JPH09113483A - Orp sensor for strong electrolyte and method for measuring orp of strong electrolyte - Google Patents

Orp sensor for strong electrolyte and method for measuring orp of strong electrolyte

Info

Publication number
JPH09113483A
JPH09113483A JP7296116A JP29611695A JPH09113483A JP H09113483 A JPH09113483 A JP H09113483A JP 7296116 A JP7296116 A JP 7296116A JP 29611695 A JP29611695 A JP 29611695A JP H09113483 A JPH09113483 A JP H09113483A
Authority
JP
Japan
Prior art keywords
orp
water
electrode
electrolyzed water
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7296116A
Other languages
Japanese (ja)
Other versions
JP3539459B2 (en
Inventor
Shiyuuji Yamaguchi
秋二 山口
Satoshi Nanba
聡 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INTEC KK
Original Assignee
NIPPON INTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INTEC KK filed Critical NIPPON INTEC KK
Priority to JP29611695A priority Critical patent/JP3539459B2/en
Publication of JPH09113483A publication Critical patent/JPH09113483A/en
Application granted granted Critical
Publication of JP3539459B2 publication Critical patent/JP3539459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the rising time of an ORP sensor for sensing a strong electrolyte being delivered from the electrolyte bath. SOLUTION: At the time of back wash where the electrolyte is not delivered or immediately after driving an apparatus, a reference electrode 3 comprising the Ag/AgCl electrode of an ORP sensor is applied with a negative potential from a power supply 6 for feeding a positive potential to an indication electrode 4 comprising a Pt electrode. After applying a voltage for a predetermined time, a switched 5 is turned on to begin the measurement. Consequently, a DC voltage is applied to activate the surface of both electrodes thus enhancing the affinity to strong electrolyte. This constitution shorten the rising time and the true ORP value of electrolyte can be measured quickly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化還元電位(以
下、ORPという)センサを電解度検知手段とする電解
水生成装置において、上記センサの測定応答時間の短縮
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reduction of measurement response time of an electrolyzed water producing apparatus using an oxidation-reduction potential (hereinafter referred to as ORP) sensor as an electrolysis detecting means.

【0002】[0002]

【従来の技術】電解水生成装置は電解槽内を隔膜によっ
て陰極室と陽極室に分け、夫夫の極室内に電極を挿入
し、極室内に供給した原水を電極間の通電によって電気
分解することにより陰極室に陰極水を、陽極室に陽極水
を電解生成するものである。
2. Description of the Related Art An electrolyzed water generator divides the inside of an electrolytic cell into a cathode chamber and an anode chamber by means of a diaphragm, inserts an electrode into its polar chamber, and electrolyzes the raw water supplied into the polar chamber by energizing the electrodes. As a result, cathode water is electrolytically generated in the cathode chamber and anode water is electrolytically generated in the anode chamber.

【0003】更に、前記電解槽に供給する原水中に塩素
系電解質を供給する供給手段を設け、該供給手段から塩
素系電解質を原水に添加混合した後電解槽に供給しなが
ら電解することにより強力な電解を行い強電解水を得る
ようにした装置がある。このような電解によって得られ
た強電解水、とりわけ陽極水はORPが高く、洗浄用
水、消毒および殺菌水として使用される。
Further, a supply means for supplying a chlorine-based electrolyte to the raw water to be supplied to the electrolytic cell is provided, and the chlorine-based electrolyte is added and mixed with the raw water from the supply means and then electrolyzed while being supplied to the electrolytic cell to obtain a strong power. There is a device that performs strong electrolysis to obtain strong electrolyzed water. Strongly electrolyzed water obtained by such electrolysis, especially anodic water, has a high ORP and is used as cleaning water, disinfection and sterilization water.

【0004】上記の目的のために使用される強電解水は
常に一定のORPをもった安定した状態で継続的に吐出
することが望ましい。しかしながら、この強電解水のO
RPは電解に先立ち投入する電解質の量、原水の水質、
電解中の流量変化、電解槽の陰陽極に印加される電圧の
変動や電極の消耗、更に、陰陽極室や隔膜への金属塩の
付着等によって絶えず変動し、一定の特性を有する強電
解水として安定して得ることは困難である。このため、
電解槽の陰陽極室側から吐出する強電解水を吐出管に配
設したORPセンサで測定し、所望する水質が吐出され
ているかを測定し、測定値から、所望する水質が吐出さ
れているときのみ上記目的の使用に供している。
It is desirable that the strong electrolyzed water used for the above purpose be continuously discharged in a stable state with a constant ORP. However, O of this strong electrolyzed water
RP is the amount of electrolyte to be input prior to electrolysis, the quality of raw water,
Strongly electrolyzed water with constant characteristics that constantly fluctuates due to changes in flow rate during electrolysis, fluctuations in voltage applied to the negative anode of the electrolytic cell, electrode consumption, and metal salt adhesion to the negative anode chamber and diaphragm. As stable as it is difficult to get. For this reason,
Strongly electrolyzed water discharged from the cathode / anode chamber side of the electrolytic cell is measured by an ORP sensor provided in a discharge pipe to determine whether the desired water quality is discharged, and the desired water quality is discharged from the measured value. Only when used for the above purpose.

【0005】別に、ORPセンサで得た電位を電解水生
成装置の制御部に入力し、所望する水質が吐出されてい
るときは継続的に吐出させると共に、所望する水質が吐
出されない場合は吐出を自動的に停止させるか、上記制
御部が電解質を給水側に余剰に供給してその濃度を変え
たり、電解電圧等の装置駆動条件を自動的に変えて、常
に一定の所望するORP値の強電解水を得るようにして
いる。
Separately, the electric potential obtained by the ORP sensor is input to the control unit of the electrolyzed water producing apparatus to continuously discharge when the desired water quality is discharged, and to discharge when the desired water quality is not discharged. It can be stopped automatically, or the control unit can supply the electrolyte excessively to the water supply side to change its concentration, or automatically change the device driving conditions such as the electrolysis voltage to keep a constant desired ORP value. I try to get electrolyzed water.

【0006】図6および図7は前記した従来のORPセ
ンサ表示型強電解水生成装置と使用されているORPセ
ンサの構造を示す図である。尚、図において、陽極水を
ORPセンサで測定しているが、陰極水についても同様
に測定し得るものである。
FIGS. 6 and 7 are views showing the structure of an ORP sensor used with the above-described conventional ORP sensor display type strong electrolyzed water producing apparatus. Although the anode water is measured by the ORP sensor in the figure, the cathode water can be measured in the same manner.

【0007】図6において、電解槽10は密閉構造をと
り、室内を隔膜11によって分割し、一方に陰極電極2
2を挿入した陰極室21、他方に陽極電極12を挿入し
て陽極室13としている。陰極電極および陽極電極には
所定の設定電圧を印加する電解電源20から電解電流の
通電が行われる。電解槽10には底部に陰極室に通じる
原水供給口23、陽極室に通じる原水供給口24が設け
られ夫夫の供給口から原水が供給される。また、電解槽
10の上部には陰極室に連通する吐出口25、陽極室に
連通する吐出口14が形成している。
In FIG. 6, the electrolytic cell 10 has a hermetically sealed structure, and the interior of the chamber is divided by a diaphragm 11, and the cathode electrode 2 is provided on one side.
2 is inserted into the cathode chamber 21, and the other anode electrode 12 is inserted into the anode chamber 13. An electrolytic current is applied to the cathode electrode and the anode electrode from an electrolytic power source 20 that applies a predetermined set voltage. A raw water supply port 23 leading to the cathode chamber and a raw water supply port 24 leading to the anode chamber are provided at the bottom of the electrolytic cell 10, and raw water is supplied from the husband's supply port. A discharge port 25 communicating with the cathode chamber and a discharge port 14 communicating with the anode chamber are formed in the upper part of the electrolytic cell 10.

【0008】電解槽10に供給される原水は水道水等が
利用される。この原水の電気伝導度の調整を塩素系電解
質の添加混合によって行う。前記電解槽に供給する原水
中に塩素系電解質を供給し且つ混合して原水の電気伝導
度を高め、原水に対して強い電解作用を与える。電解質
として、例えば、食塩が用いられ、水溶液として食塩水
タンク26内に貯水され、これを定量ポンプ27によっ
て食塩水注入装置28に供給する。供給された食塩水は
注入装置によって通過する原水中に定量注入される。所
望によって注入食塩水は更に図示していない混合装置に
よって撹拌混合され、十分に混合した状態で配管から電
解槽10に供給される。
The raw water supplied to the electrolytic cell 10 is tap water or the like. The electric conductivity of this raw water is adjusted by adding and mixing a chlorine-based electrolyte. A chlorine-based electrolyte is supplied to and mixed with the raw water supplied to the electrolyzer to increase the electric conductivity of the raw water and give a strong electrolytic action to the raw water. For example, salt is used as the electrolyte, and water is stored in the saline tank 26 as an aqueous solution, which is supplied to the saline injection device 28 by the metering pump 27. The supplied saline solution is metered into the raw water passing by the injector. If desired, the injected saline solution is further stirred and mixed by a mixing device (not shown), and is supplied to the electrolytic cell 10 from the pipe in a sufficiently mixed state.

【0009】原水は、電解槽10の入り口で分岐し、供
給口23から陰極室に、他は供給口24から陽極室に供
給される。電解槽10で電解生成された陰極水は陰極室
吐出口25から吐出し、陽極水は陽極吐出口14から吐
出する。陰極水は吐出口25に連通する管路を通って排
水される。また、陽極水は吐出口14に連通する管路1
5から三方弁16を介してORPセンサ9に流水し、O
RPセンサ9を経由して管口部18から吐水される。三
方弁16は、電解吐出水の電解度合い、即ち、ORPが
所定範囲内にあるとき吐水側管路に切り換わり、所定範
囲外では排水管17に切り換わるので、所望されないO
RPの陽極水は三方弁16の排水管17から排水され
る。ORPセンサから得た信号は制御部19に構成され
たCPUに入力し、演算処理により各部の制御が行われ
る。
Raw water is branched at the entrance of the electrolytic cell 10, and is supplied from the supply port 23 to the cathode chamber, and the other is supplied from the supply port 24 to the anode chamber. Cathode water electrolytically generated in the electrolytic cell 10 is discharged from the cathode chamber discharge port 25, and anode water is discharged from the anode discharge port 14. The cathode water is drained through a conduit communicating with the discharge port 25. Further, the anode water is connected to the discharge port 14 through the conduit 1
5 through the three-way valve 16 to the ORP sensor 9,
Water is discharged from the pipe opening 18 via the RP sensor 9. The three-way valve 16 switches to the water discharge side pipe line when the degree of electrolysis of electrolyzed discharge water, that is, the ORP is within a predetermined range, and switches to the drain pipe 17 outside the predetermined range.
The RP anode water is drained from the drain pipe 17 of the three-way valve 16. The signal obtained from the ORP sensor is input to the CPU included in the control unit 19, and each unit is controlled by arithmetic processing.

【0010】図7にORPセンサを示す。ORPセンサ
9を構成する部体30はポリアセタール、ナイロンなど
の絶縁性の高い部材で形成されている。部体内部33表
面にはAgCl皮膜を形成した比較電極31とPtから
形成された指示電極32からなるORPセンサが部体内
部に流水を阻害しないように突出している。
FIG. 7 shows an ORP sensor. The body 30 constituting the ORP sensor 9 is formed of a highly insulating member such as polyacetal or nylon. An ORP sensor composed of a reference electrode 31 formed with an AgCl film and an indicator electrode 32 formed of Pt is projected on the surface of the interior 33 of the body so as not to block running water inside the body.

