JPH06312184A - Electrolytic water forming apparatus - Google Patents

Electrolytic water forming apparatus

Info

Publication number
JPH06312184A
JPH06312184A JP10423493A JP10423493A JPH06312184A JP H06312184 A JPH06312184 A JP H06312184A JP 10423493 A JP10423493 A JP 10423493A JP 10423493 A JP10423493 A JP 10423493A JP H06312184 A JPH06312184 A JP H06312184A
Authority
JP
Japan
Prior art keywords
water
electrolysis
electrolyzed
discharge
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10423493A
Other languages
Japanese (ja)
Inventor
Shiyuuji Yamaguchi
秋二 山口
Masayuki Ukon
雅幸 右近
Daiji Misawa
代治 三沢
Masakazu Arisaka
政員 有坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INTETSUKU KK
Original Assignee
NIPPON INTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INTETSUKU KK filed Critical NIPPON INTETSUKU KK
Priority to JP10423493A priority Critical patent/JPH06312184A/en
Publication of JPH06312184A publication Critical patent/JPH06312184A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ion water constant in pH value and electric conductivity in large quantities by a method wherein raw water to which a chlorine-based electrolyte is added is electrolyzed while supplied to a cathode chamber and an anode chamber partitioned by a diaphragm and the valve of a discharge water passage is changed over to a drain side when the degree of electrolysis of discharged electrolytic water is out of a predetermined range. CONSTITUTION:An electrolytic cell 1 is divided by a diaphragm 2 to form a cathode chamber 31 having an electrode 3 inserted therein and an anode chamber 41 having an electrode 4 inserted therein. A definite amt of the saline solution in a tank 8 is injected in raw water by an injection device 10 and the raw water made constant in electric conductivity is supplied to the cathode chamber 31 and the anode chamber 41 to be electrolyzed. Three-way valves 15, 16 changing over discharge and drainage are arranged on pipelines 13, 14 discharging formed alkaline ion water and acidic water and sensor 19 detecting oxidation reduction potential, pH or ion concn. is attached to the pipeline 14. A CPU 20 performs the comparative operation of the detected value of the sensor 19 and a reference value to output the control signals of the three-way calves 15, 16 and the changeover control of the discharge and drainage of water is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水の電気分解によって
洗浄水,殺菌水等として有用な酸性水及び飲料水となる
アルカリイオン水を生成する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for electrolyzing water to produce acidic water useful as washing water, sterilizing water and the like, and alkaline ionized water serving as drinking water.

【0002】[0002]

【従来の技術】食品とか医療の分野において、電解水を
洗浄用水とか消毒,殺菌用の水として使用することは、
一般には知られているが、PH値の低い水あるいはPH
値の高い水を安定して多量に得ることは容易でない。従
来の電解水生成装置は、電解槽内を隔膜によって陰極室
と陽極室とに分け、各々の室内に電極を挿入し、室内に
供給した原水を電極間の通電によって電気分解すること
により、陰極室にアルカリイオン水を,陽極室に酸性水
を電解生成する。
2. Description of the Related Art In the fields of food and medicine, it is not possible to use electrolyzed water as cleaning water or water for disinfection and sterilization.
As is generally known, water with a low PH value or PH
It is not easy to stably obtain a large amount of high-value water. In the conventional electrolyzed water generator, the inside of the electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, an electrode is inserted into each chamber, and the raw water supplied to the chamber is electrolyzed by energization between the electrodes to form a cathode. Alkaline ionized water is electrolyzed in the chamber and acidic water is electrolyzed in the anode chamber.

【0003】[0003]

【発明が解決しようとする課題】この電解イオン水を蛇
口の開閉によって吐水し利用するが、電解開始時、電解
中の流量変化等によって電解吐出水のPH値、イオン濃
度、電気伝導度等が変動し安定した電解水が得られない
ことがある。従来このようなとき、電解電圧を制御して
PH値制御をすることが行われているが、印加電圧を上
昇すればガスが発生したり放電が発生して電極面を損傷
したりする。また、印加電圧の上昇を防止するために原
水中に食塩水を添加して電解することも行なわれている
が、添加量によって電気伝導度が変化し電解電流が増減
変化する。このため一定の電解特性、PH、電気伝導度
等を有する電解水を多量に安定して得ることは極めて困
難であった。
This electrolyzed ionic water is discharged and used by opening and closing the faucet, but when the electrolysis is started, the PH value, ionic concentration, electric conductivity, etc. of the electrolyzed discharge water may change due to changes in the flow rate during electrolysis. It may fluctuate and stable electrolyzed water may not be obtained. Conventionally, in such a case, the electrolysis voltage is controlled to control the PH value. However, if the applied voltage is increased, gas is generated or discharge is generated to damage the electrode surface. Further, in order to prevent the applied voltage from rising, salt water is added to the raw water for electrolysis, but the electrical conductivity changes and the electrolysis current increases or decreases depending on the amount added. Therefore, it has been extremely difficult to stably obtain a large amount of electrolyzed water having a certain electrolytic characteristic, PH, electric conductivity and the like.

【0004】そこで本発明は、PH値、イオン濃度、電
気伝導度等が一定な電解イオン水が安定して、しかも大
量に得られる電解水生成装置の提供を目的とする。
[0004] Therefore, an object of the present invention is to provide an electrolyzed water producing apparatus which can stably produce a large amount of electrolyzed ionic water having a constant PH value, ion concentration, electric conductivity and the like.

