JPH06246266A - Device for producing electrolyte - Google Patents

Device for producing electrolyte

Info

Publication number
JPH06246266A
JPH06246266A JP5031971A JP3197193A JPH06246266A JP H06246266 A JPH06246266 A JP H06246266A JP 5031971 A JP5031971 A JP 5031971A JP 3197193 A JP3197193 A JP 3197193A JP H06246266 A JPH06246266 A JP H06246266A
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
raw water
sensor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5031971A
Other languages
Japanese (ja)
Other versions
JP3292930B2 (en
Inventor
Shiyuuji Yamaguchi
秋二 山口
Masayuki Ukon
雅幸 右近
Daiji Misawa
代治 三沢
Masakazu Arisaka
政員 有坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INTETSUKU KK
Original Assignee
NIPPON INTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INTETSUKU KK filed Critical NIPPON INTETSUKU KK
Priority to JP03197193A priority Critical patent/JP3292930B2/en
Priority to ES94301179T priority patent/ES2115156T3/en
Priority to EP94301179A priority patent/EP0612694B1/en
Priority to DE69409996T priority patent/DE69409996T2/en
Priority to CA002116045A priority patent/CA2116045C/en
Priority to MYPI94000414A priority patent/MY131555A/en
Priority to TW083101444A priority patent/TW310347B/zh
Priority to AU55274/94A priority patent/AU677618B2/en
Priority to BR9400627A priority patent/BR9400627A/en
Priority to KR1019940003119A priority patent/KR0133975B1/en
Priority to CN94102044A priority patent/CN1055904C/en
Priority to US08/199,840 priority patent/US5445722A/en
Publication of JPH06246266A publication Critical patent/JPH06246266A/en
Application granted granted Critical
Publication of JP3292930B2 publication Critical patent/JP3292930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To provide an electrolyte producing device wherein the acid solution having a pH of at most 3 and therefore highly effective in sterilization can be obtained in a large amt. with a low electric power inexpensively and stably and alkali solution can also be produced. CONSTITUTION:The supply passage of raw water to an electrolytic bath 1 is provided with a brine supply means for adding the brine thereto consisting of a brine storing tank 5, a constant feed pump 6 and a pouring device 7 and with a three-way valve 9 and pipes 10 and 11 for directing the raw water after the passage through the supply means in two directions toward a cathode chamber 31 and an anode chamber 41 of the electrolytic bath 1 and the pipes 10 and 11 are provided with their respective flow amt. control valves 13 and 14, which are both actuated to regular and reverse conditions to regulate the flow rate ratio. The raw water supply passage is provided with an EC sensor 12 for measuring the electric conductivity of the raw water and the outlet passage 16 of acid solution is provided with an EC sensor 17 for measuring the electric conductivity of the acid solution being discharged and an ORP sensor 18 for measuring oxidation-reduction potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水の電気分解によって
洗浄水,殺菌水等として有用な酸性水及び飲料水となる
アルカリ水を生成する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for producing acidic water useful as washing water, sterilizing water and the like and alkaline water serving as drinking water by electrolyzing water.

【0002】[0002]

【従来の技術】食品とか医療の分野において、電解水を
洗浄用水とか消毒,殺菌用の水として使用することは、
一般には知られているが、PH値の低い水を安定して多
量に得ることは容易でない。従来の電解水生成装置は、
電解槽内を隔膜によって陰極室と陽極室とに分け、各々
の室内に電極を挿入し、室内に供給した原水を電極間の
通電によって電気分解することにより、陰極室にアルカ
リ水,陽極室に酸性水を電解生成する。
2. Description of the Related Art In the fields of food and medicine, it is not possible to use electrolyzed water as cleaning water or water for disinfection and sterilization.
Although generally known, it is not easy to stably obtain a large amount of water having a low PH value. The conventional electrolyzed water generator is
The inside of the electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, electrodes are inserted into each chamber, and the raw water supplied into the chamber is electrolyzed by the electric current flowing between the electrodes, so that alkaline water can be converted into alkaline water and anode chambers. Electrolyze acidic water.

【0003】[0003]

【発明が解決しようとする課題】このような電解生成装
置によって、PH値の低い水は陽極室から吐出する酸性
水によって得られるが、連続的に大量に作り出すことは
困難である。通常東京近郊における水道水の電気伝導率
(EC)は100〜200μS/cm前後、PHは6.
5〜8程度であって、電解槽に大電流を通電することが
できず、通電電流を増大するためには、印加電圧を上昇
させなければならず、通電電源のワット数が嵩さむ欠点
がある。また、電解槽で電解処理した陽極室から吐出す
る酸性水のPHは4.0〜5.0程度であって、所望す
る洗浄殺菌効果が得られない。
With such an electrolytic generator, water having a low PH value can be obtained by the acidic water discharged from the anode chamber, but it is difficult to continuously produce a large amount of water. Usually, the electric conductivity (EC) of tap water in the suburbs of Tokyo is around 100 to 200 μS / cm, and the PH is 6.
It is about 5 to 8 and a large current cannot be supplied to the electrolytic cell, and in order to increase the supplied current, the applied voltage must be increased, which causes a drawback that the wattage of the supplied power source increases. is there. Further, the pH of the acidic water discharged from the anode chamber electrolyzed in the electrolytic bath is about 4.0 to 5.0, and the desired cleaning / sterilizing effect cannot be obtained.

【0004】そこで本発明は、殺菌効果の高いPH3以
下、好ましくは1.5〜2.6程度の酸性水が、低電力
で、大量に安定して得られる、また同時にアルカリ水の
生成ができる電解水の生成装置の提供を目的とする。
Therefore, according to the present invention, acidic water having a high sterilizing effect of pH 3 or less, preferably about 1.5 to 2.6, can be stably obtained in a large amount with low power, and at the same time, alkaline water can be produced. It is intended to provide a device for generating electrolyzed water.

【0005】[0005]

【課題を解決するための手段】電解槽内を隔膜によって
陰極室と陽極室とに分割して各々に陰陽極電極を設け、
前記電解槽内に供給される原水を陰陽極電極間への通電
によって陰極室にアルカリ水,陽極室に酸性水を連続的
に電解生成する装置において、前記電解槽に供給する原
水中に塩素系電解質水溶液を供給添加する供給手段を設
けると共に、該供給手段を通過した原水を前記電解槽の
陰極室と陽極室に分流供給する配管路を設け、且つ該配
管路に原水の分流比を制御する流量制御手段を設け、更
に電解槽における電解状態もしくは電解吐出水の電解度
合を検知する検知センサを設け、該検知センサの信号に
よって前記流量制御手段を制御するようにしたことを特
徴とし、これにより前記電解槽の陽極室もしくは陰極室
から調整された電解水を得るようにしたものである。
Means for Solving the Problems The inside of an electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, and negative and positive electrodes are provided in each.
In a device for continuously electrolytically generating alkaline water in a cathode chamber and acidic water in an anode chamber by energizing raw water supplied into the electrolytic cell between negative and positive electrodes, chlorine-based raw water is supplied to the electrolytic cell. A supply means for supplying and adding an aqueous electrolyte solution is provided, and a pipeline for supplying the raw water that has passed through the supply means to the cathode chamber and the anode chamber of the electrolytic cell is provided, and the distribution ratio of the raw water is controlled in the pipeline. A flow rate control means is further provided, and further a detection sensor for detecting the electrolysis state in the electrolysis tank or the degree of electrolysis of the electrolytic discharge water is provided, and the flow rate control means is controlled by the signal of the detection sensor. The prepared electrolytic water is obtained from the anode chamber or the cathode chamber of the electrolytic cell.

【0006】[0006]

【作用】本発明は、電解槽内に水道水等の原水を供給
し、陰陽極電極間への通電によって電気分解し、電解槽
内陰極室にアルカリ水,陽極室に酸性水を連続的に生成
し吐出利用する。前記電解槽に供給する原水中に塩素系
電解質水溶液を供給混合して原水の電気伝導度を高め、
低電圧で大電流通電を可能とし、原水に対して強い電解
作用を与える。強い電解によってPH値を下げ、生成す
る酸性水中には塩素,次亜塩素酸とか殺菌性の高い酸素
を多量に含有させる。さらに、電解槽における電解状態
もしくは電解吐出水の電解度合をセンサ検出により電解
槽の陰極室と陽極室に分流供給する原水の分流比を制御
することによって陰極室及び陽極室における電解負荷電
気量の制御をし、電解強度を制御する。
According to the present invention, raw water such as tap water is supplied into the electrolytic cell and electrolyzed by energizing between the negative and positive electrodes, and alkaline water is continuously supplied to the cathode chamber in the electrolytic cell and acidic water is continuously supplied to the anode chamber. Generate and use discharge. To increase the electrical conductivity of the raw water by supplying and mixing the chlorine-based electrolyte aqueous solution into the raw water to be supplied to the electrolytic cell,
It enables energization of large current at low voltage and gives strong electrolysis to raw water. The PH value is lowered by strong electrolysis, and a large amount of chlorine, hypochlorous acid, and highly sterilizing oxygen are contained in the generated acidic water. Furthermore, by controlling the diversion ratio of the raw water that is split and supplied to the cathode chamber and the anode chamber of the electrolytic cell by sensor detection of the electrolysis state in the electrolytic cell or the degree of electrolysis of the electrolytic discharge water, the amount of electrolytic load electricity in the cathode chamber and the anode chamber can be controlled. Control and control the electrolytic strength.

【0007】[0007]

【実施例】以下図面の一実施例により本発明を説明す
る。図1において、電解槽1は密閉構造になり、室内を
隔膜2によって分割し、一方に陰極電極3を挿入した陰
極室31、他方に陽極電極4を挿入して陽極室41とす
る。陰極電極3及び陽極電極4には、図示しない通電電
源から電解電流の通電が行なわれる。また、電解槽1に
は底部の陰極室31に通じる供給口1a,陽極室41に
通じる供給口1bが設けられ、この各々の供給口から原
水が供給される。また電解水の吐出のために電解槽1上
部には陰極室31に連通して吐出口1c,陽極室41に
通じて吐出口1dが形成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, the electrolytic cell 1 has a closed structure, and the inside of the chamber is divided by a diaphragm 2. A cathode chamber 31 having a cathode electrode 3 inserted into one side thereof and an anode electrode 4 inserted into the other side thereof are referred to as an anode chamber 41. An electrolytic current is supplied to the cathode electrode 3 and the anode electrode 4 from a power supply (not shown). Further, the electrolytic cell 1 is provided with a supply port 1a communicating with the bottom cathode chamber 31 and a supply port 1b communicating with the anode chamber 41, and raw water is supplied from each of these supply ports. In order to discharge the electrolyzed water, a discharge port 1c communicating with the cathode chamber 31 and a discharge port 1d communicating with the anode chamber 41 are formed above the electrolytic cell 1.

【0008】電解槽1に供給される原水は水道水等が利
用され、水道の蛇口から加圧供給される原水を図示しな
い減圧弁で、所定の水圧にし、また流量制御バルブによ
り所要の流量に制御する。このようにして水圧,流量を
所定に調整した原水を電解槽1に供給するが、その途中
で電気伝導度を調整する。
The raw water supplied to the electrolytic cell 1 is tap water or the like, and the raw water pressurized and supplied from the tap of the water supply is brought to a predetermined water pressure by a pressure reducing valve (not shown), and the flow rate is adjusted to a desired flow rate by a flow control valve. Control. The raw water whose water pressure and flow rate are adjusted in this way is supplied to the electrolytic cell 1, and the electric conductivity is adjusted in the middle of the process.

【0009】電気伝導度の調整は塩素系電解質水溶液の
添加混合によって行なう。電解質に例えば食塩が用いら
れ、食塩水がタンク5に貯水され、これを定量ポンプ6
によって食塩水注入装置7に供給する。供給された食塩
水は注入装置7によって通過する原水中に定量注入され
る。注入食塩水は更に混合装置8によって攪拌混合さ
れ、充分に混合した状態で電解槽1に供給される。原水
の電気伝導度はECセンサ12で検出され、検出信号に
よりEC値を所定にするようポンプ6の制御をする。
The electrical conductivity is adjusted by adding and mixing a chlorine-based electrolyte aqueous solution. For example, salt is used as the electrolyte, and the salt water is stored in the tank 5, which is then fed into the metering pump 6
To the saline injection device 7. The supplied saline is quantitatively injected into the raw water passing by the injection device 7. The injected saline solution is further stirred and mixed by the mixing device 8, and is supplied to the electrolytic cell 1 in a sufficiently mixed state. The electric conductivity of the raw water is detected by the EC sensor 12, and the pump 6 is controlled by the detection signal so that the EC value becomes a predetermined value.

【0010】供給原水は三方弁9により分流され、配管
10を通り供給口1aから陰極室31に、他は配管11
を通って供給口1bから陽極室41に供給される。配管
10及び11には流量制御バルブ13,14が設けてあ
り、両者が正逆に制御されて分流比が自在に制御できる
ように設けられる。陰極室吐出口1cには配管15を通
してアルカリ水が流出し、陽極室吐出口1dには配管1
6を通して酸性水が吐出する。また吐出口1dから吐出
する酸性水の電気伝導度をECセンサ17によって測定
し、酸化還元電位をORPセンサ18によって測定し、
測定信号によって前記バルブ13,14制御を行なう。
The raw water to be supplied is diverted by the three-way valve 9, passes through the pipe 10 to the cathode chamber 31 from the supply port 1a, and the other pipe 11
And is supplied to the anode chamber 41 through the supply port 1b. Flow rate control valves 13 and 14 are provided in the pipes 10 and 11, respectively, so that the flow rate control valves are controlled in the forward and reverse directions so that the diversion ratio can be freely controlled. Alkaline water flows out through the pipe 15 into the cathode chamber discharge port 1c, and the pipe 1 flows into the anode chamber discharge port 1d.
Acidic water is discharged through 6. The electrical conductivity of the acidic water discharged from the discharge port 1d is measured by the EC sensor 17, and the redox potential is measured by the ORP sensor 18.
The valves 13 and 14 are controlled by the measurement signal.

【0011】次に以上の装置における作動を説明する
と、電解槽1に供給される原水は所定の水圧及び流量に
制御され、且つ食塩水注入装置7によって電気伝導度の
調整制御が行なわれる。タンク5内の食塩水は約10%
程度の水溶液を貯水し、これをポンプ6によって定量供
給する。食塩水注入装置7は、定量制御されて流れる水
道水に食塩水をパルス的に点滴注入するとか、水道水流
路にベンチュリー部を形成して負圧によって所定量の塩
水注入をする。注入食塩水は混合装置8で攪拌混合さ
れ、ECセンサ12による検出により所定の電気伝導度
を有する原水に調整される。
To explain the operation of the above apparatus, the raw water supplied to the electrolytic cell 1 is controlled to have a predetermined water pressure and flow rate, and the saline injection device 7 controls the adjustment of the electric conductivity. Saline in tank 5 is about 10%
A certain amount of aqueous solution is stored, and this is supplied by the pump 6 in a fixed amount. The saline solution injecting device 7 performs pulsed drip injection of saline solution into the tap water that is quantitatively controlled, or forms a venturi portion in the tap water flow path and injects a predetermined amount of salt water by negative pressure. The injected saline solution is agitated and mixed by the mixing device 8 and adjusted by the EC sensor 12 to be raw water having a predetermined electric conductivity.

【0012】このようにしてEC値が調整された原水
が、三方弁9により分流され、各々配管10,11を経
て供給口1a,1bから電解槽1内に供給され、電極
3,4間の通電によって電気分解処理される。電気分解
は食塩水添加により電気伝導度を増大させてあるから、
低電圧で大電流を流すことが容易で、電源のワット数を
少なくして強い電解作用を与えることができる。電解に
よる陽イオンは隔膜2を通して陰極室31に、また陰イ
オンは陽極室41に集まる電気浸透作用を受け、陽極室
41にはCl- 等の陰イオンを多量に含んだPH値の低い
酸性水が得られる。この酸性水は流量当りの大きい電気
量の電解作用を受けることにより電気伝導度が高まりP
H値の低い強酸性水となる。一方陰極室にはアルカリ水
が生成されて吐出口1bから導出路15を経て外に排水
される。
The raw water whose EC value is adjusted in this way is diverted by the three-way valve 9 and supplied into the electrolytic cell 1 from the supply ports 1a and 1b via the pipes 10 and 11, respectively, and between the electrodes 3 and 4. It is electrolyzed by energization. Electrolysis increases the electrical conductivity by adding saline,
It is easy to pass a large current at a low voltage, and the wattage of the power supply can be reduced to give a strong electrolytic action. The cations resulting from the electrolysis are collected in the cathode chamber 31 through the diaphragm 2 and the anions are collected in the anode chamber 41, and the anode chamber 41 is subjected to the electroosmotic action, so that the anode chamber 41 contains a large amount of anions such as Cl and has a low PH value. Is obtained. The acidic water is electrolyzed with a large amount of electricity per flow rate to increase its electrical conductivity and
It becomes a strongly acidic water with a low H value. On the other hand, alkaline water is generated in the cathode chamber and is discharged to the outside from the discharge port 1b through the outlet passage 15.

【0013】陰極室31及び陽極室41に流通する原水
流量は、流量制御バルブ13,14による正逆制御によ
り、例えば陰極室31側の流量を増加して陽極室41の
流量を減少すれば、陽極室41を流れる水の流量当りの
電気量が増大でき、この電気量の増大によって電気分解
の強度を高め、電気伝導度を高めると共にPH値を低下
させる制御が容易にできる。
The flow rate of the raw water flowing through the cathode chamber 31 and the anode chamber 41 is controlled by the flow control valves 13 and 14 in the forward and reverse directions. For example, if the flow rate on the cathode chamber 31 side is increased and the flow rate on the anode chamber 41 is decreased, The amount of electricity per flow rate of the water flowing through the anode chamber 41 can be increased, and the increase in the amount of electricity can enhance the strength of electrolysis, increase the electrical conductivity, and easily control the PH value to be reduced.

【0014】酸性水の導出管路16にはECセンサ17
及びORPセンサ18が設けてあり、これらの検出信号
により、原水供給側の流量制御バルブ13,14及び定
量供給ポンプ6等の制御を行なう。図2はその制御を自
動制御する場合の制御回路の一例ブロック図で、信号の
演算制御回路19に各センサの検知信号を供給して処理
し、制御信号を発生して各部の制御を行なう。
An EC sensor 17 is provided in the acid water outlet conduit 16.
And an ORP sensor 18 are provided, and the flow rate control valves 13 and 14 on the raw water supply side and the fixed amount supply pump 6 are controlled by these detection signals. FIG. 2 is a block diagram showing an example of a control circuit in the case of automatically controlling the control. A detection signal of each sensor is supplied to a signal arithmetic control circuit 19 for processing, and a control signal is generated to control each part.

【0015】電解槽1により電解する前の原水の電気伝
導度をECセンサ12で検出し、検出信号により食塩水
の供給ポンプ6を制御して原水の電気伝導度を所定に制
御する。また電解槽1を通過して電解された酸性水の電
気伝導度をECセンサ17で検出し、これと前記センサ
12の検出EC値の差を比較回路20で求め、この電気
伝導度の増加分を増幅器21で増幅して演算制御回路1
9に入力する。演算制御回路19は、前記両センサ1
2,17の検知した電気伝導度の差が設定値に適合して
いるかどうかの判別処理をすると共に制御信号を発生し
て、原水の制御バルブ13,14及び食塩水供給ポンプ
6等の単独もしくは複合した制御をする。また、このE
C値の差の状態等は表示回路23により表示される。
The EC sensor 12 detects the electric conductivity of the raw water before electrolysis in the electrolytic bath 1, and the saline supply pump 6 is controlled by the detection signal to control the electric conductivity of the raw water to a predetermined level. The EC sensor 17 detects the electric conductivity of the acidic water that has passed through the electrolytic cell 1 and is electrolyzed. The difference between the EC value detected by the EC sensor 17 and the detected EC value of the sensor 12 is calculated by the comparison circuit 20. Is amplified by the amplifier 21 and the arithmetic control circuit 1
Enter in 9. The arithmetic control circuit 19 uses the sensors 1
A control signal is generated and a control signal is generated to determine whether or not the difference in electrical conductivity detected by Nos. 2 and 17 conforms to the set value. Combined control. Also, this E
The display circuit 23 displays the state of the difference in C value and the like.

【0016】一方ORPセンサ18によって電解酸性水
の酸化還元電位が検出される。検出信号は増幅器22で
増幅されて後、演算制御回路19に入力して、基準値と
の比較判別等により所定の設定値に適合しているかどう
か判定処理され、その差異に応じた制御信号を出力し
て、食塩水供給ポンプ6,流量制御バルブ13,14等
の単独もしくは複合した制御が行なわれる。また同時に
表示回路23に表示される。
On the other hand, the ORP sensor 18 detects the redox potential of electrolyzed acidic water. After the detection signal is amplified by the amplifier 22, it is input to the arithmetic control circuit 19 to be subjected to a determination process as to whether or not it conforms to a predetermined set value by comparison with a reference value, and a control signal corresponding to the difference is given. After the output, the saline supply pump 6, the flow control valves 13, 14 and the like are controlled individually or in combination. At the same time, it is displayed on the display circuit 23.

【0017】演算制御回路19は、前記のようにセンサ
12,17からの信号と、他のセンサ18からの信号の
いずれかを選択し、或いは各信号を別々に演算処理して
制御信号を出力してもよく、また各センサの信号の和,
積等により演算処理して制御信号を出力し、各部制御を
することができる。例えばセンサ12,17のEC値の
差が設定値より大であれば、現状を維持し、設定値より
小であれば流量調節バルブ13,14を正逆制御して陽
極室41への原水の流入量を減少させることによって陽
極室41での電解作用を流量に対する電気量を増加させ
て強い電解を行ない、これによって陽極室41で生成す
る酸性水の電気伝導度を高める。またセンサ18の信号
が設定値より大きい場合もバルブ13,14の制御によ
り陰極室31及び陽極室41の流量比を制御し、陽極室
41側の原水供給量を相対的に減少させ、また食塩水供
給ポンプ6を制御して食塩水注入量を増加させることに
よって電解作用を高める。またこれにより次亜塩素酸等
の殺菌剤の生成を高める。
The arithmetic control circuit 19 selects one of the signals from the sensors 12 and 17 and the signal from another sensor 18 as described above, or arithmetically processes each signal separately and outputs a control signal. Alternatively, the sum of the signals from each sensor,
It is possible to control each part by performing arithmetic processing by a product or the like and outputting a control signal. For example, if the difference between the EC values of the sensors 12 and 17 is larger than the set value, the current state is maintained, and if the difference is smaller than the set value, the flow rate control valves 13 and 14 are controlled forward and reverse to control the raw water to the anode chamber 41. By reducing the inflow amount, the amount of electricity with respect to the flow rate of the electrolysis action in the anode chamber 41 is increased to perform strong electrolysis, thereby increasing the electrical conductivity of the acidic water produced in the anode chamber 41. Also, when the signal of the sensor 18 is larger than the set value, the flow rate ratio between the cathode chamber 31 and the anode chamber 41 is controlled by controlling the valves 13 and 14 to relatively reduce the raw water supply amount on the anode chamber 41 side, and The electrolytic action is enhanced by controlling the water supply pump 6 to increase the injection amount of saline solution. This also enhances the production of germicides such as hypochlorous acid.

【0018】以上のようにして水を電解槽に流して電解
処理するとき、原水に食塩水を加えて電解することによ
り電解電流が流れ易く、低電圧で大電流による強い電解
作用を働かせることができ、電解吐出水の電気伝導度を
高めることができる。また陰極室31及び陽極室41へ
の原水の流量を流量制御バルブ13,14の正逆制御に
よる流量比の制御によって、酸性水の電解を高め電気伝
導度を高めることができる。この電気伝導度の増加はP
H値の低下に相関関係し、容易に目的とするPH値の酸
性水を生成することができる。かつまた、強い電解作用
によって水の酸化還元電位が増加して強い殺菌効果が付
与される。
When water is passed through the electrolytic cell for electrolysis as described above, by adding saline to the raw water for electrolysis, the electrolysis current easily flows, and a strong electrolysis action due to a large current can be exerted at a low voltage. Therefore, the electric conductivity of the electrolytically discharged water can be increased. Further, by controlling the flow rate ratio of the flow rate of the raw water to the cathode chamber 31 and the anode chamber 41 by the forward and reverse control of the flow rate control valves 13 and 14, the electrolysis of the acidic water can be enhanced and the electrical conductivity can be enhanced. This increase in electrical conductivity is P
The acidic water having the target PH value can be easily produced in correlation with the decrease in the H value. In addition, the strong electrolysis action increases the redox potential of water and imparts a strong bactericidal effect.

【0019】次に実験例を説明すると、原水100lに
対して10%食塩水1lの混合率で混合し、この食塩混
合の原水を電解槽に供給して電解した。電解槽への通電
条件は16V,30Aとし、陰極室及び陽極室に流入す
る原水の流量比を制御してPH2.6の酸性水が毎分約
3.6l得られた。なお、比較のために電解槽の電圧制
御により酸性水の生成を行なったときは、1lの酸性水
を生成するのに約1KWの電力を消費した。
Explaining an experimental example, 100 liters of raw water was mixed at a mixing ratio of 1 liter of 10% saline, and the raw water of this salt mixture was supplied to an electrolytic cell for electrolysis. The conditions for energizing the electrolytic cell were 16 V and 30 A, and the flow rate ratio of the raw water flowing into the cathode chamber and the anode chamber was controlled to obtain about 3.6 l of acidic water having a pH of 2.6. For the purpose of comparison, when the acidic water was produced by controlling the voltage of the electrolytic cell, about 1 kW of electric power was consumed to produce 1 liter of acidic water.

【0020】このように本発明によれば、所要の低PH
値の酸性水が容易に多量に連続して生成できる。また、
生成酸性水のPH値を前記2.6より高めてPH3程度
にする場合は食塩水の混合量は更に少なくてよく、流量
制御しながら、同一電気エネルギーで酸性水の生成量を
更に増加させることができる。
As described above, according to the present invention, the required low PH can be obtained.
A large amount of acidic water can be easily produced continuously. Also,
When the pH value of the generated acidic water is increased to above pH 2.6 to about PH3, the mixed amount of saline solution may be smaller, and the generated amount of acidic water should be further increased with the same electric energy while controlling the flow rate. You can

【0021】また、以上は酸性水の生成について説明し
たが、アルカリ水を利用する場合は、アルカリ側の流量
制御によってアルカリ水のPH制御をすることができ
る。この場合も多量のアルカリ水を低電気量で容易に得
られる。また、アルカリ水と酸性水の吐出流量及びPH
制御は、原水流量によって、その原水流量は陰極室もし
くは陽極室への分流路の一方に制御バルブ等の流量制御
手段を設けることであってもよい。また分流弁部分に分
流比を変更制御する制御手段を設けてもよい。また、電
解吐出水の電解度合を検知するセンサは、他のPH計、
イオン濃度、ガス濃度等の検知センサが任意に利用でき
る。また、電解度合の検出には、電解槽内における電解
中の電解電圧、電解電流、インピーダンス等の検出によ
って行うことができる。また原水に添加する塩素系電解
質はNaCl以外にKCl,HCl,HClO,HClO3,KClO3,NaClO3 等を
利用できる。
Although the production of acidic water has been described above, when alkaline water is used, the pH of alkaline water can be controlled by controlling the flow rate on the alkaline side. Also in this case, a large amount of alkaline water can be easily obtained with a low electricity amount. Also, discharge flow rate of alkaline water and acidic water and PH
The control may be based on the flow rate of raw water, and the flow rate of raw water may be provided with a flow rate control means such as a control valve in one of the branch channels to the cathode chamber or the anode chamber. Further, control means for changing and controlling the diversion ratio may be provided in the diversion valve portion. Further, the sensor for detecting the degree of electrolysis of the electrolytic discharge water is another PH meter,
Any sensor for detecting ion concentration, gas concentration, etc. can be used. The degree of electrolysis can be detected by detecting the electrolysis voltage, electrolysis current, impedance, etc. during electrolysis in the electrolytic cell. In addition to NaCl, KCl, HCl, HClO, HClO 3 , KClO 3 , NaClO 3 or the like can be used as the chlorine-based electrolyte added to the raw water.

【0022】[0022]

【発明の効果】以上のように本発明によれば、水の電解
が電解質の混合により容易で、電気量ワット数を低下さ
せて多量の電解水を安価に連続的に得られる。また、電
解水の電気伝導度、PH調整が流量比の制御によって容
易にでき、PH3以下の酸性水が安定して容易に生成で
きる。また、塩素の混入により水中に塩素,次亜塩素酸
とか殺菌性の高い酸素を多量に含む洗浄用,殺菌効果の
高い酸性水の生成が容易にできる。
As described above, according to the present invention, the electrolysis of water is facilitated by mixing the electrolyte, the wattage of electricity is reduced, and a large amount of electrolyzed water can be continuously obtained at a low cost. Further, the electric conductivity and pH of the electrolyzed water can be easily adjusted by controlling the flow rate ratio, and acidic water of PH3 or less can be stably and easily produced. Further, by mixing chlorine, it is possible to easily generate acidic water for cleaning and having a high bactericidal effect, which contains a large amount of chlorine, hypochlorous acid, and highly bactericidal oxygen in water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1の検出制御回路の構成図。FIG. 2 is a configuration diagram of the detection control circuit of FIG.

【符号の説明】[Explanation of symbols]

1 電解槽 2 隔膜 3,4 電極 5 食塩水貯水タンク 6 定量ポンプ 7 食塩水注入装置 9 三方分流弁 10,11 分流路 12,17 ECセンサ 13,14 正逆流量制御バルブ 15 16 電解水導出路 18 ORPセンサ DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Diaphragm 3,4 Electrode 5 Salt water storage tank 6 Metering pump 7 Saline injection device 9 Three-way diversion valve 10,11 Divided flow channel 12,17 EC sensor 13,14 Forward / reverse flow control valve 15 16 Electrolyzed water outlet 18 ORP sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有坂 政員 埼玉県川越市今福中台2779番地1 日本イ ンテック株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Arisaka 2779 Imafuku Nakadai, Kawagoe-shi, Saitama 1 Japan Intec Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解槽内を隔膜によって陰極室と陽極室
とに分割して各々に陰陽極電極を設け、前記電解槽内に
供給される原水を陰陽極電極間への通電によって陰極室
にアルカリ水,陽極室に酸性水を連続的に電解生成する
装置において、前記電解槽に供給する原水中に塩素系電
解質水溶液を供給添加する供給手段を設けると共に、該
供給手段を通過した原水を前記電解槽の陰極室と陽極室
に分流供給する配管路を設け、且つ該配管路に原水の分
流比を制御する流量制御手段を設け、更に電解槽におけ
る電解状態もしくは電解吐出水の電解度合を検知する検
知センサを設け、該検知センサの信号によって前記流量
制御手段を制御するようにしたことを特徴とする電解水
の生成装置。
1. An electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, and a negative and positive electrode is provided in each, and the raw water supplied into the electrolytic cell is supplied to the negative and positive electrode chambers by passing electricity between them. In an apparatus for continuously electrolytically producing alkaline water and acidic water in an anode chamber, a supply means for supplying and adding a chlorine-based electrolyte aqueous solution to the raw water to be supplied to the electrolytic cell is provided, and the raw water passing through the supply means is A pipe for supplying a split flow to the cathode chamber and the anode chamber of the electrolytic cell is provided, and a flow rate control means for controlling the diversion ratio of the raw water is provided in the pipeline, and the electrolysis state in the electrolytic cell or the degree of electrolysis of the electrolytic discharge water is detected. An apparatus for producing electrolyzed water, comprising: a detection sensor for controlling the flow rate control means according to a signal from the detection sensor.
【請求項2】 検知センサとして、電解槽から吐出する
アルカリ水もしくは酸性水導出路に吐出水の電気伝導度
を測定するECセンサを設けたことを特徴とする請求項
1記載の電解水の生成装置。
2. The generation of electrolyzed water according to claim 1, wherein the detection sensor is provided with an EC sensor for measuring the electric conductivity of the discharge water in an outlet for alkaline water or acid water discharged from the electrolytic cell. apparatus.
【請求項3】 検知センサとして、電解槽への原水供給
路に原水の電気伝導度を測定するECセンサを設けると
共に、電解槽から吐出するアルカリ水もしくは酸性水導
出路に吐出水の電気伝導度を測定するECセンサを設け
たことを特徴とする請求項1記載の電解水の生成装置。
3. As a detection sensor, an EC sensor for measuring the electrical conductivity of raw water is provided in a raw water supply passage to an electrolytic cell, and the electrical conductivity of discharged water is provided in an alkaline water or acidic water outlet passage discharged from the electrolytic cell. The electrolyzed water generating device according to claim 1, further comprising an EC sensor for measuring the.
【請求項4】 検知センサとして、電解槽から吐出する
アルカリ水もしくは酸性水導出路に吐出水の酸化還元電
位を測定するORPセンサを設けたことを特徴とする請
求項1,請求項2,または請求項3記載の電解水の生成
装置。
4. The ORP sensor for measuring the oxidation-reduction potential of the discharged water is provided in the outlet path of the alkaline water or the acidic water discharged from the electrolytic cell as the detection sensor. The electrolyzed water production apparatus according to claim 3.
JP03197193A 1993-02-22 1993-02-22 Electrolyzed water generator Expired - Fee Related JP3292930B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP03197193A JP3292930B2 (en) 1993-02-22 1993-02-22 Electrolyzed water generator
EP94301179A EP0612694B1 (en) 1993-02-22 1994-02-18 Method and device for producing electrolytic water
DE69409996T DE69409996T2 (en) 1993-02-22 1994-02-18 Method and device for producing electrolytic water
ES94301179T ES2115156T3 (en) 1993-02-22 1994-02-18 PROCEDURE AND DEVICE TO PRODUCE ELECTROLYTIC WATER.
MYPI94000414A MY131555A (en) 1993-02-22 1994-02-21 Method and device for producing electrolytic water
TW083101444A TW310347B (en) 1993-02-22 1994-02-21
CA002116045A CA2116045C (en) 1993-02-22 1994-02-21 Method and device for producing electrolytic water
AU55274/94A AU677618B2 (en) 1993-02-22 1994-02-21 Method and device for producing electrolytic water
BR9400627A BR9400627A (en) 1993-02-22 1994-02-21 Process and device for producing electrolytic water
KR1019940003119A KR0133975B1 (en) 1993-02-22 1994-02-22 Method amd device for producing electrlytic water
CN94102044A CN1055904C (en) 1993-02-22 1994-02-22 Method and apparatus for generation of electrolyte
US08/199,840 US5445722A (en) 1993-02-22 1994-02-22 Method and device for producing electrolytic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03197193A JP3292930B2 (en) 1993-02-22 1993-02-22 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH06246266A true JPH06246266A (en) 1994-09-06
JP3292930B2 JP3292930B2 (en) 2002-06-17

Family

ID=12345843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03197193A Expired - Fee Related JP3292930B2 (en) 1993-02-22 1993-02-22 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3292930B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JP2012196643A (en) * 2011-03-23 2012-10-18 Yoshihisa Ishii Apparatus for producing hypochlorous acid water or the like
CN107219336A (en) * 2017-06-30 2017-09-29 益盐堂(应城)健康盐制盐有限公司 A kind of salt quality automatic checking apparatus and method for
CN108358283A (en) * 2018-05-17 2018-08-03 邓剑军 A kind of preparation method and device of oxidation-reduction potential water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JP2012196643A (en) * 2011-03-23 2012-10-18 Yoshihisa Ishii Apparatus for producing hypochlorous acid water or the like
CN107219336A (en) * 2017-06-30 2017-09-29 益盐堂(应城)健康盐制盐有限公司 A kind of salt quality automatic checking apparatus and method for
CN108358283A (en) * 2018-05-17 2018-08-03 邓剑军 A kind of preparation method and device of oxidation-reduction potential water

Also Published As

Publication number Publication date
JP3292930B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US8425756B2 (en) Apparatus and method for producing electrolyzed water
KR0133975B1 (en) Method amd device for producing electrlytic water
KR19990072981A (en) Apparatus for producing electrolytic solution
CA2315355A1 (en) Electrochemical treatment of an aqueous solution
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
JPH06246269A (en) Device for producing electrolyte
JPH09253650A (en) Sterilized water making apparatus
JP3292930B2 (en) Electrolyzed water generator
JPH06246271A (en) Device for producing electrolyte
JP3275108B2 (en) Electrolyzed water generator
JPH06246265A (en) Device for producing electrolyte
JP3571258B2 (en) Electrolyzed water generator
JPH06312184A (en) Electrolytic water forming apparatus
JPH06312185A (en) Electrolytic water forming apparatus
JPH08229564A (en) Production of acidic water and device therefor
JP4068267B2 (en) Electrolyzed water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPH08215684A (en) Ionic water making apparatus
JP3474430B2 (en) Electrolyzed water generator
JP3474433B2 (en) Electrolyzed water generator
JPH0938652A (en) Producing device of strong acid water
JP2892121B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP3297828B2 (en) Electrolyzed water generator and method for controlling chloride ion concentration in the electrolyzed water generator
JP3637114B2 (en) Electrolyzed water generator
JP3970685B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees