JP3893693B2 - Electrolyzed water production equipment - Google Patents

Electrolyzed water production equipment Download PDF

Info

Publication number
JP3893693B2
JP3893693B2 JP28548297A JP28548297A JP3893693B2 JP 3893693 B2 JP3893693 B2 JP 3893693B2 JP 28548297 A JP28548297 A JP 28548297A JP 28548297 A JP28548297 A JP 28548297A JP 3893693 B2 JP3893693 B2 JP 3893693B2
Authority
JP
Japan
Prior art keywords
diaphragm
electrolyzed water
electrolytic cell
chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28548297A
Other languages
Japanese (ja)
Other versions
JPH11114569A (en
Inventor
文夫 荒瀬
重明 佐藤
智章 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP28548297A priority Critical patent/JP3893693B2/en
Publication of JPH11114569A publication Critical patent/JPH11114569A/en
Application granted granted Critical
Publication of JP3893693B2 publication Critical patent/JP3893693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、食塩水などの無機電解質溶液を電解して殺菌力のある次亜塩素酸等を含んだ電解水を取り出す電解水製造装置に係り、詳しくは隔膜式電解槽と無隔膜式電解槽とを有する電解水製造装置に関する。
【0002】
【従来の技術】
食塩水を電解することにより次亜塩素酸及び/又は次亜塩素酸ナトリウムを含んだ殺菌力を有する電解水が生成することは周知である。
【0003】
古くからこの種の電解水製造装置としては隔膜によって陽極室と陰極室とを区画したものが用いられている。また、隔膜を用いない無隔膜式のものも広く用いられている。
【0004】
このような隔膜式電解槽によると生成した酸性水のpHがかなり低くなり、腐食性が強すぎるようになる。無隔膜式電解槽によると、アルカリ性の次亜塩素酸含有電解水が生成するので、隔膜式電解槽と無隔膜式電解槽とを組み合わせて弱酸性の次亜塩素酸含有電解水を生成させるようにした電解水製造装置が特開平8−52475号公報、特開平9−85250号公報に記載されている。
【0005】
図2はこの特開平8−52475号公報の電解水製造装置の構成図であり、図3は特開平9−85250号公報の電解水製造装置の構成図である。
【0006】
図2の電解水製造装置では、隔膜22を有した隔膜式電解槽21の陽極室24と陰極室25に食塩水をそれぞれ供給し、陽極室流出水をタンク26を介して無隔膜式電解槽27に送り、第2次電解処理してから殺菌力を有した電解水として取り出している。28a,28bは陽極、29a,29bは陰極を示す。
【0007】
なお、陽極室24ではHClOが生成し、無隔膜式電解槽27ではHClO及びNaOHが生成することによりNaClOが生成する。NaClO溶液のpHはHClO溶液のpHよりも高いから、陽極室24からの電解水に比べ無隔膜式電解槽27を通過した後の電解水のpHは中性に近い弱酸性のものとなる。
【0008】
図3の電解水製造装置では電解槽30内が無隔膜式の第1電極室31と、該第1電極室31に対し隔膜38で隔絶された第2電極室32とが設けられており、第1電極室31に陽極33と第1陰極34が設置され、第2電極室32に第2陰極35が設置されている。
【0009】
第1電極室に流入口36から希薄食塩水が導入され、陽極33と第1陰極34との間を通過する間に無隔膜電解され、NaClOを主要成分とするpH8前後の電解水が生成する。この電解水が陽極33と第2陰極35との間を流れることにより隔膜電解され、HCl、HClOが生成し、弱酸性のNaClO及びHClO含有電解水となり、流出口37から取り出される。
【0010】
【発明が解決しようとする課題】
上記の特許登録第2626778号公報のように隔膜式電解処理した場合、陽極側電解水はかなりpHが低く、腐食性が強い。
【0011】
図2,3に示す特開平8−52475号公報及び同9−85250号公報の電解水製造装置によると、弱酸性の次亜塩素酸含有電解水が生成するが、種々の実験の結果、残留塩素の生成効率に若干劣ることが認められた。これは隔膜式電解処理した食塩水をそのまま無隔膜式電解処理する(特開平8−52475号公報)、又は、無隔膜式電解処理した食塩水をそのまま隔膜式電解処理する(特開平9−85250号公報)ため、隔膜式電解処理及び無隔膜式電解処理時の溶液が各処理にとって最適な溶液とはならないためであろうと推察される。
【0012】
本発明は残留塩素の高い弱酸性の所望pHの電解水を効率良く製造できる電解水製造装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の電解水製造装置は、隔膜で区画された陰極室及び陽極室を有した隔膜式電解槽と、隔膜を有しない無隔膜式電解槽とを備えた電解水製造装置において、該隔膜式電解槽と無隔膜式電解槽とに別々に無機電解質溶液を供給し、該隔膜式電解槽の陽極室流出水と該無隔膜式電解槽の流出水とを合流させて取り出すようにしたことを特徴とするものである。
【0014】
かかる本発明の電解水製造装置にあっては、隔膜式電解槽においてNaCl,KCl,HCl,NaClO,NH4Cl等の無機電解質溶液が隔膜式電解処理を受け、HClOが効率良く生成する。
【0015】
一方、無隔膜式電解槽においては食塩水等の無機電解質溶液が無隔膜式電解処理を受け、アルカリ性のNaClOが生成する。
【0016】
この隔膜式電解槽の陽極室からのHClO含有電解水と無隔膜式電解槽からもNaClO含有電解水とを混合することにより、残留塩素濃度が高い弱酸性の電解水が得られる。
【0017】
本発明においては、隔膜式電解槽と無隔膜式電解槽とにそれぞれ別々に無機電解質溶液を供給して電解処理するため、隔膜式電解及び無隔膜式電解にそれぞれ好適な濃度の無機電解質溶液を各槽に供給できる。このため、各槽においてそれぞれ効率良く隔膜式電解及び無隔膜式電解が行われる。また、隔膜式電解及び無隔膜式電解においてそれぞれ所望のpHの電解水を生成させることができる。従って、残留塩素濃度が高く且つ所望のpHの電解水を効率良く生成させることが可能となる。
【0018】
本発明では、隔膜式電解槽に300〜2000mg/Lの食塩水溶液を供給し、無隔膜式電解槽に1000〜50000mg/Lの食塩水溶液を供給し、隔膜式電解槽への食塩水の供給量を無隔膜式電解槽への食塩水の供給量の2〜400倍とし、pH3.2〜6.5、残留塩素濃度15〜100mg/Lの前記流出水を生成させることが好ましい。
【0019】
【発明の実施の形態】
図1は本発明の実施の形態に係る電解水製造装置の概略的な断面図である。
【0020】
電解槽1の一端側と他端側にそれぞれ食塩水の流入口2,3が設けられている。この電解槽1内の該流入口2,3の中間の部分には袖壁状の隔壁4が設けられている。この隔壁4よりも流入口2側が隔膜5を有した隔膜式電解室6とされ、流入口3側が無隔膜式電解室7とされている。
【0021】
隔膜式電解室6内の隔膜5は、隔壁4の先端から流入口2に向って延設されており、流入口2からの流入食塩水が陽極室6aと陰極室6bとにそれぞれ流入するよう構成されている。
【0022】
電解槽1の流入口2,3の中間部分には陽極側流出口8が設けられ、陽極室6aと無隔膜式電解室7がそれぞれこの陽極側流出口8に連通している。陰極室6bには陰極側流出口9が設けられている。陽極室6aには陽極10が設置され、陰極室6bには陰極11が設置されている。また、無隔膜式電解室7内には陽極12と陰極13とが設置されている。
【0023】
陽極10と陰極11との間には可変抵抗器15を介して直流電源14から直流電圧が印加され、陽極12と陰極13との間には直流電源16から直流電圧が印加される。
【0024】
このように構成された電解水製造装置においては、流入口2,3から無機電解質溶液例えば食塩水が導入され、隔膜式電解室6内で隔膜式電解が行われ、陽極室6aでHClO含有水が生成し、陰極室6bでNaOH含有水が生成する。無隔膜式電解室7内ではNaClO含有水が生成する。陽極室6aからのHClO含有水と無隔膜式電解室7からのNaClO含有水とが混合し、流出口8から弱酸性のNaClO及びHClO含有水が取り出される。各電解室6,7への導入食塩水濃度及び導入量をそれぞれの電解に好適な濃度及び量とすることにより、各室内の電解効率を最も高い範囲のものとすることができる。
【0025】
本発明では、流入口2から電解室6へ導入される食塩水濃度を300〜2000mg/Lとくに600〜1000mg/Lとし、流入口3から電解室7へ導入される食塩水濃度を1000〜50000mg/Lとくに5000〜30000mg/Lとし、隔膜式電解室6への導入水量を無隔膜式電解室7への導入水量の2〜400倍とくに100〜200倍とすることが好ましい。
【0026】
流入口2から隔膜式電解室6へ導入する溶液を100部とした場合、陽極室6aへ導入する水量は30〜70部とくに40〜60部であることが好ましい。
【0027】
このような条件で電解を行うことにより、陽極側流出口8からはpH3〜6.5、残留塩素濃度30〜100mg/Lの陽極側電解水を取り出すことができ、陰極側流出口9からはpH10〜11.5の陰極側電解水(NaOH含有水)を取り出すことができる。
【0028】
なお、陽極室6aではpH2.2〜3、HClO濃度10〜40mg/L程度のHClO含有水が生成し、無隔膜式電解室7ではpH7.5〜11、NaClO濃度40〜6000mg/L程度のNaClO含有水が生成する。
【0029】
【実施例】
実施例1
図1の本発明装置において、運転条件を次の通り設定した。
流入口2からの流入食塩水濃度 750mg/L
流入口3からの流入食塩水濃度 30000mg/L
流入口2からの導入量 600L/Hr
流入口3からの導入量 3L/Hr
流出口8からの取り出し量 303L/Hr
流出口9からの取り出し量 300L/Hr
電極10,11間印加電圧 10V
電極12,13間印加電圧 3.5V
これにより流出口8から得られた陽極側電解水の残留塩素濃度、pH及び流量を表1に示す。なお、残留塩素濃度はo−トリジン比色分析法によって測定した。
【0030】
比較例1
図1の装置において、流出口8にバルブ8aを設け、このバルブ8aを全閉とした。また、流出口9にバルブ9aを設け、このバルブ9aの開度を調節した。
【0031】
そして、流入口2から濃度900mg/Lの食塩水を603L/Hr(これは実施例1において流入口2,3から導入した食塩水量の合量と同じである。)を導入し、流出口9からは実施例1と同じく300L/Hrの陰極側流出水を取り出した。その他の条件は実施例1と同一とし、電解水生成運転を行った。
【0032】
開口3から取り出した陽極側電解水と流出口9からの陰極側電解水についてのデータを表1に示す。
【0033】
比較例2
比較例1と同じくバルブ8aを全閉とし、バルブ9aの開度を調節した。
【0034】
流入口3からは実施例1において流入口2,3から電解槽1に導入した合計量と同量の食塩水(濃度900mg/L)を導入し、流出口9からは実施例1と同一量の陰極側電解水を流出させた。その他の条件は実施例1と同一にして電解水生成運転を行った。
【0035】
開口2から取り出した陽極側電解水と流出口9から取り出した陰極側電解水についてのデータを表1に示す。
【0036】
【表1】

Figure 0003893693
【0037】
表1から明らかな通り、実施例1によると残留塩素濃度が高い陽極側電解水を生成させることができる。
【0038】
なお、比較例2,3のように隔膜式電解工程と無隔膜式電解工程とを直列に通水するように電解処理を行うと残留塩素濃度(HClO及びNaClOの合計のCl濃度)が実施例1よりも低くなる。
【0039】
実施例2,3,4
実施例1において電極10,11間に印加する電圧を表2のように変化させた場合の電解水のデータを測定し、結果を表2に示した。
【0040】
【表2】
Figure 0003893693
【0041】
表2から明らかな通り、電極10,11間の電圧を変えることにより所望のpHの電解水を生成させることができる。
【0042】
【発明の効果】
以上の通り、本発明によると残留塩素濃度の高い所望pHの陽極側電解水を効率良く生成させることができる。
【図面の簡単な説明】
【図1】実施の形態に係る電解水製造装置の断面図である。
【図2】従来例に係る電解水製造装置の断面図である。
【図3】別の従来例に係る電解水製造装置の断面図である。
【符号の説明】
1 電解槽
2,3 流入口
4 隔壁
5 隔膜
6 隔膜式電解室
6a 陽極室
6b 陰極室
7 無隔膜式電解室
8,9 流出口
10,12 陽極
11,13 陰極
14,16 直流電源
15 可変抵抗器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyzed water production apparatus for electrolyzing an inorganic electrolyte solution such as saline to extract electrolyzed water containing hypochlorous acid or the like having sterilizing power, and more specifically, a diaphragm type electrolytic cell and a non-diaphragm type electrolytic cell It is related with the electrolyzed water manufacturing apparatus which has.
[0002]
[Prior art]
It is well known that electrolyzed salt water produces electrolyzed water having sterilizing power containing hypochlorous acid and / or sodium hypochlorite.
[0003]
For a long time, this type of electrolyzed water producing apparatus has used an anode chamber and a cathode chamber partitioned by a diaphragm. In addition, a non-diaphragm type that does not use a diaphragm is also widely used.
[0004]
According to such a diaphragm type electrolytic cell, the pH of the generated acidic water becomes considerably low, and the corrosiveness becomes too strong. According to the non-diaphragm electrolyzer, alkaline hypochlorous acid-containing electrolyzed water is generated, so that weakly acidic hypochlorous acid-containing electrolyzed water is generated by combining the electrolyzed electrolyzer with the diaphragm electrolyzer. An electrolyzed water production apparatus is described in JP-A-8-52475 and JP-A-9-85250.
[0005]
FIG. 2 is a block diagram of the electrolyzed water production apparatus disclosed in JP-A-8-52475, and FIG. 3 is a block diagram of the electrolyzed water production apparatus disclosed in JP-A-9-85250.
[0006]
In the electrolyzed water production apparatus of FIG. 2, saline is supplied to the anode chamber 24 and the cathode chamber 25 of the diaphragm electrolytic cell 21 having the diaphragm 22, and the anode chamber effluent is supplied to the non-diaphragm electrolytic cell via the tank 26. It is taken out as electrolyzed water having sterilizing power after the second electrolytic treatment. 28a and 28b are anodes, and 29a and 29b are cathodes.
[0007]
Note that HClO is generated in the anode chamber 24, and NaClO is generated in the non-diaphragm electrolytic cell 27 by generation of HClO and NaOH. Since the pH of the NaClO solution is higher than the pH of the HClO solution, the pH of the electrolyzed water after passing through the non-membrane membrane electrolytic cell 27 becomes weaker than that of the electrolyzed water from the anode chamber 24.
[0008]
In the electrolyzed water production apparatus of FIG. 3, the inside of the electrolytic cell 30 is provided with a first electrode chamber 31 of a diaphragm type, and a second electrode chamber 32 separated from the first electrode chamber 31 by a diaphragm 38, An anode 33 and a first cathode 34 are installed in the first electrode chamber 31, and a second cathode 35 is installed in the second electrode chamber 32.
[0009]
Dilute saline is introduced into the first electrode chamber from the inlet 36 and is electrolyzed without separation while passing between the anode 33 and the first cathode 34, and electrolyzed water having a pH of about 8 containing NaClO as a main component is generated. . When this electrolyzed water flows between the anode 33 and the second cathode 35, diaphragm electrolysis is performed, HCl and HClO are generated, and weakly acidic NaClO and HClO-containing electrolyzed water is taken out from the outlet 37.
[0010]
[Problems to be solved by the invention]
When diaphragm type electrolytic treatment is performed as in the above-mentioned Patent Registration No. 2626778, the anode side electrolyzed water has a considerably low pH and is highly corrosive.
[0011]
According to the electrolyzed water production apparatuses disclosed in Japanese Patent Application Laid-Open Nos. 8-52475 and 9-85250 shown in FIGS. 2 and 3, weakly acidic hypochlorous acid-containing electrolyzed water is produced. It was recognized that the production efficiency of chlorine was slightly inferior. In this method, the diaphragm-type electrolytic solution is subjected to the diaphragm-type electrolytic treatment as it is (Japanese Patent Laid-Open No. 8-52475), or the diaphragm-type electrolytic solution is directly subjected to the diaphragm-type electrolytic treatment (Japanese Patent Laid-Open No. 9-85250). Therefore, it is assumed that the solution at the time of the diaphragm type electrolytic treatment and the non-diaphragm type electrolytic treatment is not an optimum solution for each treatment.
[0012]
An object of the present invention is to provide an electrolyzed water production apparatus capable of efficiently producing electrolyzed water having a low residual acidity and high pH and a desired acidity.
[0013]
[Means for Solving the Problems]
The electrolyzed water production apparatus of the present invention is an electrolyzed water production apparatus comprising a diaphragm type electrolytic cell having a cathode chamber and an anode chamber partitioned by a diaphragm, and a non-diaphragm type electrolytic cell having no diaphragm. An inorganic electrolyte solution was separately supplied to the electrolytic cell and the diaphragm-type electrolytic cell, and the anode chamber outflow water of the diaphragm-type electrolytic cell and the outflow water of the non-membrane-type electrolytic cell were merged and taken out. It is a feature.
[0014]
In such an electrolyzed water producing apparatus of the present invention, an inorganic electrolyte solution such as NaCl, KCl, HCl, NaClO, NH 4 Cl or the like is subjected to a diaphragm type electrolytic treatment in a diaphragm type electrolytic cell, and HClO is efficiently generated.
[0015]
On the other hand, in the diaphragm-type electrolytic cell, an inorganic electrolyte solution such as saline is subjected to a diaphragm-type electrolytic treatment to produce alkaline NaClO.
[0016]
By mixing the HClO-containing electrolyzed water from the anode chamber of this diaphragm-type electrolytic cell and the NaClO-containing electrolyzed water also from the non-diaphragm-type electrolytic cell, weakly acidic electrolyzed water having a high residual chlorine concentration can be obtained.
[0017]
In the present invention, the inorganic electrolyte solution is separately supplied to the diaphragm-type electrolytic cell and the diaphragm-type electrolytic cell, respectively, so that the electrolytic treatment is performed. Can be supplied to each tank. For this reason, diaphragm type electrolysis and non-diaphragm type electrolysis are efficiently performed in each tank. In addition, electrolyzed water having a desired pH can be generated in each of diaphragm type electrolysis and non-diaphragm type electrolysis. Therefore, it is possible to efficiently generate electrolyzed water having a high residual chlorine concentration and a desired pH.
[0018]
In the present invention, a 300-2000 mg / L saline solution is supplied to the diaphragm type electrolytic cell, a 1000-50000 mg / L saline solution is supplied to the non-diaphragm type electrolytic cell, and the supply amount of the saline solution to the diaphragm type electrolytic cell Is preferably 2 to 400 times the amount of saline supplied to the diaphragm-type electrolytic cell, and the effluent water having a pH of 3.2 to 6.5 and a residual chlorine concentration of 15 to 100 mg / L is preferably generated.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic cross-sectional view of an electrolyzed water production apparatus according to an embodiment of the present invention.
[0020]
Saline water inlets 2 and 3 are respectively provided at one end and the other end of the electrolytic cell 1. A sleeve-wall-shaped partition wall 4 is provided in an intermediate portion between the inlets 2 and 3 in the electrolytic cell 1. The side of the inlet 2 from the partition wall 4 is a diaphragm type electrolysis chamber 6 having a diaphragm 5, and the side of the inlet 3 is a non-diaphragm type electrolysis chamber 7.
[0021]
The diaphragm 5 in the diaphragm type electrolysis chamber 6 extends from the tip of the partition wall 4 toward the inflow port 2 so that the inflow saline from the inflow port 2 flows into the anode chamber 6a and the cathode chamber 6b, respectively. It is configured.
[0022]
An anode side outflow port 8 is provided at an intermediate portion between the inflow ports 2 and 3 of the electrolytic cell 1, and an anode chamber 6 a and a non-diaphragm electrolysis chamber 7 communicate with the anode side outflow port 8, respectively. A cathode side outlet 9 is provided in the cathode chamber 6b. An anode 10 is installed in the anode chamber 6a, and a cathode 11 is installed in the cathode chamber 6b. An anode 12 and a cathode 13 are installed in the diaphragm type electrolytic chamber 7.
[0023]
A DC voltage is applied between the anode 10 and the cathode 11 from the DC power source 14 via the variable resistor 15, and a DC voltage is applied between the anode 12 and the cathode 13 from the DC power source 16.
[0024]
In the electrolyzed water production apparatus configured as described above, an inorganic electrolyte solution such as saline is introduced from the inflow ports 2 and 3, diaphragm electrolysis is performed in the diaphragm electrolysis chamber 6, and HClO-containing water is produced in the anode chamber 6 a. And NaOH-containing water is generated in the cathode chamber 6b. NaClO-containing water is generated in the diaphragm-type electrolysis chamber 7. The HClO-containing water from the anode chamber 6 a and the NaClO-containing water from the non-diaphragm electrolysis chamber 7 are mixed, and weakly acidic NaClO and HClO-containing water is taken out from the outlet 8. By setting the salt solution concentration and amount introduced into the electrolysis chambers 6 and 7 to a concentration and amount suitable for each electrolysis, the electrolysis efficiency in each chamber can be set to the highest range.
[0025]
In the present invention, the concentration of saline introduced from the inlet 2 to the electrolytic chamber 6 is 300 to 2000 mg / L, particularly 600 to 1000 mg / L, and the concentration of saline introduced from the inlet 3 to the electrolytic chamber 7 is 1000 to 50000 mg. / L, particularly 5000 to 30000 mg / L, and the amount of water introduced into the diaphragm-type electrolysis chamber 6 is preferably 2 to 400 times, particularly 100 to 200 times the amount of water introduced into the non-diaphragm electrolysis chamber 7.
[0026]
When the solution introduced from the inlet 2 into the diaphragm type electrolytic chamber 6 is 100 parts, the amount of water introduced into the anode chamber 6a is preferably 30 to 70 parts, particularly 40 to 60 parts.
[0027]
By performing electrolysis under such conditions, anode side electrolyzed water having a pH of 3 to 6.5 and a residual chlorine concentration of 30 to 100 mg / L can be taken out from the anode side outlet 8, and from the cathode side outlet 9 Cathode-side electrolyzed water (NaOH-containing water) having a pH of 10 to 11.5 can be taken out.
[0028]
In the anode chamber 6a, HClO-containing water having a pH of 2.2 to 3 and a HClO concentration of about 10 to 40 mg / L is generated. In the non-diaphragm electrolytic chamber 7, a pH of 7.5 to 11 and a NaClO concentration of about 40 to 6000 mg / L is formed. NaClO-containing water is produced.
[0029]
【Example】
Example 1
In the device of the present invention shown in FIG. 1, operating conditions were set as follows.
Inflow saline concentration from inflow port 2 750 mg / L
Inflow saline concentration from inlet 3 30,000 mg / L
Amount introduced from the inlet 2 600 L / Hr
Introduced from the inlet 3 3L / Hr
Amount taken out from outlet 8 303L / Hr
Amount taken out from outlet 9 300L / Hr
Applied voltage between electrodes 10 and 11 10V
Applied voltage between electrodes 12, 13 3.5V
Table 1 shows the residual chlorine concentration, pH, and flow rate of the anode-side electrolyzed water obtained from the outlet 8. The residual chlorine concentration was measured by o-tolidine colorimetric analysis.
[0030]
Comparative Example 1
In the apparatus of FIG. 1, a valve 8a is provided at the outlet 8 and the valve 8a is fully closed. Moreover, the valve 9a was provided in the outflow port 9, and the opening degree of this valve 9a was adjusted.
[0031]
Then, 603 L / Hr of saline having a concentration of 900 mg / L is introduced from the inlet 2 (this is the same as the total amount of saline introduced from the inlets 2 and 3 in Example 1), and the outlet 9 is introduced. From the same as Example 1, 300 L / Hr cathode side effluent was taken out. The other conditions were the same as in Example 1, and electrolyzed water generation operation was performed.
[0032]
Table 1 shows data on the anode side electrolyzed water taken out from the opening 3 and the cathode side electrolyzed water from the outlet 9.
[0033]
Comparative Example 2
As in Comparative Example 1, the valve 8a was fully closed and the opening of the valve 9a was adjusted.
[0034]
The same amount of saline (concentration 900 mg / L) as the total amount introduced into the electrolytic cell 1 from the inlets 2 and 3 in Example 1 is introduced from the inlet 3, and the same amount as Example 1 is introduced from the outlet 9. The cathode side electrolyzed water was allowed to flow out. The other conditions were the same as in Example 1, and the electrolyzed water generation operation was performed.
[0035]
Table 1 shows data on the anode side electrolyzed water taken out from the opening 2 and the cathode side electrolyzed water taken out from the outlet 9.
[0036]
[Table 1]
Figure 0003893693
[0037]
As is apparent from Table 1, according to Example 1, anode side electrolyzed water having a high residual chlorine concentration can be generated.
[0038]
In addition, when the electrolytic treatment is performed so that the diaphragm-type electrolysis process and the non-diaphragm-type electrolysis process are passed in series as in Comparative Examples 2 and 3, the residual chlorine concentration (total Cl concentration of HClO and NaClO) is an example. 1 or lower.
[0039]
Examples 2, 3, and 4
The electrolyzed water data was measured when the voltage applied between the electrodes 10 and 11 in Example 1 was changed as shown in Table 2, and the results are shown in Table 2.
[0040]
[Table 2]
Figure 0003893693
[0041]
As is apparent from Table 2, by changing the voltage between the electrodes 10 and 11, electrolyzed water having a desired pH can be generated.
[0042]
【The invention's effect】
As described above, according to the present invention, anode-side electrolyzed water having a desired pH and a high residual chlorine concentration can be efficiently generated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrolyzed water production apparatus according to an embodiment.
FIG. 2 is a cross-sectional view of an electrolyzed water production apparatus according to a conventional example.
FIG. 3 is a cross-sectional view of an electrolyzed water production apparatus according to another conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolytic cell 2, 3 Inlet 4 Partition 5 Diaphragm 6 Diaphragm-type electrolytic chamber 6a Anode chamber 6b Cathode chamber 7 Non-diaphragm-type electrolytic chamber 8, 9 Outlet 10, 12 Anode 11, 13 Cathode 14, 16 DC power supply 15 Variable resistance vessel

Claims (2)

隔膜で区画された陰極室及び陽極室を有した隔膜式電解槽と、隔膜を有しない無隔膜式電解槽とを備えた電解水製造装置において、
該隔膜式電解槽と無隔膜式電解槽とに別々に無機電解質溶液を供給し、
該隔膜式電解槽の陽極室流出水と該無隔膜式電解槽の流出水とを合流させて陽極側流出水として取り出すようにしたことを特徴とする電解水製造装置。
In an electrolyzed water production apparatus comprising a diaphragm electrolytic cell having a cathode chamber and an anode chamber partitioned by a diaphragm, and a non-diaphragm electrolytic cell having no diaphragm,
Separately supplying the inorganic electrolyte solution to the diaphragm type electrolytic cell and the non-diaphragm type electrolytic cell,
An apparatus for producing electrolyzed water, characterized in that the effluent water from the anode chamber of the diaphragm type electrolytic cell and the effluent water from the non-diaphragm type electrolytic cell are merged and taken out as anode side effluent water.
請求項1において、隔膜式電解槽に300〜2000mg/Lの食塩水溶液を供給し、無隔膜式電解槽に1000〜50000mg/Lの食塩水溶液を供給し、
隔膜式電解槽への食塩水の供給量を無隔膜式電解槽への食塩水の供給量の2〜400倍とし、
pH3.2〜6.5、残留塩素濃度15〜100mg/Lの前記陽極側流出水を生成させることを特徴とする電解水製造装置。
In Claim 1, 300-2000 mg / L saline solution is supplied to a diaphragm type electrolytic cell, 1000-50000 mg / L saline solution is supplied to a non-diaphragm type electrolytic cell,
The amount of saline solution supplied to the diaphragm electrolytic cell is 2 to 400 times the amount of saline solution supplied to the non-diaphragm electrolytic cell,
An apparatus for producing electrolyzed water, characterized in that the anode side effluent having a pH of 3.2 to 6.5 and a residual chlorine concentration of 15 to 100 mg / L is generated.
JP28548297A 1997-10-17 1997-10-17 Electrolyzed water production equipment Expired - Fee Related JP3893693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28548297A JP3893693B2 (en) 1997-10-17 1997-10-17 Electrolyzed water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28548297A JP3893693B2 (en) 1997-10-17 1997-10-17 Electrolyzed water production equipment

Publications (2)

Publication Number Publication Date
JPH11114569A JPH11114569A (en) 1999-04-27
JP3893693B2 true JP3893693B2 (en) 2007-03-14

Family

ID=17692099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28548297A Expired - Fee Related JP3893693B2 (en) 1997-10-17 1997-10-17 Electrolyzed water production equipment

Country Status (1)

Country Link
JP (1) JP3893693B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281777A (en) * 2004-03-30 2005-10-13 Nippon Rensui Co Ltd Method for electrolyzing alkali metal chloride
JP5098216B2 (en) * 2006-05-08 2012-12-12 日本錬水株式会社 Electric regenerative pure water production apparatus and pure water production method
CN104709974A (en) * 2015-02-26 2015-06-17 罗民雄 Novel method for controlling electrolyzed water performance by adopting two sets of electrolysis electrode assemblies
JP7280854B2 (en) * 2020-05-26 2023-05-24 株式会社日本トリム Electrolyzed water generator and hypochlorous acid water generation method

Also Published As

Publication number Publication date
JPH11114569A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP2627100B2 (en) Method and apparatus for producing sterilized water
EP0216413A2 (en) A process and an apparatus for the preparation of a disinfectant for water, such as drinking- or swimming-water
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
KR101436139B1 (en) A electrolysis apparatus
KR20160054471A (en) Chlorine dioxide production device and chlorine dioxide production method
WO2007046730A2 (en) Water electrochemical processing device
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2000140850A (en) Aqueous hypochlorous acid solution generator
JP3893693B2 (en) Electrolyzed water production equipment
JP3746932B2 (en) Electrolyzed water generator
JP4685838B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JPH1076270A (en) Method for simultaneous generation of strongly alkaline water and hypochlorous acid sterilizing water by electrolysis
JP2001137850A (en) Electrolysis method of water and produced water
JP3677331B2 (en) Electrolyzed water generator
JP3568290B2 (en) Electrolyzed water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3568291B2 (en) Electrolyzed water generator
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP2008264746A (en) Electrolytic water production device, method for producing electrolytic water, and electrolytic water
JPH0780457A (en) Method and apparatus for making electrolytic water
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP2001192875A (en) Method and apparatus for preparing hydrogen peroxide
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JPH0970581A (en) Ionic water producing device
JP2000212787A (en) Electrolytic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees