JP3234025B2 - Electrolyzed water generator - Google Patents
Electrolyzed water generatorInfo
- Publication number
- JP3234025B2 JP3234025B2 JP03548793A JP3548793A JP3234025B2 JP 3234025 B2 JP3234025 B2 JP 3234025B2 JP 03548793 A JP03548793 A JP 03548793A JP 3548793 A JP3548793 A JP 3548793A JP 3234025 B2 JP3234025 B2 JP 3234025B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- water
- electrolytic
- raw water
- electrolytic cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、水の電気分解によって
洗浄水,殺菌水等として有用な酸性水及び飲料水となる
アルカリ水を生成する装置に関する。更に詳しくは酸性
水等の生成量をORP値等を変えることなく任意に変更
することができる電解水の生成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing acidic water useful as washing water, sterilizing water and the like and alkaline water serving as drinking water by electrolysis of water. More specifically, the present invention relates to an electrolyzed water generation apparatus capable of arbitrarily changing an amount of generated acidic water or the like without changing an ORP value or the like.
【0002】[0002]
【従来の技術】食品とか医療の分野において、電解水を
洗浄用水とか消毒,殺菌用の水として使用することは、
一般的に知られているが、pH値の低い酸性水を安定し
て多量に得ることは容易でない。従来の電解槽に供給す
る原水中に塩素系電解質水溶液を供給添加する供給手段
を設けた電解水生成装置は、電解槽内を隔膜によって陰
極室と陽極室に分け、各々の室内に電極を挿入し、室内
に供給した電解質を含む原水を電極間の通電によって電
気分解することにより、陰極室にアルカリ水,陽極室に
酸性水を電解生成する。このような電解水生成装置にお
いて、本発明者等は、電解槽内電極間に所定の設定電圧
を印加する電解用電源を用い、電解槽に供給する原水中
に食塩水等の電解質を供給添加した供給原水の流量を制
御することによって流量当りの電気量の制御を行ない、
これにより電解水の電気伝導度、pH等を所定値に制御
するようにした電解水の生成装置を提案している。2. Description of the Related Art In the field of food and medical care, the use of electrolyzed water as washing water or water for disinfection and sterilization is difficult.
Although generally known, it is not easy to stably obtain a large amount of acidic water having a low pH value. The electrolyzed water generator equipped with a supply means for supplying and adding a chlorine-based electrolyte aqueous solution to raw water supplied to a conventional electrolyzer is divided into a cathode chamber and an anode chamber by a diaphragm, and electrodes are inserted into each chamber. Then, by electrolyzing raw water containing an electrolyte supplied into the room by energization between the electrodes, alkaline water is generated in the cathode chamber and acidic water is generated in the anode chamber. In such an electrolyzed water generation apparatus, the present inventors use an electrolysis power supply for applying a predetermined set voltage between electrodes in an electrolysis tank, and supply and add an electrolyte such as saline to raw water supplied to the electrolysis tank. Controlling the amount of electricity per flow rate by controlling the flow rate of the supplied raw water,
Thus, there has been proposed an apparatus for generating electrolyzed water in which the electric conductivity, pH, and the like of the electrolyzed water are controlled to predetermined values.
【0003】[0003]
【発明が解決しようとする課題】これによれば、電解槽
内における電解が電解質の混合により電気伝導度を高
め、電力消費量を低下させて所定の電解水が安価に連続
的に生成でき、電解質の定量供給手段による添加混合及
び所定設定電圧を印加する電解電源による電解電気量の
制御が、原水の流量制御によって容易に制御でき、電解
水の電気伝導度(EC値)、pH値等が容易に所定に制
御でき、所望する電解水を安定して生成することができ
る。しかしながら、このような装置によると電解電源及
び電解質供給装置は所定値に設定されており、酸性水等
の生成を使用量に応じて任意に変更することができない
欠点がある。According to this, the electrolysis in the electrolytic cell can increase the electric conductivity by mixing the electrolyte, reduce the power consumption, and continuously produce predetermined electrolytic water at low cost. The addition and mixing of the electrolyte by the quantitative supply means and the control of the amount of electrolysis by the electrolysis power source for applying a predetermined set voltage can be easily controlled by controlling the flow rate of the raw water, and the electric conductivity (EC value), pH value, etc. of the electrolysis water can be controlled. It can be easily controlled in a predetermined manner, and desired electrolyzed water can be generated stably. However, according to such a device, the electrolysis power supply and the electrolyte supply device are set to predetermined values, and there is a disadvantage that the generation of acidic water or the like cannot be arbitrarily changed according to the usage amount.
【0004】このため、本発明は、所要のEC、pH値
等を有する酸性水が、使用量の変更によっても常に一定
に安定して生成でき、同時にアルカリ水の生成ができる
電解水の生成装置の提供を目的とする。[0004] Therefore, the present invention provides an electrolyzed water generating apparatus which can constantly and stably generate acidic water having a required EC, pH value, etc., even if the amount used is changed, and at the same time can generate alkaline water. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】電解槽内を隔膜によって
陰極室と陽極室とに分割して各々に陰陽極電極を設け、
前記電解槽内に供給される原水中に塩素系電解質水溶液
を定量供給添加する供給装置と、前記電解間に所定の設
定電圧を通電する電解電源と、前記電解槽に供給する原
水流量を所定に制御する流量制御装置を設け、流量制御
しながら塩素系電解質水溶液を添加した原水を電解槽に
供給し、陰陽極電極間の通電によって電解し、陰極室に
アルカリ水、陽極室に酸性水を生成する電解水の生成装
置において、前記アルカリ水もしくは酸性水の使用量に
応じて流量を設定する流量設定器と、該設定流量に対応
して前記流量制御装置の流量制御基準値および前記塩素
系電解質水溶液供給装置の供給量を各々切換える流量切
換手段とを設けたことを特徴とする。また、流量切換手
段が、設定流量に対応して前記流量制御装置の流量制御
基準値と前記塩素系電解質水溶液供給装置の供給量およ
び前記電解電源の設定電圧を各々切換えることを特徴と
する。Means for Solving the Problems The electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, and a cathode and an anode are provided respectively,
A supply device for quantitatively supplying and adding a chlorine-based electrolyte aqueous solution to raw water supplied into the electrolytic cell, an electrolytic power supply for supplying a predetermined set voltage during the electrolysis, and a raw water flow rate supplied to the electrolytic cell to a predetermined value. Providing a flow control device to control the raw water to which the chlorine-based electrolyte aqueous solution is added to the electrolytic cell while controlling the flow rate, and electrolyze by applying electricity between the negative and positive electrodes to produce alkaline water in the cathode chamber and acidic water in the anode chamber A flow setting device for setting a flow rate according to the usage amount of the alkaline water or the acidic water, a flow control reference value of the flow control device and the chlorine-based electrolyte corresponding to the set flow rate. Flow rate switching means for switching the supply amount of the aqueous solution supply device. Further, the flow rate switching means switches the flow rate control reference value of the flow rate control device, the supply amount of the chlorine-based electrolyte aqueous solution supply device, and the set voltage of the electrolytic power supply in accordance with the set flow rate.
【0006】[0006]
【作用】本発明は、電解槽内に供給する水道水等の原水
中に塩素系電解質水溶液を供給混合して原水の電気伝導
度を高め、陰陽極電極間への通電によって電気分解し、
電解槽内陰極室にアルカリ水,陽極室に酸性水を連続的
に生成し吐出利用する。電解槽に供給する原水流量を所
定に制御し供給される塩素系電解質水溶液との混合率を
一定にし、且つ供給原水の流量制御によって電解槽にお
ける電解電気量を所定に制御し、電解度合が所定の電解
水を生成する。吐出する電解水の使用量に応じて、原水
流量および塩素系電解質水溶液の供給量の切換制御およ
び電解設定電圧の切換制御を行なう。According to the present invention, a chlorine-based electrolyte aqueous solution is supplied to and mixed with raw water such as tap water supplied into an electrolytic cell to increase the electric conductivity of the raw water, and is electrolyzed by supplying electricity between the negative and positive electrodes.
Alkaline water is continuously generated in the cathode chamber in the electrolytic cell, and acidic water is generated and discharged in the anode chamber. The flow rate of raw water supplied to the electrolytic cell is controlled to a predetermined value, the mixing ratio with the supplied chlorine-based electrolyte aqueous solution is kept constant, and the amount of electrolytic electricity in the electrolytic cell is controlled to a predetermined value by controlling the flow rate of the supplied raw water. To produce electrolyzed water. The switching control of the raw water flow rate and the supply amount of the chlorine-based electrolyte aqueous solution and the switching control of the electrolysis set voltage are performed in accordance with the usage amount of the discharged electrolytic water.
【0007】[0007]
【実施例】以下、図面の一実施例により本発明を説明す
る。図1において、電解槽1は密閉構造で、室内を隔膜
2によって分割し、一方に陰極電極3を挿入した陰極室
31、他方を陽極電極4を挿入した陽極室41とする。
陰極電極3及び陽極電極4には所定の設定電圧を印加す
る電解電源5から電解電流の通電が行なわれる。また電
解槽1には陰極室31に通じる供給口1a,陽極室41
に通じる供給口1bが設けられ、供給路12から供給さ
れる原水を各々の供給口から分流して供給される。また
電解水の吐出のために電解槽1上部には陰極室31に連
通して吐出口1c,陽極室41に連通して吐出口1dが
設けてある。BRIEF DESCRIPTION OF THE DRAWINGS FIG. In FIG. 1, an electrolytic cell 1 has a hermetically sealed structure, the inside of which is divided by a diaphragm 2, one of which is a cathode chamber 31 in which a cathode electrode 3 is inserted, and the other is an anode chamber 41 in which an anode electrode 4 is inserted.
Electrolytic current is applied to the cathode electrode 3 and the anode electrode 4 from an electrolytic power source 5 for applying a predetermined set voltage. In the electrolytic cell 1, a supply port 1a communicating with the cathode chamber 31 and an anode chamber 41 are provided.
Is provided, and the raw water supplied from the supply path 12 is divided and supplied from each supply port. In order to discharge the electrolytic water, a discharge port 1c communicating with the cathode chamber 31 and a discharge port 1d communicating with the anode chamber 41 are provided in the upper part of the electrolytic cell 1.
【0008】電解槽1に供給される原水は水道水等が利
用され、水道の蛇口から加圧供給される原水を減圧弁等
で、所定の水圧にする。水圧調整された原水は流量制御
装置としての流量制御バルブ6及び流量計7により所要
流量に制御する。このようにして水圧及び流量を所定に
調整した原水を電解槽1に供給するが、その途中でEC
値の調整をする。Tap water or the like is used as raw water supplied to the electrolytic cell 1, and raw water supplied under pressure from a tap of the water supply is adjusted to a predetermined water pressure by a pressure reducing valve or the like. The raw water whose pressure has been adjusted is controlled to a required flow rate by a flow control valve 6 and a flow meter 7 as a flow control device. Raw water whose water pressure and flow rate have been adjusted to a predetermined value in this way is supplied to the electrolytic cell 1, and during that time, the EC
Adjust the value.
【0009】EC値の調整は塩素系電解質水溶液の添加
混合によって行なう。電解質に例えば食塩水がタンク8
に貯水され、センサ11によって貯水量が監視される。
これを定量ポンプ9によって食塩水注入装置10に供給
する。供給された食塩水は食塩水注入装置10によって
通過する原水中に定量注入される。注入食塩水は更に図
示しない混合装置によって攪拌混合され、充分に混合さ
れた状態で供給路12から電解槽1に供給される。The EC value is adjusted by adding and mixing a chlorine-based electrolyte aqueous solution. For example, a saline solution is stored in the tank 8
And the sensor 11 monitors the amount of water stored.
This is supplied to the saline solution injection device 10 by the metering pump 9. The supplied saline solution is injected into the raw water passing by the saline injection device 10 at a constant rate. The injected saline solution is further stirred and mixed by a mixing device (not shown), and supplied to the electrolytic cell 1 from the supply path 12 in a sufficiently mixed state.
【0010】供給原水は電解槽1の入口で分流し、供給
口1aから陰極室31に、他は供給口1bから陽極室4
1に供給される。電解槽1で電解生成されたアルカリ水
は陰極室吐出口1cから吐出し、酸性水は陽極室吐出口
1dから吐出する。またアルカリ水は吐出口1cに連通
する流路13を、また酸性水は吐出口1dに連通する流
路14を通って外部に流出する。流路13、14の途中
には各々三方弁15、16が設けられ、分岐した合流水
は合流管17から排水される。酸性水の流路14に設け
られた分流状態を測定する流量計18、同流路に設けら
れた酸性水の酸化還元電位を測定するORPセンサ19
で検出した、いずれの信号もCPU20に入力し、各部
の制御が行なわれる。またCPU20にはアルカリ水も
しくは酸性水の使用流量が流量設定器21によって入力
される。The raw feed water is diverted at the inlet of the electrolytic cell 1, and the supply water is supplied from the supply port 1a to the cathode chamber 31, and the others are supplied from the supply port 1b to the anode chamber 4.
1 is supplied. The alkaline water electrolytically generated in the electrolytic cell 1 is discharged from the cathode chamber discharge port 1c, and the acidic water is discharged from the anode chamber discharge port 1d. The alkaline water flows out of the flow path 13 communicating with the discharge port 1c, and the acidic water flows out of the flow path 14 through the flow path 14 communicating with the discharge port 1d. Three-way valves 15 and 16 are provided in the middle of the flow paths 13 and 14, respectively. A flow meter 18 provided in the acidic water flow path 14 for measuring a split flow state, and an ORP sensor 19 provided in the acidic flow path 14 for measuring the oxidation-reduction potential of the acidic water
Any of the signals detected in step (1) are input to the CPU 20 to control each unit. The flow rate of the alkaline water or acidic water is input to the CPU 20 by the flow rate setting device 21.
【0011】以上の装置における作動を説明すると次の
ようである。原水は水道の蛇口を開き、或いは給水ポン
プを駆動して供給する。供給原水は減圧弁等によって所
定圧に水圧調整され、また、この水圧調整された原水は
流量制御バルブ6により流量制御される。この流量制御
は原水側の流量計7及び電解吐出水の流量計18の測定
信号をCPU20に入力し、設定基準と比較演算処理
し、制御信号を流量制御バルブ6に加えて制御する。こ
の流量制御によって次の食塩水注入装置10による食塩
水の混合濃度が一定に制御される。The operation of the above device will be described as follows. Raw water is supplied by opening the faucet or driving a water supply pump. The supplied raw water is adjusted to a predetermined pressure by a pressure reducing valve or the like, and the flow of the adjusted raw water is controlled by a flow control valve 6. In this flow rate control, measurement signals of the flow meter 7 on the raw water side and the flow meter 18 of the electrolytic discharge water are input to the CPU 20, a comparison operation is performed with a set reference, and a control signal is added to the flow control valve 6 for control. By this flow rate control, the mixture concentration of the saline solution by the next saline solution injection device 10 is controlled to be constant.
【0012】タンク8に貯水される食塩水は、例えば1
0%程度溶液とし、これを定量ポンプ9によって定量供
給する。食塩水注入装置10は定量制御されて流れる原
水中に食塩水をパルス的に点滴注入するとか、原水流路
にベンチュリ部を形成して負圧により所定量の塩水注入
することによって塩分を一定にし、EC値を一定に調整
した原水を作ることができる。注入食塩水は混合装置等
によって充分攪拌混合された状態で電解槽1に流入し、
電極3、4間の通電によって電気分解処理される。電極
3、4の通電制御は所定の設定電圧を印加する電解電源
5によって通電されるが、電気分解は食塩水の添加によ
ってEC値を増大してあるから、低電圧で大電流を流す
ことが容易で、電力消費量を少なくして容易に強い電解
作用を働かせることができ、しかも原水流量制御によっ
て一定流量の原水供給により流量当りの電気量が常に一
定の電気分解を行なうことができる。The saline solution stored in the tank 8 is, for example, 1
A solution of about 0% is supplied in a fixed amount by a fixed amount pump 9. The saline solution injection device 10 makes the salt content constant by injecting saline solution in a pulsed manner into raw water flowing under quantitative control or by forming a venturi section in the raw water flow path and injecting a predetermined amount of saline with negative pressure. , EC water can be adjusted to a constant value. The injected saline solution flows into the electrolytic cell 1 in a state of being sufficiently stirred and mixed by a mixing device or the like,
Electrolysis is performed by energization between the electrodes 3 and 4. The electrodes 3 and 4 are energized by an electrolysis power supply 5 for applying a predetermined voltage. However, since the EC value of the electrolysis is increased by the addition of saline, a large current can be applied at a low voltage. The electrolysis can be easily performed, the power consumption can be reduced, and a strong electrolytic action can be easily exerted. In addition, the constant amount of electricity per flow rate can be performed by supplying a constant flow rate of the raw water by controlling the flow rate of the raw water.
【0013】電解槽1内の電気分解は隔膜2を通しての
電解であり、電解による陽イオンは隔膜2を通して陰極
室31に、また陰イオンは陽極室41に集まる電気浸透
作用を受け、陽極室41にはCl- 等の陰イオンを多量に
含んだpH値の低い酸性水が得られる。この酸性水は流
量当りの大きい電気量の電解作用を受けることによりE
C値が高まり、pH値の低い強酸性水となる。一方陰極
室31には、アルカリ水が生成されて吐出口1cから流
路13を通って外に排水される。また陽極室41の酸性
水は流路14を通って流出する。いずれも流路13,1
4に挿入した三方弁15,16によって合流管17に合
流し排水される。The electrolysis in the electrolytic cell 1 is an electrolysis through the diaphragm 2, and the cations by the electrolysis are subjected to the electroosmotic action of collecting in the cathode chamber 31 through the diaphragm 2 and the anions in the anode chamber 41, and the anode chamber 41 is subjected to the electroosmotic action. In this case, acidic water having a low pH value and containing a large amount of anions such as Cl- can be obtained. This acidic water is subjected to an electrolytic action of a large amount of electricity per flow rate, so that E
The C value increases, resulting in a strongly acidic water having a low pH value. On the other hand, in the cathode chamber 31, alkaline water is generated and drained to the outside through the flow path 13 from the discharge port 1c. The acidic water in the anode chamber 41 flows out through the flow path 14. In each case, the flow paths 13, 1
By the three-way valves 15 and 16 inserted in 4, they are merged into the merge pipe 17 and drained.
【0014】また電解槽1内の電解は、電極3,4間に
所定の設定電圧を印加する電解電源5によって通電され
るが、ここを流通する原水流量制御によって、任意の電
気量によって電解することができ、例えば原水流量を増
加すれば、流量に対する電気量が減少して電解度を下
げ、反対に原水流量を減少すれば、電気量が増加して強
く電解し電解度合を上げることができ、酸性水はpH値
を下げ、EC値を増大させることができる。The electrolysis in the electrolysis tank 1 is conducted by an electrolysis power source 5 for applying a predetermined voltage between the electrodes 3 and 4. The electrolysis is performed by an arbitrary quantity of electricity by controlling the flow rate of raw water flowing therethrough. For example, if the raw water flow rate is increased, the amount of electricity with respect to the flow rate is reduced and the electrolysis is lowered.On the other hand, if the raw water flow rate is reduced, the amount of electricity is increased and the electrolysis is strongly performed and the degree of electrolysis can be increased. Acidic water can lower the pH value and increase the EC value.
【0015】このような電解作用を受けた電解水は、各
々流路13,14を吐出し流出するが、酸性水の流路1
4にはORPセンサ19が設けてあり、このORPセン
サ19によって電解酸性水のORP値が測定され、その
検出測定信号はCPU20に供給される。CPU20に
は予じめ所要とするORPの基準値がメモリしてあり、
ORPセンサ19の測定信号との比較演算処理により流
量制御信号を出力し、流量制御バルブ6の制御を行な
う。この流量制御はORPセンサ19からの検出信号が
所定値に達してなければ、流量を絞る方向に制御して電
解槽1を流れる水の流量当りの電気量が増大してORP
値を高める。これは、またpHを下げ、EC値を増加さ
せることになる。また反対にORPセンサ19の検出信
号が基準値より大きければ、流量制御バルブ6を広げる
方向に制御して流量を増加し、水の流量当りの電気量を
減少させて電解度合を下げORPを低減制御する。The electrolyzed water subjected to such an electrolytic action is discharged and flows out of the flow paths 13 and 14, respectively.
The ORP sensor 4 is provided with an ORP sensor 19, which measures the ORP value of the electrolytic acidic water, and supplies a detection measurement signal to the CPU 20. The CPU 20 stores a reference value of the required ORP in advance,
A flow control signal is output by a comparison operation with a measurement signal of the ORP sensor 19 to control the flow control valve 6. If the detection signal from the ORP sensor 19 does not reach a predetermined value, the flow rate is controlled in a direction in which the flow rate is reduced, so that the amount of electricity per flow rate of the water flowing through the electrolytic cell 1 increases and the ORP
Increase the value. This will also lower the pH and increase the EC value. On the other hand, if the detection signal of the ORP sensor 19 is larger than the reference value, the flow control valve 6 is controlled to expand so as to increase the flow rate, decrease the amount of electricity per flow rate of water, reduce the degree of electrolysis and reduce ORP. Control.
【0016】三方弁16は、このようにして電解吐出水
の電解度合、即ちORPが所定の値に調整制御された状
態で開き、流路14から流出させることによって安定し
た一定の特性の電解酸性水を吐出利用することができ
る。また三方弁15を開けば流路13から所定に調整さ
れたアルカリ水を流出させて飲料水等として利用でき
る。なお、勿論、アルカリ水の電解度合の検出には流路
13にORPセンサを設けることができる。The three-way valve 16 is opened in such a manner that the degree of electrolysis of the electrolytic discharge water, that is, the ORP is adjusted and controlled to a predetermined value, and the three-way valve 16 is made to flow out of the flow path 14 so that the electrolytic acid having a stable and stable characteristic can be obtained. Water can be discharged and used. When the three-way valve 15 is opened, the predetermined adjusted alkaline water flows out of the flow path 13 and can be used as drinking water or the like. Of course, an ORP sensor can be provided in the flow path 13 for detecting the degree of electrolysis of the alkaline water.
【0017】以上のようにして、CPU20による制御
は、原水側の流量計7,酸性水吐出側の流量計18の測
定信号の単独もしくは組合せにもとづいて流量制御バル
ブ6の制御を行ない、更にORPセンサ19の電解吐出
水のORP検出信号によって流量制御バルブ6を調整制
御し、精密な流量制御を行ない、これにより電解槽1内
を流通する原水流量当り一定の最適制御とする電気分解
を行なうことができ、電解吐出水のORPを、またこれ
によってEC値,pH値等の電解度合を所定の設定範囲
に安定して制御するとができる。As described above, the control by the CPU 20 controls the flow control valve 6 based on the measurement signals of the flow meter 7 on the raw water side and the flow meter 18 on the discharge side of the acidic water alone or in combination, and furthermore, the ORP. The flow rate control valve 6 is adjusted and controlled by the ORP detection signal of the electrolytic discharge water of the sensor 19 to perform precise flow rate control, thereby performing electrolysis with constant optimal control per flow rate of raw water flowing through the electrolytic cell 1. This makes it possible to stably control the ORP of the electrolytic discharge water, and thereby the degree of electrolysis such as the EC value and the pH value within a predetermined set range.
【0018】アルカリ水もしくは酸性水の使用流量は流
量設定器21によって設定され、設定信号はCPU20
に入力する。CPU20には使用流量に対応して流量制
御の設定基準値,電解電源5の設定電圧及び食塩水注入
装置10の供給量を各々切換えるためのデータがプログ
ラム入力されており、CPU20は流量設定器21から
の信号にしたがって、データベースから各々切換信号を
選択して、各部制御装置の切換制御を行なう。流量切換
手段ともなっている流量設定器21には、例えば各々1
l ,3l ,5l ,7l ,10l (毎分)流量の設定がで
きるように設けられ、今、洗浄用に使用流量を3l /mi
n から5l /min に上げたい場合は、流量設定器21に
よってそれを設定すると、CPU20はメモリしたデー
タベースより信号に対応する切換信号を選択して、流量
制御バルブ6の制御基準値の切換設定をすると共に定量
ポンプ9の流量切換制御を行なう。また、これとともに
電解電源5の切換器51の切換制御を行なう。The used flow rate of the alkaline water or the acidic water is set by a flow rate setting device 21, and the setting signal is
To enter. The CPU 20 is programmed with data for switching the set reference value of the flow control, the set voltage of the electrolytic power supply 5 and the supply amount of the saline solution injector 10 in accordance with the used flow rate. The switching signal is selected from the database according to the signal from the control unit, and the switching control of each control unit is performed. The flow rate setting device 21 also serving as a flow rate switching means has, for example, 1
l, 3l, 5l, 7l, 10l (per minute) Provided so that the flow rate can be set, and the flow rate used for cleaning is now 3l / mi.
When it is desired to increase the pressure from n to 5 l / min, the flow rate is set by the flow rate setting device 21. The CPU 20 selects a switching signal corresponding to the signal from the stored database and sets the switching of the control reference value of the flow rate control valve 6. At the same time, the flow rate switching control of the metering pump 9 is performed. At the same time, switching control of the switch 51 of the electrolytic power supply 5 is performed.
【0019】流量設定器21の切換制御によって流量制
御バルブ6の基準流量は5l /minに設定され、基準値
にもとづいてCPU20は流量計7,18、更にORP
センサ19から入力する測定信号により流量制御バルブ
6の制御を行なう。またこの流量が増加された原水に対
して定量ポンプ9による食塩水の供給量も比例的に増加
され、例えばパルス的供給する場合にその供給パルス数
を増加して原水流量に対する食塩水混合比を所定に維持
させ、常に、食塩水濃度を一定に制御した原水を電解槽
1に供給する。このようにして電解槽1に供給される原
水は、混合食塩水濃度が一定で流量のみが増加されたも
のであり、これが電極3、4間の通電によって電気分解
される。この電気分解は流量を増加させる前と変化なく
安定に行なわれる。この場合、電極3、4間に通電する
電解電源5は切換器51により設定電圧が流量の増加切
換に対応して電圧上昇されており、これにより電解電流
を増加して、原水流量当りの電気量が一定になるよう制
御される。したがって、原水流量を増加させるよう切換
えたにも拘わらず、原水流量当りの電気量を低下させる
ことなく、所要の電気分解を行ない、電気伝導度,pH
値等の電解度合の一定した酸性水を吐出量を増加して得
ることができる。The reference flow rate of the flow control valve 6 is set to 5 l / min by switching control of the flow rate setting device 21, and based on the reference value, the CPU 20 controls the flow meters 7, 18 and the ORP.
The flow rate control valve 6 is controlled by a measurement signal input from the sensor 19. In addition, the supply amount of saline by the metering pump 9 is also proportionally increased with respect to the raw water whose flow rate has been increased. For example, in the case of pulsed supply, the number of supply pulses is increased so that the salt water mixing ratio to the raw water flow rate is increased. Raw water whose concentration is controlled to be constant and the concentration of the saline solution is constantly controlled is always supplied to the electrolytic cell 1. The raw water supplied to the electrolytic cell 1 in this manner is one in which the concentration of the mixed salt solution is constant and only the flow rate is increased, and this is electrolyzed by energization between the electrodes 3 and 4. This electrolysis is performed stably without any change before the flow rate is increased. In this case, the set voltage of the electrolysis power supply 5 that is energized between the electrodes 3 and 4 is increased by the switch 51 in accordance with the increase of the flow rate, whereby the electrolysis current is increased and the electric power per raw water flow rate is increased. The amount is controlled to be constant. Therefore, despite the switching to increase the raw water flow rate, the required electrolysis is performed without lowering the amount of electricity per raw water flow rate, and the electrical conductivity and pH
Acid water having a constant electrolytic degree such as a value can be obtained by increasing the discharge amount.
【0020】勿論、この場合もCPU20は流量計7,
18による測定信号により流量制御バルブ6を切換えた
設定基準値と比較しながら制御を行ない、またORPセ
ンサ19の検出信号によってEC値、pH値等の電解度
合が一定になるよう制御する。三方弁16の開閉によっ
て流路14から酸性水が得られるが、他の三方弁15の
開閉によって流量を増加させたアルカリ水が流路13か
ら流出利用することができる。Of course, also in this case, the CPU 20 controls the flow meter 7,
The control is performed while comparing the flow rate control valve 6 with the set reference value by switching the flow control valve 6 according to the measurement signal by the control signal 18, and the electrolysis degree such as the EC value and the pH value is controlled by the detection signal of the ORP sensor 19. The acidic water is obtained from the flow path 14 by opening and closing the three-way valve 16, but the alkaline water whose flow rate has been increased by opening and closing the other three-way valve 15 can flow out and be used from the flow path 13.
【0021】なお、酸性水あるいはアルカリ吐出水の電
解度合の検出には、ORPセンサの他に電解吐出水を測
定するECセンサを設けることができ、またpH計を設
けて電解水のpH値も検出しながら原水の流量制御をす
ることができる。その他電解水の電解度合の検出には、
他に原水の水質もしくは添加電解質によって生成するCl
- 、ClO2 - 、01lO3 - 、ClO4 - 、O2 - 、02H - 、Na +、
K +、03g + 、Ca2+、04 +等のイオンを検出するイオン
濃度検出器,O2、H2等のガス濃度検出器,ガス圧検出器
或はこれらの単独もしくは複数検出器の組合せ等を利用
することができる。また電解状態は、前記のように電解
槽1から吐出した電解イオン水の電解度合を測定する以
外に、電解槽1内で電解中の電解電圧,電解電流,イン
ピーダンスの変化,その他の変化成分等の検出によって
も測定することができる。For detecting the degree of electrolysis of the acidic water or alkaline discharge water, an EC sensor for measuring the electrolytic discharge water can be provided in addition to the ORP sensor. Raw water flow rate control can be performed while detecting. To detect the degree of electrolysis of electrolyzed water,
Cl generated by the quality of raw water or added electrolyte
-, ClO 2 -, 01 lO 3 -, ClO 4 -, O 2 -, 02 H -, Na +,
An ion concentration detector for detecting ions such as K + , 03 g + , Ca 2+ , 04 + , a gas concentration detector such as O 2 , H 2 , a gas pressure detector, or a single or a plurality of these detectors Combinations and the like can be used. In addition to measuring the degree of electrolysis of the electrolytic ionic water discharged from the electrolytic cell 1 as described above, the electrolysis state includes changes in electrolytic voltage, electrolytic current, impedance, and other change components during electrolysis in the electrolytic cell 1. Can also be measured by detecting.
【0022】CPU20による制御は、前記のような各
センサからの信号,他のセンサからの信号のいずれかを
選択し、或は別々に演算処理して制御信号を出力しても
よく、また各センサの信号の和,差,積等により演算処
理して制御信号を出力し、原水流量を制御することがで
きる。また、この流量制御は、アナログ的制御でもよい
が、デジタル制御の方が容易にでき、信号をデジタル変
換してモータバルブをパルス的に制御するとか、振動バ
ルブにより振動数を制御することによって安定した精密
制御が可能である。また、CPU20には、流量設定器
21による流量制御信号に対応する流量制御バルブ6の
制御基準値,電解電源5の設定電圧及び定量ポンプ9の
供給流量等が予じめ実験データにもとづいて記憶装置に
メモリしてあり、CPU20はこのデータベースを用い
て流量設定器21からの信号に対応して制御信号を選択
し各部の切換設定を行なうから、流量に対する切換制御
が微細に殆んど連続的に変更制御をすることができる。
なお、この切換制御は流量制御バルブ6の流量制御用の
CPUとは別の制御装置を設けて切換制御をすることが
できる。The control by the CPU 20 may select either the signal from each sensor as described above or the signal from another sensor, or may separately perform arithmetic processing and output a control signal. The control signal is output by performing arithmetic processing based on the sum, difference, product, and the like of the sensor signals, and the raw water flow rate can be controlled. This flow rate control may be analog control, but digital control is easier, and it can be stabilized by controlling the motor valve like a pulse by converting the signal into a digital signal, or by controlling the vibration frequency with a vibration valve. Precise control is possible. The CPU 20 stores a control reference value of the flow control valve 6, a set voltage of the electrolytic power supply 5, a supply flow rate of the metering pump 9, and the like corresponding to a flow control signal from the flow setting device 21 based on experimental data in advance. The memory is stored in the apparatus, and the CPU 20 uses this database to select a control signal in accordance with the signal from the flow rate setting device 21 and to perform switching setting of each section. Can be changed.
This switching control can be performed by providing a control device different from the CPU for controlling the flow rate of the flow control valve 6.
【0023】原水に添加する塩素系電解質はNaCl以外に
KCl 、HCl 、04ClO 、HClO3 、KClO3 、NaClO3等を単独
もしくは複合して利用することができ、原水流量に対し
て一定濃度で均一混合できるように所定濃度の水溶液に
して用いる。例えば10%水溶液にして、これを原水1
00に対して1の割合で混合する。水溶液は筒状容器等
に充填してカートリッジにして利用することができ、こ
の注入のパルス的に点滴注入することにより混入制御が
正確にできる。The chlorine-based electrolyte added to the raw water is other than NaCl
KCl, HCl, 04 ClO, HClO 3 , KClO 3 , NaClO 3, etc. can be used alone or in combination, and used as an aqueous solution of a predetermined concentration so as to be uniformly mixed at a constant concentration with respect to the flow rate of raw water. For example, a 10% aqueous solution is prepared, and
Mix at a ratio of 1 to 00. The aqueous solution can be filled into a cylindrical container or the like and used as a cartridge, and the mixing control can be accurately performed by injecting this injection in a pulsed manner.
【0024】[0024]
【発明の効果】以上のように本発明によれば、流量設定
器による流量切換手段の切換操作によって、流量制御基
準値に基づき原水の流量制御と同時に流量に対応する塩
素系電解質水溶液の供給量の切換と添加混合率の制御及
び所定の設定電圧を印加する電解電源による電解電気量
の正確な制御が行なわれるので、原水流量が変動して
も、所望するEC値、pH値、ORP等が所定の設定範
囲に制御された電解水を安定に吐出することができる。
またアルカリ水もしくは酸性水の使用量に応じて、原水
流量制御の基準値を切換えると共に、電解電源の設定電
圧の切換を行ない、その切換えは電解吐出水の電解度合
が常に一定になるようデータベースにしたがって切換を
行なうので電解度合を変えることなく使用量に応じて任
意の流量の電解水を容易に生成利用することができる。As described above, according to the present invention, the flow rate of the chlorine-based electrolyte aqueous solution corresponding to the flow rate is controlled simultaneously with the flow rate control of the raw water based on the flow rate control reference value by the switching operation of the flow rate switching means by the flow rate setting device. Switching, addition mixing rate control, and accurate control of the amount of electrolysis by the electrolysis power supply that applies a predetermined set voltage, so that even if the raw water flow rate fluctuates, the desired EC value, pH value, ORP, etc. Electrolyzed water controlled to a predetermined setting range can be stably discharged.
In addition, the reference value of raw water flow rate control is switched according to the amount of alkaline water or acidic water used, and the set voltage of the electrolytic power supply is switched. The switching is performed in a database so that the degree of electrolysis of the electrolytic discharge water is always constant. Therefore, since the switching is performed, it is possible to easily generate and use the electrolyzed water at an arbitrary flow rate according to the usage amount without changing the degree of electrolysis.
【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.
1 電解槽 2 隔膜 3,4 電極 5 電解電源 6 流量制御バルブ 7,18 流量計 9 定量ポンプ 10 食塩水注入装置 15,16 三方弁 19 ORPセンサ 20 CPU 21 流量設定器 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Diaphragm 3, 4 electrode 5 Electrolysis power supply 6 Flow control valve 7, 18 Flow meter 9 Metering pump 10 Saline injection device 15, 16 Three-way valve 19 ORP sensor 20 CPU 21 Flow rate setting device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 有坂 政員 埼玉県川越市今福中台2779番地1 日本 インテック株式会社内 (56)参考文献 特開 平4−330987(JP,A) 特開 平1−99686(JP,A) 実開 平6−3487(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 C02F 1/28 C02F 1/44 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaru Arisaka 2779-1, Imafukunakadai, Kawagoe-shi, Saitama Japan Intec Co., Ltd. (56) References JP-A-4-330987 (JP, A) JP-A-1 −99686 (JP, A) Japanese Utility Model 6-3487 (JP, U) (58) Fields surveyed (Int. Cl. 7 , DB name) C02F 1/46 C02F 1/28 C02F 1/44
Claims (2)
とに分割して各々に陰陽極電極を設け、前記電解槽内に
供給される原水中に塩素系電解質水溶液を定量供給添加
する供給装置と、前記電極間に所定の設定電圧を通電す
る電解電源と、前記電解槽に供給する原水流量を所定に
制御する流量制御装置を設け、流量制御しながら塩素系
電解質水溶液を添加した原水を電解槽に供給し、陰陽極
電極間の通電によって電解し陰極室にアルカリ水、陽極
室に酸性水を生成する電解水の生成装置において、 前記アルカリ水もしくは酸性水の使用量に応じた流量を
設定する流量設定器と、該設定流量に対応して前記流量
制御装置の流量制御基準値および前記塩素系電解質水溶
液供給装置の供給量を各々切換設定する流量切換手段と
を設けたことを特徴とする電解水の生成装置。An electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, each of which is provided with a negative electrode and an anode electrode, and a fixed amount of a chlorine-based electrolyte aqueous solution is added to raw water supplied into the electrolytic cell. A device, an electrolytic power supply for supplying a predetermined set voltage between the electrodes, and a flow control device for controlling the flow rate of the raw water supplied to the electrolytic cell to a predetermined value are provided, and the raw water to which the chlorine-based electrolyte aqueous solution is added while controlling the flow rate is provided. The electrolytic water is supplied to the electrolytic cell, and electrolysis is performed by energizing between the negative and positive electrodes to produce alkaline water in the cathode chamber and acidic water in the anode chamber. A flow rate setting device to be set; and a flow rate switching means for switching and setting a flow rate control reference value of the flow rate control device and a supply amount of the chlorine-based electrolyte aqueous solution supply device in accordance with the set flow rate. Generating device that electrolyzed water.
とに分割して各々に陰陽極電極を設け、前記電解槽内に
供給される原水中に塩素系電解質水溶液を定量供給添加
する供給装置と、前記電極間に所定の設定電圧を通電す
る電解電源と、前記電解槽に供給する原水流量を所定に
制御する流量制御装置を設け、流量制御しながら塩素系
電解質水溶液を添加した原水を電解槽に供給し、陰陽極
電極間の通電によって電解し陰極室にアルカリ水、陽極
室に酸性水を生成する電解水の生成装置において、 前記アルカリ水もしくは酸性水の使用量に応じた流量を
設定する流量設定器と、該設定流量に対応して前記流量
制御装置の流量制御基準値と前記塩素系電解質水溶液供
給装置の供給量および前記電解電源の設定電圧を各々切
換設定する流量切換手段とを設けたことを特徴とする電
解水の生成装置。2. An electrolytic cell is divided into a cathode chamber and an anode chamber by a diaphragm, and a cathode and an anode are provided in each of the chambers. A supply of a chlorine-based electrolyte aqueous solution is added to the raw water supplied into the electrolytic tank. A device, an electrolytic power supply for supplying a predetermined set voltage between the electrodes, and a flow control device for controlling the flow rate of the raw water supplied to the electrolytic cell to a predetermined value are provided, and the raw water to which the chlorine-based electrolyte aqueous solution is added while controlling the flow rate is provided. The electrolytic water is supplied to the electrolytic cell, and electrolysis is performed by energizing between the negative and positive electrodes to produce alkaline water in the cathode chamber and acidic water in the anode chamber. A flow rate setting device to be set, and a flow rate switching device for switching and setting a flow rate control reference value of the flow rate control device, a supply amount of the chlorine-based electrolyte aqueous solution supply device, and a set voltage of the electrolytic power source in accordance with the set flow rate. DOO generator of the electrolytic water, characterized in that a.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03548793A JP3234025B2 (en) | 1993-02-24 | 1993-02-24 | Electrolyzed water generator |
ES94301179T ES2115156T3 (en) | 1993-02-22 | 1994-02-18 | PROCEDURE AND DEVICE TO PRODUCE ELECTROLYTIC WATER. |
EP94301179A EP0612694B1 (en) | 1993-02-22 | 1994-02-18 | Method and device for producing electrolytic water |
DE69409996T DE69409996T2 (en) | 1993-02-22 | 1994-02-18 | Method and device for producing electrolytic water |
BR9400627A BR9400627A (en) | 1993-02-22 | 1994-02-21 | Process and device for producing electrolytic water |
AU55274/94A AU677618B2 (en) | 1993-02-22 | 1994-02-21 | Method and device for producing electrolytic water |
MYPI94000414A MY131555A (en) | 1993-02-22 | 1994-02-21 | Method and device for producing electrolytic water |
CA002116045A CA2116045C (en) | 1993-02-22 | 1994-02-21 | Method and device for producing electrolytic water |
KR1019940003119A KR0133975B1 (en) | 1993-02-22 | 1994-02-22 | Method amd device for producing electrlytic water |
US08/199,840 US5445722A (en) | 1993-02-22 | 1994-02-22 | Method and device for producing electrolytic water |
CN94102044A CN1055904C (en) | 1993-02-22 | 1994-02-22 | Method and apparatus for generation of electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03548793A JP3234025B2 (en) | 1993-02-24 | 1993-02-24 | Electrolyzed water generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06246271A JPH06246271A (en) | 1994-09-06 |
JP3234025B2 true JP3234025B2 (en) | 2001-12-04 |
Family
ID=12443112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03548793A Expired - Fee Related JP3234025B2 (en) | 1993-02-22 | 1993-02-24 | Electrolyzed water generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3234025B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6773507B2 (en) | 2001-12-06 | 2004-08-10 | Applied Materials, Inc. | Apparatus and method for fast-cycle atomic layer deposition |
US8123860B2 (en) | 2002-01-25 | 2012-02-28 | Applied Materials, Inc. | Apparatus for cyclical depositing of thin films |
US9587310B2 (en) | 2001-03-02 | 2017-03-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
EP3243800A4 (en) * | 2015-02-24 | 2017-12-27 | Nihon Trim Co., Ltd. | Electrolyzed water-generating apparatus and electrolyzed water |
KR20180059989A (en) * | 2016-11-28 | 2018-06-07 | 주식회사 플러스 | An apparatus for producing plasma sterilization water |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5507932A (en) * | 1994-08-26 | 1996-04-16 | Schlumberger Technology Corporation | Apparatus for electrolyzing fluids |
US6117285A (en) * | 1994-08-26 | 2000-09-12 | Medical Discoveries, Inc. | System for carrying out sterilization of equipment |
EP2239231A4 (en) * | 2007-12-14 | 2012-05-30 | Hoshizaki Electric Co Ltd | Electrolyzed water production system |
JP6332742B2 (en) * | 2014-03-31 | 2018-05-30 | Toto株式会社 | Sanitized water generator |
-
1993
- 1993-02-24 JP JP03548793A patent/JP3234025B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9587310B2 (en) | 2001-03-02 | 2017-03-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US10280509B2 (en) | 2001-07-16 | 2019-05-07 | Applied Materials, Inc. | Lid assembly for a processing system to facilitate sequential deposition techniques |
US6773507B2 (en) | 2001-12-06 | 2004-08-10 | Applied Materials, Inc. | Apparatus and method for fast-cycle atomic layer deposition |
US8123860B2 (en) | 2002-01-25 | 2012-02-28 | Applied Materials, Inc. | Apparatus for cyclical depositing of thin films |
EP3243800A4 (en) * | 2015-02-24 | 2017-12-27 | Nihon Trim Co., Ltd. | Electrolyzed water-generating apparatus and electrolyzed water |
US10486986B2 (en) | 2015-02-24 | 2019-11-26 | Nihon Trim Co., Ltd. | Electrolyzed water-generating apparatus and electrolyzed water |
KR20180059989A (en) * | 2016-11-28 | 2018-06-07 | 주식회사 플러스 | An apparatus for producing plasma sterilization water |
Also Published As
Publication number | Publication date |
---|---|
JPH06246271A (en) | 1994-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0612694B1 (en) | Method and device for producing electrolytic water | |
US6200434B1 (en) | Apparatus for producing electrolytic water | |
CA2315355A1 (en) | Electrochemical treatment of an aqueous solution | |
WO2006042082A2 (en) | Apparatus and method for producing electrolyzed water | |
JP3201860B2 (en) | Method and apparatus for producing electrolyzed water | |
JP3234025B2 (en) | Electrolyzed water generator | |
JPH06246269A (en) | Device for producing electrolyte | |
JP3275108B2 (en) | Electrolyzed water generator | |
JP3292930B2 (en) | Electrolyzed water generator | |
JPH06312184A (en) | Electrolytic water forming apparatus | |
JP4204955B2 (en) | Electrolyzed water generation method and apparatus | |
JPH0889965A (en) | Electrolytic water producer | |
JPH06246265A (en) | Device for producing electrolyte | |
JPH06312185A (en) | Electrolytic water forming apparatus | |
JPH08215684A (en) | Ionic water making apparatus | |
JPH07328639A (en) | Oxidation potential water forming device | |
JP4068267B2 (en) | Electrolyzed water generator | |
JP2001062455A (en) | Electrolytic water production device | |
JPH0957269A (en) | Electrolytic water generator | |
JPH06335685A (en) | Ionized water generator | |
JP3448834B2 (en) | ORP sensor for anode water measurement | |
JPH09113483A (en) | Orp sensor for strong electrolyte and method for measuring orp of strong electrolyte | |
JP3192182B2 (en) | Control device for continuous electrolytic ionized water generator | |
JPH09141265A (en) | Electrolytic water generator | |
JPH09113477A (en) | Orp sensor for strong electrolyte production unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |