、上水道から供給される水の全量がイオン交換部3に分配されるようにする(調整弁22を閉止して調整弁21のみを開放する)。 When the chloride ion concentration of tap water is much lower than 10 mg / L (for example, 5 mg / L), the entire amount of water supplied from the water supply is distributed to the ion exchange unit 3 (close the regulating valve 22). Only the regulating valve 21 is opened).

また、水道水の塩化物イオン濃度が10mg/Lをわずかに下回る(たとえば8mg/L)場合は、上水道から供給される水の全量がイオン交換部3に分配されるようにすると、電気分解原水の塩化物イオン濃度が10mg/Lを超える可能性がある。しかし、前述の通り当該塩化物イオン濃度を10mg/Lを超えて高めるような分配比率を設定すると、塩素型陰イオン交換樹脂31の劣化が早くなる。以上のことから、電気分解原水の塩化物イオン濃度が10mg/L以上になる限りにおいて最低限の量の水をイオン交換部3に分配するのがよい。具体的には、調整弁21、22の開度を調整してイオン交換部3とバイパス部4と分配される水の量を調整し、電気分解原水の塩化物イオン濃度が10mg/L程度になるようにする。 Further, when the chloride ion concentration of tap water is slightly less than 10 mg / L (for example, 8 mg / L), if the entire amount of water supplied from the water supply is distributed to the ion exchange unit 3, the electrolyzed raw water is prepared. Chloride ion concentration may exceed 10 mg / L. However, as described above, if the distribution ratio is set so as to increase the chloride ion concentration by more than 10 mg / L, the chlorine-type anion exchange resin 31 deteriorates faster. From the above, it is preferable to distribute the minimum amount of water to the ion exchange unit 3 as long as the chloride ion concentration of the electrolyzed raw water is 10 mg / L or more. Specifically, the opening degree of the adjusting valves 21 and 22 is adjusted to adjust the amount of water distributed to the ion exchange unit 3 and the bypass unit 4, so that the chloride ion concentration of the electrolyzed raw water is about 10 mg / L. To be.

なお、水道水の塩化物イオン濃度が10mg/L以上の場合は、イオン交換により塩化物イオン濃度を上昇させる必要がないので、上水道から供給される水の全量がバイパス部4に分配されるようにする(調整弁21を閉止して調整弁22のみを開放する)とよい。この場合も、塩素型陰イオン交換樹脂31の劣化が防止されうる。 When the chloride ion concentration of tap water is 10 mg / L or more, it is not necessary to increase the chloride ion concentration by ion exchange, so that the entire amount of water supplied from the water supply is distributed to the bypass section 4. (The adjusting valve 21 is closed and only the adjusting valve 22 is opened). In this case as well, deterioration of the chlorine-type anion exchange resin 31 can be prevented.

さらに具体的には、水素水サーバSを設置する際、または設置後の任意の時期に、水素水サーバSに供給される水道水の塩化物イオン濃度を測定し、測定された塩化物イオン濃度に基づいて、イオン交換部3とバイパス部4とに分配される水の流量(調整弁21、22の開度)を決定する。ここで、水道水の塩化物イオン濃度は、市販の塩化物イオン計を用いて測定してもよいし、市販の導電率計を用いて測定した電気伝導率に基づいて算出してもよい。 More specifically, when the hydrogen water server S is installed, or at any time after the installation, the chloride ion concentration of tap water supplied to the hydrogen water server S is measured, and the measured chloride ion concentration is measured. Based on the above, the flow rate of water distributed to the ion exchange unit 3 and the bypass unit 4 (opening of the adjusting valves 21 and 22) is determined. Here, the chloride ion concentration of tap water may be measured using a commercially available chloride ion meter, or may be calculated based on the electrical conductivity measured using a commercially available conductivity meter.

上記に説明した殺菌洗浄水の製造方法によれば、塩化物イオン源を添加することなく残留塩素濃度が2mgCl/L以上の殺菌洗浄水を得られるので、殺菌洗浄水の製造を無人かつ定期的に実施しうる。これによって、水素水サーバSの自動的かつ定期的な殺菌洗浄運転が実現可能になる。また、原水の水質によらずに高濃度の殺菌洗浄水を得られるので、水素水サーバSの設置場所によらずに、自動的かつ定期的な殺菌洗浄運転を実現できる。 According to the method for producing sterilizing washing water described above, sterilizing washing water having a residual chlorine concentration of 2 mgCl 2 / L or more can be obtained without adding a chloride ion source. Can be implemented as a target. This makes it possible to realize an automatic and regular sterilization and cleaning operation of the hydrogen water server S. Further, since high-concentration sterilizing and washing water can be obtained regardless of the quality of the raw water, automatic and regular sterilizing and washing operation can be realized regardless of the installation location of the hydrogen water server S.

〔変形例〕
以下では、殺菌洗浄水製造装置1の変形例について説明する。図3に示した殺菌洗浄水製造装置1では、電気分解部5は、流入した水に正極51が接触する正極槽54、負極52に接触する負極槽55、及び正極槽54と負極槽55とを隔てるイオン交換膜53、を有する公知の酸性電解水製造の電気分解装置5bとして構成されている。ここで、イオン交換膜53としては、ネオセプタ(登録商標)シリーズ(株式会社アストム製)、ナフィオン(登録商標)シリーズ(シグマアルドリッチ社製)などが例示されるが、これらに限定されない。
[Modification example]
Hereinafter, a modified example of the sterilizing washing water production apparatus 1 will be described. In the sterilization washing water production apparatus 1 shown in FIG. 3, the electrolysis unit 5 includes a positive electrode tank 54 in which the positive electrode 51 contacts the inflowing water, a negative electrode tank 55 in contact with the negative electrode 52, and a positive electrode tank 54 and a negative electrode tank 55. It is configured as a known electrolyzer 5b for producing acidic electrolyzed water, which has an ion exchange membrane 53 that separates the electrodes. Here, examples of the ion exchange membrane 53 include, but are not limited to, the Neocepta (registered trademark) series (manufactured by Astom Co., Ltd.) and the Nafion (registered trademark) series (manufactured by Sigma-Aldrich).

このように、電気分解部5としては、電気分解装置5aのように一つの水槽に正極51と負極52とを有する構造の装置を用いてもよいし、電気分解装置5bのように正極槽54と負極槽55とがイオン交換膜53により仕切られた構造の装置を用いてもよく、正極51から次亜塩素酸を生成する電気分解装置であればいずれもが使用可能である。ただし、電気分解装置5aのように一つの水槽に正極51と負極52とを有する構造の装置の方が簡易で利便性が高い。 As described above, as the electrolysis unit 5, a device having a structure having a positive electrode 51 and a negative electrode 52 in one water tank such as the electrolysis device 5a may be used, or a positive electrode tank 54 like the electrolysis device 5b may be used. An apparatus having a structure in which the negative electrode tank 55 and the negative electrode tank 55 are separated by an ion exchange film 53 may be used, and any electrolysis apparatus that produces hypochlorous acid from the positive electrode 51 can be used. However, a device having a positive electrode 51 and a negative electrode 52 in one water tank, such as the electrolyzer 5a, is simpler and more convenient.

〔その他の実施形態〕
最後に、本発明に係る殺菌洗浄水製造装置及び殺菌洗浄水製造方法のその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the sterilizing washing water manufacturing apparatus and the sterilizing washing water manufacturing method according to the present invention will be described. The configurations disclosed in each of the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction.

上記の実施形態では、水素水サーバSを殺菌するために設けられた殺菌洗浄水製造装置1を例として説明した。しかし、そのような構成に限定されることなく、本発明に係る殺菌洗浄水製造装置は、災害用浄水装置、ウォーターサーバ、手洗い装置、加湿器などにも使用できる。 In the above embodiment, the sterilizing washing water production apparatus 1 provided for sterilizing the hydrogen water server S has been described as an example. However, without being limited to such a configuration, the sterilizing and washing water production device according to the present invention can also be used for a disaster water purification device, a water server, a hand washing device, a humidifier, and the like.

上記の実施形態では、バイパス部4が備えられ、水道水をイオン交換部3とバイパス部4とに分配する分配部2が設けられた構成を例として説明した。しかし、本発明に係る殺菌洗浄水製造装置は、必ずしもバイパス部及び分配部を備えなくてもよい。ただし、上記の実施形態のようにバイパス部及び分配部を備える場合、水道水の塩化物イオン濃度が比較的高い場合においてはイオン交換部を流通する水の量を減らすことができるので、塩素型陰イオン交換樹脂の劣化を抑制しうる。 In the above embodiment, a configuration in which the bypass unit 4 is provided and the distribution unit 2 for distributing tap water to the ion exchange unit 3 and the bypass unit 4 is provided will be described as an example. However, the sterilizing washing water production apparatus according to the present invention does not necessarily have to include a bypass unit and a distribution unit. However, when the bypass part and the distribution part are provided as in the above embodiment, the amount of water flowing through the ion exchange part can be reduced when the chloride ion concentration of tap water is relatively high, so that the chlorine type Deterioration of the anion exchange resin can be suppressed.

上記の実施形態では、分配部2が調整弁21及び調整弁22として実装され、調整弁21、22の開度を調整することによってイオン交換部3及びバイパス部4のそれぞれに流入する水の量を規定する構成を例として説明した。また、この構成において、水素水サーバSの設置場所において取水される水道水の塩化物イオン濃度をあらかじめ測定し、当該濃度に基づいて調整弁21、22の開度を決定することについて説明した。しかし、このような構成に限定されず、本発明における分配部は、複数の流路に流入する水の量を制御可能な任意の装置により実施されうる。たとえば、電気分解部に流入する水の塩化物イオン濃度を測定可能な測定器を設け、当該測定器の測定値に基づいてイオン交換部及びバイパス部のそれぞれ流入する水の量を動的に制御するシステムが、分配部として設けられてもよい。かかるシステムは、たとえば、塩化物イオン濃度を測定可能な測定器、その開度を電子的に制御可能な制御弁、及び、塩化物イオン濃度の測定値に基づいて制御弁の開度を制御するコンピュータなどの制御装置、を含むだろう。 In the above embodiment, the distribution unit 2 is mounted as the adjustment valve 21 and the adjustment valve 22, and the amount of water flowing into each of the ion exchange unit 3 and the bypass unit 4 by adjusting the opening degree of the adjustment valves 21 and 22. The configuration that defines is described as an example. Further, in this configuration, it has been described that the chloride ion concentration of tap water taken in at the installation location of the hydrogen water server S is measured in advance, and the opening degrees of the adjusting valves 21 and 22 are determined based on the concentration. However, the distribution unit in the present invention is not limited to such a configuration, and can be implemented by any device capable of controlling the amount of water flowing into a plurality of flow paths. For example, a measuring device capable of measuring the chloride ion concentration of water flowing into the electrolysis section is provided, and the amount of water flowing into each of the ion exchange section and the bypass section is dynamically controlled based on the measured value of the measuring device. The system may be provided as a distribution unit. Such a system controls, for example, a measuring instrument capable of measuring the chloride ion concentration, a control valve capable of electronically controlling the opening degree thereof, and a control valve opening degree based on the measured value of the chloride ion concentration. Will include control devices, such as computers.

上記の実施形態では、イオン交換部3にオリフィスを設けてその流量を規定した構成を例として説明した。しかし、そのような構成に限定されず、本発明に係るイオン交換部はオリフィスを有さなくてもよい。なお、オリフィスに替えて、調整弁などの公知の流量制御手段を設けてもよいし、そのような流量制御手段を設けなくてもよい。 In the above embodiment, a configuration in which an orifice is provided in the ion exchange unit 3 and the flow rate thereof is defined will be described as an example. However, the present invention is not limited to such a configuration, and the ion exchange unit according to the present invention does not have to have an orifice. In addition, instead of the orifice, a known flow rate control means such as a regulating valve may be provided, or such a flow rate control means may not be provided.

上記の実施形態では、イオン交換部3が、その筒状構造の長手方向が鉛直方向に向くように設けられ、かつ、鉛直方向下方から上方に水が流通するよう上向流方式に構成された例について説明した。しかし、そのような構成に限定されることなく、イオン交換部3は、必ずしも鉛直方向に沿って設置されていなくてもよい。また、イオン交換部3が鉛直方向に沿って設置されている場合であっても、鉛直方向上方から下方に水が流通する下向流方式に構成されていてもよい。ただし、上記の実施形態のように、イオン交換部の少なくとも塩素型陰イオン交換樹脂を有する部分において、上向流方式に構成されていると、水の流速が緩やかであってもイオン交換部の塩素型陰イオン交換樹脂を有する部分において水が均一に浮上移動することができるので、水と塩素型陰イオン交換樹脂との接触時間を確保しやすく、これによって十分なイオン交換が行われやすい。 In the above embodiment, the ion exchange unit 3 is provided so that the longitudinal direction of the tubular structure faces the vertical direction, and is configured in an upward flow system so that water flows from the lower side to the upper side in the vertical direction. An example has been described. However, the ion exchange unit 3 does not necessarily have to be installed along the vertical direction without being limited to such a configuration. Further, even when the ion exchange unit 3 is installed along the vertical direction, it may be configured in a downward flow system in which water flows from the upper side to the lower side in the vertical direction. However, as in the above embodiment, if at least the portion of the ion exchange section having the chlorine-type anion exchange resin is configured in the upward flow method, the ion exchange section may have a gentle flow velocity. Since water can float and move uniformly in the portion having the chlorine-type anion exchange resin, it is easy to secure the contact time between the water and the chlorine-type anion exchange resin, and sufficient ion exchange is easily performed.

上述のように、本発明に係る電気分解部5の電解セルとしては、静水式電解セル及び流水式電解セルのいずれも使用しうる。ただし、流水式電解セルを用いると、連続して一定濃度の殺菌洗浄水が得られやすい点で好ましい。 As described above, as the electrolysis cell of the electrolysis unit 5 according to the present invention, either a hydrostatic electrolysis cell or a running water electrolysis cell can be used. However, it is preferable to use a running water type electrolytic cell because it is easy to continuously obtain a constant concentration of sterilizing washing water.

上記の実施形態では、上水道に減圧弁Rが接続されて分配部2に入る構成を例として説明した。しかし、そのような構成に限定されることなく、本発明における水の供給元は、イオン交換部に水を供給可能である限りにおいて、その構成が特に限定されない。本発明に係る殺菌洗浄水製造装置は、たとえば、タンクなどの水源から水の供給を受けるように構成されうる。また、減圧弁やストレーナーなどの付属的な構成要素についても、殺菌洗浄水製造装置及びこれが搭載される機器、装置などの全体構成における必要性に応じて適宜備えられうる。 In the above embodiment, the configuration in which the pressure reducing valve R is connected to the water supply and enters the distribution unit 2 has been described as an example. However, the water supply source in the present invention is not limited to such a configuration, and the configuration is not particularly limited as long as water can be supplied to the ion exchange unit. The sterilizing and washing water production apparatus according to the present invention may be configured to receive water from a water source such as a tank. In addition, ancillary components such as a pressure reducing valve and a strainer may be appropriately provided according to the needs in the overall configuration of the sterilizing washing water production apparatus and the equipment and apparatus on which the sterilizing washing water production apparatus is mounted.

その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 It should be understood that with respect to other configurations, the embodiments disclosed herein are exemplary in all respects and the scope of the invention is not limited thereto. Those skilled in the art will be able to easily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Therefore, another embodiment modified without departing from the spirit of the present invention is naturally included in the scope of the present invention.

以下では、実施例を示して本発明をさらに説明する。なお、以下の実施例は、本発明を限定するものではない。 Hereinafter, the present invention will be further described with reference to examples. The following examples do not limit the present invention.

〔第一の試験〕
第一の試験では、種々の条件において水を電気分解した際の残留塩素濃度について検討した。
[First test]
In the first test, the residual chlorine concentration when water was electrolyzed under various conditions was examined.

《試験方法》
東西化学産業株式会社製「リオスターTYPE201」に使用されている電解塩素発生装置「CGユニット」電気分解セルに、試験水を800mL/minの流量で循環通水し、表1に示す諸条件で電気分解を行った。電気分解後の水の遊離残留塩素濃度及び総残留塩素濃度を、東西化学産業株式会社製携帯型デジタル水質計「オンサイトラボCL101」を用いて測定し、電気分解により発生した次亜塩素酸の濃度を特定した。
"Test method"
Test water is circulated through the electrolysis cell of the electrolytic chlorine generator "CG unit" used in "Riostar TYPE201" manufactured by Tozai Kagaku Sangyo Co., Ltd. at a flow rate of 800 mL / min, and electricity is applied under the conditions shown in Table 1. It was disassembled. The free residual chlorine concentration and total residual chlorine concentration of water after electrolysis were measured using a portable digital water quality meter "Onsite Lab CL101" manufactured by Tozai Kagaku Sangyo Co., Ltd., and hypochlorous acid generated by electrolysis was measured. The concentration was identified.

《実施例1〜4》
塩化物イオン濃度15mg/L、電気伝導率13.5mS/mの、残留塩素を含まない試験水を、表1に示す条件で電気分解した。実施例1〜4に示されるように、電気分解時に印加する電圧値が上昇すると、流れる電流値が上昇した。また、電流値の上昇に伴って、遊離残留塩素濃度及び総残留塩素濃度が上昇した。
<< Examples 1 to 4 >>
Test water containing a chloride ion concentration of 15 mg / L and an electrical conductivity of 13.5 mS / m and containing no residual chlorine was electrolyzed under the conditions shown in Table 1. As shown in Examples 1 to 4, when the voltage value applied during electrolysis increased, the flowing current value increased. In addition, the free residual chlorine concentration and the total residual chlorine concentration increased as the current value increased.

《比較例1、2》
塩化物イオン濃度2.5mg/L、電気伝導率6.5mS/mの、残留塩素を含まない試験水を、表1に示す条件で電気分解した。比較例1及び2では、それぞれ実施例2及び3と同等の電流が流れるようにしたが、その際に必要な印加電圧は実施例2及び3より大きかった。また、電圧値及び電流値が上昇しても、遊離残留塩素濃度及び総残留塩素濃度の上昇がほとんど見られなかった。
<< Comparative Examples 1 and 2 >>
Test water containing a chloride ion concentration of 2.5 mg / L and an electrical conductivity of 6.5 mS / m and containing no residual chlorine was electrolyzed under the conditions shown in Table 1. In Comparative Examples 1 and 2, the same current as in Examples 2 and 3 was allowed to flow, respectively, but the applied voltage required at that time was larger than that in Examples 2 and 3. Moreover, even if the voltage value and the current value increased, the free residual chlorine concentration and the total residual chlorine concentration hardly increased.

《結果》
塩化物イオン濃度15mg/Lの試験水を用いた実施例1〜4では、電気分解により残留塩素濃度の上昇が見られた。すなわち、電気分解により次亜塩素酸が発生したと考えられる。一方、塩化物イオン濃度2.5mg/Lの試験水を用いた比較例1及び2では、電気分解による残留塩素濃度の上昇がほとんど見られず、次亜塩素酸がほとんど発生しなかったと考えられる。
"result"
In Examples 1 to 4 using test water having a chloride ion concentration of 15 mg / L, an increase in the residual chlorine concentration was observed due to electrolysis. That is, it is considered that hypochlorous acid was generated by electrolysis. On the other hand, in Comparative Examples 1 and 2 using the test water having a chloride ion concentration of 2.5 mg / L, it is considered that the residual chlorine concentration hardly increased due to electrolysis, and hypochlorous acid was hardly generated. ..

Figure 0006896259
Figure 0006896259

〔第二の試験〕
第二の試験では、図1に示した構成の殺菌洗浄水製造装置1について、イオン交換部3における塩化物イオンの増加について検討した。
[Second test]
In the second test, the increase in chloride ions in the ion exchange unit 3 was examined for the sterilizing washing water production apparatus 1 having the configuration shown in FIG.

《試験方法》
試験装置として、図1に示した構成の殺菌洗浄水製造装置1を用いた。イオン交換部3として、内径42mm、高さ245mm、内容量340mLの筒状体に、塩素型陰イオン交換樹脂ミニパールSA−10P(東西化学産業株式会社製)を340mL充填したイオン交換塔を用いた。
"Test method"
As the test device, the sterilizing washing water production device 1 having the configuration shown in FIG. 1 was used. As the ion exchange unit 3, an ion exchange tower is used in which a cylindrical body having an inner diameter of 42 mm, a height of 245 mm, and an internal volume of 340 mL is filled with 340 mL of chlorine-type anion exchange resin Minipearl SA-10P (manufactured by Tozai Kagaku Sangyo Co., Ltd.). There was.

試験水は、塩化物イオン濃度7.8mg/Lの、残留塩素を除去した水道水を用いた。当該試験水を、それぞれ流速が異なる上向流で通水し、イオン交換部3の前後における塩化物イオン濃度を測定した。後掲の表2に示すように、流速200〜1,100mL/minの範囲で7水準の試験を行い、それぞれ実施例5〜10及び比較例3とした。なお、各実施例の流速を線速度(LV)に換算した値も、あわせて表2に示している。 As the test water, tap water having a chloride ion concentration of 7.8 mg / L and having residual chlorine removed was used. The test water was passed through upward currents having different flow velocities, and the chloride ion concentration before and after the ion exchange unit 3 was measured. As shown in Table 2 below, seven levels of tests were conducted in the range of a flow velocity of 200 to 1,100 mL / min, and used as Examples 5 to 10 and Comparative Example 3, respectively. Table 2 also shows the values obtained by converting the flow velocities of each embodiment into linear velocities (LV).

塩化物イオン濃度は、ポータブル塩化物測定器HI96753(ハンナインスツルメンツ社製)を用いて測定した。 The chloride ion concentration was measured using a portable chloride measuring instrument HI96753 (manufactured by Hannah Instruments).

《結果》
塩化物イオン濃度7.8mg/Lの試験水を用いた実施例5〜10では、いずれの範囲においても、ほぼ10mg/Lの塩化物イオンの増加を認めることができた。すなわち、試験水に含まれていた硫酸イオン等のアニオン物質のほぼ全量が、塩化物イオンに交換されたといえる。
"result"
In Examples 5 to 10 using the test water having a chloride ion concentration of 7.8 mg / L, an increase of approximately 10 mg / L in chloride ions could be observed in any range. That is, it can be said that almost all of the anionic substances such as sulfate ions contained in the test water were exchanged for chloride ions.

Figure 0006896259
Figure 0006896259

すなわち、イオン交換部3における水の線速度が10〜40m/hrである範囲において、10mg/Lの塩化物イオン濃度上昇を見込めることがわかった。この知見を利用すれば、供給される水の塩化物イオン濃度と所望の塩化物イオン濃度(10mg/L)との差異に基づいて、所望の塩化物イオン濃度の電気分解原水が得られるような水の分配(イオン交換部3とバイパス部4とに分配される水の流量)を計算できる。 That is, it was found that an increase in chloride ion concentration of 10 mg / L can be expected in the range where the linear velocity of water in the ion exchange unit 3 is 10 to 40 m / hr. By utilizing this finding, it is possible to obtain electrolyzed raw water having a desired chloride ion concentration based on the difference between the chloride ion concentration of the supplied water and the desired chloride ion concentration (10 mg / L). The distribution of water (the flow rate of water distributed to the ion exchange unit 3 and the bypass unit 4) can be calculated.

〔第三の試験〕
第三の試験では、図1に示した構成の殺菌洗浄水製造装置1について、イオン交換部3及びバイパス部4のそれぞれに分配される水の流量と、得られる殺菌洗浄水の塩化物イオン濃度との関係を検討した。
[Third test]
In the third test, with respect to the sterilizing washing water producing apparatus 1 having the configuration shown in FIG. 1, the flow rate of water distributed to each of the ion exchange section 3 and the bypass section 4 and the chloride ion concentration of the obtained sterilizing washing water. I examined the relationship with.

《試験方法》
試験装置として、図1に示した構成の殺菌洗浄水製造装置1を用いた。イオン交換部3として、内径42mm、高さ245mm、内容量340mLの筒状体に、塩素型陰イオン交換樹脂ミニパールSA−10P(東西化学産業株式会社製)を340mL充填したイオン交換塔を用いた。電気分解装置は、東西化学産業株式会社製「リオスターTYPE201」に使用されている電解塩素発生装置「CGユニット」電気分解セルを用いた。
"Test method"
As the test device, the sterilizing washing water production device 1 having the configuration shown in FIG. 1 was used. As the ion exchange unit 3, an ion exchange tower is used in which a cylindrical body having an inner diameter of 42 mm, a height of 245 mm, and an internal volume of 340 mL is filled with 340 mL of chlorine-type anion exchange resin Minipearl SA-10P (manufactured by Tozai Kagaku Sangyo Co., Ltd.). There was. As the electrolyzer, the electrolysis cell of the electrolytic chlorine generator "CG unit" used in "Riostar TYPE201" manufactured by Tozai Kagaku Sangyo Co., Ltd. was used.

上記の試験装置において、分配部2に、塩化物イオン濃度8.6mg/L、電気伝導率13.31mS/mの、残留塩素を含まない試験水を供給し、電気分解部5から流出した殺菌洗浄水を採取して塩化物イオン濃度、電気伝導率及び残留塩素濃度を測定した。なお、電気分解部5における電気分解の条件は、電流1.8A固定で、最大電圧は18Vまでとした。 In the above test apparatus, test water having a chloride ion concentration of 8.6 mg / L and an electrical conductivity of 13.31 mS / m and containing no residual chlorine was supplied to the distribution unit 2 and sterilized by flowing out from the electrolysis unit 5. Washing water was collected and the chloride ion concentration, electrical conductivity and residual chlorine concentration were measured. The conditions for electrolysis in the electrolysis unit 5 were a fixed current of 1.8 A and a maximum voltage of up to 18 V.

《測定方法》
試験水及び採取した殺菌洗浄水の塩化物イオン濃度は、ポータブル塩化物測定器HI96753(ハンナインスツルメンツ社製)を用いて測定した。また、電気伝導率は、LUTRON社製「CD−4301」デジタル導電率計を用いて測定した。そして、電気分解後の水の遊離残留塩素濃度及び総残留塩素濃度を、東西化学産業株式会社製携帯型デジタル水質計「オンサイトラボCL101」を用いて測定し、電気分解により発生した次亜塩素酸の濃度を特定した。
"Measuring method"
The chloride ion concentration of the test water and the collected sterilized washing water was measured using a portable chloride measuring device HI96753 (manufactured by Hannah Instruments). The electrical conductivity was measured using a "CD-4301" digital conductivity meter manufactured by LUTRON. Then, the free residual chlorine concentration and the total residual chlorine concentration of the water after electrolysis were measured using a portable digital water quality meter "Onsite Lab CL101" manufactured by Tozai Kagaku Sangyo Co., Ltd., and hypochlorous acid generated by electrolysis was measured. The concentration of acid was identified.

《実施例11》
調整弁22を閉止して調整弁21を開放し、試験水の全量をイオン交換部3に流通した。流量は、1,100mL/minとした。得られた殺菌洗浄水の塩化物イオン濃度及び電気伝導率、及び残留塩素濃度は以下の通りであった。
塩化物イオン濃度 12.3mg/L
電気伝導率 13.9mS/m
遊離残留塩素 4.2mgCl/L
総残留塩素 4.2mgCl/L
<< Example 11 >>
The regulating valve 22 was closed and the regulating valve 21 was opened, and the entire amount of the test water was circulated to the ion exchange unit 3. The flow rate was 1,100 mL / min. The chloride ion concentration, electrical conductivity, and residual chlorine concentration of the obtained sterilized washing water were as follows.
Chloride ion concentration 12.3 mg / L
Electrical conductivity 13.9mS / m
Free Residual Chlorine 4.2mgCl 2 / L
Total Residual Chlorine 4.2mgCl 2 / L

《実施例12》
調整弁21、22の開度を調整し、試験水がイオン交換部3とバイパス部4とに1:1に分配されるようにした。総流量は、1,100mL/minとした。得られた殺菌洗浄水の塩化物イオン濃度、電気伝導率及び残留塩素濃度は以下の通りであった。
塩化物イオン濃度 10.6mg/L
電気伝導率 13.5mS/m
遊離残留塩素 2.4mgCl/L
総残留塩素 2.4mgCl/L
<< Example 12 >>
The opening degrees of the adjusting valves 21 and 22 were adjusted so that the test water was distributed 1: 1 to the ion exchange section 3 and the bypass section 4. The total flow rate was 1,100 mL / min. The chloride ion concentration, electrical conductivity and residual chlorine concentration of the obtained sterilized washing water were as follows.
Chloride ion concentration 10.6 mg / L
Electrical conductivity 13.5mS / m
Free Residual Chlorine 2.4mgCl 2 / L
Total Residual Chlorine 2.4mgCl 2 / L

《比較例4》
調整弁21を閉止して調整弁22を開放し、試験水の全量をバイパス部4に流通した。流速は、1,100mL/minとした。得られた殺菌洗浄水の塩化物イオン濃度、電気伝導率及び残留塩素濃度は以下の通りであった。
塩化物イオン濃度 8.6mg/L
電気伝導率 13.3mS/m
遊離残留塩素 1.7mgCl/L
総残留塩素 1.7mgCl/L
<< Comparative Example 4 >>
The regulating valve 21 was closed and the regulating valve 22 was opened, and the entire amount of the test water was circulated to the bypass section 4. The flow velocity was 1,100 mL / min. The chloride ion concentration, electrical conductivity and residual chlorine concentration of the obtained sterilized washing water were as follows.
Chloride ion concentration 8.6 mg / L
Electrical conductivity 13.3 mS / m
Free Residual Chlorine 1.7 mg Cl 2 / L
Total Residual Chlorine 1.7mgCl 2 / L

《結果》
上記のように、試験水の全量または一部をイオン交換部3に流通した実施例11及び12では、電気分解後の塩化物イオン濃度が10mg/L以上であった。したがって、実施例11及び12で得られた殺菌洗浄水の残留塩素酸濃度は2mgCl/L以上であり、十分な殺菌洗浄効果を有するに足る水準だといえる。一方、試験水の全量がイオン交換部3を流通しなかった比較例4では、電気分解後の塩化物イオン濃度が8.6mg/Lであり、得られた殺菌洗浄水の残留塩素酸濃度は2mgCl/L以下であった。比較例4において得られた殺菌洗浄水は、十分な殺菌洗浄効果を発揮するとはいえず、たとえば激しくバイオフイルムが形成される系統での使用には適さない。
"result"
As described above, in Examples 11 and 12 in which all or part of the test water was distributed to the ion exchange unit 3, the chloride ion concentration after electrolysis was 10 mg / L or more. Therefore, it can be said that the residual chloric acid concentration of the sterilizing washing water obtained in Examples 11 and 12 is 2 mgCl 2 / L or more, which is a level sufficient to have a sufficient sterilizing washing effect. On the other hand, in Comparative Example 4 in which the total amount of the test water did not flow through the ion exchange unit 3, the chloride ion concentration after electrolysis was 8.6 mg / L, and the residual chloric acid concentration of the obtained sterilization washing water was It was 2 mgCl 2 / L or less. The sterilizing and washing water obtained in Comparative Example 4 cannot be said to exhibit a sufficient sterilizing and washing effect, and is not suitable for use in a system in which a biofilm is violently formed, for example.

本発明は、たとえば水素水サーバ系内を定時的に殺菌洗浄するための殺菌洗浄水製造装置及び殺菌洗浄水製造方法に利用することができる。 The present invention can be used, for example, in a sterilizing washing water production apparatus and a sterilizing washing water manufacturing method for sterilizing and cleaning the inside of a hydrogen water server system on a regular basis.

1 :殺菌洗浄水製造装置
2 :分配部
21、22 :調整弁
3 :イオン交換部
31 :塩素型陰イオン交換樹脂
32 :入口
33 :出口
34、35 :ストレーナー
4 :バイパス部
5 :電気分解部
5a、5b :電気分解装置
51 :正極
52 :負極
53 :イオン交換膜
54 :正極槽
55 :負極槽
S :水素水サーバ
R :減圧弁
Sa :原水供給部
Sb :水素水製造部
CV1、CV2 :自動開閉弁
F :活性炭フィルタ
1: Sterilizing and washing water production equipment 2: Distributing parts 21, 22: Adjusting valve 3: Ion exchange part 31: Chlorine type anion exchange resin 32: Inlet 33: Outlet 34, 35: Strainer 4: Bypass part 5: Electrolysis part 5a, 5b: Electrolyzer 51: Positive electrode 52: Negative electrode 53: Ion exchange membrane 54: Positive electrode tank 55: Negative electrode tank S: Hydrogen water server R: Pressure reducing valve Sa: Raw water supply section Sb: Hydrogen water production section CV1, CV2: Automatic on-off valve F: Activated carbon filter

Claims (8)

塩素型陰イオン交換樹脂を有し、水を流通させたときに当該水と前記塩素型陰イオン交換樹脂とが接触するように構成されたイオン交換部と、
前記イオン交換部を流通させた水を電気分解可能な電気分解部と、を備える殺菌洗浄水製造装置。
An ion exchange unit having a chlorine-type anion exchange resin and configured so that the water and the chlorine-type anion exchange resin come into contact with each other when water is circulated.
A sterilizing and washing water production apparatus including an electrolyzing unit capable of electrolyzing the water circulated through the ion exchange unit.
水の供給元から、前記イオン交換部を経ずに前記電気分解部に至る流路であるバイパス部と、
前記供給元から供給された水を、前記イオン交換部と前記バイパス部とに分配可能な分配部と、をさらに備える請求項1に記載の殺菌洗浄水製造装置。
A bypass section that is a flow path from the water supply source to the electrolysis section without passing through the ion exchange section.
The sterilizing and washing water production apparatus according to claim 1, further comprising a distribution unit capable of distributing water supplied from the supply source to the ion exchange unit and the bypass unit.
前記イオン交換部は、前記塩素型陰イオン交換樹脂より上流の部分にオリフィスを有する請求項1または2に記載の殺菌洗浄水製造装置。 The sterilizing washing water production apparatus according to claim 1 or 2, wherein the ion exchange unit has an orifice in a portion upstream of the chlorine-type anion exchange resin. 前記イオン交換部は、少なくとも前記塩素型陰イオン交換樹脂を有する部分において、鉛直方向下方から上方に水が流通する上向流方式に設けられている請求項1〜3のいずれか一項に記載の殺菌洗浄水製造装置。 The item according to any one of claims 1 to 3, wherein the ion exchange unit is provided in an upward flow system in which water flows from the lower side to the upper side in the vertical direction at least in a portion having the chlorine type anion exchange resin. Sterilized washing water production equipment. 前記電気分解部は、次亜塩素酸水を製造可能な電気分解装置を有する請求項1〜4のいずれか一項に記載の殺菌洗浄水製造装置。 The sterilizing and washing water production apparatus according to any one of claims 1 to 4, wherein the electrolysis unit has an electrolysis apparatus capable of producing hypochlorous acid water. 前記電気分解装置は、一つの水槽に正極と負極とを有する電気分解装置である請求項5に記載の殺菌洗浄水製造装置。 The sterilization washing water production device according to claim 5, wherein the electrolysis device is an electrolysis device having a positive electrode and a negative electrode in one water tank. 前記電気分解装置は、正極が設けられた正極水槽と、負極が設けられた負極水槽と、前記正極水槽と前記負極水槽との間を仕切るイオン交換膜と、を有する電気分解装置である請求項5に記載の殺菌洗浄水製造装置。 The electrolyzer is an electrolyzer having a positive electrode water tank provided with a positive electrode, a negative electrode water tank provided with a negative electrode, and an ion exchange membrane partitioning between the positive electrode water tank and the negative electrode water tank. 5. The sterilizing and washing water production apparatus according to 5. 水と塩素型陰イオン交換樹脂とを接触させるイオン交換工程と、
前記イオン交換工程を経た水を電気分解する電気分解工程と、を有する殺菌洗浄水製造方法。
An ion exchange process that brings water into contact with a chlorine-type anion exchange resin,
A method for producing sterilizing and washing water, comprising an electrolysis step of electrolyzing water that has undergone the ion exchange step.
JP2020040963A 2020-03-10 2020-03-10 Sterilization wash water production equipment and sterilization wash water production method Active JP6896259B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040963A JP6896259B1 (en) 2020-03-10 2020-03-10 Sterilization wash water production equipment and sterilization wash water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040963A JP6896259B1 (en) 2020-03-10 2020-03-10 Sterilization wash water production equipment and sterilization wash water production method

Publications (2)

Publication Number Publication Date
JP6896259B1 true JP6896259B1 (en) 2021-06-30
JP2021143356A JP2021143356A (en) 2021-09-24

Family

ID=76540482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040963A Active JP6896259B1 (en) 2020-03-10 2020-03-10 Sterilization wash water production equipment and sterilization wash water production method

Country Status (1)

Country Link
JP (1) JP6896259B1 (en)

Also Published As

Publication number Publication date
JP2021143356A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
TWI608129B (en) Electrolysis device and electrolytic ozone water production device
JP3716042B2 (en) Acid water production method and electrolytic cell
KR20140074927A (en) Electrolysis system and electrolysis method for the same
CN101426734A (en) Process for producing a disinfectant by electrochemical activation (eca) of water, disinfectant produced in such a manner and use thereof
JP2005058848A (en) Production method for water used for washing, disinfecting, and wound healing, its production apparatus, and water used for washing, disinfecting, and wound healing
JP2014014645A (en) Artificial dialysis water manufacturing installation for personal dialysis
US7695606B2 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
KR101840234B1 (en) Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
JP6896259B1 (en) Sterilization wash water production equipment and sterilization wash water production method
KR20100064768A (en) Prevention system of adhesion of marine organism
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP4204955B2 (en) Electrolyzed water generation method and apparatus
JP2012196643A (en) Apparatus for producing hypochlorous acid water or the like
JP5019422B2 (en) Domestic water supply method and apparatus
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
WO2012011107A1 (en) A method and apparatus for treating drinking water
JPH06206074A (en) Method and apparatus for producing sterilizing water
KR101397127B1 (en) Sterilizing apparatus without adding salt and control method threrof
US20230132694A1 (en) Methods and apparatuses for oxidant concentration control
KR102534556B1 (en) A faucet capable of Sterilization and supplies Hydrogen
JP3056511B2 (en) Treatment water treatment equipment
CN108473344A (en) Electrolytic water generating device and the manufacturing device and electrolyzed water producing method for using its dialyzate preparation water
JPH11319831A (en) Production of electrolytic function water and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6896259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250