【0011】このORPセンサ9によって陽極水のOR
Pが測定され、その検出測定信号は制御部19を形成す
るCPUに供給される。CPUには予め所定基準値が記
録してあり、ORPセンサ9の測定信号との比較演算処
理により三方弁16の流出方向を自在に切換え所望する
ORPの吐出のみを行う。この結果を制御部に帰還し、
常に電解度合いが一定の陽極水を吐出する。
The ORP sensor 9 is used to OR the anode water.
P is measured, and the detection measurement signal is supplied to the CPU forming the control unit 19. A predetermined reference value is recorded in advance in the CPU, and the outflow direction of the three-way valve 16 is freely switched by the comparison calculation processing with the measurement signal of the ORP sensor 9, and only the desired ORP is discharged. This result is returned to the control unit,
Anode water with a constant degree of electrolysis is always discharged.

【0012】従って、電解を開始した当初とか原水側の
水圧変化等により原水流量が大きく変動しても、このよ
うなときは三方弁16が排水管17に切り換わるので吐
水する陽極水に所定外の水が混合する虞れはなく、電解
の開始当初から一定のORP値の陽極水を吐水して利用
することができる。
Therefore, even if the flow rate of raw water fluctuates greatly at the beginning of electrolysis or due to a change in water pressure on the raw water side, in such a case, the three-way valve 16 switches to the drain pipe 17, so that the anode water to be discharged is not predetermined. There is no fear that the above water will be mixed, and the anode water having a constant ORP value can be discharged and used from the beginning of electrolysis.

【0013】しかしながら、上記構成の装置において、
装置を駆動するにあたり、ORPセンサが正確な値を示
すまでに立上り時間を要する。とりわけ、使用中止後長
時間に亘りORPセンサが空気に触れていた場合、電極
表面の強電解水へのなじみが悪く、しばらくの間、OR
Pセンサは正確な値を示さない。このため、実際は所望
するORPの水が吐水されていても、ORPセンサが見
掛け上正確な値を示していなければ、吐水されている強
電解水は目的に合致していない水として排水されること
になり、正確な値を示すまでの水は無駄になる。
However, in the apparatus having the above structure,
In driving the device, it takes a rise time for the ORP sensor to show an accurate value. In particular, when the ORP sensor has been in contact with air for a long time after the use is stopped, the electrode surface is not so familiar with the strong electrolyzed water and the OR
The P sensor does not show the correct value. Therefore, even if the desired ORP water is actually discharged, if the ORP sensor does not show an apparently accurate value, the strongly electrolyzed water being discharged is discharged as water that does not match the purpose. The water is wasted until the correct value is displayed.

【0014】[0014]

【発明が解決しようとする課題】そこで本発明は、電解
槽から吐出する強電解水のORPセンサの立上り時間を
短縮するため、逆洗時間などの電解水吐出休止期間や装
置駆動直後において、ORPセンサの比較電極、Ag/
AgCl電極に陰電位を、指示電極Pt電極に陽電位を
印加することにより、両電極の表面を活性化させて、電
極表面の強電解水へのなじみをよくすることにより、立
上り時間を短縮しようとするものである。両電極への上
記電圧の印加によって電極表面が活性化することによ
り、使用を中止後長時間に亘りORPセンサが空気に触
れていた場合でも立上り時間が短縮され、メインテナン
スが容易でしかも経済性の高い強電解水測定用ORPセ
ンサを提供することができる。
SUMMARY OF THE INVENTION In order to reduce the rise time of the ORP sensor for strong electrolyzed water discharged from the electrolytic cell, the present invention aims to reduce the ORP during the electrolyzed water discharge suspension period such as backwash time or immediately after the device is driven. Sensor reference electrode, Ag /
By applying a negative potential to the AgCl electrode and a positive potential to the indicator electrode Pt electrode, the surfaces of both electrodes are activated to improve the familiarity of the electrode surfaces with the strong electrolyzed water, thereby shortening the rise time. It is what The activation of the electrode surface by applying the above voltage to both electrodes shortens the start-up time even if the ORP sensor is in contact with air for a long time after the use is stopped, and the maintenance is easy and economical. It is possible to provide a high ORP sensor for measuring strong electrolyzed water.

【0015】[0015]

【課題を解決するための手段】そこで本発明の請求項1
の強電解水測定用ORPセンサ装置は、電解槽をイオン
透過性隔膜によって陰極室と陽極室に分け夫夫の極室内
に陰陽電極を設け、上記電極間に所定の直流電流を印加
する電解電源を設けて前記電解槽内に供給される原水を
電極間の通電によって電解し陰極室に陰極水、陽極室に
陽極水を生成するにあたり、前記電解槽に供給する原水
中に塩素系電解質水溶液を供給する供給手段を設け、前
記供給手段によつて塩素系電解質水溶液を添加混合した
原水を前記電解槽に供給させながら電解するようにした
強電解水生成装置の前記電解槽の吐出側に電解度合いを
検出する比較電極としてAg/AgCl、指示電極とし
てPtから成るORP感知部材を配設したものにおい
て、電解に先立ち、ORP感知部材の比較電極に陰電
位、指示電極に陽電位を印加することを特徴とする。
SUMMARY OF THE INVENTION Therefore, claim 1 of the present invention is provided.
In the ORP sensor device for measuring strong electrolyzed water, the electrolytic cell is divided into a cathode chamber and an anode chamber by an ion permeable diaphragm, and an anode and a cathode electrode are provided in the electrode chamber of the husband and the electrolysis power source for applying a predetermined direct current between the electrodes. In order to generate the cathode water in the cathode chamber and the anode water in the cathode chamber by electrolyzing the raw water supplied to the electrolytic bath by energization between the electrodes, a chlorine-based electrolyte aqueous solution is supplied to the raw water supplied to the electrolytic bath. A supply means for supplying is provided, and the degree of electrolysis on the discharge side of the electrolytic cell of the strong electrolyzed water generating device is adapted to cause electrolysis while supplying raw water to which the chlorine-based electrolyte aqueous solution is added and mixed by the supplying means to the electrolytic cell. In the case where an ORP sensing member composed of Ag / AgCl as a reference electrode for detecting electricity and Pt as an indicator electrode is provided, prior to electrolysis, a negative potential is applied to the reference electrode of the ORP sensing member and a positive potential is applied to the indicator electrode. It applied, characterized in that.

【0016】本発明の請求項2の強電解水測定用ORP
センサ装置は、請求項1記載の強電解水測定用ORPセ
ンサ装置であって、電源入力時もしくは電解水吐出休止
期間に比較電極に陰電位、指示電極に陽電位を印加する
ことを特徴とする。
ORP for measuring strongly electrolyzed water according to claim 2 of the present invention
The sensor device is the ORP sensor device for measuring strong electrolyzed water according to claim 1, characterized in that a negative potential is applied to the reference electrode and a positive potential is applied to the indicator electrode during power-on or during a period during which electrolyzed water discharge is suspended. .

【0017】本発明の請求項3の強電解水測定用ORP
センサ装置は、請求項1記載の強電解水測定用ORPセ
ンサ装置であって、ORPセンサの立上りが遅いと判断
されるとき、自動的に比較電極に陰電位、指示電極に陽
電位を印加することを特徴とする。
ORP for measuring strongly electrolyzed water according to claim 3 of the present invention
The sensor device is the ORP sensor device for measuring strong electrolyzed water according to claim 1, wherein when the rise of the ORP sensor is judged to be slow, a negative potential is automatically applied to the reference electrode and a positive potential is applied to the indicator electrode. It is characterized by

【0018】本発明の請求項4の強電解水測定用ORP
センサ装置は、請求項1、請求項2および請求項3記載
の強電解水測定用ORPセンサ装置であって、比較電極
と指示電極に印加する電圧が10V〜20V、印加時間
が30秒〜3分であることを特徴とする。
ORP for measuring strongly electrolyzed water according to claim 4 of the present invention
The sensor device is the ORP sensor device for measuring strong electrolyzed water according to claim 1, claim 2 and claim 3, wherein the voltage applied to the reference electrode and the indicator electrode is 10V to 20V, and the application time is 30 seconds to 3 seconds. It is characterized by being minutes.

【0019】本発明の請求項5の強電解水測定用ORP
センサ方法は、電解槽をイオン透過性隔膜によって陰極
室と陽極室に分け夫夫の極室内に陰陽電極を設け、上記
電極間に所定の直流電流を印加する電解電源を設けて前
記電解槽内に供給される原水を電極間の通電によって電
解し陰極室に陰極水、陽極室に陽極水を生成するにあた
り、前記電解槽に供給する原水中に塩素系電解質水溶液
を供給する供給手段を設け、前記供給手段によつて塩素
系電解質水溶液を添加混合した原水を前記電解槽に供給
させながら電解するようにした強電解水生成装置の前記
電解槽の吐出側に電解度合いを検出する比較電極として
Ag/AgCl、指示電極としてPtから成るORP感
知部材を配設したものにおいて、ORP感知部材の比較
電極に陰電位、指示電極に陽電位を印加した後ORP感
知部材を動作させることを特徴とする。
ORP for measuring strong electrolyzed water according to claim 5 of the present invention
In the sensor method, the electrolytic cell is divided into a cathode chamber and an anode chamber by an ion-permeable diaphragm, and a positive and negative electrode is provided in each of the electrode chambers, and an electrolytic power source for applying a predetermined DC current is provided between the electrodes to provide an electrolytic cell in the electrolytic cell. In generating cathode water in the cathode chamber by electrolyzing the raw water supplied to the electrode by energization between the electrodes, and providing anode water in the anode chamber, a supply means for supplying a chlorine-based electrolyte aqueous solution to the raw water supplied to the electrolytic cell is provided, Ag as a reference electrode for detecting the degree of electrolysis on the discharge side of the electrolyzer of a strong electrolyzed water generator in which the raw water to which the chlorine-based electrolyte aqueous solution has been added and mixed by the supply means is electrolyzed / AgCl and an ORP sensing member made of Pt as an indicator electrode are arranged. After applying a negative potential to the reference electrode of the ORP sensing member and a positive potential to the indicator electrode, the ORP sensing member is operated. It is characterized in.

【0020】[0020]

【発明の実施の形態】図1は本発明のORPセンサの立
上り時間を短縮するための実験に関する説明図であり、
図2は上記実験結果に基づく、印加電圧と立上り時間の
関係を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram relating to an experiment for shortening the rise time of the ORP sensor of the present invention.
FIG. 2 is a diagram showing the relationship between the applied voltage and the rise time based on the above experimental results.

【0021】図1において、1は図4に示したORPセ
ンサが配設された管に相当する容器であり、2は容器1
に満たされたORP既知の電解水溶液であり、3および
4はORPセンサを構成する比較電極、Ag/AgCl
電極と、指示電極Pt電極である。5は切換えスイッチ
であり、6は両電極に直流電圧を供給するための電源で
あり、7はORP測定用電圧計であり、8は容器中の電
解水などを排出するバルブである。
In FIG. 1, reference numeral 1 is a container corresponding to the tube in which the ORP sensor shown in FIG. 4 is arranged, and 2 is a container 1.
Known electrolytic solution filled with ORP, and 3 and 4 are reference electrodes, Ag / AgCl, which constitute the ORP sensor.
An electrode and an indicator electrode Pt electrode. Reference numeral 5 is a changeover switch, 6 is a power supply for supplying a DC voltage to both electrodes, 7 is an ORP measuring voltmeter, and 8 is a valve for discharging electrolyzed water or the like in the container.

【0022】いま、切換えスイッチ5を測定用電圧計7
側に回路接続し、容器内の電解水に替え、ORP既知の
電解水溶液をいれる。そしてORPに対してその値が既
知のORPに近づくまでの時間を測定する。そのとき、
図2に示す横軸に時間、縦軸に指示ORPからなる時間
/指示ORPの関係を示す曲線A1 をプロットすること
ができる。次いで、容器内の水を再度入れ替え、切換え
スイッチ5を電源6側に回路接続した後、Ag/AgC
l電極に陰電位をPt電極に陽電位を接続して、所定時
間電圧を印加する。印加が終了した後、上記と同じよう
に切換えスイッチ5を測定用電圧計7側に回路接続し、
容器内の水を替え、ORP既知の電解水溶液を入れ、そ
のORPの値が既知のORPに近づくまでの時間を測定
する。そして、時間/指示ORPの関係を示す曲線A2
を得る。以下、同様に印加時間および印加電圧を変えて
曲線A3 ----Anを得る。
Now, the changeover switch 5 is replaced with the measuring voltmeter 7.
The circuit is connected to the side, and the electrolytic water in the container is replaced with an electrolytic aqueous solution known to ORP. Then, for the ORP, the time until the value approaches the known ORP is measured. then,
It is possible to plot the time on the horizontal axis shown in FIG. 2 and the curve A 1 showing the time / instruction ORP consisting of the instruction ORP on the vertical axis. Then, the water in the container is replaced again, and the changeover switch 5 is connected to the power source 6 side by a circuit, and then Ag / AgC is added.
A negative potential is connected to the l electrode and a positive potential is connected to the Pt electrode, and a voltage is applied for a predetermined time. After the application is completed, the changeover switch 5 is connected to the measuring voltmeter 7 side in the same manner as above,
The water in the container is replaced, an electrolytic aqueous solution of known ORP is added, and the time until the value of the ORP approaches the known ORP is measured. Then, a curve A 2 showing the relationship of time / instruction ORP
Get. Thereafter, similarly, the application time and the applied voltage are changed to obtain the curve A 3 ---- An.

【0023】上記の実験結果から、前処理電圧を一定時
間加えることにより、ORPの立上り時間を短縮するこ
とが可能となり、しかも上記指標をある値に設定するこ
とにより、好適な立上り時間を得ることができる。
From the above experimental results, it is possible to shorten the ORP rise time by applying a pretreatment voltage for a certain period of time, and obtain a suitable rise time by setting the above index to a certain value. You can

【0024】上記の手法による立上り時間の短縮の好適
な例は、下記の通りである。 印加電圧10〜20V 印加時間30秒〜 3分 なお、印加電圧の極性を入れ替えると上記のような好適
な結果を得ることはできない。
A preferred example of shortening the rise time by the above method is as follows. Applied voltage: 10 to 20 V Applied time: 30 seconds to 3 minutes If the polarities of the applied voltage are switched, it is impossible to obtain the preferable results as described above.

【0025】上記の好適な実施例においては、ORPの
立上り時間を20秒以内とすることができる。この結
果、実用上待ち時間がなくなり、本来所定のORPがあ
るのに拘らず、吐水を排水するという無駄を除いた電解
水生成器を構成することができる。
In the preferred embodiment described above, the rise time of the ORP can be set within 20 seconds. As a result, there is practically no waiting time, and it is possible to configure an electrolyzed water generator that eliminates the waste of discharging spouted water despite the originally having a predetermined ORP.

【0026】[0026]

【実施例】図3は前記実験結果を電解水生成器の陽極水
の測定に用いるORPセンサに適応した一実施例を示す
図で、図6と対照されるものである。図6と同じ動作を
する部材には同じ符号をつけ、重複する説明は省く。
尚、図においてORPセンサは陽極水流路に配設してい
るが、陰極水流路に配設してもよく、勿論、陰陽極水流
路に配設してもよい。
EXAMPLE FIG. 3 is a diagram showing an example in which the above experimental results are applied to an ORP sensor used for measuring anode water of an electrolyzed water generator, and is contrasted with FIG. Members that operate in the same manner as in FIG. 6 are assigned the same reference numerals and duplicate explanations are omitted.
Although the ORP sensor is arranged in the anode water channel in the figure, it may be arranged in the cathode water channel or, of course, in the negative and anode water channels.

【0027】図において、9はORPセンサであり、1
9−1は制御部であり、18は切換え部材であり、29
はORPセンサ印加電源であり、35は記憶手段であ
る。
In the figure, 9 is an ORP sensor, and 1
9-1 is a control unit, 18 is a switching member, 29
Is an ORP sensor application power source, and 35 is a storage means.

【0028】電解水生成装置を長時間使用するために
は、陰極室および陰極水流路に堆積するデポジットを除
去するため、陰陽極の印加電位を反転させる逆電解が行
われる。図4は電解/逆電解とORP測定/ORP測定
電極への電圧印加の関係を示す図で、逆電解中にORP
測定電極への電圧印加が行われることを示す。
In order to use the electrolyzed water producing apparatus for a long time, in order to remove the deposits accumulated in the cathode chamber and the cathode water flow path, reverse electrolysis in which the potential applied to the cathode and anode is reversed is carried out. FIG. 4 is a diagram showing the relationship between electrolysis / reverse electrolysis and ORP measurement / voltage application to the ORP measurement electrode.
It shows that a voltage is applied to the measurement electrode.

【0029】逆電解中には陽極室から管路15を介して
三方弁16に流れた電解水は制御部の指示で配水管17
から排水される。従って、この逆電解中にはORPセン
サには電解水は流れない。この期間に制御部19−1が
作動して、切換え部材18がORPセンサ印加電源29
からORPセンサ電極に前記した電圧を印加することが
できる。ORPセンサへの印加電圧および印加時間は記
憶手段35に入力されている図1に示した実験結果に基
づく基準値と対比されて行われる。従って、立上り時間
の遅い場合には、逆電解の時間中印加時間(t1 )とし
てもよく、また、立上り時間の比較的速い場合には、逆
電解の時間の一部を印加時間(t2 )としてもよい。何
れの場合においても、印加時間が終わった直後において
ORPセンサを表示させるとき、好ましい結果を得るこ
とができる。
During the reverse electrolysis, the electrolyzed water that has flowed from the anode chamber to the three-way valve 16 via the pipe 15 is instructed by the control unit to supply water to the distribution pipe 17.
Drained from Therefore, electrolytic water does not flow to the ORP sensor during this reverse electrolysis. During this period, the control unit 19-1 operates and the switching member 18 causes the ORP sensor application power source 29.
Therefore, the above voltage can be applied to the ORP sensor electrode. The applied voltage and the applied time to the ORP sensor are compared with the reference value based on the experimental result shown in FIG. Therefore, when the rise time is slow, the application time (t 1 ) may be set during the reverse electrolysis, and when the rise time is relatively fast, a part of the reverse electrolysis time may be applied (t 2). ) Is good. In either case, a favorable result can be obtained when the ORP sensor is displayed immediately after the application time is over.

【0030】図5は前記実験の結果を電解水生成器の作
動開始時点で作動するように適応した事例を示すフロー
チャートの一実施例である。
FIG. 5 is an embodiment of a flow chart showing a case in which the result of the above experiment is adapted to operate at the start of operation of the electrolyzed water generator.

【0031】すなわち、ORPセンサの立上りが遅いと
判断されるとき、自動的に比較電極に陰電位、指示電極
に陽電位を印加するもので、これによって吐水は短時間
の立上りが確保される。
That is, when the rise of the ORP sensor is judged to be slow, a negative potential is automatically applied to the comparison electrode and a positive potential is applied to the indicator electrode, whereby the rise of water discharge is secured in a short time.

【0032】図において、装置電源がON101される
と共に、ORPセンサの応答速度調査102が行われ
る。そして、短時間内に図2に示した時間/指示ORP
曲線の係数dθ/dtがROMに収納されている適正値の範
囲、指示値範囲103内にあるか確認される。指示値範
囲内にあるときは通水開始104となる。指示値範囲外
にあるときは通水は開始されず応答速度調査回路は切断
105され、前記の直流電圧が両電極に印加106さ
れ、しかる後ORPセンサの応答速度調査102が行わ
れる。
In the figure, the device power supply is turned on 101, and the response speed investigation 102 of the ORP sensor is performed. Then, within a short time, the time / instruction ORP shown in FIG.
It is confirmed whether the coefficient dθ / dt of the curve is within the range of the appropriate value stored in the ROM, that is, the indicated value range 103. When it is within the indicated value range, the water flow starts 104. When it is out of the indicated value range, water flow is not started, the response speed inspection circuit is disconnected 105, the above-mentioned DC voltage is applied 106 to both electrodes, and then the response speed inspection 102 of the ORP sensor is performed.

【0033】このように本発明によれば、所定のORP
値の電解水が素速く測定され、容易に連続して生成でき
る。
As described above, according to the present invention, the predetermined ORP
The value of electrolyzed water is measured quickly and can be easily and continuously produced.

【0034】[0034]

【発明の効果】電解槽から吐出する強電解水のORPセ
ンサの立上り時間を短縮するため、逆洗時間などの電解
水吐出休止期間や装置駆動直後において、ORPセンサ
の比較電極、Ag/AgCl電極に陰電位を、指示電極
Pt電極に陽電位を印加することにより、両電極の表面
を活性化させて、電極表面の強電解水へのなじみをよく
することにより、立上り時間を短縮させることができ
る。両電極への上記電圧の印加によって電極表面が活性
化することにより、使用中止後長時間に亘りORPセン
サが空気に触れていた場合でも立上り時間が短縮され、
電解水の真のORP値を素速く測定することができる。
この結果、装置の使用当初における無駄な排水をしなく
てもよいので経済的である。
In order to shorten the rise time of the ORP sensor of the strong electrolyzed water discharged from the electrolytic cell, the reference electrode of the ORP sensor and the Ag / AgCl electrode of the ORP sensor are immediately after the electrolysis water discharge suspension period such as backwash time or immediately after the device is driven. A negative potential is applied to the indicator electrode, and a positive potential is applied to the Pt electrode to activate the surfaces of both electrodes and improve the familiarity of the electrode surfaces with strongly electrolyzed water, thereby shortening the rise time. it can. By activating the electrode surface by applying the above voltage to both electrodes, the rise time is shortened even when the ORP sensor is in contact with air for a long time after the use is stopped.
The true ORP value of electrolyzed water can be measured quickly.
As a result, it is economical because wasteful drainage does not have to be performed at the beginning of use of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関わるORPセンサの立上り時間を短
縮するための実験に関する説明図である。
FIG. 1 is an explanatory diagram related to an experiment for shortening the rise time of an ORP sensor according to the present invention.

【図2】本発明に関わるORPセンサの印加電圧と立上
り時間の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the applied voltage and the rise time of the ORP sensor according to the present invention.

【図3】本発明に関わる電解水生成装置と陽極水の測定
に用いるORPセンサの配置とその動作を示す一実施例
である。
FIG. 3 is an embodiment showing the arrangement and operation of an electrolyzed water generator according to the present invention and an ORP sensor used for measuring anode water.

【図4】本発明に関わる電解/逆電解とORP測定/O
RP測定電極への電圧印加の関係を示す図である。
FIG. 4 Electrolysis / reverse electrolysis and ORP measurement / O relating to the present invention
It is a figure which shows the relationship of the voltage application to an RP measurement electrode.

【図5】本発明に関わる電解水生成器の作動開始時点で
作動するように適応した事例を示すフローチャートの一
実施例である。
FIG. 5 is an embodiment of a flow chart showing an example adapted to operate at the time of starting the operation of the electrolyzed water generator according to the present invention.

【図6】従来の強電解水生成装置の構成とORPセンサ
の動作を説明する図である。
FIG. 6 is a diagram illustrating a configuration of a conventional strongly electrolyzed water generator and an operation of an ORP sensor.

【図7】従来の強電解水生成装置に使用されているOR
Pセンサの構造を示す図である。
FIG. 7: OR used in a conventional strong electrolyzed water generator
It is a figure which shows the structure of a P sensor.

【符号の説明】[Explanation of symbols]

2 比較電極 3 指示電極 9 ORPセンサ 18 切換え部材 19−1 制御部 29 ORPセンサ印加電源 35 記憶手段 2 reference electrode 3 indicator electrode 9 ORP sensor 18 switching member 19-1 control unit 29 ORP sensor application power source 35 storage means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解槽をイオン透過性隔膜によって陰極
室と陽極室に分け夫夫の極室内に陰陽電極を設け、上記
電極間に所定の直流電流を印加する電解電源を設けて前
記電解槽内に供給される原水を電極間の通電によって電
解し陰極室に陰極水、陽極室に陽極水を生成するにあた
り、前記電解槽に供給する原水中に塩素系電解質水溶液
を供給する供給手段を設け、前記供給手段によつて塩素
系電解質水溶液を添加混合した原水を前記電解槽に供給
させながら電解するようにした強電解水生成装置の前記
電解槽の吐出側に電解度合いを検出する比較電極として
Ag/AgCl、指示電極としてPtから成るORP感
知部材を配設したものにおいて、 電解に先立ち、ORP感知部材の比較電極に陰電位、指
示電極に陽電位を印加することを特徴とする強電解水測
定用ORPセンサ装置。
1. An electrolytic cell is divided into a cathode chamber and an anode chamber by an ion-permeable diaphragm, and a positive and negative electrode is provided in each of the electrode chambers, and an electrolytic power source for applying a predetermined direct current is provided between the electrodes to provide the electrolytic cell. In producing the cathode water in the cathode chamber and the anode water in the anode chamber by electrolyzing the raw water supplied to the inside by energization between the electrodes, a supply means for supplying the chlorine-based electrolyte aqueous solution to the raw water to be supplied to the electrolytic cell is provided. As a reference electrode for detecting the degree of electrolysis on the discharge side of the electrolyzer of the strong electrolyzed water generating apparatus, which is configured to electrolyze while supplying raw water to which the chlorine-based electrolyte aqueous solution is added and mixed by the supply means to the electrolyzer. An ORP sensing member made of Ag / AgCl and Pt as an indicator electrode is provided, wherein a negative potential is applied to the reference electrode of the ORP sensing member and a positive potential is applied to the indicator electrode prior to electrolysis. That strongly electrolytic water measuring ORP sensor device.
【請求項2】 請求項1記載の強電解水測定用ORPセ
ンサ装置であって、電源入力時もしくは電解水吐出休止
期間に比較電極に陰電位、指示電極に陽電位を印加する
ことを特徴とする強電解水測定用ORPセンサ装置。
2. The ORP sensor device for measuring strong electrolyzed water according to claim 1, wherein a negative potential is applied to the reference electrode and a positive potential is applied to the indicator electrode during power-on or during a period during which electrolytic water discharge is suspended. An ORP sensor device for measuring strong electrolyzed water.
【請求項3】 請求項1記載の強電解水測定用ORPセ
ンサ装置であって、ORPセンサの立上りが遅いと判断
されるとき、自動的に比較電極に陰電位、指示電極に陽
電位を印加することを特徴とする強電解水測定用ORP
センサ装置。
3. The ORP sensor device for measuring strong electrolyzed water according to claim 1, wherein when the rise of the ORP sensor is judged to be slow, a negative potential is automatically applied to the reference electrode and a positive potential is applied to the indicator electrode. ORP for measuring strong electrolyzed water characterized by
Sensor device.
【請求項4】 請求項1、請求項2および請求項3記載
の強電解水測定用ORPセンサ装置であって、比較電極
と指示電極に印加する電圧が10V〜20V、印加時間
が30秒〜3分であることを特徴とする強電解水測定用
ORPセンサ装置。
4. The ORP sensor device for measuring strong electrolyzed water according to claim 1, claim 2 or claim 3, wherein the voltage applied to the reference electrode and the indicator electrode is 10V to 20V and the application time is 30 seconds to. An ORP sensor device for measuring strong electrolyzed water, which is 3 minutes.
【請求項5】 電解槽をイオン透過性隔膜によって陰極
室と陽極室に分け夫夫の極室内に陰陽電極を設け、上記
電極間に所定の直流電流を印加する電解電源を設けて前
記電解槽内に供給される原水を電極間の通電によって電
解し陰極室に陰極水、陽極室に陽極水を生成するにあた
り、前記電解槽に供給する原水中に塩素系電解質水溶液
を供給する供給手段を設け、前記供給手段によつて塩素
系電解質水溶液を添加混合した原水を前記電解槽に供給
させながら電解するようにした強電解水生成装置の前記
電解槽の吐出側に電解度合いを検出する比較電極として
Ag/AgCl、指示電極としてPtから成るORP感
知部材を配設したものにおいて、 ORP感知部材の比較電極に陰電位、指示電極に陽電位
を印加した後ORP感知部材を動作させることを特徴と
する強電解水のORP測定方法。
5. An electrolytic cell is divided into a cathode chamber and an anode chamber by an ion-permeable diaphragm, and a positive and negative electrode is provided in each of the electrode chambers, and an electrolytic power source for applying a predetermined direct current is provided between the electrodes to provide the electrolytic cell. In producing the cathode water in the cathode chamber and the anode water in the anode chamber by electrolyzing the raw water supplied to the inside by energization between the electrodes, a supply means for supplying the chlorine-based electrolyte aqueous solution to the raw water to be supplied to the electrolytic cell is provided. As a reference electrode for detecting the degree of electrolysis on the discharge side of the electrolyzer of the strong electrolyzed water generating apparatus, which is configured to electrolyze while supplying raw water to which the chlorine-based electrolyte aqueous solution is added and mixed by the supply means to the electrolyzer. In a case where an ORP sensing member composed of Ag / AgCl and Pt as an indicator electrode is arranged, a negative potential is applied to the reference electrode of the ORP sensing member and a positive potential is applied to the indicator electrode, and then the ORP sensing member is operated. Strong ORP measuring method of the electrolytic water, characterized in that.
JP29611695A 1995-10-19 1995-10-19 ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water Expired - Fee Related JP3539459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29611695A JP3539459B2 (en) 1995-10-19 1995-10-19 ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29611695A JP3539459B2 (en) 1995-10-19 1995-10-19 ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water

Publications (2)

Publication Number Publication Date
JPH09113483A true JPH09113483A (en) 1997-05-02
JP3539459B2 JP3539459B2 (en) 2004-07-07

Family

ID=17829351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29611695A Expired - Fee Related JP3539459B2 (en) 1995-10-19 1995-10-19 ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water

Country Status (1)

Country Link
JP (1) JP3539459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214219A (en) * 2001-01-23 2002-07-31 Fis Kk Water quality sensor and method for manufacturing the same
WO2014007340A1 (en) * 2012-07-06 2014-01-09 日本電産株式会社 Device for generating electrolytically treated water, and method for generating electrolytically treated water

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880094A (en) * 1972-01-31 1973-10-26
JPS5760255A (en) * 1980-09-29 1982-04-12 Fuji Electric Co Ltd Activating method for hydrogen peroxide electrode for oxygen electrode
JPS63195562A (en) * 1987-02-06 1988-08-12 Daikin Ind Ltd Electrode biasing device for biosensor
JPH0385435A (en) * 1989-08-30 1991-04-10 Daikin Ind Ltd Method and apparatus for refreshing electrode of biosensor
JPH0590360U (en) * 1992-04-30 1993-12-10 ダイキン工業株式会社 Concentration measuring device
JPH078961A (en) * 1993-06-29 1995-01-13 Asahi Glass Eng Kk Production of acidic water
JPH07144193A (en) * 1993-11-25 1995-06-06 Matsushita Electric Works Ltd Electrolytic water producing device
JPH07204644A (en) * 1994-01-27 1995-08-08 Asahi Glass Co Ltd Ionic water generator
JPH07256259A (en) * 1994-03-25 1995-10-09 Nec Corp Method and mechanism for generating electrolytic water
JPH07265857A (en) * 1994-03-30 1995-10-17 Hoshizaki Electric Co Ltd Electrolytic ionized water generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880094A (en) * 1972-01-31 1973-10-26
JPS5760255A (en) * 1980-09-29 1982-04-12 Fuji Electric Co Ltd Activating method for hydrogen peroxide electrode for oxygen electrode
JPS63195562A (en) * 1987-02-06 1988-08-12 Daikin Ind Ltd Electrode biasing device for biosensor
JPH0385435A (en) * 1989-08-30 1991-04-10 Daikin Ind Ltd Method and apparatus for refreshing electrode of biosensor
JPH0590360U (en) * 1992-04-30 1993-12-10 ダイキン工業株式会社 Concentration measuring device
JPH078961A (en) * 1993-06-29 1995-01-13 Asahi Glass Eng Kk Production of acidic water
JPH07144193A (en) * 1993-11-25 1995-06-06 Matsushita Electric Works Ltd Electrolytic water producing device
JPH07204644A (en) * 1994-01-27 1995-08-08 Asahi Glass Co Ltd Ionic water generator
JPH07256259A (en) * 1994-03-25 1995-10-09 Nec Corp Method and mechanism for generating electrolytic water
JPH07265857A (en) * 1994-03-30 1995-10-17 Hoshizaki Electric Co Ltd Electrolytic ionized water generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214219A (en) * 2001-01-23 2002-07-31 Fis Kk Water quality sensor and method for manufacturing the same
JP4739536B2 (en) * 2001-01-23 2011-08-03 エフアイエス株式会社 Water quality sensor
WO2014007340A1 (en) * 2012-07-06 2014-01-09 日本電産株式会社 Device for generating electrolytically treated water, and method for generating electrolytically treated water

Also Published As

Publication number Publication date
JP3539459B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JP2011522123A (en) Electrolytic cell cleaning method including electrode and electrolytic product generator
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
JP3234025B2 (en) Electrolyzed water generator
JP3539459B2 (en) ORP sensor device for measuring strong electrolyzed water and ORP measuring method for strong electrolyzed water
JP2000218271A (en) Electrolytic device
JPH06246269A (en) Device for producing electrolyte
JP2003062569A (en) Electrolytic water generator
JP3275108B2 (en) Electrolyzed water generator
JP3543365B2 (en) Ionized water generator and pH sensor cleaning method
JPH06312184A (en) Electrolytic water forming apparatus
JPH06312185A (en) Electrolytic water forming apparatus
JP3612902B2 (en) Electrolyzed water generator
JPH06339691A (en) Sterile water preparation device
JPH08215684A (en) Ionic water making apparatus
JPH06246265A (en) Device for producing electrolyte
JP3448834B2 (en) ORP sensor for anode water measurement
JP3412669B2 (en) Electrolyzed water generator
JP3440674B2 (en) Ion water generator
JPH09108673A (en) Method of electrolyzing salt water
JPH0938652A (en) Producing device of strong acid water
JPH1080685A (en) Alkali ionized water adjuster
JP3562153B2 (en) Alkaline ion water purifier
JP3633077B2 (en) pH sensor and ion water generator
JPH09141265A (en) Electrolytic water generator
JP3767976B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees