JPH06335685A - Ionized water generator - Google Patents

Ionized water generator

Info

Publication number
JPH06335685A
JPH06335685A JP15161593A JP15161593A JPH06335685A JP H06335685 A JPH06335685 A JP H06335685A JP 15161593 A JP15161593 A JP 15161593A JP 15161593 A JP15161593 A JP 15161593A JP H06335685 A JPH06335685 A JP H06335685A
Authority
JP
Japan
Prior art keywords
electrolysis
water
electrode
oxidation
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15161593A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nonomura
々 村 和 幸 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP15161593A priority Critical patent/JPH06335685A/en
Publication of JPH06335685A publication Critical patent/JPH06335685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To easily generate a specified strongly acidic water, etc., by using an oxidation-reduction electrode of glass relatively easy to handle and a two- stage electrolytic cell to accurately control electrolysis with the check of an oxidation-reduction potential. CONSTITUTION:This generator is provided with an electrolytic cell 1 for electrolyzing influent water, its electrolytic power source 2, an oxidation-reduction electrode 3 for detecting the oxidation-reduction potential of the water generated in the cell 1, an electrolytic cell 4 for corrective electrolysis, its electrolytic power source 5 and an oxidation-reduction electrode 6 for detecting the oxidation-reduction potential of the water generated in the cell 4. Further, an A/ D convertor 7 for A/D converting the detected potential data, a flow control switch 9 and a pump 10 for injecting brine into the influent water are furnised. The detected potential data of the electrode 3 are analyzed in a control part 8 to set the correction electrolysis level of the cell 4, the total recorrection electrolysis level is adjusted based on the detected potential data of the electrode 6, and the flow rate is controlled by the switch 9 and the injection of brine by the pump 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン水生成器に関
し、詳しくは電解槽を2段構成とし酸化還元電位によっ
て電解制御を行うイオン水生成器に関する。イオン水生
成器には、アルカリイオン水を主に使用するアルカリイ
オン水生成器及びpHの低い強酸性水を主に使用する強
酸性水生成器などが含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion water generator, and more particularly to an ion water generator having a two-stage electrolytic cell and controlling electrolysis by means of oxidation-reduction potential. The ionized water generator includes an alkaline ionized water generator that mainly uses alkaline ionized water, a strongly acidic water generator that mainly uses strongly acidic water having a low pH, and the like.

【0002】[0002]

【従来の技術】図2は従来のイオン水生成器の構成図で
あり、流入水道水は浄水器53の活性炭フィルターによ
って濾過されて電解槽54へ給水される。給水が開始さ
れるとマイコン制御による制御部58は、ユーザーによ
って指定されたPHに対応する電解レベルを電解電源5
0に設定し、電解ON/OFFリレー55をONにして
電解を開始する。電解によって生成されたアルカリイオ
ン水は電解槽54の陰極側(−)から、酸性水は陽極側
(+)から取り出される。陰極側の取り出し口には生成
されたアルカリイオン水のPHを検出して、指定PHと
比較するためのPHセンサー56と検出回路57が設け
られている。PHセンサー56にはイオン選択性のガラ
ス電極を使用し、試験槽内の2電極間の電位差を検出回
路57によって測定するものであり、例えば、水温25
℃において電極電位が59mV変化すれば、換算してP
Hが1だけ変化したなどと表示するものである。
2. Description of the Related Art FIG. 2 is a block diagram of a conventional ionized water generator. Inflowing tap water is filtered by an activated carbon filter of a water purifier 53 and supplied to an electrolytic cell 54. When the water supply is started, the control unit 58 controlled by the microcomputer controls the electrolysis level corresponding to the PH designated by the user to the electrolysis power supply 5
The electrolysis ON / OFF relay 55 is turned ON to start electrolysis. The alkaline ionized water generated by electrolysis is taken out from the cathode side (−) of the electrolytic cell 54, and the acidic water is taken out from the anode side (+) of the electrolytic cell 54. A PH sensor 56 and a detection circuit 57 for detecting the pH of the generated alkaline ionized water and comparing it with the designated PH are provided at the outlet on the cathode side. An ion-selective glass electrode is used as the PH sensor 56, and the potential difference between the two electrodes in the test tank is measured by the detection circuit 57. For example, a water temperature of 25
If the electrode potential changes by 59 mV at ℃, it is converted into P
It is displayed that H has changed by 1.

【0003】制御部58は検出回路57から得た生成水
のPHを、指定PHと比較して差がある場合には、PH
補正に要するフィードバック用電解レベルを算出して電
解電源50の出力を調節することによりPHを調整す
る。通常のイオン水生成用の電解電源50は、電源トラ
ンスのタップ切り換え方式や、サイリスタブリッジ等の
無段階ステップ方式により電解レベルの設定を行ってい
るが、低いPHの強酸性水生成用の場合は特に高レベ
ル、大電流出力に対応できるように構成される。なお、
図2に示した極性反転用リレー51は洗浄の際の逆電圧
印加用であり、電流センサー52は過電流検出用であ
る。
The control unit 58 compares the PH of the generated water obtained from the detection circuit 57 with the designated PH, and if there is a difference, PH
PH is adjusted by calculating the feedback electrolysis level required for correction and adjusting the output of the electrolysis power supply 50. The electrolysis power supply 50 for producing normal ionized water sets the electrolysis level by a tap switching system of a power transformer or a stepless step system such as a thyristor bridge, but in the case of producing strongly acidic water of low PH, In particular, it is configured to support high level and large current output. In addition,
The polarity reversing relay 51 shown in FIG. 2 is for applying a reverse voltage during cleaning, and the current sensor 52 is for detecting an overcurrent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図2に
示す従来技術においては、生成水のPHチェック用とし
てPHセンサー56と検出回路57が使用されている
が、ガラス電極の構造から測定誤差に対する補正回路等
の構成が複雑で扱いが難しく、採取データも生成水のP
Hチェック用に限定されているという問題がある。また
従来方式では特定の強酸性水などの生成が難しいという
問題がある。
However, in the prior art shown in FIG. 2, the PH sensor 56 and the detection circuit 57 are used for checking the PH of the produced water. However, due to the structure of the glass electrode, the correction for the measurement error is performed. The configuration of the circuit is complicated and difficult to handle, and the collected data is P
There is a problem that it is limited to H check. In addition, the conventional method has a problem that it is difficult to generate specific strongly acidic water.

【0005】本発明は上述の問題点に鑑みてなされたも
のであり、ガラス電極よりは比較的扱いが容易な酸化還
元電極と、2段構成の電解槽を使用してこれらの問題を
解決し、酸化還元電位のチェックによって正確な電解制
御を行い特定の強酸性水などの生成を容易にするイオン
水生成器を提供することを目的としている。
The present invention has been made in view of the above problems, and solves these problems by using a redox electrode which is relatively easier to handle than a glass electrode and an electrolytic cell having a two-stage structure. The purpose of the present invention is to provide an ion water generator that facilitates the production of specific strongly acidic water by performing accurate electrolysis control by checking the redox potential.

【0006】[0006]

【課題を解決するための手段】上記目的を解決するた
め、本発明は、電解槽の電極間に電解電源を印加して電
解によりイオン水を生成するイオン水生成器において、
電解槽に給水される流入水の流量を調節するフロースイ
ッチと、前記流入水に添加液を注入するための添加液ポ
ンプと、1回目の電解を行う第1の電解槽と、該第1の
電解槽へ電解電源を供給する第1の電解電源と、前記第
1の電解槽により生成される生成水について酸化還元電
位検出を行う第1の酸化還元電極と、2回目の電解を行
う第2の電解槽と、該第2の電解槽へ電解電源を供給す
る第2の電解電源と、前記第2の電解槽により生成され
る生成水について酸化還元電位検出を行う第2の酸化還
元電極と、前記第1および第2の酸化還元電極の検出出
力をA/D変換するA/Dコンバータと、前記第1の電
解電源に指定電解レベルを設定し前記第1の電解槽の生
成水について前記A/Dコンバータを介して入力する前
記第1の酸化還元電極の検出出力より酸化還元電位チェ
ックを行い、該酸化還元電位チェックの結果を基に前記
第2の電解槽に印加すべき補正用の電解レベルを設定
し、前記第2の電解槽の生成水について前記A/Dコン
バータを介して入力する第2の酸化還元電極の検出出力
より酸化還元電位をチェックして再補正を行い、前記各
電解電源が容量不足の場合は前記フロースイッチへ制御
信号を送出して流入水の流量を調節、または前記添加液
ポンプへ制御信号を送出して該ポンプを作動させ前記電
解槽内の電解反応を上下させるため流入水への添加液注
入量を増減する制御を行う制御部を備えたことを特徴と
する。
In order to solve the above-mentioned object, the present invention provides an ion water generator for generating ion water by electrolysis by applying an electrolytic power supply between electrodes of an electrolytic cell,
A flow switch for adjusting the flow rate of inflow water supplied to the electrolysis cell, an additive solution pump for injecting an additive solution into the inflow water, a first electrolysis cell for performing a first electrolysis, and the first electrolysis cell A first electrolysis power supply for supplying electrolysis power to the electrolysis cell, a first oxidation-reduction electrode for detecting redox potential of water produced by the first electrolysis cell, and a second electrolysis cell for second electrolysis. Electrolysis cell, a second electrolysis cell that supplies electrolysis power to the second electrolysis cell, and a second oxidation-reduction electrode that detects oxidation-reduction potential of water produced by the second electrolysis cell. , An A / D converter for A / D converting the detection outputs of the first and second redox electrodes, and a specified electrolysis level for the first electrolysis power source, wherein the generated water of the first electrolysis tank is The first oxidation-reduction input via the A / D converter The redox potential is checked from the detection output of the pole, and the electrolytic level for correction to be applied to the second electrolytic cell is set based on the result of the redox potential check, and the generated water of the second electrolytic cell is set. Regarding the above, the redox potential is checked from the detection output of the second redox electrode that is input via the A / D converter and recorrection is performed, and if the capacity of each electrolytic power source is insufficient, a control signal is sent to the flow switch. Control for sending or adjusting the flow rate of inflow water, or sending a control signal to the additive solution pump to operate the pump to increase or decrease the electrolytic reaction in the electrolytic cell to increase or decrease the amount of additive solution injected into the inflow water. It is characterized by comprising a control unit for performing.

【0007】[0007]

【作用】上記構成とすることにより、第1の電解槽の電
解により生成された生成水は、次段の酸化還元電極槽に
流入して第1の酸化還元電極により酸化還元電位の検出
が行われる。制御部は酸化還元電位の検出データをA/
Dコンバータを介して入力し酸化還元電位チェックを行
って、第2の電解槽の補正電解に要する電解レベルを算
出して設定し2回目の補正電解を行う。第2の電解槽の
補正電解により生成された生成水は、次段の酸化還元電
極槽に流入して第2の酸化還元電極により酸化還元電位
の検出が行われる。制御部はこの検出データをA/Dコ
ンバータを介して入力し、酸化還元電位チェックを行っ
て最終的な再補正用の電解レベルを算出し第1および第
2の電解電源の再調節を行う。強酸性水の生成等で電源
容量が不足する場合には、制御部はフロースイッチによ
る流量調節または電解反応を高めるために添加液ポンプ
を作動させて電解槽への添加液の注入量を増減する制御
を行うので、酸化還元電位による電解制御が可能にな
る。
With the above structure, the water produced by the electrolysis of the first electrolytic cell flows into the redox electrode tank of the next stage, and the redox potential is detected by the first redox electrode. Be seen. The control unit outputs the redox potential detection data to A /
The redox potential is checked by inputting through the D converter, the electrolysis level required for the correction electrolysis of the second electrolytic cell is calculated and set, and the second correction electrolysis is performed. The generated water generated by the correction electrolysis of the second electrolysis tank flows into the oxidation-reduction electrode tank of the next stage, and the redox potential is detected by the second oxidation-reduction electrode. The control unit inputs this detection data via the A / D converter, checks the oxidation-reduction potential, calculates the final electrolytic level for recorrection, and adjusts the first and second electrolytic power supplies again. When the power supply capacity is insufficient due to the generation of strongly acidic water, the control unit controls the flow rate by the flow switch or operates the additive liquid pump to increase the electrolytic reaction to increase or decrease the amount of additive liquid injected into the electrolytic cell. Since the control is performed, it is possible to control the electrolysis by the redox potential.

【0008】[0008]

【実施例】以下、本発明の一実施例を図に基づいて説明
する。図1は本発明の一実施例による酸化還元電位制御
の強酸性水生成器の構成図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a redox potential controlled strongly acidic water generator according to an embodiment of the present invention.

【0009】図1に示す本実施例は、浄水器を通って流
入する水道水が給水される第1の電解槽1と、電解槽1
の電極に電解電源を印加するための第1の電解電源2
と、電解槽1の電解により生成された生成水が流入する
第1の酸化還元電極槽13内に設けたpt白金電極構造
の第1の酸化還元電極3と、前記第1の酸化還元電極槽
13を通過した生成水が流入して補正電解が行われる第
2の電解槽4と、電解槽4の電極に電解電源を印加する
ための第2の電解電源5と、電解槽4の補正電解により
生成された生成水の酸化還元電位を検出する第2の酸化
還元電極槽16内に設けた第2の酸化還元電極6と(第
2の酸化還元電極6は第1の酸化還元電極3と同構造で
ある)、A/Dコンバータ7と、流入水の流量調節用の
フロースイッチ9と、流入水に添加液である塩水を注入
するためのON/OFF駆動部付き塩水ポンプ10と、
注入用塩水タンク11と、これら全体の動作をマイコン
制御する制御部8で構成される。
In this embodiment shown in FIG. 1, a first electrolytic cell 1 to which tap water flowing through a water purifier is supplied, and an electrolytic cell 1
First electrolysis power supply 2 for applying electrolysis power supply to the electrodes of
And a first redox electrode 3 having a pt platinum electrode structure provided in a first redox electrode tank 13 into which water produced by electrolysis of the electrolyzer 1 flows, and the first redox electrode tank The second electrolysis tank 4 in which the generated water that has passed through 13 flows in to perform the correction electrolysis, the second electrolysis power supply 5 for applying the electrolysis power supply to the electrodes of the electrolysis tank 4, and the correction electrolysis of the electrolysis tank 4 The second redox electrode 6 provided in the second redox electrode tank 16 for detecting the redox potential of the generated water generated by the above (the second redox electrode 6 is the first redox electrode 3). The same structure), an A / D converter 7, a flow switch 9 for adjusting the flow rate of inflow water, a salt water pump 10 with an ON / OFF drive unit for injecting salt water as an additive liquid into the inflow water,
It is composed of an injecting salt water tank 11 and a control unit 8 for controlling the operation of all of these by a microcomputer.

【0010】なお、図示はしていないが電解槽1,4の
それぞれのアルカリイオン水と強酸性水生成水取り出し
管14,15,17,18は切り換え弁によって切り換
え可能な構造であり、図1の場合は右側に第1および第
2の酸化還元電極3,6のある第1および第2の酸化還
元電極槽13,16があり、左側はストレートの流水管
15,18になっている。切換弁で切り換えた場合は、
左側に第1および第2の酸化還元電極槽が移り、右側は
ストレートの流水管となる。図1で電解槽1,4のそれ
ぞれの右側の電極が陽極とすれば、酸性水生成水が酸化
還元電位制御されることになり、切り換え弁で切り換え
ればアルカリイオン水生成水が酸化還元制御されること
になる。尚、電極洗浄用の極性反転機構、電解ON/O
FF機構は従来例と同様の構成である。また、酸化還元
電極3,6では基準電極との間の電位が酸化還元電位と
して検出される構造である。
Although not shown, the alkaline ionized water and the strongly acidic water-produced water withdrawing pipes 14, 15, 17, 18 of the electrolytic cells 1 and 4 have a structure which can be switched by a switching valve. In the case of 1, the first and second redox electrode tanks 13 and 16 having the first and second redox electrodes 3 and 6 are provided on the right side, and the straight running water pipes 15 and 18 are provided on the left side. When switching with the switching valve,
The first and second redox electrode tanks are moved to the left side, and the right side is a straight running water pipe. If the electrodes on the right side of the electrolyzers 1 and 4 in FIG. 1 are used as anodes, the redox potential of the acidic water produced water is controlled, and the alkaline ionized water produced water is controlled by the switching valve. Will be done. In addition, a polarity reversal mechanism for electrode cleaning, electrolytic ON / O
The FF mechanism has the same structure as the conventional example. The redox electrodes 3 and 6 have a structure in which the potential between the redox electrodes 3 and 6 is detected as the redox potential.

【0011】つぎに動作について説明する。浄水器を通
過した流入水が電解槽1に給水されると、制御部8は電
解電源2に設定した電解レベルによって電解を行い、電
解により生成された生成水は酸化還元電極槽に流入し酸
化還元電位の検出が行われる。酸化還元電極3による酸
化還元電位の検出は、図1の酸化還元電極槽内に図示し
たpt白金電極を検出用の酸化還元電極として、基準電
極間との電位を高インピーダンスの電圧計で検出するも
のである。
Next, the operation will be described. When the inflow water that has passed through the water purifier is supplied to the electrolysis tank 1, the control unit 8 performs electrolysis at the electrolysis level set in the electrolysis power supply 2, and the produced water produced by electrolysis flows into the oxidation-reduction electrode tank and is oxidized. The reduction potential is detected. To detect the redox potential by the redox electrode 3, the pt platinum electrode shown in the redox electrode tank of FIG. 1 is used as the redox electrode for detection, and the potential between the reference electrodes is detected by a high-impedance voltmeter. It is a thing.

【0012】この場合の酸化還元電位は、pt白金電極
における電極反応が酸化反応と還元反応が平衡状態にあ
って、電流i=0の状態になる平衡電位を指すものであ
り、この酸化還元電位を平衡電位から+方向にずらす分
極を行うと電極反応は酸化反応となり、逆に−方向へ分
極すれば還元反応になり、平衡電位からのずれの大きさ
(過電圧)が反応の駆動力を表すので、酸化還元電位と
過電圧データにより電解レベルの設定を行えば正確な電
解制御が可能である。
The redox potential in this case refers to the equilibrium potential at which the electrode reaction at the pt platinum electrode is in the state of current i = 0 when the oxidation reaction and the reduction reaction are in an equilibrium state. When the electrode is polarized in the + direction from the equilibrium potential, the electrode reaction becomes an oxidation reaction, and conversely when it is polarized in the − direction, it becomes a reduction reaction, and the magnitude of the deviation from the equilibrium potential (overvoltage) represents the driving force of the reaction. Therefore, accurate electrolysis control can be performed by setting the electrolysis level based on the redox potential and the overvoltage data.

【0013】このように酸化還元電極3によって検出し
た酸化還元電位を、A/Dコンバータ7によりディジタ
ルデータにして制御部8へ入力する。制御部8はデータ
を解析して、先に電解電源2に設定した電解レベルが酸
化還元電位に対応している場合には、酸化還元電極3の
検出電位が設定pHに対応する酸化還元電位にあること
を確認し、検出電位がずれている場合はずれ分に対応す
る補正電解レベルを算出して、電解電源5に補正電解レ
ベルを設定し電解槽4で補正電解を行う。
The redox potential thus detected by the redox electrode 3 is input to the controller 8 as digital data by the A / D converter 7. The control unit 8 analyzes the data, and when the electrolysis level previously set in the electrolysis power source 2 corresponds to the redox potential, the detection potential of the redox electrode 3 becomes the redox potential corresponding to the set pH. If there is a deviation in the detected potential, a correction electrolysis level corresponding to the deviation is calculated, the correction electrolysis level is set in the electrolysis power source 5, and the correction electrolysis is performed in the electrolytic cell 4.

【0014】また、先の電解電源2に設定した電解レベ
ルが、酸化還元電位から或る限度内でずらした或る過電
圧値に対応している場合は、酸化還元電極3による検出
電位が過電圧分、設定pHに対応する酸化還元電位より
ずれていることを、制御部8はA/Dコンバータ7から
の入力データを解析して比較、判定し、結果によって同
様に電解槽4により補正電解を行う。
When the electrolysis level set in the electrolysis power source 2 corresponds to a certain overvoltage value deviated within a certain limit from the redox potential, the potential detected by the redox electrode 3 is the overvoltage component. The control unit 8 analyzes the input data from the A / D converter 7 to compare and determine that it is deviated from the redox potential corresponding to the set pH, and similarly performs the correction electrolysis by the electrolytic cell 4 according to the result. .

【0015】続いて、2段電解槽1,4を通過したトー
タル生成水について、酸化還元電極3と同構成の酸化還
元電極6の検出データにより最終チェックを行う。制御
部8は、酸化還元電極6の検出電位をA/Dコンバータ
によりディジタルデータにして入力し、入力データを解
析して先の設定データとの比較、判定を行い、再補正デ
ータを算出して電解電源2,5の電解レベルのトータル
再調節を行う。なお、電解電源2,5は電源容量を考慮
して設定する必要がある。
Then, a final check is performed on the total produced water that has passed through the two-stage electrolytic cells 1 and 4 based on the detection data of the redox electrode 6 having the same structure as the redox electrode 3. The control unit 8 inputs the detected potential of the redox electrode 6 as digital data by the A / D converter, analyzes the input data, compares it with the previously set data, makes a determination, and calculates recorrection data. Total readjustment of electrolysis level of electrolysis power supplies 2 and 5 is performed. The electrolytic power sources 2 and 5 need to be set in consideration of the power source capacity.

【0016】特定の強酸性水の生成などのような大電流
を要する場合には制御部8は、制御信号を送出してフロ
ースイッチ9により流入水の流量を絞り、塩水ポンプを
作動させ電解槽への給水中に塩水の注入量をふやして、
Na+ イオンの増加等により導電率を上げ電解反応を高
めることによって、所望の生成水を生成する化学的な補
正を含む電解調節を行う。電解電源2,5の容量が不足
する場合には制御部8は、制御信号を送出してフロース
イッチ1により流入水の流量を上げ、塩水ポンプ10を
流入量が減少する方向に作動させ電解槽への給水中の塩
水の注入量を減らし、Na+ イオンの減少等により導電
率を下げる等の調整を行う。
When a large current such as the generation of a specific strongly acidic water is required, the control unit 8 sends a control signal to throttle the flow rate of the inflowing water by the flow switch 9 to operate the salt water pump to operate the electrolytic cell. Increase the amount of salt water injected into the water supply to
By increasing the conductivity by increasing the amount of Na + ions and enhancing the electrolytic reaction, electrolytic control including chemical correction for producing desired product water is performed. When the capacities of the electrolysis power sources 2 and 5 are insufficient, the control unit 8 sends a control signal to increase the flow rate of inflow water by the flow switch 1 to operate the salt water pump 10 in the direction in which the inflow rate decreases, and the electrolytic cell is activated. The amount of salt water injected into the water supply is reduced, and the conductivity is reduced by reducing Na + ions.

【0017】このような、本実施例においては、従来例
で使用されているPHセンサーのガラス電極は、ガラス
の組成を変えることでイオンの選択透過性を型成する構
造で取扱いが難しい。それに比較して本実施例のpt白
金電極は比較的取扱いが容易でありる。また、2段構成
の電解槽により特定のイオン水・強酸性水の生成も容易
である。上記実施例では強酸性水生成器について示した
が、本発明はアルカリイオン水を生成するアルカリイオ
ン水生成器にも使用できる。この場合、添加液としてグ
リセロリン酸カルシウム等の溶液が使用される。
In this embodiment, the glass electrode of the PH sensor used in the conventional example has a structure in which the selective permeability of ions is formed by changing the composition of the glass, which is difficult to handle. In comparison, the pt platinum electrode of this example is relatively easy to handle. In addition, it is easy to generate specific ionic water / strongly acidic water by using the two-stage electrolytic cell. Although a strongly acidic water generator is shown in the above embodiment, the present invention can also be used in an alkaline ion water generator that generates alkaline ion water. In this case, a solution of calcium glycerophosphate or the like is used as the additive liquid.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
流入水の流量を調節するフロースイッチと、流入水に添
加液を注入するための添加液ポンプと、第1、第2の2
段の電解槽と、その各電解槽の生成水について酸化還元
電位を検出する第1、第2の酸化還元電極と、第1の酸
化還元電極による検出電位を解析し解析結果を基に、第
2の電解槽の補正電解レベルを設定して補正電解を行
い、第2の酸化還元電極による検出電位を解析してトー
タルの補正電解レベル調節を行い、電源容量不足又は大
電流を要する場合にはフロースイッチを絞り又は開く制
御と、添加液ポンプの作動により電解槽の流入水への添
加液注入量を増減する制御とのいずれか一方又は両方を
行う制御部を備えたので、酸化還元電位の検出に比較的
取扱いの簡単なpt白金電極の採用により制御用データ
の採取を可能にし、特定の強酸性水などの生成が容易に
なる効果がある。
As described above, according to the present invention,
A flow switch for adjusting the flow rate of the inflow water, an additive liquid pump for injecting the additive liquid into the inflow water, and first and second two
The first and second redox electrodes for detecting the redox potential of the electrolysis tank of each stage and the water produced in each of the electrolyzers, and the detection potential of the first redox electrode are analyzed and based on the analysis result, When the correction electrolysis level of the second electrolysis cell is set and the correction electrolysis is performed, the detection potential by the second redox electrode is analyzed to adjust the total correction electrolysis level, and when the power supply capacity is insufficient or a large current is required, Since a control unit for controlling either or both of the control for squeezing or opening the flow switch and the control for increasing / decreasing the amount of the added liquid injected into the inflow water of the electrolytic cell by the operation of the additive liquid pump is provided. The use of the pt platinum electrode, which is relatively easy to handle for detection, makes it possible to collect control data and facilitate the generation of specific strongly acidic water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による酸化還元電位制御の強
酸性水生成器の構成図である。
FIG. 1 is a configuration diagram of a redox potential controlled strongly acidic water generator according to an embodiment of the present invention.

【図2】従来のイオン水生成器の構成図である。FIG. 2 is a configuration diagram of a conventional ionized water generator.

【符号の説明】[Explanation of symbols]

1 第1の電解槽 2 第1の電解電源 3,6 酸化還元電極 4 第2の電解槽 5 第2の電解電源 7 A/Dコンバータ 8 制御部 9 フロースイッチ 10 塩水ポンプ 1 1st electrolysis tank 2 1st electrolysis power supply 3,6 Redox electrode 4 2nd electrolysis tank 5 2nd electrolysis power supply 7 A / D converter 8 Control part 9 Flow switch 10 Salt water pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解槽の電極間に電解電源を印加して電
解によりイオン水を生成するイオン水生成器において、 電解槽に給水される流入水の流量を調節するフロースイ
ッチと、前記流入水に添加液を注入するための添加液ポ
ンプと、1回目の電解を行う第1の電解槽と、該第1の
電解槽へ電解電源を供給する第1の電解電源と、前記第
1の電解槽により生成される生成水について酸化還元電
位検出を行う第1の酸化還元電極と、2回目の電解を行
う第2の電解槽と、該第2の電解槽へ電解電源を供給す
る第2の電解電源と、前記第2の電解槽により生成され
る生成水について酸化還元電位検出を行う第2の酸化還
元電極と、前記第1および第2の酸化還元電極の検出出
力をA/D変換するA/Dコンバータと、前記第1の電
解電源に指定電解レベルを設定し前記第1の電解槽の生
成水について前記A/Dコンバータを介して入力する前
記第1の酸化還元電極の検出出力より酸化還元電位チェ
ックを行い、該酸化還元電位チェックの結果を基に前記
第2の電解槽に印加すべき補正用の電解レベルを設定
し、前記第2の電解槽の生成水について前記A/Dコン
バータを介して入力する第2の酸化還元電極の検出出力
より酸化還元電位をチェックして再補正を行い、前記各
電解電源が容量不足の場合は前記フロースイッチへ制御
信号を送出して流入水の流量を調節、または前記添加液
ポンプへ制御信号を送出して該ポンプを作動させ前記電
解槽内の電解反応を上下させるため流入水への添加液注
入量を増減する制御を行う制御部を備えたことを特徴と
するイオン水生成器。
1. An ion water generator that generates an ion water by electrolysis by applying an electrolysis power supply between electrodes of an electrolyzer, a flow switch for adjusting a flow rate of inflow water supplied to the electrolyzer, and the inflow water. An additive solution pump for injecting an additive solution into the first electrolytic cell, a first electrolytic cell for performing the first electrolysis, a first electrolytic power source for supplying an electrolytic power source to the first electrolytic cell, and the first electrolytic cell A first redox electrode for detecting redox potential of generated water generated in the tank, a second electrolysis cell for second electrolysis, and a second electrolysis power supply for supplying electrolysis power to the second electrolysis cell. A / D conversion is performed between the electrolysis power supply, the second oxidation-reduction electrode that detects the oxidation-reduction potential of the water produced by the second electrolysis tank, and the detection outputs of the first and second oxidation-reduction electrodes. A / D converter and designated electrolysis for the first electrolysis power supply A bell is set and the redox potential is checked from the detection output of the first redox electrode that is input via the A / D converter for the water produced in the first electrolytic cell, and the result of the redox potential check is displayed. The detection output of the second oxidation-reduction electrode that sets the electrolysis level for correction to be applied to the second electrolytic cell based on the above, and inputs the generated water of the second electrolytic cell through the A / D converter. The redox potential is checked and corrected again, and when the capacity of each electrolytic power source is insufficient, a control signal is sent to the flow switch to adjust the flow rate of inflow water, or a control signal is sent to the additive liquid pump. Then, the ion water generator is provided with a control unit for controlling the pump to operate to increase or decrease the amount of the added liquid injected into the inflow water in order to raise or lower the electrolytic reaction in the electrolytic cell.
JP15161593A 1993-05-28 1993-05-28 Ionized water generator Pending JPH06335685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15161593A JPH06335685A (en) 1993-05-28 1993-05-28 Ionized water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15161593A JPH06335685A (en) 1993-05-28 1993-05-28 Ionized water generator

Publications (1)

Publication Number Publication Date
JPH06335685A true JPH06335685A (en) 1994-12-06

Family

ID=15522415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15161593A Pending JPH06335685A (en) 1993-05-28 1993-05-28 Ionized water generator

Country Status (1)

Country Link
JP (1) JPH06335685A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Similar Documents

Publication Publication Date Title
CN105948176B (en) Electrolyzed water generation device
JP2810262B2 (en) Control device for continuous electrolytic ionized water generator
JPH06335685A (en) Ionized water generator
JP2000093961A (en) Electrolytic water making apparatus
JP2019093327A (en) Electrolytic water generator
JP5236663B2 (en) Electrolyzed water generator
JPH07136653A (en) Electrolytic water maker
JP2002001341A (en) Electrolytic sodium hypochlorite generator
JP6810112B2 (en) Electrolyzed water generator and electrolyzed water generation method
JPH07155764A (en) Device for producing acidic ionized water
JP2001327968A (en) Electrolytic water generating device
JP2991016B2 (en) Continuous ion-rich water generation method and apparatus
JP4068267B2 (en) Electrolyzed water generator
JP7212978B1 (en) electrolytic device
JPH06320161A (en) Water preparing apparatus
JPH0564785A (en) Method and apparatus for conditioning electrolytic ion water
JPH0957269A (en) Electrolytic water generator
JP2970212B2 (en) Ion water supply device
JP2001070941A (en) Method for controlling batch type apparatus for producing electrolytic water
JP3009299U (en) Ion water generator
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JPH0760254A (en) Ion water-preparing device
JP3638164B2 (en) Electrolytic ion water generation method
JP2002282856A (en) Electrolytic water producing equipment
JPH11244857A (en) Electrolyzed ionic water producing implement