JP3571258B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3571258B2
JP3571258B2 JP24633699A JP24633699A JP3571258B2 JP 3571258 B2 JP3571258 B2 JP 3571258B2 JP 24633699 A JP24633699 A JP 24633699A JP 24633699 A JP24633699 A JP 24633699A JP 3571258 B2 JP3571258 B2 JP 3571258B2
Authority
JP
Japan
Prior art keywords
water
raw water
electrolytic
flow rate
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24633699A
Other languages
Japanese (ja)
Other versions
JP2001062455A (en
Inventor
博之 土屋
貴夫 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Corp
Original Assignee
Amano Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Corp filed Critical Amano Corp
Priority to JP24633699A priority Critical patent/JP3571258B2/en
Publication of JP2001062455A publication Critical patent/JP2001062455A/en
Application granted granted Critical
Publication of JP3571258B2 publication Critical patent/JP3571258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、食塩水や塩酸水溶液を無隔膜電解槽で電気分解して電解水を生成する電解水生成装置に関し、具体的には、所定の有効塩素を含む電解水を容易に生成できるように工夫した電解水生成装置に関するものである。
【0002】
【従来の技術】
従来の無隔膜電解槽を用いた電解水生成装置には、例えば、特許第2627100号公報に記載された殺菌水製造方法及び装置が存在し、この方法及び装置によれば、残留塩素が1.0〜200ppmの電解殺菌水を生成することができる旨、記載されている。
【0003】
更に上記従来発明の内容を詳しく説明すると、この従来発明によれば、ポンプで吐出された一定量の塩化ナトリウム水溶液と、塩酸水溶液とを原水で希釈することにより、所定濃度の食塩水と塩酸水の混合水を造り、次いで、この混合水を電解槽に送って電解することによって所定の残留塩素の電解水を生成し、更にその電解水に対して原水を加えて混合、希釈して、所定濃度に希釈された電解水 (生成水)を生成するように構成されている。
【0004】
【発明が解決しようとする課題】
ところが、上記従来発明の製造方法及び装置によると、残留塩素の薄い電解水は原水の希釈によって容易に生成することが可能であるが、反面、残留塩素の濃い電解水を生成する場合は、希釈する原水の量を少くするしか手立てが無く、従って、濃度の濃い残留塩素を含んだ電解水を大量に生成することは非常に困難であった。
【0005】
そこで本発明の技術的課題は、濃度の濃い残留塩素を含んだ電解水を大量に、而かも、比較的簡単に生成することができる電解水生成装置を提供することである。
【0006】
【課題を解決するための手段】
上記の技術的課題を解決するために本発明で講じた手段は以下の如くである。
【0007】
直流電源回路を有する無隔膜電解槽の陽極側と陰極側に夫々電圧を印加しながら、この電解槽に飽和食塩水又は高濃度食塩水、或は、塩酸水溶液のいずれかを被電解液としてポンプを用いて送り込むことによって電解水を生成し、且つ、生成された電解水を電解水吐出管を通して順次水道水等の原水を給水する原水給水路に供給することにより、電解水を原水に対して混合、希釈し、この希釈した電解水を原水給水路の末端部に先止め方式に設けた1つ又は複数個の取り出し用バルブを開いて取り出すように構成した電解水生成装置であって、
【0008】
(1) 上記原水給水路に使用水量を検出する流量検出手段を設け、該給水路の先端側で、且つ、上記電解水吐出管の接続部よりも上流部分には、水路開閉用の入水電磁弁と逆止弁を設け、上記電解水吐出管には逆止弁を設ける一方、上記流量検出手段によって検出された原水の使用流量に基づいて上記ポンプによる電解槽への被電解液の送り込み量を制御することにより、原水に対してその使用流量に見合った所定割合の電解水を混合して希釈するように構成すると共に、上記陽極側と陰極側の各電極間にON/OFFデューティー比を可変とするパルス電流を流すように構成し、且つ、このON/OFFデューティー比を、上記原水の使用流量が増えた場合は電流のON時間比率を増加に比例して増やし、逆に減少した場合は電流のON時間比率を減少に比例して減らすように構成すること。(請求項1)
【0009】
(2) 各有効塩素濃度の電解希釈生成水を生成するに必要な原水の量に対する被電解液の量と、被電解液に対する電解電流のON/OFFデューティー比との関連から、流量検出手段で検出された原水の流量値に対する被電解液の供給量と、電解電流のON/OFFデューティー比とを割り出し、この割り出したデータに従って被電解液供給用のポンプと無隔膜電解槽の直流電源回路を制御して電解を行うように構成すること。(請求項2
【0010】
(3) 有効塩素濃度を選択して入力することができる有効塩素濃度入力設定装置を設けること。(請求項3
【0011】
上記(1)で述べた請求項1に係る手段によれば、水道水等の原水に対して、無隔膜電解槽で電解した電解水を混合、希釈することにより、所定の有効塩素濃度を含んだアルカリ領域の電解水希釈水(以下電解希釈生成水と言う)を生成出来るが、その場合、吐出混合される電解水の量を原水の流量に合せて正確に制御できるため、安定した濃度の電解希釈生成水を生成することができ、その結果
、濃い残留塩素を含んだ電解希釈生成水を比較的容易に、且つ、大量に生成することを可能にする。
【0012】
また、上記(1)で述べた請求項1に係る手段によれば、無隔膜電解槽で生成されて原水に対して吐出し混合される電解水の混合量は、原水の供給量を流量検出手段で検出し、その増減に従って上記電解槽への被電解液の供給量を増減することによって決められるため、電解水の吐出しを安定した状態で正確に行うことができると共に、合せて、両電極間に供給する直流電流のON/OFFデューティー比を、原水の流量を増やす場合はON時間の比率を増やし、流量を減らす場合はON時間の比率を減らすため、同じ濃度の有効塩素を継続して生成することを可能にする。
【0013】
また、上記(1)で述べた請求項に係る手段によれば、原水給水路の先端部に設けたバルブを開くことによって電解希釈生成水を取り出して利用することができる所謂先止め式であるため、先端部のバルブに至る間の電解希釈生成水の有効塩素濃度が常に一定であり、従って、送り始めの時に有効塩素濃度が低くなる問題を解決することができる。
【0014】
更に上記(1)で述べた請求項1に係る手段によれば、原水給水路に電解水を供給する吐出管に逆止弁を設ける一方、この吐出管の接続部よりも上流の原水給水路には水路開閉用の入水電磁弁と逆止弁を設けたことから、上記バルブを閉じて取水を停止すると、原水給水路の給水が遮断され、同時に各逆止弁からバルブに至る迄の間の水の移動が停止されて、その停止状態が維持されるため、再びバルブが開放されて取水が開始される迄の間、希釈水の有効塩素濃度に変化が生じることがなく、一定濃度を維持することができる。
【0015】
上記()で述べた請求項に係る手段によれば、各有効塩素濃度の電解希釈生成水を得る為に必要な原水と被電解液の流量(供給量)と、両電極間に供給する電流に関する電気的条件を、予め制御データとしてメモリに蓄積しておき、この制御データに従って各部を制御して電解希釈生成水を生成することができるため、簡単な操作によって所定の有効塩素濃度の電解希釈生成水を希望する量だけ生成することを可能にする。
【0016】
上記()で述べた請求項に係る手段によれば、入力設定装置を用いて有効塩素濃度を入力設定するだけで、所定の有効塩素濃度の電解希釈生成水を生成することを可能にする。
【0017】
以上の如くであるから、上記(1)〜()の手段によって上述した技術的課題を解決して、前記従来の技術の問題点を解消することができる。
【0018】
【発明の実施の形態】
以下に、本発明に係る電解水生成装置の実施の形態を図面と共に説明すると、図1と図2は本発明の全体を説明した構成図で、図中、符号STで全体的に示したのは本発明に係る電解水生成装置で、1は水道水等の原水供給源、2はこの供給源1に接続した原水の給水路、3は給水路2の途中に設けた原水の流量を調整する流量調整弁、8と9は同じく上記給水路2の途中に設けた水路開閉用の入水電磁弁と、原水の使用量(流量)を検出する流量センサー(流量検出手段)を示す。
【0019】
更に図1に於いて、6は食塩を収容した食塩タンク、2Aは上記給水路2を流れる原水をこの食塩タンク6に送り込む給水管、4はこの給水管2Aの途中に設けた給水弁、5は水位センサーを示し、上記の食塩タンク6で造られた飽和食塩水又は高濃度食塩水から成る被電解液は、定量ポンプ7Pによって送り込み量を制御されながら、供給管7を通して無隔膜電解槽10に送り込まれて電解される仕組に成っている。
【0020】
一方、図2に於いて15は、予め所定濃度に希釈された塩酸水溶液を収容した塩酸タンクで、この塩酸水溶液も被電解液として上述した定量ポンプ7Pによって送り込み量を制御されながら、供給管7を通して無隔膜電解槽10に送り込まれて電解される仕組に成っている。
【0021】
図1と図2に於いて、10Xと10Yは上記無隔膜電解槽10の内部に設けたアノードとカソードで、12はこれ等両極10X,10Yに直流電圧を印加する直流電源であって、上述した定量ポンプ7Pによって無隔膜電解槽10に送り込まれる飽和食塩水又は高濃度食塩水、或は、塩酸水溶液のいずれから成る被電解液は、この電解槽10で電解されて電解水が生成され、更に、生成された電解水は吐出管2Bを通して上述した原水給水路2の末端部2′側に送り込まれて原水に混合希釈された後、末端部2′に設けた1つ又は複数個のバルブ2Pから取り出す、所謂先止め方式に構成されている。
【0022】
本発明は、以上の如く構成した無隔膜電解槽10を用いた電解水生成装置に於いて、原水給水路2に設けた流量センサー9によって検出された原水の使用量(流量)に基づいて、上記定量ポンプ7Pによる電解槽10への被電解液の送り込み量を制御することにより、原水に対してその使用流量に見合った所定割合の電解水を混合、希釈する点。無隔膜電解槽10のアノード10Xとカソード10Yの各電極間にON/OFFデューティー比を可変とするパルス電流を流し、このON/OFFデューティー比を、原水の使用流量が増えた場合はON時間比率を増加に比例して増やし、減少した場合は減少に比例して減らすようにする点。各有効塩素濃度の電解希釈生成水を生成するに必要な原水の量に対する被電解液の量と、被電解液に対する電解電流のON/OFFデューティー比との関連から、流量センサー9が検出した原水の流量値に対する被電解液の供給量と、電解電流のON/OFFデューティー比とを割り出して、この割り出したデータに従って上記の定量ポンプ7Pと直流電源12を制御して電解を行う点。並びに、上記有効塩素濃度を選択して入力することができる入力設定装置14を設ける点。を特徴とするものであるが、以下にその具体的な構成を説明する。
【0023】
図1と図2に於いて、符号30で全体的に示したのは、マイクロコンピュータを搭載した制御装置であって、この制御装置30には上記の各動作を行えるように上述した流量調整弁3と水位センサー5と定量ポンプ7Pと入水電磁弁8と流量センサー9と直流電源12と表示装置13と入力設定装置14が接続され、更に図1に示した実施例では、食塩タンク6用の給水弁4が接続されている。
【0024】
図3は上記マイクロコンピュータを搭載した制御装置30の電気的構成を説明したブロック図であって、図中、20は制御装置の中心を構成するCPU、21は後述する各プログラムを含むシステムプログラムを格納したメモリ、23はこれ等CPU20とメモリ21の間にバス22を介して接続したインターフエイス回路で、このインターフエイス回路23に上述した流量調整弁3と、水位センサー5と、定量ポンプ7Pと、入水電磁弁8と、流量センサー9と、アノード10Xとカソード10Yと電源スイッチ(図示省略)を含んだ直流電源12と、表示装置13と、入力設定装置14と、給水弁4が接続され、更に、CPU20からの指示に基づいて所定のON/OFFデューティー比率のパルス電流を上記アノード10Xとカソード10Yの両電極間に流すパルス電流制御装置11が接続されていて、夫々がCPU20の監視の下でメモリ21に格納されたプログラムに従って制御作動される仕組に成っている。
【0025】
また、上記の制御装置30を構成するメモリ21には、上述したように、原水給水路2に設けた流量センサー9によって検出された原水の使用量(流量)に基づいて、上記定量ポンプ7Pによる電解槽10への被電解液の送り込み量を制御することにより、原水に対してその使用流量に見合った所定割合の電解水を混合、希釈するためのプログラムと、無隔膜電解槽10のアノード10Xとカソード10Yの各電極間にON/OFFデューティー比を可変とするパルス電流を流し、このON/OFFデューティー比を、原水の使用流量が増えた場合はON時間比率を増加に比例して増やし、減少した場合は減少に比例して減らすようにするためのプログラムと、各有効塩素濃度の電解希釈生成水を生成するに必要な原水の量に対する被電解液の量と、被電解液に対する電解電流のON/OFFデューティー比との関連から、流量センサー9が検出した原水の流量値に対する被電解液の供給量と、電解電流のON/OFFデューティー比とを割り出して、この割り出したデータに従って上記の定量ポンプ7Pと直流電源12を制御して電解を行うためのプログラムと、入力設定装置14による設定操作に基づいて生成水の有効塩素濃度を決定するためのプログラムが格納されている。
【0026】
図4は、定量ポンプ7Pによる電解槽10への飽和食塩水の吐出量(ml/min)と、アノード10Xとカソード10Yの単位時間当りのON時間のパーセントを縦軸にとり、ノズル2Pから吐出される電解希釈生成水の生成量(L/min)を横軸にとった時の、各有効塩素濃度(50ppm,100ppm,200ppm)の関係を示したグラフであって、このグラフに示されたデータに従って各有効塩素濃度ごとの原水の流量に対する被電解液の供給量と、電解電流のON/OFFデューティー比とが割り出される仕組に成っている。
【0027】
尚、図1と図2に於いて2Wと2Zは原水給水路2の供給源1側に設けた逆止弁と減圧弁、2Xと2Yは給水路2の先端側2′で、且つ、電解水吐出管2Bの接続部よりも上流部分と、当該電解水吐出管2Bに設けた逆止弁を示す。
【0028】
本発明に係る電解水生成装置は以上述べた如き構成であるから、給水路2を流れる原水に対して電解槽10で電解した電解水を混合、希釈して、所定の有効塩素濃度を備えたアルカリ領域の電解希釈生成水を生成することができるのであるが、本発明では特に、原水の流量に対して電解槽10から吐出し混合される電解水の量を、定量ポンプ7Pを制御することによって正確に調整できるため、安定した濃度に希釈された電解希釈生成水を生成することができる。
【0029】
また、電解槽10で生成されて原水に混合、希釈される電解水は、原水の流量をセンサー9で検出し、その増減に従って上記定量ポンプ7Pを制御して供給量が決められるから、常に安定した量を原水に混合、希釈させることができると共に、これに合せて両電極間に流れる電流のON/OFFデューティー比をも変化させて、流量を増す場合はON時間を長くし、流量が少い場合はそのON時間を短く調節するため、同じ有効塩素濃度の電解希釈生成水を生成することができる。
【0030】
更に本発明によれば、原水給水路2の先端側2′に電解希釈水(生成水)の取り出し用バルブ2Pを設けた所謂先止め式を採用しているため、送り始め時に有効塩素濃度が低くなる問題が発生せず、常に一定濃度の電解希釈生成水を取り出すことができると共に、上記先端側2′に水路開閉用の入水電磁弁8と逆止弁2Xを設け、電解水吐出管2Bにも逆止弁2Yを設けたことから、バルブ2Pを閉じた時に電解希釈水が電解槽10に逆流したり、上流からの水道水の影響を受けて濃度に変化が生じたりすることなく、従って、バルブ2Pを開くことにより、常に一定濃度の電解希釈生成水を取り出すことが可能になる。
【0031】
また、制御装置30を構成するメモリ21には、図4に示したような実験データに従って、各有効塩素濃度の電解希釈生成水を得る為に必要な原水と被電解液の流量と、直流電源12の電気的条件(ON/OFFデューティー比)に付いての制御データが予め格納されているため、必要とする有効塩素濃度を入力設定装置14を用いて入力するだけで、素早く簡単に所謂有効塩素濃度の電解希釈生成水を生成することができる。
【0032】
【発明の効果】
以上述べた次第で、本発明に係る電解水生成装置によれば、原水の供給量を増すとこれに追従して電解水の供給量を増して有効塩素濃度を一定に維持するため、必要とする有効塩素濃度を含んだ電解希釈生成水を簡単な操作によって大量に、且つ、常時安定した状態で得ることができるものであって、広い分野で利用可能な殺菌水を低コストにて大量に供給できる利点を備えている。
【図面の簡単な説明】
【図1】本発明に係る電解水生成装置の構成を説明した構成図である。
【図2】本発明に係る電解水生成装置の他の構成を説明した構成図である。
【図3】本発明の電気的構成を説明したブロック図である。
【図4】飽和食塩水の添加量と電極がONする単位時間当りのパーセントと生成量との関係を説明したグラフである。
【符号の説明】
ST 電解水生成装置
2 原水給水路
2′ 先端側
2P 電解希釈水の取り出し用バルブ
2B 電解水吐出管
2X,2Y 逆止弁
3 流量調整弁
6 食塩タンク
7P 定量ポンプ
9 流量センサー
10 無隔膜電解槽
10X アノード
10Y カソード
11 パルス電流制御装置
12 直流電源
14 入力設定装置
15 塩酸タンク
20 CPU
21 メモリ
30 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolyzed water generating apparatus for generating electrolyzed water by electrolyzing a saline solution or a hydrochloric acid aqueous solution in a non-diaphragm electrolytic cell, and specifically, to easily generate electrolyzed water containing predetermined available chlorine. The present invention relates to a devised electrolytic water generation device.
[0002]
[Prior art]
In a conventional electrolyzed water generating apparatus using a non-diaphragm electrolytic cell, there is, for example, a method and apparatus for producing sterilized water described in Japanese Patent No. 2627100. It is described that 0 to 200 ppm of electrolytic sterilizing water can be produced.
[0003]
According to the conventional invention, a certain amount of a sodium chloride aqueous solution and a predetermined amount of a hydrochloric acid aqueous solution are diluted with raw water to discharge a predetermined amount of a saline solution and a hydrochloric acid aqueous solution. And then electrolyze the mixed water to generate electrolyzed water of a predetermined residual chlorine.Furthermore, raw water is added to the electrolyzed water, mixed, diluted, It is configured to generate electrolyzed water (product water) diluted to a concentration.
[0004]
[Problems to be solved by the invention]
However, according to the production method and apparatus of the conventional invention described above, electrolyzed water with a low residual chlorine can be easily generated by diluting raw water. The only option is to reduce the amount of raw water to be produced, and it has been very difficult to produce a large amount of electrolyzed water containing highly concentrated residual chlorine.
[0005]
Therefore, a technical problem of the present invention is to provide an electrolyzed water generation apparatus that can generate electrolyzed water containing a high concentration of residual chlorine in a large amount, relatively easily.
[0006]
[Means for Solving the Problems]
Means taken by the present invention to solve the above technical problems are as follows.
[0007]
While applying a voltage to each of the anode side and the cathode side of a diaphragm-free electrolytic cell having a DC power supply circuit, a saturated saline solution, a high-concentration saline solution, or a hydrochloric acid aqueous solution is used as a liquid to be electrolyzed in the electrolytic cell. To generate the electrolyzed water by feeding in, and sequentially supply the generated electrolyzed water to the raw water supply passage for supplying the raw water such as tap water through the electrolyzed water discharge pipe . Mixing, diluting , an electrolyzed water generating apparatus configured to open and take out one or a plurality of take-out valves provided in a pre-stopping manner at an end of a raw water supply channel, and take out the diluted electrolyzed water ,
[0008]
(1) A flow rate detecting means for detecting an amount of water used is provided in the raw water supply channel , and a water inlet electromagnetic switch for opening and closing the water channel is provided at a distal end side of the water supply channel and upstream of a connection portion of the electrolytic water discharge pipe. A valve and a check valve are provided, and a check valve is provided in the electrolytic water discharge pipe, and the pump feeds the electrolytic solution into the electrolytic cell based on the flow rate of the raw water detected by the flow rate detecting means. Is controlled by mixing the raw water with a predetermined ratio of electrolyzed water corresponding to the flow rate used to dilute the raw water, and the ON / OFF duty ratio between the anode and cathode electrodes is adjusted. When a variable pulse current is supplied, and the ON / OFF duty ratio is increased, the ON time ratio of the current is increased in proportion to the increase of the use flow rate of the raw water, and conversely, the ON / OFF duty ratio is decreased. Is when the current is ON To reduce the ratio in proportion to the decrease. (Claim 1)
[0009]
(2) From the relation between the amount of the electrolyzed solution with respect to the amount of raw water required to generate the electrolyzed product water of each available chlorine concentration and the ON / OFF duty ratio of the electrolysis current to the electrolyzed solution, the flow rate detecting means The supply amount of the electrolyte to the detected flow rate of the raw water and the ON / OFF duty ratio of the electrolytic current are determined, and the pump for supplying the electrolyte and the DC power supply circuit of the diaphragm-free electrolytic cell are determined according to the determined data. To be configured to perform electrolysis under control. ( Claim 2 )
[0010]
(3) Provide an effective chlorine concentration input setting device capable of selecting and inputting the effective chlorine concentration. ( Claim 3 )
[0011]
According to the means according to claim 1 described in the above (1), a predetermined effective chlorine concentration is contained by mixing and diluting electrolyzed water electrolyzed in a non-diaphragm electrolytic cell with raw water such as tap water. Electrolyte dilution water in the alkaline region (hereinafter referred to as electrolysis dilution water) can be generated. In this case, the amount of electrolyzed water to be discharged and mixed can be accurately controlled in accordance with the flow rate of raw water. The electrolytic dilution product water can be generated, and as a result, it is possible to relatively easily generate a large amount of the electrolytic dilution product water containing the strong residual chlorine.
[0012]
Further, according to the means according to claim 1 described in the above (1), mixing amount of the electrolytic water to be mixed ejected against the raw water is generated by the non-diaphragm electrolytic cell, the supply amount of the raw water flow detection It is determined by increasing or decreasing the supply amount of the electrolytic solution to the electrolytic cell in accordance with the increase or decrease in the amount of the electrolytic solution, so that the discharge of the electrolytic water can be accurately performed in a stable state, To increase the ON / OFF duty ratio of the DC current supplied between the electrodes, increase the ON time ratio when increasing the flow rate of raw water, and decrease the ON time ratio when decreasing the flow rate. And generate it.
[0013]
Further, according to the means according to claim 1 described in the above (1), a so-called destination stop type that can utilize removed electrolytic dilution produced water by opening a valve provided at the tip portion of the raw water water supply passage Therefore, it is possible to solve the problem that the effective chlorine concentration of the electrolyzed diluted water is always constant until the water reaches the valve at the tip, and thus the effective chlorine concentration becomes low at the start of feeding.
[0014]
Further, according to the means according to claim 1 described in the above (1), while a check valve is provided in a discharge pipe for supplying electrolytic water to the raw water supply path, a raw water supply path upstream of a connection portion of the discharge pipe. Since a water intake solenoid valve and a check valve are provided for opening and closing the water channel, when the above valve is closed and water intake is stopped, the water supply to the raw water supply channel is shut off, and at the same time, between the check valve and the valve, Since the movement of water is stopped and the stopped state is maintained, the effective chlorine concentration of the dilution water does not change until the valve is opened again and water intake is started. Can be maintained.
[0015]
According to the measures according to claim 2 as described above (2), and the flow rate (supply amount) of the raw water and the electrolytic solution necessary to obtain an electrolytic dilution water produced for each effective chlorine concentration, supplied between the electrodes The electrical conditions relating to the current to be generated are stored in the memory as control data in advance, and each part can be controlled according to the control data to generate the electrolytic dilution product water. It is possible to produce a desired amount of electrolytic dilution product water.
[0016]
According to the measures according to claim 3 mentioned above (3), only the input to set the effective chlorine concentration using an input setting device, capable to generate electrolytic dilution product water predetermined effective chlorine concentration I do.
[0017]
As described above, the technical problems described above can be solved by means of the above (1) to ( 3 ), and the problems of the conventional technology can be solved.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an electrolyzed water generating apparatus according to the present invention will be described with reference to the drawings. FIG. 1 and FIG. 2 are configuration diagrams illustrating the whole of the present invention. Is an electrolyzed water generating apparatus according to the present invention, 1 is a raw water supply source such as tap water, 2 is a raw water supply channel connected to the supply source 1, and 3 is a raw water supply passage provided in the middle of the water supply channel 2. The flow control valves 8 and 9 also denote a water inlet electromagnetic valve provided in the middle of the water supply passage 2 for opening and closing the water passage, and a flow sensor (flow detection means) for detecting the usage (flow) of raw water.
[0019]
Further, in FIG. 1, 6 is a salt tank containing salt, 2A is a water supply pipe for feeding raw water flowing through the water supply channel 2 to the salt tank 6, 4 is a water supply valve provided in the middle of the water supply pipe 2A, 5 Denotes a water level sensor. The electrolyte to be formed of the saturated saline solution or the high-concentration saline solution produced in the above-mentioned salt tank 6 is supplied through the supply pipe 7 through the supply pipe 7 while the feeding amount is controlled by the metering pump 7P. It is sent to and electrolyzed.
[0020]
On the other hand, in FIG. 2, reference numeral 15 denotes a hydrochloric acid tank containing a hydrochloric acid aqueous solution diluted to a predetermined concentration in advance. The hydrochloric acid aqueous solution is also supplied as an electrolytic solution while the supply amount is controlled by the above-described metering pump 7P. Is fed into the non-diaphragm electrolytic cell 10 through which the electrolysis is performed.
[0021]
1 and 2, reference numerals 10X and 10Y denote an anode and a cathode provided inside the diaphragm-free electrolytic cell 10, and reference numeral 12 denotes a DC power supply for applying a DC voltage to these bipolar electrodes 10X and 10Y. The electrolyte to be formed of either a saturated saline solution, a high-concentration saline solution, or a hydrochloric acid aqueous solution fed into the diaphragm-free electrolytic cell 10 by the metering pump 7P is electrolyzed in the electrolytic cell 10 to generate electrolytic water. Further, the generated electrolyzed water is sent through the discharge pipe 2B to the end portion 2 'of the raw water supply channel 2 and mixed and diluted with the raw water, and then one or more valves provided at the end portion 2' It is configured in a so-called first stop method that takes out from 2P.
[0022]
The present invention relates to an electrolyzed water generating apparatus using the non-diaphragm electrolytic cell 10 configured as described above, based on the usage amount (flow rate) of raw water detected by the flow rate sensor 9 provided in the raw water supply passage 2. Controlling the amount of the solution to be electrolyzed into the electrolytic cell 10 by the metering pump 7P to mix and dilute raw water with a predetermined ratio of electrolytic water corresponding to the flow rate used. A pulse current for varying the ON / OFF duty ratio is applied between the anode 10X and the cathode 10Y of the non-diaphragm electrolytic cell 10. The ON / OFF duty ratio is set to the ON time ratio when the flow rate of raw water is increased. To increase in proportion to the increase, and to decrease in the case of decrease. Raw water detected by the flow rate sensor 9 in relation to the amount of the electrolyte to the amount of raw water required to produce the electrolytic dilution product water of each available chlorine concentration and the ON / OFF duty ratio of the electrolytic current to the electrolyte. The point where the supply amount of the liquid to be electrolyzed and the ON / OFF duty ratio of the electrolysis current with respect to the flow rate value are determined, and the above-described metering pump 7P and the DC power supply 12 are controlled according to the determined data to perform the electrolysis. In addition, an input setting device 14 that can select and input the available chlorine concentration is provided. The specific configuration will be described below.
[0023]
In FIG. 1 and FIG. 2, the reference numeral 30 generally designates a control device equipped with a microcomputer, and the control device 30 includes the above-described flow control valve so as to perform the above-described operations. 3, a water level sensor 5, a metering pump 7P, a water inlet solenoid valve 8, a flow sensor 9, a DC power supply 12, a display device 13, and an input setting device 14, and in the embodiment shown in FIG. The water supply valve 4 is connected.
[0024]
FIG. 3 is a block diagram illustrating the electrical configuration of a control device 30 equipped with the microcomputer. In the figure, reference numeral 20 denotes a CPU that forms the center of the control device, and reference numeral 21 denotes a system program including programs to be described later. The stored memory 23 is an interface circuit connected between the CPU 20 and the memory 21 via the bus 22. The interface circuit 23 includes the above-described flow control valve 3, the water level sensor 5, and the metering pump 7P. , A water supply solenoid valve 8, a flow sensor 9, a DC power supply 12 including an anode 10X and a cathode 10Y, a power switch (not shown), a display device 13, an input setting device 14, and a water supply valve 4, Further, based on an instruction from the CPU 20, a pulse current having a predetermined ON / OFF duty ratio is supplied to the anode 10X and the cathode 10X. Pulse current control device 11 to flow between the electrodes of 0Y is connected and has a mechanism in which each is control operation according to a program stored in the memory 21 under the supervision of the CPU 20.
[0025]
Further, as described above, the memory 21 constituting the control device 30 stores the raw water use amount (flow rate) detected by the flow rate sensor 9 provided in the raw water supply passage 2 by the metering pump 7P. A program for mixing and diluting raw water with a predetermined ratio of electrolyzed water corresponding to the flow rate of the raw water by controlling the amount of the solution to be electrolyzed to the electrolyzer 10 and an anode 10X of the diaphragmless electrolyzer 10 And a pulse current for varying the ON / OFF duty ratio is passed between each electrode of the cathode 10Y and the ON / OFF duty ratio is increased in proportion to the increase of the ON time ratio when the flow rate of the raw water increases, In the event of a decrease, a program to reduce the amount in proportion to the decrease, and the electrolyte to be treated relative to the amount of raw water required to produce electrolytic dilution product water of each available chlorine concentration From the relationship between the amount and the ON / OFF duty ratio of the electrolytic current with respect to the electrolytic solution, the supply amount of the electrolytic solution with respect to the flow value of the raw water detected by the flow sensor 9 and the ON / OFF duty ratio of the electrolytic current are determined. A program for controlling the metering pump 7P and the DC power supply 12 according to the determined data to perform electrolysis, and a program for determining the available chlorine concentration of the produced water based on the setting operation by the input setting device 14. Is stored.
[0026]
FIG. 4 shows the discharge amount (ml / min) of the saturated saline solution to the electrolytic cell 10 by the metering pump 7P and the percentage of the ON time per unit time of the anode 10X and the cathode 10Y on the vertical axis, which are discharged from the nozzle 2P. Is a graph showing the relationship between each available chlorine concentration (50 ppm, 100 ppm, 200 ppm) when the production amount (L / min) of the electrolytic dilution product water is plotted on the horizontal axis, and the data shown in this graph. Thus, the supply amount of the electrolytic solution with respect to the flow rate of the raw water for each available chlorine concentration and the ON / OFF duty ratio of the electrolytic current are determined.
[0027]
In FIGS. 1 and 2, 2W and 2Z are a check valve and a pressure reducing valve provided on the supply source 1 side of the raw water supply channel 2, 2X and 2Y are a tip side 2 ′ of the water supply channel 2 , and The upstream part of the connection part of the water discharge pipe 2B and the check valve provided in the electrolytic water discharge pipe 2B are shown.
[0028]
Since the electrolyzed water generating apparatus according to the present invention has the configuration as described above, the electrolyzed water electrolyzed in the electrolyzer 10 is mixed and diluted with the raw water flowing through the water supply channel 2 to provide a predetermined effective chlorine concentration. Although it is possible to generate electrolyzed product water in an alkaline region, in the present invention, in particular, the amount of electrolyzed water discharged from the electrolysis tank 10 and mixed with the flow rate of raw water is controlled by the metering pump 7P. Therefore, it is possible to generate electrolytic dilution product water diluted to a stable concentration.
[0029]
The flow rate of the electrolyzed water generated in the electrolyzer 10 and mixed and diluted with the raw water is always stable since the flow rate of the raw water is detected by the sensor 9 and the supply amount is determined by controlling the above-mentioned metering pump 7P according to the increase or decrease. In addition to mixing and diluting the raw water, the ON / OFF duty ratio of the current flowing between the two electrodes is changed accordingly. In such a case, since the ON time is adjusted to be short, electrolytic dilution water having the same effective chlorine concentration can be generated.
[0030]
Further, according to the present invention, since a so-called tip-stop type in which a valve 2P for taking out the electrolytic dilution water (produced water) is provided at the distal end side 2 'of the raw water supply channel 2, the effective chlorine concentration is reduced at the start of feeding. There is no problem of lowering the concentration of the electrolyzed water, and a constant concentration of electrolyzed diluted water can always be taken out . In addition, a water inlet electromagnetic valve 8 and a check valve 2X for opening and closing the water channel are provided on the front end side 2 ', and Also, since the check valve 2Y is provided, when the valve 2P is closed, the electrolytic dilution water does not flow back to the electrolytic cell 10 and the concentration does not change due to the influence of tap water from the upstream. Therefore, by opening the valve 2P, it becomes possible to always take out the electrolytic dilution product water of a certain concentration.
[0031]
In addition, the memory 21 constituting the control device 30 stores, in accordance with the experimental data as shown in FIG. Since the control data for the 12 electrical conditions (ON / OFF duty ratio) is stored in advance, the required effective chlorine concentration can be input simply by using the input setting device 14 so that the so-called effective chlorine concentration is quickly and easily obtained. It is possible to generate electrolytic dilution water having a chlorine concentration.
[0032]
【The invention's effect】
As described above, according to the electrolyzed water generation apparatus according to the present invention, it is necessary to increase the supply amount of raw water and increase the supply amount of electrolyzed water to keep the effective chlorine concentration constant in accordance with the increase. A large amount of electrolyzed diluted water containing effective chlorine concentration can be obtained in a large amount by a simple operation , and it can always be obtained in a stable state. It has the advantage that it can be supplied.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a configuration of an electrolyzed water generation device according to the present invention.
FIG. 2 is a configuration diagram illustrating another configuration of the electrolyzed water generation device according to the present invention.
FIG. 3 is a block diagram illustrating an electrical configuration of the present invention.
FIG. 4 is a graph illustrating the relationship between the amount of saturated saline added, the percentage per unit time that an electrode is turned on, and the amount of generation.
[Explanation of symbols]
ST Electrolyzed water generator 2 Raw water supply channel 2 'Tip side
2P Valve for taking out the electrolysis dilution water
2B Electrolytic water discharge pipe
2X, 2Y Check valve 3 Flow control valve 6 Salt tank 7P Metering pump 9 Flow rate sensor 10 Non-diaphragm electrolytic cell 10X Anode 10Y Cathode 11 Pulse current control device 12 DC power supply 14 Input setting device 15 Hydrochloric acid tank 20 CPU
21 memory 30 controller

Claims (3)

直流電源回路を有する無隔膜電解槽の陽極側と陰極側に夫々電圧を印加しながら、この電解槽に飽和食塩水又は高濃度食塩水、或は、塩酸水溶液のいずれかを被電解液としてポンプを用いて送り込むことによって電解水を生成し、且つ、生成された電解水を電解水吐出管を通して順次水道水等の原水を給水する原水給水路に供給することにより、電解水を原水に対して混合、希釈し、この希釈した電解水を原水給水路の末端部に先止め方式に設けた1つ又は複数個の取り出し用バルブを開いて取り出すように構成した電解水生成装置であって、
上記原水給水路に使用水量を検出する流量検出手段を設け、該給水路の先端側で、且つ、上記電解水吐出管の接続部よりも上流部分には、水路開閉用の入水電磁弁と逆止弁を設け、上記電解水吐出管には逆止弁を設ける一方、上記流量検出手段によって検出された原水の使用流量に基づいて上記ポンプによる電解槽への被電解液の送り込み量を制御することにより、原水に対してその使用流量に見合った所定割合の電解水を混合して希釈するように構成すると共に、上記陽極側と陰極側の各電極間にON/OFFデューティー比を可変とするパルス電流を流すように構成し、且つ、このON/OFFデューティー比を、上記原水の使用流量が増えた場合は電流のON時間比率を増加に比例して増やし、逆に減少した場合は電流のON時間比率を減少に比例して減らすように構成したことを特徴とする電解水生成装置。
While applying a voltage to each of the anode side and the cathode side of a diaphragm-free electrolytic cell having a DC power supply circuit, a saturated saline solution, a high-concentration saline solution, or a hydrochloric acid aqueous solution is used as a liquid to be electrolyzed in the electrolytic cell. To generate the electrolyzed water by feeding in, and sequentially supply the generated electrolyzed water to the raw water supply passage for supplying the raw water such as tap water through the electrolyzed water discharge pipe . Mixing, diluting , an electrolyzed water generating apparatus configured to open and take out one or a plurality of take-out valves provided in a pre-stopping manner at an end of a raw water supply channel, and take out the diluted electrolyzed water ,
The raw water supply channel is provided with a flow rate detecting means for detecting an amount of water used , and at a tip side of the water supply channel , and at a portion upstream of a connection portion of the electrolytic water discharge pipe, a water supply solenoid valve for opening and closing the water channel is provided. A stop valve is provided, and a check valve is provided in the electrolytic water discharge pipe, and the amount of the electrolyte to be fed into the electrolytic cell by the pump is controlled based on the used flow rate of the raw water detected by the flow rate detecting means. Thereby, a predetermined ratio of electrolyzed water corresponding to the flow rate of the raw water is mixed and diluted with the raw water, and the ON / OFF duty ratio between the anode and the cathode is made variable. A pulse current is made to flow, and the ON / OFF duty ratio is increased in proportion to the increase of the use flow rate of the raw water when the use flow rate of the raw water is increased, and is decreased when the use flow rate of the raw water is decreased. ON time ratio Electrolyzed water production apparatus characterized by being configured to reduce in proportion to the decrease.
各有効塩素濃度の電解希釈生成水を生成するに必要な原水の量に対する被電解液の量と、被電解液に対する電解電流のON/OFFデューティー比との関連から、流量検出手段で検出された原水の流量値に対する被電解液の供給量と、電解電流のON/OFFデューティー比とを割り出し、この割り出したデータに従って被電解液供給用のポンプと無隔膜電解槽の直流電源回路を制御して電解を行うように構成したことを特徴とする請求項1記載の電解水生成装置。It was detected by the flow rate detecting means from the relationship between the amount of the electrolyte to the amount of raw water necessary to generate the electrolytic dilution product water of each effective chlorine concentration and the ON / OFF duty ratio of the electrolytic current to the electrolyte. The supply amount of the electrolytic solution with respect to the flow rate of the raw water and the ON / OFF duty ratio of the electrolytic current are determined, and the pump for supplying the electrolytic solution and the DC power supply circuit of the diaphragm-free electrolytic cell are controlled according to the determined data. The electrolyzed water generation apparatus according to claim 1, wherein the apparatus is configured to perform electrolysis. 有効塩素濃度を選択して入力することができる有効塩素濃度入力設定装置を設けたことを特徴とする請求項1又は記載の電解水生成装置。 3. The electrolyzed water generator according to claim 1, further comprising an effective chlorine concentration input setting device capable of selecting and inputting the effective chlorine concentration.
JP24633699A 1999-08-31 1999-08-31 Electrolyzed water generator Expired - Fee Related JP3571258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24633699A JP3571258B2 (en) 1999-08-31 1999-08-31 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24633699A JP3571258B2 (en) 1999-08-31 1999-08-31 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2001062455A JP2001062455A (en) 2001-03-13
JP3571258B2 true JP3571258B2 (en) 2004-09-29

Family

ID=17147059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24633699A Expired - Fee Related JP3571258B2 (en) 1999-08-31 1999-08-31 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3571258B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515735B2 (en) * 2000-04-28 2004-04-05 株式会社城南電器工業所 Wash water generator
JP4874104B2 (en) * 2004-07-15 2012-02-15 三浦電子株式会社 Electrolyzed water generation / dilution supply equipment
JP4904721B2 (en) * 2005-06-01 2012-03-28 富士電機リテイルシステムズ株式会社 Electrolyte solution supply device
KR101396283B1 (en) 2009-12-25 2014-05-16 모리나가 뉴교 가부시키가이샤 Electrolyzed water producing device
JP5156793B2 (en) 2010-05-31 2013-03-06 森永乳業株式会社 Electrolyzed water production equipment
JP5156792B2 (en) 2010-05-31 2013-03-06 森永乳業株式会社 Electrolyzed water production equipment

Also Published As

Publication number Publication date
JP2001062455A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
US6200434B1 (en) Apparatus for producing electrolytic water
US20090071843A1 (en) Electrolyzed water producing method and apparatus
JPH0494785A (en) Method and apparatus for producing sterilized water
KR20020090888A (en) Water treatment apparatus
JP3571258B2 (en) Electrolyzed water generator
JP3964018B2 (en) Electrolytic neutral water generator
JP2000140850A (en) Aqueous hypochlorous acid solution generator
JPH06246269A (en) Device for producing electrolyte
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JPH06246271A (en) Device for producing electrolyte
JPH0889965A (en) Electrolytic water producer
JP3575726B2 (en) Method for producing weakly acidic water
JP2001327968A (en) Electrolytic water generating device
JP2010207668A (en) Electrolytic water generator
JPH07155764A (en) Device for producing acidic ionized water
JP3474433B2 (en) Electrolyzed water generator
JPH06246266A (en) Device for producing electrolyte
JP3474430B2 (en) Electrolyzed water generator
CN218812125U (en) Intelligent control's hypochlorite generator
JPH06312184A (en) Electrolytic water forming apparatus
CN114314759B (en) Ozone water preparation system and preparation method thereof
JPH0970581A (en) Ionic water producing device
JP2000140851A (en) Sterilized water production device
JP3297828B2 (en) Electrolyzed water generator and method for controlling chloride ion concentration in the electrolyzed water generator
JP3637114B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees