JP2000218271A - Electrolytic device - Google Patents

Electrolytic device

Info

Publication number
JP2000218271A
JP2000218271A JP11018359A JP1835999A JP2000218271A JP 2000218271 A JP2000218271 A JP 2000218271A JP 11018359 A JP11018359 A JP 11018359A JP 1835999 A JP1835999 A JP 1835999A JP 2000218271 A JP2000218271 A JP 2000218271A
Authority
JP
Japan
Prior art keywords
electrodes
resistance
supply
electrolytic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11018359A
Other languages
Japanese (ja)
Inventor
Keijiro Kunimoto
啓次郎 国本
Takemi Oketa
岳見 桶田
Tomohide Matsumoto
朋秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11018359A priority Critical patent/JP2000218271A/en
Publication of JP2000218271A publication Critical patent/JP2000218271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform highly efficient electrolysis by controlling the water supply to an electrolytic cell provided with at least a couple of electrodes and stopping a water supply control means when a current is applied to the electrodes and an electrolyte soln. feed means is driven in an electrolytic device supplied with the electrolyte soln. SOLUTION: An electrolytic cell 12 for an electrolyte soln. is internally provided with a couple of electrodes 13 and 14, and water is supplied to a tank 15 through a water pipe 20. The electrolytic cell 12 is provided with a water inlet 26 charging city water from a feed water passage 25 and an outlet 27 for discharging an electrolyte soln. formed by the electrolysis to the outside, and a solenoid valve 28 for controlling the supply of water to the electrolytic cell 12 is furnished to the feed water passage 25. A compd. such as hypochlorous acid is electrolytically formed from the soln. At this time, the solenoid valve 28 is stopped when a current is applied to the electrodes 13 and 14 and a supply means 22 is driven, hence chlorine ion contained in the soln. is slowly passed between the electrodes 13 and 14, and efficient electrolysis is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気分解(以後電
解と呼ぶ)に関するもので、特に電解質を電解すること
により次亜塩素酸などの化合物を生成する電解装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electrolysis (hereinafter referred to as electrolysis), and more particularly to an electrolysis apparatus for generating a compound such as hypochlorous acid by electrolyzing an electrolyte.

【0002】[0002]

【従来の技術】従来より塩素イオンを含む水を電気分解
することにより、次亜塩素酸及び次亜塩素酸イオンを生
成する電解装置が知られている(例えば、特許第261
9756号公報、特許第2587731号公報)。
2. Description of the Related Art Conventionally, there has been known an electrolysis apparatus which produces hypochlorous acid and hypochlorite ions by electrolyzing water containing chloride ions (for example, see Patent No. 261).
No. 9756, Japanese Patent No. 2587773).

【0003】この電解装置は図11に示すように、溶液
路1に流量調整弁2と食塩水を供給するポンプ3及び塩
酸を供給するポンプ4の動作により、食塩水タンク5及
びび塩酸タンク6から溶液を希釈水と共に電解槽7内に
送り込み、同時に電極8を陽極、電極9を陰極として直
流電解装置10で通電を行うことにより、電解槽7内で
次亜塩素酸を生成し、排水路11から次亜塩素酸溶液を
連続的に得ていた。
As shown in FIG. 11, this electrolytic apparatus operates a flow control valve 2 and a pump 3 for supplying a saline solution and a pump 4 for supplying a hydrochloric acid to the solution path 1 to operate a saline solution tank 5 and a hydrochloric acid tank 6. The solution is fed into the electrolytic cell 7 together with the diluting water, and at the same time, electricity is supplied to the direct current electrolysis device 10 using the electrode 8 as an anode and the electrode 9 as a cathode, thereby generating hypochlorous acid in the electrolytic cell 7, From 11 the hypochlorous acid solution was continuously obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電解装置では、食塩水及び塩酸と希釈水の混合水を電解
槽7に供給しながら電極8、9に通電し連続的に電解す
るために、電解の開始直後より連続して次亜塩素酸を供
給できる反面、混合水を流しながら電解を行うため電極
8,9間への塩素イオンの通過時間が短くなり電解効率
が高められなかった。そのため、次亜塩素酸を生成しす
るために多くの電力や食塩水が消費されていた。
However, in the conventional electrolyzer, since the electrodes 8 and 9 are energized continuously while supplying a saline solution and a mixed water of hydrochloric acid and diluting water to the electrolysis tank 7, electrolysis is performed continuously. Although hypochlorous acid can be supplied continuously immediately after the start of electrolysis, electrolysis is performed while flowing mixed water, so that the passage time of chlorine ions between the electrodes 8 and 9 is shortened, and the electrolysis efficiency cannot be increased. Therefore, a large amount of electric power and saline have been consumed to generate hypochlorous acid.

【0005】また、次亜塩素酸の濃度を調整する場合
に、流量調節弁2とポンプ3とポンプ4のそれぞれの供
給量を制御する必要があるため、バラツキ要因が多くな
り要求する濃度が得にくかった。
In addition, when adjusting the concentration of hypochlorous acid, it is necessary to control the supply amounts of the flow control valve 2, the pump 3 and the pump 4, respectively. It was difficult.

【0006】さらに、ポンプが故障したり、食塩水や塩
酸が無くなって要求する濃度の次亜塩素酸が生成できな
くなっても利用者が気づかないため、次亜塩素酸の働き
である殺菌等ができずに食中毒など重大な事故つながる
危険があった。
Further, even if the pump breaks down or the required concentration of hypochlorous acid cannot be produced due to the loss of the saline solution or hydrochloric acid, the user does not notice it. There was a danger of serious accidents such as food poisoning.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、内部に少なくとも一対の電極と給水口と電解
液を排出する排出口とを備える電解槽と、前記電解槽へ
の給水を制御する給水制御手段と、電解質溶液を貯える
タンクと、前記電解質溶液を前記電解槽に供給する供給
手段と、前記電極への通電時と前記供給手段の駆動時に
は前記給水制御手段を停止させる制御手段とにより構成
している。
In order to solve the above-mentioned problems, the present invention provides an electrolytic cell having at least a pair of electrodes, a water supply port, and a discharge port for discharging an electrolytic solution, and a water supply to the electrolytic cell. Water supply control means for controlling, a tank for storing an electrolyte solution, supply means for supplying the electrolyte solution to the electrolytic cell, and control means for stopping the water supply control means when energizing the electrode and driving the supply means It consists of:

【0008】上記発明によれば、タンクの電解質溶液
は、供給手段により電解槽内に供給され、電解槽内の水
と混合され電極に通電を行うことで、電気分解により次
亜塩素酸などの化合物を生成することができる。このと
き、電極へ通電時と供給手段の駆動時には給水制御手段
を停止させるため、電解槽への給水がない状態で、電解
槽内の電解質溶液は電極表面に発生する水素ガスや酸素
などのが浮上する際の誘引作用により、対流が発生し電
解質溶液に含まれる塩素イオンがゆっくりと電極間を通
過するため効率の良い電解ができる。
According to the above invention, the electrolytic solution in the tank is supplied into the electrolytic cell by the supply means, mixed with the water in the electrolytic cell, and energized to the electrodes. Compounds can be produced. At this time, the water supply control means is stopped when the electrode is energized and when the supply means is driven, so that the electrolyte solution in the electrolytic tank contains hydrogen gas and oxygen generated on the electrode surface in a state where there is no water supply to the electrolytic tank. Due to the attraction effect during the ascent, convection is generated and chlorine ions contained in the electrolyte solution slowly pass between the electrodes, so that efficient electrolysis can be performed.

【0009】また、電極へ通電時と供給手段の駆動時に
は給水制御手段を停止させるため、供給された電解質溶
液は電解槽の中に留まった状態で電解を行うので、電解
質溶液を調整したり、電解質溶液の濃度が容易に測定で
き、供給手段が故障したり、電解質溶液が無くなって要
求する濃度の電解液が生成できなくなることを未然に防
げる。
In addition, since the water supply control means is stopped when the electrodes are energized and the supply means is driven, the supplied electrolyte solution is electrolyzed while remaining in the electrolytic bath, so that the electrolyte solution can be adjusted, The concentration of the electrolyte solution can be easily measured, and it is possible to prevent the supply means from being broken or the electrolyte solution from running out to produce an electrolyte solution having a required concentration.

【0010】[0010]

【発明の実施の形態】本発明の請求項1にかかる電解装
置は、内部に少なくとも一対の電極と給水口と電解液を
排出する排出口とを備える電解槽と、前記電解槽への給
水を制御する給水制御手段と、電解質溶液を貯えるタン
クと、前記電解質溶液を前記電解槽に供給する供給手段
と、前記電極への通電時と前記供給手段の駆動時には前
記給水制御手段を停止させる制御手段とにより構成する
ものである。
DETAILED DESCRIPTION OF THE INVENTION An electrolytic apparatus according to a first aspect of the present invention includes an electrolytic cell having therein at least a pair of electrodes, a water supply port, and a discharge port for discharging an electrolytic solution, and a water supply to the electrolytic cell. Water supply control means for controlling, a tank for storing an electrolyte solution, supply means for supplying the electrolyte solution to the electrolytic cell, and control means for stopping the water supply control means when energizing the electrode and driving the supply means It is comprised by these.

【0011】そして、タンクの電解質溶液は、供給手段
により電解槽内に供給され、電解槽内の水と混合され電
極に通電を行うことで、電気分解により次亜塩素酸など
の化合物を生成することができる。このとき、電極へ通
電時と供給手段の駆動時には給水制御手段を停止させる
ため、電解槽への給水がない状態で、電解槽内の電解質
溶液は電極表面に発生する水素ガスや酸素などのが浮上
する際の誘引作用により、対流が発生し電解質溶液に含
まれる塩素イオンがゆっくりと電極間を通過するため効
率の良い電解ができる。
The electrolyte solution in the tank is supplied into the electrolytic cell by a supply means, mixed with water in the electrolytic cell, and energized to the electrodes, thereby producing a compound such as hypochlorous acid by electrolysis. be able to. At this time, the water supply control means is stopped when the electrode is energized and when the supply means is driven, so that the electrolyte solution in the electrolytic tank contains hydrogen gas and oxygen generated on the electrode surface in a state where there is no water supply to the electrolytic tank. Due to the attraction effect during the ascent, convection is generated and chlorine ions contained in the electrolyte solution slowly pass between the electrodes, so that efficient electrolysis can be performed.

【0012】また、請求項2にかかる電解装置は、制御
手段として、電極への通電開始前に供給手段を駆動させ
る構成としたものである。
Further, the electrolysis apparatus according to claim 2 is configured such that the supply means is driven before the power supply to the electrode is started as the control means.

【0013】そして、電解質溶液が電解槽に供給された
後、電極への通電を開始することで電解槽内の電解質溶
液は発生ガスにより混合されながら電解が行われる。
[0013] Then, after the electrolyte solution is supplied to the electrolytic cell, the energization of the electrodes is started, whereby the electrolytic solution in the electrolytic cell is electrolyzed while being mixed with the generated gas.

【0014】また、請求項3にかかる電解装置は、制御
手段として、前記電極間の電気抵抗を検知する抵抗検知
部と、前記検知抵抗に応じて供給手段の電解質溶液供給
量を制御するものである。
According to a third aspect of the present invention, there is provided an electrolysis apparatus, wherein the control means controls a resistance detecting unit for detecting an electric resistance between the electrodes, and controls an electrolyte solution supply amount of the supply means in accordance with the detected resistance. is there.

【0015】そして、電解質溶液の濃度と導電率の相関
から電気抵抗によって電解槽に供給された電解質溶液の
濃度が類推できる。したがって、濃度が低い場合には供
給手段の供給量を増すように制御する。
[0015] From the correlation between the concentration of the electrolyte solution and the conductivity, the concentration of the electrolyte solution supplied to the electrolytic cell can be inferred by electric resistance. Therefore, when the concentration is low, control is performed so as to increase the supply amount of the supply means.

【0016】また、請求項4にかかる電解装置は、制御
手段として、前記電極間の電気抵抗を検知する抵抗検知
部と、前記検知抵抗に応じて前記電極への通電時間を制
御するものである。
In the electrolysis apparatus according to a fourth aspect, a resistance detecting unit for detecting an electric resistance between the electrodes as a control means, and an energizing time to the electrodes is controlled according to the detected resistance. .

【0017】そして、電気抵抗によって類推した電解質
溶液の濃度が低い場合には電極の通電時間を長くように
制御する。
When the concentration of the electrolyte solution estimated by the electric resistance is low, the energization time of the electrode is controlled to be long.

【0018】また、請求項5にかかる電解装置は、制御
手段として、前記電極間の電気抵抗を検知する抵抗検知
部と、前記検知抵抗に応じて定電流制御部の設定値を変
更するものである。
The electrolyzing apparatus according to a fifth aspect is configured such that, as the control means, a resistance detecting unit for detecting an electric resistance between the electrodes, and a set value of the constant current control unit is changed according to the detected resistance. is there.

【0019】そして、電気抵抗によって類推した電解質
溶液の濃度が低い場合には定電流制御部の設定値を高く
なるように制御する。
When the concentration of the electrolyte solution estimated by the electric resistance is low, the control value of the constant current control unit is controlled to be high.

【0020】また、請求項6にかかる電解装置は、制御
手段として、前記電極間の電気抵抗を検知する抵抗検知
部と、前記検知抵抗が所定範囲を外れた場合に報知する
報知部とを有するものである。
Further, the electrolysis apparatus according to claim 6 has, as control means, a resistance detecting unit for detecting an electric resistance between the electrodes, and a notifying unit for notifying when the detected resistance is out of a predetermined range. Things.

【0021】そして、前記検知抵抗が所定範囲を外れた
場合に報知することで、供給手段の故障やタンク内の電
解質溶液不足を使用者に知らせることができる。
By notifying when the detection resistance is out of the predetermined range, the user can be notified of a failure of the supply means or a shortage of the electrolyte solution in the tank.

【0022】また、請求項7にかかる電解装置は、制御
手段として、前記電極間の電気抵抗を検知する抵抗検知
部と、供給手段を駆動した場合に検知抵抗が所定時間変
化しなければ報知する報知手段とを有するものである。
In the electrolysis apparatus according to a seventh aspect of the present invention, as the control means, a resistance detection unit for detecting the electric resistance between the electrodes, and when the supply means is driven, is notified if the detection resistance does not change for a predetermined time. Notification means.

【0023】そして、供給手段を駆動しても検知抵抗に
変化がないのは、供給手段の故障やタンク内の電解質溶
液切れであり、これらを使用者に知らせることができ
る。
The fact that there is no change in the detection resistance even when the supply means is driven is a failure of the supply means or running out of the electrolyte solution in the tank, which can be notified to the user.

【0024】また、請求項8にかかかる電解装置は、制
御手段の抵抗検知部による抵抗検知を、供給手段による
電解質溶液供給の終了後に行うものである。
Further, in the electrolysis apparatus according to the present invention, the resistance detection by the resistance detection section of the control means is performed after the supply of the electrolyte solution by the supply means is completed.

【0025】そして、電解槽に電解質溶液が供給された
状態で抵抗検知を行うので、電極間の電気抵抗から電解
槽内の電解質溶液濃度が正確に検出できる。
Since the resistance is detected while the electrolytic solution is supplied to the electrolytic cell, the concentration of the electrolytic solution in the electrolytic cell can be accurately detected from the electric resistance between the electrodes.

【0026】また、請求項9にかかかる電解装置は、制
御手段の抵抗検知部による抵抗検知を、電極間への通電
を開始して所定時間経過後に行うものである。
Further, in the electrolysis apparatus according to the ninth aspect, the resistance detection by the resistance detection section of the control means is performed after a predetermined time has elapsed from the start of energization between the electrodes.

【0027】そして、電極への通電を開始することで電
解槽内の電解質溶液は発生ガスにより混合されるので、
電解槽内の電解質溶液は均一に拡散し、電極間の電気抵
抗から濃度が正確に検出できる。
Then, when the current supply to the electrodes is started, the electrolyte solution in the electrolytic cell is mixed with the generated gas.
The electrolyte solution in the electrolytic cell diffuses uniformly, and the concentration can be accurately detected from the electric resistance between the electrodes.

【0028】また、請求項10にかかかる電解装置は、
制御手段の抵抗検知部として、電極間の電流を一定に制
御する定電流制御部と、前記電極間の電圧を検知する電
圧検知部とを有し、電圧変化により電極間の電気抵抗を
検出する構成としたものである。
Further, the electrolysis apparatus according to claim 10 is:
As a resistance detection unit of the control means, a constant current control unit that controls the current between the electrodes to be constant, and a voltage detection unit that detects the voltage between the electrodes, and detects the electrical resistance between the electrodes by a voltage change It is configured.

【0029】そして、電極間の電流が一定であるから、
電極間の電気抵抗は電圧に比例するため、電極間の電圧
から抵抗が検出できる。
Since the current between the electrodes is constant,
Since the electrical resistance between the electrodes is proportional to the voltage, the resistance can be detected from the voltage between the electrodes.

【0030】また、請求項11にかかかる電解装置は、
制御手段の抵抗検知部として、電極間の電圧を一定に制
御する定電圧制御部と、前記電極間の電流を検知する電
流検知部とを有し、電流変化により電極間の電気抵抗を
検出する構成としたものである。
[0030] The electrolysis apparatus according to claim 11 is:
As a resistance detection unit of the control means, a constant voltage control unit that controls the voltage between the electrodes to be constant, and a current detection unit that detects the current between the electrodes, and detects the electric resistance between the electrodes by changing the current It is configured.

【0031】そして、電極間の電圧が一定であるから、
電極間の電気抵抗は電流に反比例するため、電極間の電
流から抵抗が算定できる。
Since the voltage between the electrodes is constant,
Since the electrical resistance between the electrodes is inversely proportional to the current, the resistance can be calculated from the current between the electrodes.

【0032】また、請求項12にかかかる電解装置は、
タンク内の電解質溶液を塩化ナトリウム、塩化マグネシ
ウム、塩化カリウム、塩化カルシュウムなどの塩素化合
物の水溶液としたものである。
Further, the electrolysis apparatus according to claim 12 is:
The electrolyte solution in the tank is an aqueous solution of a chlorine compound such as sodium chloride, magnesium chloride, potassium chloride, and calcium chloride.

【0033】そして、塩素化合物水溶液を電解槽で電解
し次亜塩素酸を生成する。
Then, the aqueous solution of a chlorine compound is electrolyzed in an electrolytic cell to generate hypochlorous acid.

【0034】[0034]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0035】(実施例1)図1は本発明の実施例1にお
ける電解装置の構成図である。
(Embodiment 1) FIG. 1 is a configuration diagram of an electrolysis apparatus according to Embodiment 1 of the present invention.

【0036】図1において、12は電解質溶液の電気分
解を行う電解槽であり、内部に一対の電極13、14が
備えられている。15は電解質としての塩素化合物であ
る塩化ナトリウム16(以降、食塩と呼ぶ)と、水給水
口とを飽和濃度以上の割合で混合して貯えるタンクで、
タンク15内は飽和濃度を超えているので食塩16はタ
ンク15内で沈殿して下部に溜まる。そしてその電解質
溶液17(以降、食塩水と呼ぶ)は飽和濃度に達して貯
えられている。このタンク15の食塩水17の出口18
は、食塩16の沈殿物が排出されないようタンク15の
上部に設けている。また、タンク15の底部には食塩1
6の沈殿物の内部に給水するための入口19が設けられ
ており、水はタンク15上部よりタンク15内を貫通す
る通水パイプ20により導かれている。この通水パイプ
20は、上流の給水路A21と連通し、給水路A21に
は給水するための供給手段22(以降、ポンプと呼ぶ)
と水の逆流を防止する逆止弁23が備えられている。な
お、ポンプ22はタンク15の上端より高い位置に配置
している。タンク15の出口18と電解槽12とは溶液
路24で接続されており、タンク15内の食塩水17を
電解槽12内に供給することが可能となっている。ま
た、電解槽12には希釈液である水道水(以降水道水と
呼ぶ)を給水路B25より送り込む給水口26と、電気
分解で生成した電解液を電解槽の外部に排出するための
排出口27が備えられている。給水路B25には、電解
槽12への水の供給を制御する給水制御手段である電磁
弁28が設置されている。電解槽12の電極13、1
4、ポンプ22、そして給水制御弁28は制御手段29
にケーブル30、31、32で接続されており、電極1
3、14への通電と極性の変換、ポンプ22の動作、電
磁弁28の開閉の制御が行われる。
In FIG. 1, reference numeral 12 denotes an electrolytic cell for electrolyzing an electrolyte solution, and has a pair of electrodes 13 and 14 therein. Numeral 15 is a tank for storing a mixture of sodium chloride 16 (hereinafter, referred to as salt), which is a chlorine compound as an electrolyte, and a water supply port at a ratio equal to or higher than the saturation concentration.
Since the concentration in the tank 15 exceeds the saturation concentration, the salt 16 precipitates in the tank 15 and accumulates in the lower part. The electrolyte solution 17 (hereinafter, referred to as a saline solution) reaches a saturated concentration and is stored. Outlet 18 of saline solution 17 in this tank 15
Is provided on the upper part of the tank 15 so that the sediment of the salt 16 is not discharged. In addition, salt 1 is provided at the bottom of the tank 15.
An inlet 19 for supplying water to the inside of the sediment of No. 6 is provided, and water is guided from the upper part of the tank 15 by a water pipe 20 penetrating through the inside of the tank 15. The water supply pipe 20 communicates with an upstream water supply channel A21, and a supply means 22 (hereinafter, referred to as a pump) for supplying water to the water supply channel A21.
A check valve 23 for preventing backflow of water and water is provided. The pump 22 is arranged at a position higher than the upper end of the tank 15. The outlet 18 of the tank 15 and the electrolytic cell 12 are connected by a solution path 24, so that the saline solution 17 in the tank 15 can be supplied into the electrolytic cell 12. A water inlet 26 for feeding tap water (hereinafter referred to as tap water) as a diluent from a water supply passage B25 to the electrolytic cell 12, and an outlet for discharging the electrolytic solution generated by the electrolysis to the outside of the electrolytic cell. 27 are provided. An electromagnetic valve 28 serving as a water supply control unit that controls the supply of water to the electrolytic cell 12 is provided in the water supply passage B25. Electrodes 13, 1 of electrolytic cell 12
4, the pump 22, and the water supply control valve 28
To the electrode 1
The control of energization and polarity conversion of 3, 14 and the operation of the pump 22 and the opening and closing of the solenoid valve 28 are performed.

【0037】タンク15は、容器部33と、蓋部34と
により気密構成として、この蓋部34に通水パイプ20
と出口18と設けている。
The tank 15 is made airtight by a container part 33 and a lid part 34, and the water passage pipe 20
And an outlet 18.

【0038】通水パイプ20先端の入口19は開口部を
絞ったノズル35を構成し、水が食塩16の沈殿物内に
供給される時に、水が吐出される流速により、周囲の食
塩水が誘引され食塩の中で拡散し、供給された水の塩分
濃度は短時間のうちに飽和に達する。また、通水パイプ
20先端の入口19上部に水平に拡散板36を設けてい
る。これは、供給された水が比重差によってタンク15
上部方向へ流れるのを水平方向に拡散するものであり、
水と食塩との接触時間が長くなり、塩分濃度が確実に飽
和に達する。
The inlet 19 at the end of the water pipe 20 constitutes a nozzle 35 having a narrowed opening, and when the water is supplied into the sediment of the salt 16, the surrounding salt solution is discharged according to the flow rate at which the water is discharged. Attracted and diffused in the salt, the salinity of the supplied water reaches saturation within a short time. A diffusion plate 36 is provided horizontally above the entrance 19 at the tip of the water pipe 20. This is due to the fact that the supplied water is
It diffuses in the horizontal direction as it flows in the upper direction,
The contact time between water and salt is prolonged and the salt concentration reliably reaches saturation.

【0039】なお、拡散板36は微少な穴を開けたた
り、網状のものを用いると、より広い範囲で水と食塩が
接触するため、効率的な食塩溶解ができる。
When the diffusion plate 36 is formed with a small hole or a net-like material, water and salt are brought into contact in a wider range, so that salt dissolution can be performed efficiently.

【0040】電解槽12の構造は、図2に示したよう
に、電極13および14は電極端子37および38で電
解槽本体39に固定されている。電極13、14の間に
は、水道水の供給を行う給水路B25が設けられてお
り、電極13、14間を通って水道水を送り込むことが
可能な構成としている。そして、電極13、14の下側
には、この電極13、14の下端が入り込む電解溝40
があり、この底部には食塩水17を送り込む溶液路24
が接続されている。なお、ここで用いた電極は、基材が
チタンまたはチタン合金であり、表面には白金またはイ
リジウムなどの貴金属を被膜したものを用いている。
As shown in FIG. 2, the structure of the electrolytic cell 12 is such that the electrodes 13 and 14 are fixed to the electrolytic cell body 39 by electrode terminals 37 and 38. A water supply passage B25 for supplying tap water is provided between the electrodes 13 and 14, so that tap water can be sent through the electrodes 13 and 14. An electrolytic groove 40 into which the lower ends of the electrodes 13 and 14 enter is located below the electrodes 13 and 14.
At the bottom, a solution path 24 for feeding the saline solution 17 is provided.
Is connected. The electrode used here has a base material made of titanium or a titanium alloy, and has a surface coated with a noble metal such as platinum or iridium.

【0041】次に、制御手段29の構成を図3を用いて
説明する。図において50は、入出力インターフェース
やメモリー等を内蔵した公知のマイクロコンピュータ
(以降、マイコンと呼ぶ)であり、運転開始スイッチを
有した操作パネル51からの信号を入力するように接続
され、使用者の指示が入力できる。52は電極13,1
4に電力を供給する直流電源である。マイコン50は、
この電極13,14への電流を電流検知回路53を介し
て検知し、予め設定した電流設定値になるよう電圧制御
回路54に信号を送り電圧を調整する。また、マイコン
50の信号に応じて、電極13,14の極性を切換えた
り、電極13,14への電流を遮断する極切換回路55
を備えている。さらに、マイコン50により電極13,
14の極間電圧を検知して電気抵抗を類推する抵抗検知
部である電圧検知回路56を電極13,14と電圧制御
回路54の間に設けている。57はマイコン50の指示
によりポンプ22を駆動するポンプ駆動回路。58はマ
イコン50の指示により電磁弁28を駆動する電磁弁駆
動回路である。59は異常状態を検出した際にマイコン
50より警告を発する報知手段で、ブザーやLED等で
構成される。
Next, the configuration of the control means 29 will be described with reference to FIG. In the figure, reference numeral 50 denotes a known microcomputer (hereinafter, referred to as a microcomputer) having a built-in input / output interface, a memory, and the like. The microcomputer 50 is connected to input a signal from an operation panel 51 having an operation start switch. Can be entered. 52 is the electrode 13, 1
4 is a DC power supply for supplying power to the power supply 4. The microcomputer 50
The current to the electrodes 13 and 14 is detected via a current detection circuit 53, and a signal is sent to a voltage control circuit 54 to adjust the voltage so as to reach a preset current set value. In addition, a polarity switching circuit 55 for switching the polarity of the electrodes 13 and 14 and interrupting the current to the electrodes 13 and 14 according to a signal from the microcomputer 50.
It has. Further, the microcomputer 50 controls the electrodes 13,
A voltage detecting circuit 56, which is a resistance detecting unit for detecting an inter-electrode voltage of 14 and estimating an electric resistance, is provided between the electrodes 13, 14 and the voltage control circuit 54. 57 is a pump drive circuit that drives the pump 22 according to an instruction from the microcomputer 50. Reference numeral 58 denotes an electromagnetic valve driving circuit that drives the electromagnetic valve 28 according to an instruction from the microcomputer 50. Reference numeral 59 denotes a notification unit that issues a warning from the microcomputer 50 when an abnormal state is detected, and includes a buzzer, an LED, and the like.

【0042】次に、マイコン50での処理内容を図4〜
図7を用いて説明する。図4に示すフローチャートは、
運転開始スイッチを使用者が押したのを検知してスター
トするルーチンである。60は給水制御で、電磁弁28
を所定時間(電解槽に給水でき得る時間)開き、電解槽
12内の残留水を押し出し、新たに水を充満させる。給
水が終了すると、61でポンプ22を駆動させ、タンク
15内の食塩水17を電解槽12に供給する。食塩水1
7の供給が終了すると62の定電流制御部で、電極1
3,14に通電し、電流検知回路53により検知した電
極13,14間の電流が、電流設定値になるように電圧
制御回路54により電圧を調整する。63の極切換部で
は電極13,14への電流の極性を、予め設定した時間
間隔で切り換える。一方64では、電圧検知回路56に
より電極13,14の極間電圧を検知し、この電圧より
電極12,13間の電気抵抗を推定する。すなわち、6
2において電流が電流設定値に一定に制御されるため、
電気抵抗は電圧に比例する。したがって電圧により電気
抵抗が一律に求められる。この電気抵抗は電極13,1
4間の水の導電率により、ほぼ決定され、導電率は電解
槽12に供給される食塩水の量と相関があるため、電気
抵抗から食塩水の供給量を推定できる。そして、65で
は電気抵抗が予め設定した最大値より高いか、最小値よ
り低い場合はポンプ22の故障や食塩切れと判断して報
知手段59により報知する。66では電気抵抗が予め設
定した値より高ければ、食塩水の供給不足と判定して、
ポンプ22を駆動させ食塩水を追加供給する。67は電
極13,14への通電を終了させ、電磁弁28を所定時
間開き、給水口から給水することで電解槽12内にの電
解水を排出口27から排出させる。
Next, the processing contents of the microcomputer 50 will be described with reference to FIGS.
This will be described with reference to FIG. The flowchart shown in FIG.
This is a routine that starts by detecting that the user has pressed the operation start switch. Numeral 60 denotes water supply control.
Is opened for a predetermined period of time (a period during which water can be supplied to the electrolytic cell), and the residual water in the electrolytic cell 12 is extruded to be refilled with water. When the water supply is completed, the pump 22 is driven at 61 to supply the saline solution 17 in the tank 15 to the electrolytic cell 12. Saline 1
When the supply of 7 is completed, the constant current control unit of 62
The voltage is adjusted by the voltage control circuit so that the current between the electrodes 13 and detected by the current detection circuit 53 becomes the current set value. The pole switching unit 63 switches the polarity of the current to the electrodes 13 and 14 at preset time intervals. On the other hand, at 64, the voltage between the electrodes 13 and 14 is detected by the voltage detection circuit 56, and the electric resistance between the electrodes 12 and 13 is estimated from this voltage. That is, 6
In step 2, since the current is controlled to be constant at the current set value,
Electric resistance is proportional to voltage. Therefore, the electric resistance is uniformly obtained by the voltage. This electric resistance is equal to the electrodes 13, 1
Since the conductivity is substantially determined by the conductivity of the water between the four and the conductivity is correlated with the amount of the saline solution supplied to the electrolytic cell 12, the supply amount of the saline solution can be estimated from the electric resistance. At 65, when the electric resistance is higher than the preset maximum value or lower than the minimum value, it is determined that the pump 22 has failed or the salt has run out, and the notifying means 59 notifies. In 66, if the electric resistance is higher than a preset value, it is determined that the supply of the saline solution is insufficient,
The pump 22 is driven to supply additional saline. Reference numeral 67 terminates the energization of the electrodes 13 and 14, opens the electromagnetic valve 28 for a predetermined time, and supplies water from the water supply port to discharge the electrolytic water in the electrolytic tank 12 from the discharge port 27.

【0043】図5は図4における62,63の定電流制
御部と極切換部のブロック図で、電流設定値68と電流
検知回路53によりなる電流検知69の検知する電流値
との偏差70により電極間の電圧をフィードバック制御
する。電圧制御71は公知のデジタルPID制御を用
い、偏差70がゼロになるよう電圧を制御する。72の
極切換は電圧制御された電極13,14への電流の極性
を、予め設定した時間間隔(例えば10分間隔)で切り
換える。この極切換は、陽極と陰極を切り換えること
で、陰極に付着するスケール成分を除去する。
FIG. 5 is a block diagram of the constant current control units 62 and 63 of FIG. 4 and the pole switching unit, and is based on the deviation 70 between the current set value 68 and the current value detected by the current detection 69 formed by the current detection circuit 53. Feedback control of the voltage between the electrodes is performed. The voltage control 71 uses a known digital PID control and controls the voltage so that the deviation 70 becomes zero. The pole switching of 72 switches the polarity of the current to the voltage-controlled electrodes 13 and 14 at predetermined time intervals (for example, 10 minute intervals). In this pole switching, a scale component attached to the cathode is removed by switching between the anode and the cathode.

【0044】図6は図4における61から66の電極間
の電圧検知と制御・報知の詳細なフローチャートで、7
3で食塩水を供給し、74で電極への通電を開始する。
75では通電開始から30秒間待機する。この30秒間
で供給された食塩水が拡散して、電解槽内で濃度がほぼ
均一になる。そして76で電極間の電圧Eを検知し、7
7で電圧Eが予め設定した最大値Emaxと最小値Em
inの範囲に入るかを判定し、範囲外と判定した場合
は、異常状態を判定して78で報知する。電圧Eが最大
値Emaxより高い場合は、電極間の導電率が低すぎる
ことを意味し、ポンプ22故障で停止したり、タンク1
5内の食塩が切れて食塩水が供給されなかった状態であ
る。また、電圧Eが最小値Eminより低い場合は、電
極間の導電率が異常に高くなった状態であり、電磁弁2
8が故障で電解槽12に電解水が排出されずに蓄積した
り、食塩水が漏れだして電解槽12に流れ込んだりした
と想定される。79では、電圧Eが設定値Esetを超
えたか判定し、超えなければ電解槽内の食塩供給量は設
定以上あると判断して電解を続ける。一方、電圧Eが設
定値Esetより高ければ食塩水の供給が不足している
と判定し、80で食塩水を追加供給する。81では、こ
の追加供給回数をカウントして5回を超えたかを判定す
る。5回以下であれば75に戻り電圧Eの判定を繰り返
す。5回を超えた場合は、食塩水が追加供給されないた
めに電圧Eが低下しないと判断して、82で異常報知す
る。正常運転中であっても、タンク内に空気が溜まった
りすると、ポンプ22を駆動させて食塩水を供給したつ
もりでも、電解槽には空気しか供給されない場合があ
る。塩水の追加供給は、この空気を追いだし正規の食塩
濃度に食塩供給ができるため、電解の失敗がなくせる。
FIG. 6 is a detailed flowchart of voltage detection and control / notification between electrodes 61 to 66 in FIG.
At 3 the saline solution is supplied and at 74 the energization of the electrodes is started.
At 75, it waits for 30 seconds from the start of energization. During this 30 seconds, the supplied saline solution diffuses, and the concentration becomes almost uniform in the electrolytic cell. Then, the voltage E between the electrodes is detected at 76 and
7, the voltage E is set to a preset maximum value Emax and minimum value Em.
It is determined whether it is within the range of "in", and if it is determined that it is out of the range, an abnormal state is determined and a notification is made at 78. If the voltage E is higher than the maximum value Emax, it means that the conductivity between the electrodes is too low, and the pump E stops due to a failure of the pump 22 or the tank 1
This is a state in which the salt in 5 has run out and no salt solution has been supplied. On the other hand, when the voltage E is lower than the minimum value Emin, the conductivity between the electrodes is abnormally high.
It is assumed that electrolysis water accumulated in the electrolytic cell 12 without being discharged or that the saline solution leaked and flowed into the electrolytic cell 12 due to failure. At 79, it is determined whether or not the voltage E has exceeded the set value Eset. If not, it is determined that the amount of supplied salt in the electrolytic cell is above the set value, and the electrolysis is continued. On the other hand, if the voltage E is higher than the set value Eset, it is determined that the supply of the saline solution is insufficient, and at 80, the saline solution is additionally supplied. At 81, the number of times of the additional supply is counted to determine whether or not the number has exceeded five. If it is less than five times, the process returns to 75 and the determination of the voltage E is repeated. When the number of times exceeds five, it is determined that the voltage E does not decrease because the saline solution is not additionally supplied, and an abnormality is notified at 82. Even during normal operation, if air accumulates in the tank, only air may be supplied to the electrolytic cell even if the pump 22 is driven to supply saline. The additional supply of salt water drives out this air and supplies salt to the normal salt concentration, thereby eliminating electrolysis failure.

【0045】図7は以上の制御手段の動作を示したタイ
ムチャートで、図中の電極間抵抗は電極間の電圧90か
ら得られる。ここで、スイッチオンすると、電磁弁がt
1時まで開き、電解槽に給水する。t1からt2時まで
ポンプで食塩水を電解槽に供給する。t2から電極に通
電を開始して30秒後に電極間の電圧90を検知し、設
定値91と比較し、検出値90の方が高いため、t3で
食塩水の追加供給をする。そして、再度30秒後に電極
間の電圧90を検知し、設定値91と比較し、今度は検
出値90が低くなったので食塩供給を終了している。そ
して、t4,t5,t6において電極の通電の極性を切
り換える。t7で電極への通電が終了して、t7からt
8まで電磁弁が開き、電解槽に給水することにより電解
槽の電解液が排出される。ここで、電極間の電気抵抗の
推移について説明すると、t1までは電極間には水道水
しか存在しないため導電率が小さく抵抗値は大きい。t
1からt2まで食塩水が供給されるが、飽和食塩水のた
め水道水に比べ比重が大きく電解槽の底部に溜まり、電
極間の電気抵抗を大幅に低下させることができない。t
2より電極に通電を開始すると、電極間にガスを発生
し、電解槽の上部分に浮上する。このガスの移動により
水の流れが発生し、滞留している食塩水が吸い上げら
れ、電解槽全体に拡散し、電極間の導電率はしだいに電
解槽全体の導電率に近づく。したがって、電極への通電
を開始して30秒間の時間経過させて電圧を検知するこ
とで、食塩水が拡散する時間を持たせている。最初の検
知電圧90は設定値91より高いが、溶液路24やタン
ク15等に溜まる空気が電解槽に供給されると、その分
食塩水の供給量が不足し、こうした不足分が電圧90と
して表れる。t3で食塩水が追加供給されると、電気抵
抗が下がり、検知電圧90も低下する。その後t7まで
は電解槽内の導電率に大きな変化がなく、t7で電解槽
に水道水が供給されると急激に電気抵抗は上昇する。こ
のように電解槽12内の食塩濃度状態が電気抵抗(電極
間電圧)により判定できる。
FIG. 7 is a time chart showing the operation of the above-mentioned control means. The resistance between the electrodes in the figure is obtained from the voltage 90 between the electrodes. Here, when the switch is turned on, the solenoid valve is set to t.
Open until 1 o'clock and supply water to the electrolytic cell. A saline solution is supplied to the electrolytic cell by a pump from t1 to t2. The voltage 90 between the electrodes is detected 30 seconds after energization of the electrodes is started at t2 and compared with the set value 91. Since the detected value 90 is higher, additional supply of saline is performed at t3. Thirty seconds later, the voltage 90 between the electrodes is detected and compared with the set value 91. Since the detected value 90 has decreased this time, the supply of salt is terminated. Then, at times t4, t5, and t6, the polarity of energization of the electrodes is switched. At t7, the power supply to the electrodes is completed, and from t7 to t
The electromagnetic valve is opened up to 8, and the electrolytic solution in the electrolytic cell is discharged by supplying water to the electrolytic cell. Here, the transition of the electric resistance between the electrodes will be described. Since only tap water exists between the electrodes until t1, the electric conductivity is small and the resistance value is large. t
The saline solution is supplied from 1 to t2, but because of the saturated saline solution, the specific gravity is larger than that of tap water and is accumulated at the bottom of the electrolytic cell, so that the electrical resistance between the electrodes cannot be significantly reduced. t
When the electrodes are energized from 2, gas is generated between the electrodes and floats on the upper part of the electrolytic cell. The movement of the gas causes a flow of water, and the retained saline solution is sucked up and diffused throughout the electrolytic cell, and the electric conductivity between the electrodes gradually approaches the electric conductivity of the entire electrolytic cell. Therefore, by detecting the voltage after a lapse of 30 seconds from the start of energization of the electrode, a time is provided for the saline solution to diffuse. Although the initial detection voltage 90 is higher than the set value 91, when the air accumulated in the solution path 24, the tank 15, and the like is supplied to the electrolytic cell, the supply amount of the saline solution becomes insufficient by that amount, and such an insufficient amount becomes the voltage 90. appear. When the saline solution is additionally supplied at t3, the electric resistance decreases and the detection voltage 90 also decreases. Thereafter, there is no significant change in the conductivity in the electrolytic cell until t7, and when tap water is supplied to the electrolytic cell at t7, the electric resistance sharply increases. Thus, the salt concentration state in the electrolytic cell 12 can be determined by the electric resistance (voltage between electrodes).

【0046】次に、電気分解により生成する化合物であ
る次亜塩素酸の生成する際の動作、作用を図1を中心に
説明する。まず、給水路B25の給水制御弁28を開
き、電解槽12内に水道水を注入する。電解槽12内部
に水道水を充満した後、ポンプ22を動作させ、タンク
15に水を供給する。供給された水は食塩16を溶解し
ながら拡散し、食塩水17を出口18より押し出す。こ
の食塩水17は溶液路24を介して電解槽12内に注入
される。電解槽12に注入された食塩水17は、比重が
水道水よりも高いので、電解溝40内に滞留する。次に
電極13を陽極、14を陰極として電気分解を開始す
る。電気分解の開始直後は、電極13、14の大部分が
水道水と接触しているため、水の電気分解が優先的に起
こり、電極13、14間に水素と酸素ガスを発生する。
これらのガスは水道水よりも軽いので、電解槽12の上
部分に浮上する。このガスの移動により、電極13、1
4間に上方向への水の流れが発生する。そして、電解溝
31に滞留している食塩水17は、ガスの浮上により発
生した水の流れにより電極13、14間に吸い上げら
れ、電極13、14間に存在する水道水に拡散する。一
般に塩素イオン濃度が高いほど次亜塩素酸などの塩素化
合物の生成効率は高くなると言われており、化式1の反
応が起こりやすくなる。
Next, the operation and action of generating hypochlorous acid, which is a compound generated by electrolysis, will be described mainly with reference to FIG. First, the water supply control valve 28 of the water supply passage B25 is opened, and tap water is injected into the electrolytic cell 12. After the inside of the electrolytic cell 12 is filled with tap water, the pump 22 is operated to supply water to the tank 15. The supplied water disperses while dissolving the salt 16, and pushes out the salt solution 17 from the outlet 18. This saline solution 17 is injected into the electrolytic cell 12 via the solution path 24. Since the specific gravity of the saline solution 17 injected into the electrolytic cell 12 is higher than that of tap water, the saline solution 17 stays in the electrolytic groove 40. Next, electrolysis is started using the electrode 13 as an anode and the electrode 14 as a cathode. Immediately after the start of electrolysis, most of the electrodes 13 and 14 are in contact with tap water, so that electrolysis of water occurs preferentially, and hydrogen and oxygen gas are generated between the electrodes 13 and 14.
Since these gases are lighter than tap water, they float on the upper part of the electrolytic cell 12. The movement of this gas causes the electrodes 13, 1
An upward flow of water occurs between the four. Then, the saline solution 17 staying in the electrolytic groove 31 is sucked up between the electrodes 13 and 14 by the flow of water generated by the floating of the gas, and diffuses into the tap water existing between the electrodes 13 and 14. It is generally said that the higher the chlorine ion concentration, the higher the efficiency of the generation of chlorine compounds such as hypochlorous acid, and the reaction of Formula 1 is more likely to occur.

【0047】(化式1) 2Cl-+2e-→Cl2↑ Cl2+OH-→HClO+Cl- Cl2+2OH-→ClO-+Cl-+H2O また、電気分解で次亜塩素酸を生成する場合、供給する
食塩水の量が次亜塩素酸の生成効率に大きく影響を与え
る。すなわち、電解槽12への食塩水17の供給量が多
くなれば、生成効率は高まり、電解槽12から排出され
る水の次亜塩素酸濃度は高くなり、食塩水17の供給量
が少ないと、電解槽12から排出される次亜塩素酸濃度
は低くなるので、常に一定の濃度の次亜塩素酸を得たい
場合には電解槽12に供給される食塩水17の量を定量
的に送り込む必要がある。そこで、タンク15へ水を供
給するポンプ22の操作量を制御手段29により制御す
ることにより、電解槽12へ供給される食塩水17の量
を一定に保つことができる。したがって、電気分解によ
り生成する次亜塩素酸の生成効率を一定に保つことがで
きるので、常に一定の次亜塩素酸濃度の水を得ることが
できる。さらに、食塩水17の過剰な供給をなくすこと
ができるので、食塩水17の節約が可能となり、タンク
15への食塩16の供給の手間を削減することができ
る。
(Formula 1) 2Cl + 2e → Cl 2 ↑ Cl 2 + OH → HClO + Cl Cl2 + 2OH → ClO + Cl + H 2 O Further, when hypochlorous acid is produced by electrolysis, the salt to be supplied The amount of water greatly affects the efficiency of hypochlorous acid production. That is, if the supply amount of the saline solution 17 to the electrolytic cell 12 increases, the generation efficiency increases, the hypochlorous acid concentration of the water discharged from the electrolytic tank 12 increases, and if the supply amount of the saline solution 17 decreases, Since the concentration of hypochlorous acid discharged from the electrolytic cell 12 is low, if it is desired to always obtain a constant concentration of hypochlorous acid, the amount of the saline solution 17 supplied to the electrolytic cell 12 is quantitatively fed. There is a need. Therefore, by controlling the operation amount of the pump 22 for supplying water to the tank 15 by the control means 29, the amount of the saline solution 17 supplied to the electrolytic cell 12 can be kept constant. Therefore, since the efficiency of generating hypochlorous acid generated by electrolysis can be kept constant, water having a constant hypochlorous acid concentration can be always obtained. Furthermore, since the excessive supply of the salt solution 17 can be eliminated, the salt solution 17 can be saved, and the labor for supplying the salt 16 to the tank 15 can be reduced.

【0048】また、例えば1リットルのタンク15に飽
和濃度(約26%、比重1.2g/cm 2)の食塩水を貯え
ると溶存する食塩量は約300gであるが、1リットル
のタンク15に嵩比重約1.2g/cm2の食塩を充填する
と1.2kgの食塩量が貯えられることになる。すなわ
ち、本実施例のように飽和濃度を超えた食塩水を貯えた
場合は、飽和濃度の食塩水を貯えるのに比べ約4倍の食
塩貯蔵量となり、食塩供給の手間を大幅に削減できる。
Also, for example, the one liter tank 15 becomes saturated.
Sum concentration (about 26%, specific gravity 1.2g / cm Two) Save the saline solution
Then the amount of dissolved salt is about 300 g, but 1 liter
Approximately 1.2 g / cmTwoFill with salt
And 1.2 kg of salt will be stored. Sand
That is, the salt solution exceeding the saturation concentration was stored as in this example.
In this case, about 4 times as much food as storing saturated saline
It becomes the amount of salt storage, and the labor of supplying salt can be greatly reduced.

【0049】なお、ここで用いるポンプ22としては、
タンク15に供給する水の定量性が高いものであればよ
く、たとえば、電磁ポンプ、タ゛イヤフラムポンプ、チューブ
ポンプ、ギヤポンプなどがある。そして、本実施例では
タンク15の上流にポンプ22を配置しているので、ポ
ンプ22内を通過する流体は供給する水だけであり、食
塩水や次亜塩素酸を通さないため、水に対する耐食性だ
け考慮すればよい。また、給水路A21には逆止弁23
が設けてあり、給水制御弁28の開閉に伴う電解槽12
内の圧力変動による食塩水や次亜塩素酸の逆流を防止で
きる。
The pump 22 used here is as follows.
It is sufficient that the water supplied to the tank 15 has high quantitativeness, and examples thereof include an electromagnetic pump, a diaphragm pump, a tube pump, and a gear pump. In this embodiment, since the pump 22 is disposed upstream of the tank 15, the only fluid that passes through the inside of the pump 22 is supplied water, and does not pass saline solution or hypochlorous acid. You only have to consider. A check valve 23 is provided in the water supply channel A21.
Is provided, and the electrolytic cell 12 accompanying opening and closing of the water supply control valve 28 is provided.
Backflow of saline solution and hypochlorous acid due to pressure fluctuation in the inside can be prevented.

【0050】(実施例2)図8は本発明の実施例2にお
ける電極間の電圧検知と制御・報知の詳細なフローチャ
ートである。なお、実施例1の電解装置と同一構造のも
のは同一符号を付与し、説明を省略する。
(Embodiment 2) FIG. 8 is a detailed flowchart of detecting and controlling / reporting the voltage between electrodes in Embodiment 2 of the present invention. The components having the same structure as the electrolytic device of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0051】実施例1との違いは、75で検知した電圧
Eに比例した通電時間Timを100で演算し、10
1,102,103で電極への通電時間が演算時間Ti
mになるよう制御する点にある。通電時間timは Tim=A+B・E・・・・・・式1 とし、式1のように検知電圧Eに正の定数Bを乗じるこ
とにより、電圧Eが高くなるほど通電時間Timが長く
なるようにしている。これは、電解槽12内の食塩水濃
度が下がるほど電圧Eが上昇し、生成される次亜塩素酸
の濃度が低下することから、次亜塩素酸の生成濃度に比
例相関のある通電時間により補正するもので、電圧Eが
高い場合は、通電時間Timを長くし、電圧Eが低い場
合は、通電時間Timを短くする。したがって、生成さ
れる次亜塩素酸の濃度は、食塩水濃度が少々変化しても
一定に制御できる。
The difference from the first embodiment is that the voltage detected at 75
The energization time Tim proportional to E is calculated by 100, and 10
At 1, 102, and 103, the energization time to the electrode is calculated time Ti
m. The energization time tim is given by: Tim = A + B · E (1). By multiplying the detection voltage E by a positive constant B as shown in the equation 1, the energization time Tim becomes longer as the voltage E becomes higher. ing. This is because the voltage E increases as the concentration of the saline solution in the electrolytic cell 12 decreases, and the concentration of generated hypochlorous acid decreases. Therefore, the energization time is proportional to the concentration of generated hypochlorous acid. When the voltage E is high, the energization time Tim is lengthened, and when the voltage E is low, the energization time Tim is shortened. Therefore, the concentration of the generated hypochlorous acid can be controlled to be constant even if the salt solution concentration slightly changes.

【0052】(実施例3)図9は本発明の実施例3にお
ける電極間の電圧検知と制御・報知の詳細なフローチャ
ートである。なお、実施例1の電解装置と同一構造のも
のは同一符号を付与し、説明を省略する。
(Embodiment 3) FIG. 9 is a detailed flowchart of detecting and controlling / reporting a voltage between electrodes in Embodiment 3 of the present invention. The components having the same structure as the electrolytic device of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0053】実施例1との違いは、75で検知した電圧
Eに比例した設定電流Asetを110で演算し、11
1で電極への電流がAsetになるように定電流制御す
る。この定電流制御111は図5に示す構成と同じであ
る。設定電流Asetは Aset=C+D・E・・・・・・式2 とし、式2のように検知電圧Eに正の定数Dを乗じるこ
とにより、電圧Eが高くなるほど設定電流Asetが長
くなるようにしている。これは、電解槽12内の食塩水
濃度が下がるほど電圧Eが上昇し、生成される次亜塩素
酸の濃度が低下することから、次亜塩素酸の生成濃度に
比例相関のある電流値により補正するもので、電圧Eが
高い場合は、設定電流Asetを大きくし、電圧Eが低
い場合は、設定電流Aset小さくする。したがって、
生成される次亜塩素酸の濃度は、食塩水濃度が少々変化
しても一定に制御できる。
The difference from the first embodiment is that the voltage detected at 75
The set current Aset proportional to E is calculated by 110, and 11
At 1, the constant current control is performed so that the current to the electrode becomes Aset. This constant current control 111 is the same as the configuration shown in FIG. The set current Aset is expressed as: Aset = C + D · E (Equation 2). By multiplying the detection voltage E by a positive constant D as shown in Equation 2, the set current Aset becomes longer as the voltage E increases. ing. This is because the voltage E increases as the concentration of the saline solution in the electrolytic cell 12 decreases, and the concentration of generated hypochlorous acid decreases. Therefore, the current value is proportional to the concentration of generated hypochlorous acid. When the voltage E is high, the set current Aset is increased, and when the voltage E is low, the set current Aset is decreased. Therefore,
The concentration of the generated hypochlorous acid can be controlled to be constant even if the concentration of the saline solution slightly changes.

【0054】(実施例4)図10は本発明の実施例4に
おける制御手段29のフローチャートである。なお、実
施例1の電解装置と同一構造のものは同一符号を付与
し、説明を省略する。実施例1との違いは、食塩水の供
給が終了すると120の定電圧制御部で、電極13,1
4に通電し、電圧検知回路56により検知した電極1
3,14間の電圧が、予め設定した電圧設定値になるよ
うに電圧制御回路54により調整し、定電圧制御する点
と、121では、電流検知回路53により電極13,1
4の極間電流を検知し、この電流より電極12,13間
の電気抵抗を推定する点にある。すなわち、120にお
いて電圧が電圧設定値に一定に制御されるため、電気抵
抗は電流に反比例する。したがって電流により電気抵抗
が一律に求められる。この電気抵抗は電極13,14間
の水の導電率により、ほぼ決定され、導電率は電解槽1
2に供給される食塩水の量と相関があるため、電気抵抗
から食塩水の供給量を推定できる。そして、122では
電気抵抗が予め設定した最大値より高いか、最小値より
低い場合はポンプ22の故障や食塩切れと判断して報知
手段59により報知する。123では電気抵抗が予め設
定した値より高ければ、食塩水の供給不足と判定して、
ポンプ22を駆動させ食塩水を追加供給する。上記の定
電圧制御は定電圧電源が他の電気回路と共用できるた
め、電気回路の簡素化ができる。なお、上記実施例1か
ら4では電解質に食塩を用いたが、塩化マグネシウム、
塩化カリウム、塩化カルシウムなどの塩素イオンを含む
塩素化合物を用いても上記と同様の効果が得られる。
(Embodiment 4) FIG. 10 is a flowchart of the control means 29 in Embodiment 4 of the present invention. The components having the same structure as the electrolytic device of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The difference from the first embodiment is that, when the supply of the saline solution is completed, the constant voltage control unit 120 controls the electrodes 13 and 1.
4 and the electrode 1 detected by the voltage detection circuit 56
The voltage control circuit 54 adjusts the voltage between the electrodes 3 and 14 to a preset voltage set value and performs constant voltage control.
4 is to detect the inter-electrode current and to estimate the electric resistance between the electrodes 12 and 13 from this current. That is, since the voltage is controlled to be constant at the voltage set value at 120, the electric resistance is inversely proportional to the current. Therefore, the electric resistance is uniformly obtained by the current. This electric resistance is substantially determined by the electric conductivity of water between the electrodes 13 and 14, and the electric conductivity is
Since there is a correlation with the amount of saline solution supplied to 2, the supply amount of saline solution can be estimated from the electric resistance. Then, at 122, when the electric resistance is higher than the preset maximum value or lower than the minimum value, it is determined that the pump 22 has failed or the salt has run out, and the notification means 59 notifies. In 123, if the electric resistance is higher than a preset value, it is determined that the supply of the saline solution is insufficient,
The pump 22 is driven to supply additional saline. In the above-described constant voltage control, the constant voltage power supply can be shared with another electric circuit, so that the electric circuit can be simplified. In Examples 1 to 4, salt was used for the electrolyte.
The same effect as described above can be obtained by using a chlorine compound containing chloride ions such as potassium chloride and calcium chloride.

【0055】[0055]

【発明の効果】以上のように、本発明によれば以下の効
果を得ることができる。
As described above, according to the present invention, the following effects can be obtained.

【0056】(1)内部に少なくとも一対の電極と給水
口と電解液を排出する排出口とを備える電解槽と、前記
電解槽への給水を制御する給水制御手段と、電解質溶液
を貯えるタンクと、前記電解質溶液を前記電解槽に供給
する供給手段と、前記電極への通電時と前記供給手段の
駆動時には前記給水制御手段を停止させる制御手段とに
より構成するので、タンクの電解質溶液は、供給手段に
より電解槽内に供給され、電解槽内の水と混合され電極
に通電を行うことで、電気分解により次亜塩素酸などの
化合物を生成することができる。このとき、電極へ通電
時と供給手段の駆動時には給水制御手段を停止させるた
め、電解槽への給水がない状態で、電解槽内の電解質溶
液は電極表面に発生する水素ガスや酸素などのが浮上す
る際の誘引作用により、対流が発生し電解質溶液に含ま
れる塩素イオンがゆっくりと電極間を通過するため効率
の良い電解ができる。
(1) An electrolytic cell having at least a pair of electrodes, a water supply port, and a discharge port for discharging an electrolytic solution, water supply control means for controlling water supply to the electrolytic cell, and a tank for storing an electrolytic solution. A supply means for supplying the electrolyte solution to the electrolytic cell, and a control means for stopping the water supply control means when energizing the electrode and driving the supply means, so that the electrolyte solution in the tank is supplied. A compound such as hypochlorous acid can be generated by electrolysis by being supplied into the electrolytic cell by means, mixed with water in the electrolytic cell, and energizing the electrode. At this time, the water supply control means is stopped when the electrode is energized and when the supply means is driven, so that the electrolyte solution in the electrolytic tank contains hydrogen gas and oxygen generated on the electrode surface in a state where there is no water supply to the electrolytic tank. Due to the attraction effect during the ascent, convection is generated and chlorine ions contained in the electrolyte solution slowly pass between the electrodes, so that efficient electrolysis can be performed.

【0057】(2)制御手段として、電極への通電開始
前に供給手段を駆動させる構成としているので、電解質
溶液が電解槽に供給された後、電極への通電を開始する
ことで電解槽内の電解質溶液は発生ガスにより混合され
拡散するため、通電直後から安定に電解できる。
(2) As the control means, the supply means is driven before the current supply to the electrode is started. Therefore, after the electrolyte solution is supplied to the electrolytic cell, the current supply to the electrode is started, so that the inside of the electrolytic cell is started. Since the electrolyte solution is mixed and diffused by the generated gas, it can be stably electrolyzed immediately after energization.

【0058】(3)制御手段として、前記電極間の電気
抵抗を検知する抵抗検知部と、前記検知抵抗に応じて供
給手段の電解質溶液供給量を制御するので、電解質溶液
の濃度と導電率の相関から電気抵抗によって電解槽に供
給された電解質溶液の濃度が類推できる。したがって、
濃度が低い場合には供給手段の供給量を増すように調整
することにより一定の電解ができる。
(3) As the control means, a resistance detecting section for detecting the electric resistance between the electrodes, and the supply amount of the electrolyte solution of the supply means are controlled in accordance with the detection resistance, so that the concentration and the conductivity of the electrolyte solution are controlled. From the correlation, the concentration of the electrolyte solution supplied to the electrolytic cell can be estimated by electric resistance. Therefore,
When the concentration is low, constant electrolysis can be performed by adjusting the supply amount of the supply means to increase.

【0059】(4)制御手段として、前記電極間の電気
抵抗を検知する抵抗検知部と、前記検知抵抗に応じて前
記電極への通電時間を制御するので、電気抵抗によって
類推した電解質溶液の濃度が低い場合には電極の通電時
間を長くように調整することにより一定の電解ができ
る。
(4) As a control means, a resistance detecting unit for detecting the electric resistance between the electrodes, and a control of the energizing time to the electrodes according to the detected resistance, the concentration of the electrolyte solution estimated by the electric resistance. When is low, constant electrolysis can be performed by adjusting the energization time of the electrode to be long.

【0060】(5)制御手段として、前記電極間の電気
抵抗を検知する抵抗検知部と、前記検知抵抗に応じて定
電流制御部の設定値を変更するので、電気抵抗によって
類推した電解質溶液の濃度が低い場合には定電流制御部
の設定値を高くなるように調整することにより一定の電
解ができる。
(5) As the control means, the resistance detecting section for detecting the electric resistance between the electrodes and the set value of the constant current control section are changed according to the detected resistance. When the concentration is low, constant electrolysis can be performed by adjusting the set value of the constant current control unit to be high.

【0061】(6)制御手段として、前記電極間の電気
抵抗を検知する抵抗検知部と、前記検知抵抗が所定範囲
を外れた場合に報知する報知部とを有するので、前記検
知抵抗が所定範囲を外れた場合に報知することで、供給
手段の故障やタンク内の電解質溶液不足を使用者に知ら
せることができる。
(6) The control means includes a resistance detecting section for detecting the electric resistance between the electrodes and a notifying section for notifying when the detected resistance is out of the predetermined range. By notifying the user of the deviation, the user can be notified of a failure of the supply means or a shortage of the electrolyte solution in the tank.

【0062】(7)制御手段として、前記電極間の電気
抵抗を検知する抵抗検知部と、供給手段を駆動した場合
に検知抵抗が所定時間変化しなければ報知する報知手段
とを有するので、供給手段を駆動しても検知抵抗に変化
がないのは、供給手段の故障やタンク内の電解質溶液切
れであり、これらを使用者に知らせることができる。
(7) The control means includes a resistance detecting section for detecting the electric resistance between the electrodes, and a notifying means for notifying if the detected resistance does not change for a predetermined time when the supplying means is driven. The fact that there is no change in the detection resistance even when the means is driven is a failure of the supply means or the running out of the electrolyte solution in the tank, which can be notified to the user.

【0063】(8)制御手段の抵抗検知部による抵抗検
知を、供給手段による電解質溶液供給の終了後に行うの
で、電極間の電気抵抗から電解槽内の電解質溶液濃度が
正確に検出できる。
(8) Since the resistance detection by the resistance detection section of the control means is performed after the supply of the electrolyte solution by the supply means is completed, the concentration of the electrolyte solution in the electrolytic cell can be accurately detected from the electric resistance between the electrodes.

【0064】(9)制御手段の抵抗検知部による抵抗検
知を、電極間への通電を開始して所定時間経過後に行う
ことにより、電極への通電を開始することで電解槽内の
電解質溶液は発生ガスにより混合されるので、電解槽内
の電解質溶液は均一に拡散し、電極間の電気抵抗から濃
度が正確に検出できる。
(9) The resistance detection by the resistance detection unit of the control means is performed after a predetermined time has elapsed from the start of energization between the electrodes, so that energization of the electrodes is started. Since the electrolyte solution is mixed by the generated gas, the electrolyte solution in the electrolytic cell is uniformly diffused, and the concentration can be accurately detected from the electric resistance between the electrodes.

【0065】(10)制御手段の抵抗検知部として、電
極間の電流を一定に制御する定電流制御部と、前記電極
間の電圧を検知する電圧検知部とを有し、電圧変化によ
り電極間の電気抵抗を検出する構成としたので、電極間
の電流が一定であるから、電極間の電気抵抗は電圧に比
例するため、電極間の電圧から抵抗が検出できる。
(10) As a resistance detecting section of the control means, a constant current controlling section for controlling the current between the electrodes to be constant and a voltage detecting section for detecting the voltage between the electrodes are provided. Since the electric resistance between the electrodes is constant, the electric resistance between the electrodes is proportional to the voltage, so that the resistance can be detected from the voltage between the electrodes.

【0066】(11)制御手段の抵抗検知部として、電
極間の電圧を一定に制御する定電圧制御部と、前記電極
間の電流を検知する電流検知部とを有し、電流変化によ
り電極間の電気抵抗を検出する構成としたので、電極間
の電圧が一定であるから、電極間の電気抵抗は電流に反
比例するため、電極間の電流から抵抗が算定できる。
(11) The resistance detecting section of the control means includes a constant voltage control section for controlling the voltage between the electrodes to be constant and a current detecting section for detecting the current between the electrodes. Since the voltage between the electrodes is constant, the electric resistance between the electrodes is inversely proportional to the current, so that the resistance can be calculated from the current between the electrodes.

【0067】(12)タンク内の電解質溶液を塩化ナト
リウム、塩化マグネシウム、塩化カリウム、塩化カルシ
ュウムなどの塩素化合物の水溶液としたことで、塩素化
合物水溶液を電解槽で電解し次亜塩素酸を生成できる。
(12) Since the electrolyte solution in the tank is an aqueous solution of a chlorine compound such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride, etc., the aqueous solution of the chlorine compound can be electrolyzed in an electrolytic tank to produce hypochlorous acid. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における電解装置の構成図FIG. 1 is a configuration diagram of an electrolysis apparatus according to a first embodiment of the present invention.

【図2】同実施例1における電解槽の断面図FIG. 2 is a cross-sectional view of the electrolytic cell in Example 1;

【図3】同実施例1における制御手段の構成図FIG. 3 is a configuration diagram of a control unit according to the first embodiment.

【図4】同実施例1における制御手段の制御フローチャ
ート
FIG. 4 is a control flowchart of a control unit according to the first embodiment.

【図5】同実施例1における定電流制御部と極切換部の
ブロック図
FIG. 5 is a block diagram of a constant current control unit and a pole switching unit according to the first embodiment.

【図6】同実施例1における制御手段の詳細な制御フロ
ーチャート
FIG. 6 is a detailed control flowchart of a control unit according to the first embodiment.

【図7】同実施例1における制御のタイムチャートFIG. 7 is a time chart of control in the first embodiment.

【図8】本発明の実施例2における制御手段の詳細な制
御フローチャート
FIG. 8 is a detailed control flowchart of control means in Embodiment 2 of the present invention.

【図9】本発明の実施例3における制御手段の詳細な制
御フローチャート
FIG. 9 is a detailed control flowchart of control means in Embodiment 3 of the present invention.

【図10】本発明の実施例4における制御手段の制御フ
ローチャート
FIG. 10 is a control flowchart of a control unit according to a fourth embodiment of the present invention.

【図11】従来の電解装置の構成図FIG. 11 is a configuration diagram of a conventional electrolytic device.

【符号の説明】[Explanation of symbols]

12 電解槽 13、14 電極 15 タンク 17 電解質溶液 22 供給手段 23 逆止弁 26 給水口 27 排出口 29 制御手段 28 給水制御手段 29 制御手段 REFERENCE SIGNS LIST 12 electrolytic bath 13, 14 electrode 15 tank 17 electrolyte solution 22 supply means 23 check valve 26 water supply port 27 discharge port 29 control means 28 water supply control means 29 control means

フロントページの続き (72)発明者 松本 朋秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4D061 DA03 DB10 EA03 EB01 EB05 EB14 EB37 EB38 EB39 ED12 ED13 GA12 GA30 GB07 GB11 GC02 GC06 GC12 GC14 GC15 GC16 GC18 Continued on the front page (72) Inventor Tomohide Matsumoto 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F-term (reference) 4D061 DA03 DB10 EA03 EB01 EB05 EB14 EB37 EB38 EB39 ED12 ED13 GA12 GA30 GB07 GB11 GC02 GC06 GC12 GC14 GC15 GC16 GC18

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】内部に少なくとも一対の電極と給水口と電
解液を排出する排出口とを備える電解槽と、前記電解槽
への給水を制御する給水制御手段と、電解質溶液を貯え
るタンクと、前記電解質溶液を前記電解槽に供給する供
給手段と、前記電極への通電時と前記供給手段の駆動時
には前記給水制御手段を停止させる制御手段とにより構
成する電解装置。
1. An electrolytic cell having at least a pair of electrodes, a water supply port, and a discharge port for discharging an electrolytic solution, a water supply control means for controlling water supply to the electrolytic cell, a tank for storing an electrolytic solution, An electrolysis apparatus comprising: a supply unit that supplies the electrolyte solution to the electrolytic cell; and a control unit that stops the water supply control unit when energizing the electrode and driving the supply unit.
【請求項2】制御手段は、電極への通電開始前に供給手
段を駆動させる構成とした請求項1記載の電解装置。
2. The electrolysis apparatus according to claim 1, wherein the control means drives the supply means before the power supply to the electrodes is started.
【請求項3】制御手段は、前記電極間の電気抵抗を検知
する抵抗検知部と、前記検知抵抗に応じて供給手段の電
解質溶液供給量を制御する請求項1または2記載の電解
装置。
3. The electrolysis apparatus according to claim 1, wherein the control means controls a resistance detection unit for detecting an electric resistance between the electrodes, and controls a supply amount of the electrolyte solution of the supply means according to the detection resistance.
【請求項4】制御手段は、前記電極間の電気抵抗を検知
する抵抗検知部と、前記検知抵抗に応じて前記電極への
通電時間を制御する請求項1または2記載の電解装置。
4. The electrolysis apparatus according to claim 1, wherein the control means controls a resistance detection unit for detecting an electric resistance between the electrodes, and controls an energization time to the electrodes according to the detection resistance.
【請求項5】制御手段は、前記電極間の電気抵抗を検知
する抵抗検知部と、前記検知抵抗に応じて定電流制御部
の設定値を変更する請求項1または2記載の電解装置。
5. The electrolysis apparatus according to claim 1, wherein said control means changes a set value of a constant current control section in accordance with said resistance, and a resistance detection section for detecting an electric resistance between said electrodes.
【請求項6】制御手段は、前記電極間の電気抵抗を検知
する抵抗検知部と、前記検知抵抗が所定範囲を外れた場
合に報知する報知部とを有する請求項1ないし5のいず
れか1項記載の電解装置。
6. The control device according to claim 1, wherein the control unit includes a resistance detection unit for detecting an electric resistance between the electrodes, and a notification unit for notifying when the detection resistance is out of a predetermined range. The electrolyzer according to claim.
【請求項7】制御手段は、前記電極間の電気抵抗を検知
する抵抗検知部と、供給手段を駆動した場合に検知抵抗
が所定時間変化しなければ報知する報知手段とを有する
請求項1ないし6のいずれか1項記載の電解装置。
7. The control means has a resistance detecting section for detecting an electric resistance between the electrodes, and a notifying means for notifying when the detecting resistance does not change for a predetermined time when the supply means is driven. The electrolytic device according to any one of claims 6 to 10.
【請求項8】抵抗検知部による抵抗検知は、供給手段に
よる電解質溶液供給の終了後に行う請求項3ないし7の
いずれか1項記載の電解装置。
8. The electrolytic apparatus according to claim 3, wherein the resistance detection by the resistance detection unit is performed after the supply of the electrolyte solution by the supply unit is completed.
【請求項9】抵抗検知部による抵抗検知は、電極間への
通電を開始して所定時間経過後に行う請求項3ないし8
のいずれか1項記載の電解装置。
9. The resistance detection by the resistance detection unit is performed after a lapse of a predetermined time from the start of energization between the electrodes.
The electrolytic device according to any one of the above items.
【請求項10】抵抗検知部は、電極間の電流を一定に制
御する定電流制御部と、前記電極間の電圧を検知する電
圧検知部とを有し、電圧変化により電極間の電気抵抗を
検出する構成とした請求項3ないし9のいずれか1項記
載の電解装置。
10. A resistance detection section comprising: a constant current control section for controlling a current between electrodes to be constant; and a voltage detection section for detecting a voltage between the electrodes, wherein an electric resistance between the electrodes is detected by a voltage change. The electrolytic device according to any one of claims 3 to 9, wherein the electrolytic device is configured to detect.
【請求項11】抵抗検知部は、電極間の電圧を一定に制
御する定電圧制御部と、前記電極間の電流を検知する電
流検知部とを有し、電流変化により電極間の電気抵抗を
検出する構成とした請求項3ないし9のいずれか1項記
載の電解装置。
11. A resistance detecting section comprising: a constant voltage control section for controlling a voltage between electrodes to be constant; and a current detecting section for detecting a current between the electrodes, wherein an electric resistance between the electrodes is detected by a change in current. The electrolytic device according to any one of claims 3 to 9, wherein the electrolytic device is configured to detect.
【請求項12】タンク内の電解質溶液を塩化ナトリウ
ム、塩化マグネシウム、塩化カリウム、塩化カルシュウ
ムなどの塩素化合物の水溶液とした請求項1ないし11
のいずれか1項記載の電解装置。
12. The electrolyte solution in the tank is an aqueous solution of a chlorine compound such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride and the like.
The electrolytic device according to any one of the above.
JP11018359A 1999-01-27 1999-01-27 Electrolytic device Pending JP2000218271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11018359A JP2000218271A (en) 1999-01-27 1999-01-27 Electrolytic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11018359A JP2000218271A (en) 1999-01-27 1999-01-27 Electrolytic device

Publications (1)

Publication Number Publication Date
JP2000218271A true JP2000218271A (en) 2000-08-08

Family

ID=11969511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11018359A Pending JP2000218271A (en) 1999-01-27 1999-01-27 Electrolytic device

Country Status (1)

Country Link
JP (1) JP2000218271A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210472A (en) * 2001-01-23 2002-07-30 Sanyo Electric Co Ltd Method for installing sewage treating device
KR20030009158A (en) * 2001-07-18 2003-01-29 산요 덴키 가부시키가이샤 Hypochlorous Acid Generating Method and Device
JP2007007053A (en) * 2005-06-03 2007-01-18 Sanyo Electric Co Ltd Bactericidal apparatus and air conditioner
JP2008167963A (en) * 2007-01-12 2008-07-24 Sanyo Electric Co Ltd Air filtering apparatus
JP2012207947A (en) * 2011-03-29 2012-10-25 Pulstec Industrial Co Ltd Electrolyte concentration measuring device
JP2017047362A (en) * 2015-09-01 2017-03-09 株式会社微酸研 Generation apparatus and generation method of weak-acidic hypochlorous acid solution
JP2017119282A (en) * 2017-04-11 2017-07-06 株式会社微酸研 Method for generating slightly acidic hypochlorous acid water, bipolar electrolytic tank and generation device
CN107202364A (en) * 2016-03-18 2017-09-26 松下知识产权经营株式会社 Aircleaning facility
CN108344772A (en) * 2017-12-29 2018-07-31 宁波欧琳厨具有限公司 A kind of method and system of purification water tank electrolytic strip detection
JP2018128212A (en) * 2017-02-10 2018-08-16 パナソニックIpマネジメント株式会社 Air cleaner
KR20220095485A (en) * 2020-12-30 2022-07-07 플로우닉스 주식회사 Apparatus and method for measuring concentration of depolarizer using resistance changing rate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210472A (en) * 2001-01-23 2002-07-30 Sanyo Electric Co Ltd Method for installing sewage treating device
JP4520054B2 (en) * 2001-01-23 2010-08-04 三洋電機株式会社 Installation method of sewage treatment equipment
KR20030009158A (en) * 2001-07-18 2003-01-29 산요 덴키 가부시키가이샤 Hypochlorous Acid Generating Method and Device
JP2007007053A (en) * 2005-06-03 2007-01-18 Sanyo Electric Co Ltd Bactericidal apparatus and air conditioner
JP2008167963A (en) * 2007-01-12 2008-07-24 Sanyo Electric Co Ltd Air filtering apparatus
JP2012207947A (en) * 2011-03-29 2012-10-25 Pulstec Industrial Co Ltd Electrolyte concentration measuring device
JP2017047362A (en) * 2015-09-01 2017-03-09 株式会社微酸研 Generation apparatus and generation method of weak-acidic hypochlorous acid solution
CN107202364A (en) * 2016-03-18 2017-09-26 松下知识产权经营株式会社 Aircleaning facility
TWI711793B (en) * 2016-03-18 2020-12-01 日商松下知識產權經營股份有限公司 Air cleaning device
CN107202364B (en) * 2016-03-18 2021-01-08 松下知识产权经营株式会社 Air cleaning device
JP2018128212A (en) * 2017-02-10 2018-08-16 パナソニックIpマネジメント株式会社 Air cleaner
JP2017119282A (en) * 2017-04-11 2017-07-06 株式会社微酸研 Method for generating slightly acidic hypochlorous acid water, bipolar electrolytic tank and generation device
CN108344772A (en) * 2017-12-29 2018-07-31 宁波欧琳厨具有限公司 A kind of method and system of purification water tank electrolytic strip detection
CN108344772B (en) * 2017-12-29 2023-07-11 宁波欧琳科技股份有限公司 Method and system for detecting purified water tank electrolyte sheet
KR20220095485A (en) * 2020-12-30 2022-07-07 플로우닉스 주식회사 Apparatus and method for measuring concentration of depolarizer using resistance changing rate
KR102543389B1 (en) 2020-12-30 2023-06-20 플로우닉스 주식회사 Apparatus and method for measuring concentration of depolarizer using resistance changing rate

Similar Documents

Publication Publication Date Title
US8419926B2 (en) Electrolyzed water producing method and apparatus
KR100462639B1 (en) Water treatment apparatus
WO2010012792A2 (en) Electrochemical device
JP2000218271A (en) Electrolytic device
JP2008086885A (en) Electrolytic water generator
JPH06343959A (en) Alkaline ion water adjusting device
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
JP4904721B2 (en) Electrolyte solution supply device
KR100706118B1 (en) Device for supplementing water of salt water-reservoir for device for generating sodium hypochlorite
JP4874104B2 (en) Electrolyzed water generation / dilution supply equipment
EP3321234A1 (en) Method for controlling the operation of a salt water chlorinator and salt water chlorination system with control of the operating state of the chlorinator based on said method
JP2003062569A (en) Electrolytic water generator
JP4415444B2 (en) Electrolyzer
JPH0889965A (en) Electrolytic water producer
WO2016174783A1 (en) Electrolyzed water generator
JP2010207668A (en) Electrolytic water generator
JP4051774B2 (en) Electrolyzer
JP4085724B2 (en) Batch type electrolyzed water generator
JPH1066973A (en) Electrolyzed water forming device
JP2016209864A (en) Electrolytic water generator
JP2002192158A (en) Electrolytic apparatus
JP3994538B2 (en) Power supply circuit for hypochlorite generator
JPH10469A (en) Electrolytic water producing apparatus
JP2002316159A (en) Electrolytic apparatus
JP2005279519A (en) Apparatus for producing electrolytic water