【0005】[0005]

【課題を解決するための手段】本発明の電解水生成装置
は、電解槽内を隔膜によって陰極室と陽極室とに分割し
て各々に電極を設け、該電極間に所定電圧を印加する電
解電源を設け、前記電解槽内に供給される原水を電極間
の通電によって電解し陰極室にアルカリイオン水,陽極
室に酸性水を生成するにあたり、前記電解槽に供給する
原水の流路もしくは電解槽から吐出する吐出水流路に流
量制御装置を設け、前記電解槽に供給する原水中に塩素
系電解質水溶液を定量供給添加する供給手段を設けると
ともに、更に前記原水もしくは電解吐出水の流量を測定
する流量計とを設け、該流量計の測定によって前記流量
制御装置を制御することにより原水もしくは吐出水の流
量を所定に制御し、前記供給手段によって塩素系電解質
水溶液を定量添加混合した原水を前記電解槽に供給流通
させながら電解するようにした装置において、前記電解
槽における電解状態もしくは電解槽からの吐出水の電解
度合を検出する検出センサを設けるとともに、前記電解
槽から吐出する電解吐出水の流路に吐水と排水とを切換
える切換バルブを設け、前記検出センサの検出信号によ
って前記電解吐出水の電解度合が所定範囲内のとき吐水
に所定範囲外のとき排水に前記バルブの切換えを行う制
御装置を設けたことを特徴とする。
The electrolyzed water producing apparatus of the present invention is an electrolysis apparatus in which the inside of an electrolyzer is divided into a cathode chamber and an anode chamber by a diaphragm and electrodes are provided on each of them, and a predetermined voltage is applied between the electrodes. When a power source is provided and the raw water supplied to the electrolyzer is electrolyzed by energization between the electrodes to generate alkaline ionized water in the cathode chamber and acidic water in the anode chamber, a flow path or electrolysis of the raw water to be supplied to the electrolyzer A flow rate control device is provided in the discharge water flow path discharged from the tank, and a supply means for quantitatively adding the chlorine-based electrolyte aqueous solution to the raw water to be supplied to the electrolytic tank is added, and further the flow rate of the raw water or the electrolytic discharge water is measured. A flow meter is provided, and the flow rate control device is controlled by the measurement of the flow meter to control the flow rate of the raw water or the discharge water to a predetermined level, and the chlorine-based electrolyte aqueous solution is quantitatively added by the supply means. In a device that electrolyzes the combined raw water while supplying and circulating it to the electrolysis tank, a detection sensor for detecting the electrolysis state in the electrolysis tank or the degree of electrolysis of the water discharged from the electrolysis tank is provided and discharged from the electrolysis tank. A switching valve that switches between water discharge and drainage is provided in the flow path of the electrolytic discharge water, and when the electrolysis degree of the electrolytic discharge water is within a predetermined range according to the detection signal of the detection sensor, the discharge valve is used for water discharge and the valve is used for drainage when it is outside the predetermined range. It is characterized in that a control device for switching between is provided.

【0006】[0006]

【作用】本発明は、電解槽内に水道水等の原水を供給
し、陰陽極電極間への通電によって電気分解し、電解槽
内陰極室にアルカリイオン水,陽極室に酸性水を連続的
に生成し吐出利用する。前記電解槽に供給する原水中に
塩素系電解質水溶液を供給混合して原水の電気伝導度を
高め、低電圧で大電流通電を可能とし、原水に対して強
い電解作用を与える。電解槽に供給する原水もしくは電
解槽から吐出する吐出水の流量を流量計の測定によって
所定の一定量に制御し、塩素系電解質水溶液を定量添加
混合した原水を前記電解槽に供給し流通させながら電解
する。そして、電解槽における電解状態もしくは電解吐
出水の電解度合をセンサ検出し、この電解度合が所定範
囲内にあるとき切換バルブを排水から吐水に切換え、所
定範囲外のとき吐水から排水に切換え、常に電解度合が
一定のアルカリイオン水または酸性水のみを吐水する。
According to the present invention, raw water such as tap water is supplied into the electrolytic cell and electrolyzed by energizing between the negative and positive electrodes, and alkaline ionized water is continuously supplied to the cathode chamber in the electrolytic cell and acidic water is continuously supplied to the anode chamber. Generated and used for discharge. The chlorine-based electrolyte aqueous solution is supplied and mixed into the raw water to be supplied to the electrolyzer to increase the electric conductivity of the raw water, enable large-current energization at a low voltage, and give a strong electrolytic action to the raw water. While controlling the flow rate of the raw water supplied to the electrolyzer or the discharge water discharged from the electrolyzer to a predetermined fixed amount by measuring with a flowmeter, while supplying and circulating the raw water in which the chlorine-based electrolyte aqueous solution is quantitatively added and mixed to the electrolyzer. Electrolyze. Then, the electrolysis state in the electrolysis tank or the electrolysis degree of electrolysis discharge water is detected by a sensor, and when this electrolysis degree is within a predetermined range, the switching valve is switched from drainage to water discharge, and when it is outside the predetermined range, it is switched from water discharge to drainage, and always. Only alkaline ionized water or acidic water with a constant degree of electrolysis is discharged.

【0007】[0007]

【実施例】以下図面の一実施例により本発明を説明す
る。図1において、電解槽1は密閉構造になり、室内を
隔膜2によって分割し、一方に陰極電極3を挿入した陰
極室31、他方に陽極電極4を挿入して陽極室41とす
る。陰極電極3及び陽極電極4には所定の設定電圧を印
加する電解電源5から電解電流の通電が行なわれる。ま
た、電解槽1には底部に陰極室31に通じる供給口1
a,陽極室41に通じる供給口1bが設けられ、この各
々の供給口から原水が供給される。また電解水の吐出の
ために電解槽1上部には陰極室31に連通して吐出口1
c,陽極室41に通じて吐出口1dが形成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, the electrolytic cell 1 has a closed structure, and the inside of the chamber is divided by a diaphragm 2. A cathode chamber 31 having a cathode electrode 3 inserted into one side thereof and an anode electrode 4 inserted into the other side thereof are referred to as an anode chamber 41. An electrolytic current is applied to the cathode electrode 3 and the anode electrode 4 from an electrolytic power source 5 that applies a predetermined set voltage. In addition, the electrolytic cell 1 has a supply port 1 at the bottom which leads to the cathode chamber 31.
a, a supply port 1b communicating with the anode chamber 41 is provided, and raw water is supplied from each of these supply ports. In order to discharge the electrolyzed water, the discharge port 1 is connected to the upper part of the electrolytic cell 1 by communicating with the cathode chamber 31.
c, the discharge port 1d is formed to communicate with the anode chamber 41.

【0008】電解槽1に供給される原水は水道水等が利
用され、水道の蛇口から加圧供給される原水をストレー
ナ、減圧弁等で所定の水圧にする。水圧調整された原水
は流量制御バルブ6及び流量計7により所要流量に制御
する。このようにして水圧,流量を所定に調整した原水
を電解槽1に供給するが、その途中で電気伝導度(EC
値)を調整する。
Tap water or the like is used as the raw water supplied to the electrolytic cell 1, and the raw water pressurized and supplied from the tap of the water supply is brought to a predetermined water pressure by a strainer, a pressure reducing valve or the like. The raw water whose water pressure has been adjusted is controlled to a required flow rate by the flow control valve 6 and the flow meter 7. In this way, the raw water whose water pressure and flow rate are adjusted to a predetermined level is supplied to the electrolysis tank 1, and electric conductivity (EC
Value).

【0009】電気伝導度の調整は塩素系電解質水溶液の
添加混合によって行なう。電解質に例えば食塩が用いら
れ、食塩水がタンク8内に貯水され、これを定量ポンプ
9によって食塩水注入装置10に供給する。供給された
食塩水は注入装置10によって通過する原水中に定量注
入される。注入食塩水は更に図示しない混合装置によっ
て攪拌混合することがよく、充分に混合した状態で配管
12から電解槽1に供給される。
The electrical conductivity is adjusted by adding and mixing a chlorine-based electrolyte aqueous solution. For example, salt is used as the electrolyte, and the salt solution is stored in the tank 8 and is supplied to the salt solution injecting device 10 by the metering pump 9. The supplied saline solution is injected into the raw water passing through the injection device 10 in a fixed amount. The injected saline solution is preferably mixed by stirring with a mixing device (not shown), and is supplied to the electrolytic cell 1 from the pipe 12 in a sufficiently mixed state.

【0010】供給原水は、電解槽1の入口で分流し、供
給口1aから陰極室31に、他は供給口1bから陽極室
41に供給される。電解槽1で電解生成されたアルカリ
イオン水は陰極室吐出口1cから吐出し、酸性水は陽極
吐出口1dから吐出する。アルカリイオン水は吐出口1
cに連通する配管13を、また酸性水は吐出口1dに連
通する管路14を通って外部に吐水する。管路13,1
4の途中には吐水と排水を切換える三方弁15,16が
各々設けられ、分岐した排水は排水管17から排出され
る。酸性水の流路14に設けられた分流状態を測定する
流量計18、同流路に設けられた酸性水の酸化還元電位
を測定するORPセンサ19で検出し、いずれの信号も
CPU20に入力し、演算処理により各部の制御が行な
われる。
The raw water to be supplied is split at the inlet of the electrolytic cell 1 and is supplied to the cathode chamber 31 from the supply port 1a and the other to the anode chamber 41 from the supply port 1b. The alkaline ionized water electrolytically generated in the electrolytic cell 1 is discharged from the cathode chamber outlet 1c, and the acidic water is discharged from the anode outlet 1d. 1 outlet for alkaline ionized water
The acid water is discharged to the outside through the pipe 13 that communicates with c, and the acidic water through the conduit 14 that communicates with the discharge port 1d. Pipeline 13,1
Three-way valves 15 and 16 for switching between water discharge and drainage are provided in the middle of 4, and the branched drainage is discharged from a drain pipe 17. A flow meter 18 provided in the flow path 14 of the acidic water for measuring the diversion state and an ORP sensor 19 provided in the flow path for measuring the oxidation-reduction potential of the acidic water detect the flow rate, and both signals are input to the CPU 20. , Each part is controlled by arithmetic processing.

【0011】以上の装置における作動を説明すると、原
水は水道の蛇口を開き、或いは給水ポンプを駆動して供
給する。供給原水は流量制御バルブ6により制御され
る。これは原水側の流量計7及び電解吐出水の流量計1
8の測定信号をCPU20に入力し、設定基準値と比較
演算処理し、制御信号を出力して流量制御する。この流
量制御によって次の食塩水注入装置10による食塩水の
混合濃度が一定に制御される。
The operation of the above apparatus will be described. Raw water is supplied by opening a water tap or driving a water supply pump. The raw water supply is controlled by the flow control valve 6. This is the flowmeter 7 on the raw water side and the flowmeter 1 for electrolytically discharged water.
The measurement signal of No. 8 is input to the CPU 20, the arithmetic operation is compared with the set reference value, and the control signal is output to control the flow rate. By this flow rate control, the mixed concentration of saline solution by the subsequent saline solution injector 10 is controlled to be constant.

【0012】タンク8内に貯水される食塩水は、例えば
10%程度の水溶液とし、これをポンプ9によって定量
供給する。食塩水注入装置10は定量制御されて流れる
原水に食塩水をパルス的に点滴注入するとか、原水流路
にベンチュリ部を形成して負圧によって所定量の食塩水
注入をすることによって食塩分を一定にし、電気伝導度
を一定に調整した原水を作ることができる。注入食塩水
は混合装置等で充分攪拌混合された状態で電解槽1に流
入し、電解槽1を流通し通過しながら電極3,4間の通
電によって電気分解処理される。電極3、4間の通電制
御は所定の設定電圧を印加する電解電源5により通電さ
れるが、電気分解は食塩水の添加により電気伝導度を増
大させてあるから、低電圧で大電流を流すことが容易
で、電源ワット数を少なくして容易に強い電解作用を働
かせることができ、しかも原水流量制御によって一定比
率で食塩水を添加し、電気伝導度を一定に制御した供給
水の電解により安定した電解作用を働かせることができ
る。
The saline solution stored in the tank 8 is, for example, an aqueous solution of about 10%, which is supplied by the pump 9 in a fixed amount. The saline solution injecting device 10 injects saline solution in a drip manner into the raw water that is quantitatively controlled, or forms a venturi portion in the raw water flow path to inject a predetermined amount of saline solution by negative pressure so as to inject the saline solution. It is possible to make raw water with a constant electric conductivity. The injected saline solution flows into the electrolytic cell 1 in a state of being sufficiently stirred and mixed by a mixing device or the like, and is electrolyzed by passing electricity through the electrodes 3 and 4 while passing through the electrolytic cell 1. The energization control between the electrodes 3 and 4 is carried out by the electrolysis power source 5 which applies a predetermined set voltage, but since the electrolysis increases the electric conductivity by the addition of saline solution, a large current flows at a low voltage. It is easy to make a strong electrolysis action by reducing the power wattage, and by adding salt water at a fixed ratio by controlling the flow rate of raw water, and by electrolyzing the feed water whose electric conductivity is controlled to be constant. A stable electrolytic action can be exerted.

【0013】電解槽1内の電気分解は隔膜2を通しての
電解であり、電解による陽イオンは隔膜2を通して陰極
室31に、また陰イオンは陽極室41に集まる電気浸透
作用を受け、陽極室41にはCl- 等の陰イオンを多量に
含んだPH値の低い酸性水が得られる。この酸性水は流
量当りの大きい電気量の電解作用を受けることにより電
気伝導度が高まりPH値の低い強酸性水となる。一方陰
極室31にはアルカリイオン水が生成されて吐出口1c
から管路13を通って外に吐水される。また陽極室41
の酸性水は管路14を通って吐出する。いずれも管路1
3,14に挿入した三方弁15,16の切換えによって
排水管17に合流して排水される。
The electrolysis in the electrolytic cell 1 is electrolysis through the diaphragm 2, and the cations due to the electrolysis are subjected to the electroosmotic action of collecting in the cathode chamber 31 and the anion in the anode chamber 41 through the diaphragm 2, and the anode chamber 41 is subjected to the electroosmosis. As a result, acidic water containing a large amount of anions such as Cl − and having a low PH value can be obtained. The acidic water is electrolyzed with a large amount of electricity per flow rate, so that the electrical conductivity is increased and the acidic water becomes a strong acidic water having a low PH value. On the other hand, alkaline ionized water is generated in the cathode chamber 31 and the discharge port 1c
Is discharged to the outside through the conduit 13. Also, the anode chamber 41
Of the acidic water is discharged through the conduit 14. Pipeline 1
By switching the three-way valves 15 and 16 inserted in 3 and 14, the drain pipe 17 is joined and drained.

【0014】電解槽1内における電解は、電極3,4間
に所定の設定電圧を印加する電源5によって通電される
が、ここを流通する原水流量制御に応じた任意の電気量
によって電解することができ、例えば原水流量を増加す
れば、流量に対する電気量が減少して電解度を下げ、反
対に原水流量を減少させれば、電気量が増加して強く電
解し電解度を上げることができ、酸性水はPH値を低下
させ、EC値を増大させることができる。
The electrolysis in the electrolysis tank 1 is energized by a power source 5 which applies a predetermined set voltage between the electrodes 3 and 4, and the electrolysis is performed with an arbitrary amount of electricity according to the control of the flow rate of raw water flowing through the electrode. For example, if the flow rate of raw water is increased, the amount of electricity with respect to the flow rate decreases and the degree of electrolysis is lowered. Conversely, if the flow rate of raw water is reduced, the amount of electricity is increased and the degree of electrolysis is increased and electrolysis is increased. Acidic water can lower the PH value and increase the EC value.

【0015】このような電解作用を受けて生成された電
解水は、各々管路13,14を吐出し流出するが、酸性
水の導出管路14にはORPセンサ19が設けてあり、
このORPセンサ19によって電解酸性水の酸化還元電
位が測定され、その検出測定信号はCPU20に供給さ
れる。CPU20には予じめ所要とするORPの基準値
がメモリしてあり、ORPセンサ19の測定信号との比
較演算処理により三方弁の制御信号を出力し、吐水と排
水の切換制御を行なう。
The electrolyzed water produced by such an electrolysis action is discharged through the conduits 13 and 14, respectively, and an ORP sensor 19 is provided in the acid water outlet conduit 14.
The ORP sensor 19 measures the oxidation-reduction potential of electrolyzed acidic water, and the detection measurement signal is supplied to the CPU 20. The CPU 20 stores a reference value of the ORP which is required in advance, and outputs a control signal of the three-way valve by comparison calculation processing with the measurement signal of the ORP sensor 19 to perform switching control between water discharge and drainage.

【0016】三方弁16は、電解吐出水の電解度合、即
ちORPが所定の範囲内にあるとき吐水側に切換わり、
所定範囲外では排水管17に切換わるので、管路14か
らは常に一定の特性の電解酸性水のみを安定して吐水し
洗浄、殺菌等に利用することができる。また三方弁15
を開けば管路13から所定に調整されたアルカリイオン
水を流出させて飲料水等として利用できる。なお勿論、
アルカリイオン水の電解度合の検出には管路13にOR
Pセンサを設けることができる。
The three-way valve 16 is switched to the water discharge side when the degree of electrolysis of the electrolytic discharge water, that is, the ORP is within a predetermined range,
Since the drainage pipe 17 is switched outside the predetermined range, only the electrolytic acid water having a constant characteristic can be stably discharged from the pipe line 14 and used for cleaning, sterilization and the like. Also three-way valve 15
When opened, the alkaline ionized water adjusted to a predetermined level can be made to flow out from the pipe line 13 and can be used as drinking water or the like. Of course,
To detect the degree of electrolysis of alkaline ionized water, add OR to conduit 13.
A P-sensor can be provided.

【0017】このように、CPU20による制御は、原
水側の流量計7,酸性水吐出側の流量計18の測定信号
の単独もしくは組合せにもとずく流量制御バルブ6の制
御を行ない、一定流量の原水を電解槽1内に流通させ、
この原水流量制御によって流量当りの一定の最適制御し
た電気分解を行ない、電解吐出水のORPを、またこれ
によって電気伝導度,PH値、イオン濃度等の電解度合
を所定の設定範囲に安定して制御することができる。
As described above, the control by the CPU 20 controls the flow control valve 6 based on the measurement signals of the flow meter 7 on the raw water side and the flow meter 18 on the discharge side of the acidic water alone or in combination, and a constant flow rate is controlled. The raw water is circulated in the electrolytic cell 1,
By this raw water flow rate control, constant optimal electrolysis per flow rate is performed to stabilize the ORP of the electrolytic discharge water and thereby the electrolysis degree such as electric conductivity, PH value and ion concentration within a predetermined set range. Can be controlled.

【0018】またORPセンサ19の検出に基づき、電
解吐出水のORPが所定範囲外では三方弁16を排水管
17に切換えて排水し、原水が電解槽1内を常に一定流
量で流通できるようにし、流量制御によって一定の最適
制御した電気分解を行なわせ、電解吐出水のORPが所
定範囲内になったときに三方弁16を吐水に切換えて吐
水利用するようにするので、吐水する酸性水のPH値、
イオン濃度等の電解度合は常に所定の設定範囲のものが
安定して得られるようになる。したがって、電解を開始
した当初とか原水側の水圧変化等により原水流量が大き
く変動しても、このようなときは三方弁16が排水管1
7に切換わるので吐水する酸性水にPH値の高い水が混
合するようなことがなく、電解の開始当初から一定PH
値の酸性水を吐水して利用することができる。また吐水
にしろ排水にしろ吐出側を止めることなく常に開放状態
で電解槽1内を原水が流れるようにしたので、定流量制
御された原水の電解が流水状態で安定しておこなわれ
る。
On the basis of the detection by the ORP sensor 19, if the ORP of the electrolytic discharge water is out of a predetermined range, the three-way valve 16 is switched to the drain pipe 17 to drain the raw water so that the raw water can always flow at a constant flow rate in the electrolytic cell 1. Since a certain optimum electrolysis is performed by the flow rate control and the three-way valve 16 is switched to the water discharge to use the water discharge when the ORP of the electrolytic discharge water falls within a predetermined range, the acid water to be discharged is used. PH value,
The degree of electrolysis such as ion concentration can always be stably obtained within a predetermined setting range. Therefore, even if the flow rate of raw water changes greatly at the beginning of electrolysis or due to changes in water pressure on the raw water side, in such a case, the three-way valve 16 causes the drain pipe 1 to operate.
Since it is switched to 7, the acidic water to be discharged does not mix with the water having a high PH value, and the constant pH is maintained from the beginning of the electrolysis.
The value of acidic water can be discharged and used. Further, the raw water is allowed to flow in the electrolytic cell 1 in an open state without stopping the discharge side, whether it be spouted water or drained water, so that the electrolysis of the raw water with a constant flow rate is stably performed in the running state.

【0019】なお、流量制御信号を発生するCPU20
の基準設定値を変更すれば、それに応じた原水流量制御
が行なわれ、例えば陽極室41の流量を減少すれば、流
れる水の流量当りの電気量が増加でき、この電気量の増
加によって電気分解強度を高め、電気伝導度の高いPH
値の低い強酸性水を得ることができ、流量制御によって
任意の酸性水が得られる。またこの場合ORPセンサ1
9の信号と比較する基準値の変更もし、三方弁16の切
換えにより所定のPH値の酸性水のみが吐水するように
制御する。この電解水生成は、三方弁15を切換えてア
ルカリイオン水を吐出させ飲料水等に利用する場合も全
く同様で、流量制御および吐水の切換えによって安定し
たアルカリイオン水が効率よく多量に生成でき、任意に
PH等を制御したアルカリイオン水が生成ができる。
The CPU 20 for generating the flow rate control signal
If the reference set value of is changed, the raw water flow rate control is performed accordingly. For example, if the flow rate of the anode chamber 41 is decreased, the amount of electricity per flow rate of the flowing water can be increased. PH with high strength and high electrical conductivity
Strongly acidic water with a low value can be obtained, and any acidic water can be obtained by controlling the flow rate. Also in this case the ORP sensor 1
The reference value to be compared with the signal of 9 is also changed, and the three-way valve 16 is switched so that only acidic water having a predetermined PH value is discharged. This generation of electrolyzed water is exactly the same when the three-way valve 15 is switched to discharge alkaline ionized water for use as drinking water, etc., and stable alkaline ionized water can be efficiently generated in large quantities by controlling the flow rate and switching the discharged water. It is possible to generate alkaline ionized water in which pH and the like are arbitrarily controlled.

【0020】また酸性水あるいはアルカリイオン水吐出
水の電解度合の検出には、ORPセンサの他に電解吐出
水の電気伝導度を測定するECセンサを設けることがで
き、またPH計を設けて電解水のPH値を検出しながら
原水の流量制御をすることができる。その他電解水の電
解度合の検出には、他に原水の水質もしくは添加電解質
によって生成するCl- ,ClO2 - ,ClO3 - ,ClO4 - ,O2 - ,OH
- ,Na+ ,K+ ,Mg++,Ca++,H+ 等のイオンを検出するイオ
ン濃度検出器,O2,2H2,Cl2 等のガス濃度検出器,ガス
圧検出器或はこれらの単独もしくは複数検出器の組合せ
等を利用することができる。
In addition to the ORP sensor, an EC sensor for measuring the electric conductivity of the electrolytic discharge water can be provided to detect the degree of electrolysis of the acidic water or alkaline ionized water discharge water. The flow rate of raw water can be controlled while detecting the PH value of water. The detection of the electrolytic degree of other electrolytic water produced by water or additives electrolyte raw water other Cl -, ClO 2 -, ClO 3 -, ClO 4 -, O 2 -, OH
- , Na + , K + , Mg ++ , Ca ++ , H +, etc. ion concentration detector, O 2 , 2H 2 , Cl 2 etc. gas concentration detector, gas pressure detector or These single or a combination of a plurality of detectors can be used.

【0021】電解状態は前記のように電解槽1から吐出
した電解イオン水の電解度合を測定する以外に、電解槽
1内で電解中の電解電圧,電解電流,インピーダンスの
変化,その他の変化成分等の検出によっても測定するこ
とができる。図2は電解電流の変化を検出する実施例
で、比較増幅器21を用い、これに信号を加える。即
ち、電源5から陰陽極電極3,4間に電解電流を通電す
る回路に検出抵抗22を挿入し、流れる電流によって電
圧降下した電圧信号を比較器21の−信号端子に加え、
+端子にダイオード23及び抵抗24で設定した基準電
圧を印加して比較することにより、その比較増幅信号を
CPU20に入力する。CPU20はこの入力信号の判
定によって三方弁の排水、吐水の切換えを行ない、これ
により所定のPH値等を有する酸性水,アルカリイオン
水を吐水することができる。
As for the electrolysis state, in addition to measuring the electrolysis degree of the electrolyzed ionized water discharged from the electrolysis tank 1 as described above, the electrolysis voltage, electrolysis current, impedance change during electrolysis in the electrolysis tank 1, and other change components It can also be measured by detecting such as. FIG. 2 shows an embodiment in which a change in electrolytic current is detected, and a comparator amplifier 21 is used to add a signal thereto. That is, the detection resistor 22 is inserted in a circuit for passing an electrolytic current between the power source 5 and the negative and positive electrodes 3, 4, and a voltage signal dropped by the flowing current is applied to the-signal terminal of the comparator 21,
By applying the reference voltage set by the diode 23 and the resistor 24 to the + terminal and making a comparison, the comparison amplified signal is input to the CPU 20. The CPU 20 switches the drainage of the three-way valve and the discharge of water according to the determination of this input signal, whereby the acidic water and the alkaline ionized water having a predetermined PH value can be discharged.

【0022】CPU20による検出制御は、前記のよう
な各センサからの信号、他のセンサからの信号のいずれ
かを選択し、或は各信号を別々に演算処理して制御信号
を出力してもよく、また各センサの信号の和,差,積等
により演算処理して制御信号を出力し、原水流量制御、
吐水排水の切換制御をすることができる。また、電解用
電源5は所定の設定電圧を電極3,4間に印加している
が、原水流量制御によって電気量を任意に制御すること
ができ、電気量の増加によって強い電解作用を与え、吐
出口1c,1dから吐出するアルカリイオン水,酸性水
の電気伝導度を高める。また電気量の増加制御によって
も、電解電圧の上昇がないから、ガスの発生,放電の発
生がなく、電極面を損傷劣化させるようなこともなく安
全である。
The detection control by the CPU 20 is performed by selecting either the signal from each sensor as described above or the signal from another sensor, or by processing each signal separately and outputting the control signal. Well, it also calculates the sum, difference, product, etc. of the signals from each sensor and outputs a control signal to control the raw water flow rate.
It is possible to control the switching of water discharge and drainage. Further, the electrolysis power source 5 applies a predetermined set voltage between the electrodes 3 and 4, but the amount of electricity can be arbitrarily controlled by controlling the flow rate of the raw water, and a strong electrolytic action is given by the increase in the amount of electricity. The electric conductivity of alkaline ionized water and acidic water discharged from the discharge ports 1c and 1d is increased. Further, even if the increase in the amount of electricity is controlled, the electrolysis voltage does not rise, so there is no generation of gas or discharge, and there is no danger of electrode surface damage or deterioration.

【0023】前記したように原水を電解槽1に流しなが
ら電解処理するとき、原水に食塩水を加えて電解するこ
とにより電解電流が流れ易く、低電圧で大電流による強
い電解作用を働かせることができ、電解吐出水の電気伝
導度を高めることができる。この電気伝導度の増加は酸
性水側ではPH値の低下に相関関係し、容易に目的とす
るPH値の酸性水を生成することができる。かつまた、
強い電解作用によって水の酸化還元電位が増加して強い
殺菌効果が付与される。これはまたアルカリイオン水の
生成においても流量制御によって任意のPH値の飲料水
の生成が効率良く行なえる。
As described above, when electrolytic treatment is carried out while flowing raw water into the electrolytic cell 1, electrolysis current can easily flow by adding salt water to the raw water to electrolyze, and a strong electrolysis action due to a large current at a low voltage can be exerted. Therefore, the electric conductivity of the electrolytically discharged water can be increased. This increase in electrical conductivity correlates with a decrease in PH value on the acidic water side, and acidic water having a desired PH value can be easily produced. And again
The strong electrolytic action increases the oxidation-reduction potential of water and imparts a strong bactericidal effect. Also, in the production of alkaline ionized water, the production of drinking water having an arbitrary PH value can be efficiently performed by controlling the flow rate.

【0024】次の実験例を説明すると、原水100に対
して10%食塩水1の混合率で混合し、この食塩混合の
原水を電解槽に供給し吐水側の切換バルブを吐水、排水
に切換え、常に所定流量で流しながら電解した。電解槽
の通電条件は16V,30Aとし原水の流量を制御して
PH2.6の酸性水が毎分約3.6l得られた。吐水バ
ルブの検知センサによる切換制御によりPH値は電解の
開始当初から一定で常に安定していた。
Explaining the following experimental example, 100% of raw water is mixed at a mixing ratio of 1% 10% salt water, the raw water of this salt mixture is supplied to the electrolytic cell, and the switching valve on the water discharge side is switched to water discharge and drainage. The electrolysis was performed while always flowing at a predetermined flow rate. The energization conditions of the electrolytic cell were 16 V and 30 A, and the flow rate of the raw water was controlled to obtain about 3.6 l of acidic water having a pH of 2.6. The PH value was constant from the beginning of electrolysis and was always stable due to the switching control by the detection sensor of the water discharge valve.

【0025】このように本発明によれば、所要の低PH
値の酸性水が安定して得られ、容易に多量に連続して生
成できる。また、生成酸性水のPH値を前記2.6より
高めてPH3程度にする場合は流量を増加させるだけで
よく、流量制御しながら電解電流を所要の電気量にして
酸性水の生成量を更に増加させることができる。また、
以上は酸性水の生成について説明したが、アルカリイオ
ン水を利用する場合も同様で流量制御によってアルカリ
イオン水のPH制御を容易にすることができる。この場
合も多量のアルカリイオン水を低電気量で容易に得られ
る。
As described above, according to the present invention, the required low PH can be obtained.
A stable amount of acidic water can be obtained, and a large amount can be easily produced continuously. Further, when the pH value of the generated acidic water is increased to above pH 2.6 to about PH3, it is sufficient to increase the flow rate, and while controlling the flow rate, the electrolysis current is changed to the required amount of electricity to further generate the acidic water. Can be increased. Also,
Although the generation of acidic water has been described above, the pH control of alkaline ionized water can be facilitated by controlling the flow rate in the same manner when alkaline ionized water is used. Also in this case, a large amount of alkaline ionized water can be easily obtained with a low electricity amount.

【0026】また、吐水と排水を切換えるバルブは酸性
水のみを利用する場合は酸性水吐水側のみに、アルカリ
イオン水のみを利用する場合はアルカリイオン水吐水側
のみに設けることができる。切換バルブは三方弁にかぎ
らず、複数バルブの組合わせ等が同様に利用できる。ま
た、流量制御は、吐出水側で行ってもよく、酸性水もし
くはアルカリイオン水の吐出流路に流量制御装置を設け
て行う。流量制御はアナログ的制御でもよいが、デジタ
ル制御の方が容易にでき、信号をデジタル変換してモー
タバルブをパルス的に制御するとか、振動バルブにより
振動数の制御をすることによって安定した精密制御が可
能である。また、原水に添加する塩素系電解質はNaCl以
外にKCl,HCl,HClO,HClO3,KClO3,NaClO3等を単独もしく
は複合して利用することができ、原水流量に対して一定
濃度で均一混合できるように所定濃度の水溶液にして用
いる。水溶液は筒状容器等に充填してカートリッジにし
て利用することができ、これの注入もパルス的に点滴注
入することにより混入制御が正確にできる。
Further, the valve for switching between spouting water and drainage can be provided only on the acidic water spouting side when only acidic water is used, and only on the alkaline ion water spouting side when only alkaline ionized water is used. The switching valve is not limited to a three-way valve, and a combination of a plurality of valves can be used as well. The flow rate control may be performed on the discharge water side, and is performed by providing a flow rate control device in the discharge passage of the acidic water or the alkaline ion water. The flow rate control may be analog control, but digital control can be performed more easily. Stable precision control can be achieved by converting the signal to digital and controlling the motor valve in pulses, or by controlling the frequency with a vibration valve. Is possible. Further, KCl besides chlorine electrolyte is NaCl added to the raw water, HCl, HClO, HClO 3, KClO 3, NaClO 3 , or the like can be utilized independently or in combination to a uniform mixture at a constant concentration with respect to the raw water flow It is used as an aqueous solution with a predetermined concentration as much as possible. The aqueous solution can be used as a cartridge by filling it in a cylindrical container or the like, and the injection of this can also be controlled accurately by performing pulse infusion.

【0027】[0027]

【発明の効果】以上のように本発明によれば、水の電解
が電解質の混合により容易にでき、電気量ワット数を低
下させて多量の電解水を安価に連続的に得られる。原水
もしくは吐出水の流量を所定に制御し、これに定量ポン
プによる電解質の添加混合及び所定の設定電圧を印加す
る電解電源により電気量の制御が行なわれ、これにより
電気伝導度,PH値,酸化還元電位等が所定の設定範囲
内に制御された電解水を安定して生成することができ
る。また、電解水の吐出側に吐水と排水を切換えるバル
ブを設け、これを電解水生成中の電解槽における電解状
態もしくは電解吐出水の電解度合をセンサによって検出
し、この検出信号にもとずいてバルブの切換制御を行な
い、電解吐出水の電解度合が所定範囲外では排水に切換
えて排水させ、流量制御した原水が電解槽内を所定流量
で流通できるようにしから電解水の生成が安定にでき、
また電解度合が所定範囲内になったときはバルブを吐水
に切換えて生成電解水を吐水利用するようにしたので、
電解開始時とか原水供給側の水圧変動があっても電気伝
導度,PH値,酸化還元電位等が一定に制御された電解
水のみを安定して得ることがでる。
As described above, according to the present invention, the electrolysis of water can be easily performed by mixing the electrolyte, the wattage of electricity can be reduced, and a large amount of electrolyzed water can be continuously obtained at a low cost. The amount of electricity is controlled by controlling the flow rate of raw water or discharge water to a predetermined level, adding and mixing the electrolyte with a metering pump, and applying a predetermined set voltage to this to control the amount of electricity. It is possible to stably generate electrolyzed water whose reduction potential and the like are controlled within a predetermined setting range. In addition, a valve is provided on the discharge side of the electrolyzed water to switch between water discharge and drainage, and this is detected by a sensor that detects the electrolysis state in the electrolytic cell during the generation of electrolyzed water or the degree of electrolysis of electrolyzed water, and based on this detection signal. By controlling the switching of the valve, if the degree of electrolysis of the electrolytic discharge water is outside the specified range, it is switched to drainage and drained, and the flow rate-controlled raw water can be circulated in the electrolytic tank at a specified flow rate, thus stabilizing the generation of electrolytic water. ,
Also, when the degree of electrolysis is within the predetermined range, the valve is switched to water discharge and the generated electrolyzed water is used for water discharge.
It is possible to stably obtain only electrolyzed water whose electric conductivity, PH value, redox potential and the like are controlled to be constant even when the electrolysis is started or the water pressure changes on the side of supplying raw water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の他の実施例の一部構成図。FIG. 2 is a partial configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 隔膜 3,4 電極 31 陰極室 41 陽極室 5 電解電源 6 流量制御バルブ 7,18 流量計 10 食塩水注入装置 15,16 三方弁 19 ORPセンサ 20 CPU 1 Electrolyzer 2 Diaphragm 3,4 Electrode 31 Cathode chamber 41 Anode chamber 5 Electrolytic power supply 6 Flow control valve 7,18 Flow meter 10 Salt water injection device 15,16 Three-way valve 19 ORP sensor 20 CPU

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有坂 政員 埼玉県川越市今福中台2779番地1 日本イ ンテック株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Arisaka 2779 Imafuku Nakadai, Kawagoe City, Saitama 1 Japan Intec Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電解槽内を隔膜によって陰極室と陽極室
とに分割して各々に電極を設け、該電極間に所定電圧を
印加する電解電源を設け、前記電解槽内に供給される原
水を電極間の通電によって電解し陰極室にアルカリイオ
ン水,陽極室に酸性水を生成するにあたり、前記電解槽
に供給する原水の流路もしくは電解槽から吐出する吐出
水流路に流量制御装置を設け、前記電解槽に供給する原
水中に塩素系電解質水溶液を定量供給添加する供給手段
を設けるとともに、更に前記原水もしくは電解吐出水の
流量を測定する流量計を設け、該流量計の測定によって
前記流量制御装置を制御することにより原水もしくは吐
出水の流量を所定の一定量に制御し、前記供給手段によ
って塩素系電解質水溶液を定量添加混合した原水を前記
電解槽に供給流通させながら電解するようにした装置に
おいて、前記電解槽における電解状態もしくは電解槽か
らの吐出水の電解度合を検出する検出センサを設けると
ともに、前記電解槽から吐出する電解吐出水の流路に吐
水と排水とを切換える切換バルブを設け、前記検出セン
サの検出信号によって前記電解吐出水の電解度合が所定
範囲内のとき吐水に所定範囲外のとき排水に前記バルブ
の切換えを行う制御装置を設けたことを特徴とする電解
水の生成装置。
1. Raw water supplied into the electrolytic cell by dividing the inside of the electrolytic cell into a cathode chamber and an anode chamber by a diaphragm and providing electrodes on each of them, and providing an electrolytic power source for applying a predetermined voltage between the electrodes. A flow control device is provided in the flow path of the raw water supplied to the electrolysis tank or the discharge water flow path discharged from the electrolysis tank when the alkaline ionized water is generated in the cathode chamber and the acid water is generated in the anode chamber by electrolyzing In addition to providing a supply means for quantitatively adding a chlorine-based electrolyte aqueous solution to the raw water to be supplied to the electrolytic cell, a flow meter for measuring the flow rate of the raw water or electrolytic discharge water is further provided, and the flow rate is measured by the flow meter. By controlling the controller, the flow rate of the raw water or the discharge water is controlled to a predetermined fixed amount, and the raw water in which the chlorine-based electrolyte aqueous solution is quantitatively added and mixed by the supply means is supplied to the electrolytic cell. In the device which is configured to electrolyze while providing a detection sensor for detecting the electrolysis state in the electrolysis tank or the degree of electrolysis of the discharge water from the electrolysis tank, and discharging water into the flow path of the electrolysis discharge water discharged from the electrolysis tank. A switching valve for switching between drainage and drainage is provided, and a control device is provided for switching the valve to drainage when the electrolysis degree of the electrolytic discharge water is within a predetermined range and when the electrolysis degree of the electrolytic discharge water is outside a predetermined range. A device for producing electrolyzed water, characterized by.
【請求項2】 検出センサとして、電解吐出水の酸化還
元電位を測定するORPセンサを設けたことを特徴とす
る請求項1記載の電解水の生成装置。
2. The electrolyzed water generating apparatus according to claim 1, wherein an ORP sensor for measuring an oxidation-reduction potential of electrolyzed discharge water is provided as the detection sensor.
【請求項3】 検出センサとして、電解吐出水の電気伝
導度を測定するECセンサを設けたことを特徴とする請
求項1記載の電解水の生成装置。
3. The electrolyzed water producing apparatus according to claim 1, wherein an EC sensor for measuring the electric conductivity of electrolyzed discharge water is provided as the detection sensor.
【請求項4】 検出センサとして、電解吐出水のPHを
測定するPH計を設けたことを特徴とする請求項1記載
の電解水の生成装置。
4. The electrolyzed water generating apparatus according to claim 1, wherein a PH meter for measuring the PH of electrolyzed discharged water is provided as the detection sensor.
【請求項5】 検出センサとして、電解吐出水のイオン
濃度を測定するイオン濃度計を設けたことを特徴とする
請求項1記載の電解水の生成装置。
5. The electrolyzed water producing apparatus according to claim 1, wherein an ion densitometer for measuring the ion concentration of the electrolyzed discharge water is provided as the detection sensor.
【請求項6】 検出センサとして、電解吐出水のガス濃
度を測定するガス濃度計を設けたことを特徴とする請求
項1記載の電解水の生成装置。
6. The electrolyzed water generation apparatus according to claim 1, wherein a gas concentration meter for measuring the gas concentration of the electrolyzed discharge water is provided as the detection sensor.
JP10423493A 1993-04-30 1993-04-30 Electrolytic water forming apparatus Pending JPH06312184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10423493A JPH06312184A (en) 1993-04-30 1993-04-30 Electrolytic water forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10423493A JPH06312184A (en) 1993-04-30 1993-04-30 Electrolytic water forming apparatus

Publications (1)

Publication Number Publication Date
JPH06312184A true JPH06312184A (en) 1994-11-08

Family

ID=14375277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10423493A Pending JPH06312184A (en) 1993-04-30 1993-04-30 Electrolytic water forming apparatus

Country Status (1)

Country Link
JP (1) JPH06312184A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JP2001170635A (en) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd Water reforming device
KR101021954B1 (en) * 2010-10-06 2011-03-16 주식회사 알카메디 A water flow exchange system have three-way type drainage of electrolyzer
CN108344772A (en) * 2017-12-29 2018-07-31 宁波欧琳厨具有限公司 A kind of method and system of purification water tank electrolytic strip detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007686A (en) * 1994-08-26 1999-12-28 Medical Discoveries, Inc. System for elctrolyzing fluids for use as antimicrobial agents
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
JP2001170635A (en) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd Water reforming device
JP4590668B2 (en) * 1999-12-21 2010-12-01 パナソニック株式会社 Water reformer
KR101021954B1 (en) * 2010-10-06 2011-03-16 주식회사 알카메디 A water flow exchange system have three-way type drainage of electrolyzer
CN108344772A (en) * 2017-12-29 2018-07-31 宁波欧琳厨具有限公司 A kind of method and system of purification water tank electrolytic strip detection
CN108344772B (en) * 2017-12-29 2023-07-11 宁波欧琳科技股份有限公司 Method and system for detecting purified water tank electrolyte sheet

Similar Documents

Publication Publication Date Title
KR0133975B1 (en) Method amd device for producing electrlytic water
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
WO2006042082A2 (en) Apparatus and method for producing electrolyzed water
KR20020090888A (en) Water treatment apparatus
JPH06246269A (en) Device for producing electrolyte
JP3234025B2 (en) Electrolyzed water generator
JPH06312184A (en) Electrolytic water forming apparatus
JP3275108B2 (en) Electrolyzed water generator
JP3292930B2 (en) Electrolyzed water generator
JPH06312185A (en) Electrolytic water forming apparatus
JPH06246265A (en) Device for producing electrolyte
JPH08229564A (en) Production of acidic water and device therefor
JPH07328639A (en) Oxidation potential water forming device
JP2001062455A (en) Electrolytic water production device
JP3543365B2 (en) Ionized water generator and pH sensor cleaning method
JP3539459B2 (en) ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water
JP4068267B2 (en) Electrolyzed water generator
JPH08215684A (en) Ionic water making apparatus
JPH06339691A (en) Sterile water preparation device
JP3448834B2 (en) ORP sensor for anode water measurement
JPH0938652A (en) Producing device of strong acid water
JP3515735B2 (en) Wash water generator
JP3921568B2 (en) Multifunctional electrolyzed water generating apparatus and electrolyzed water generating method thereof
JPH06238281A (en) Sterilization system for water tank
JP3835019B2 (en) Electrolytic control method for chlorine production