JP3390878B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator

Info

Publication number
JP3390878B2
JP3390878B2 JP10423593A JP10423593A JP3390878B2 JP 3390878 B2 JP3390878 B2 JP 3390878B2 JP 10423593 A JP10423593 A JP 10423593A JP 10423593 A JP10423593 A JP 10423593A JP 3390878 B2 JP3390878 B2 JP 3390878B2
Authority
JP
Japan
Prior art keywords
water
supplied
raw water
chamber
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10423593A
Other languages
Japanese (ja)
Other versions
JPH06312185A (en
Inventor
秋二 山口
代治 三沢
政員 有坂
Original Assignee
日本インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本インテック株式会社 filed Critical 日本インテック株式会社
Priority to JP10423593A priority Critical patent/JP3390878B2/en
Publication of JPH06312185A publication Critical patent/JPH06312185A/en
Application granted granted Critical
Publication of JP3390878B2 publication Critical patent/JP3390878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、水の電気分解によって
洗浄水,殺菌水等として有用な酸性水及び飲料水となる
アルカリ水を生成する装置に関する。 【0002】 【従来の技術】食品とか医療の分野において、電解水を
洗浄用水とか消毒,殺菌用の水として広く用いられてい
る。従来の電解水生成装置は、電解槽内を隔膜によって
陰極室と陽極室に分割し、各室内に電極を挿入し、室内
に供給した原水を電極間の通電によって電気分解するこ
とにより、陰極室にアルカリ水,陽極室に酸性水を電解
生成する。 【0003】 【発明が解決しようとする課題】このような電解水生成
装置によってpH値の低い水は陽極室から吐出する酸性
水によって得られるが、これを連続的に多量に作り出す
ことは容易でない。多量の水の電解には大電流通電が必
要であり、電解槽に大電流を流すためには印加電圧を上
昇させなければならないが、電圧の上昇によってガスの
発生が多くなり放電が発生して電極面を損傷する。この
ため従来において、電解槽に供給する原水中に食塩水を
添加混合して、低電圧大電流通電を行なうことも提案さ
れているが、この場合、特に陽極室の電極消耗が大きく
なる欠点がある。 【0004】本発明は、この電極消耗を少なくして、殺
菌効果の高い酸性水を連続的に多量に生成でき、また同
時にアルカリ水の生成ができる電解水生成装置の提供を
目的とする。 【0005】 【問題を解決するための手段】 本発明は、電解槽内を
隔膜によって分割した陰極室と陽極室に各々電極を挿入
し、前記陰極室と陽極室に分流路を通して供給する原水
を前記陰陽極電極間への通電によって電気分解すると共
に電気浸透作用により陰極室にアルカリ水、陽極室に酸
性水を生成する装置において、前記陰極室内もしくは陰
極室に供給する分流路の原水に同質の塩素系電解質を供
給添加する第1の供給装置と、前記陽極室内もしくは陽
極室に供給する分流路の原水に塩素系電解質を供給添加
する第2の供給装置を設け、第2の供給装置から供給す
る電解質添加濃度を0.02%以下に調整すると共に、
前記第1の供給装置によって供給添加する上記電解質添
加濃度を第2の供給装置によって供給添加する上記電解
質添加濃度より高く制御したことを特徴とする。 【0006】 【作 用】本発明は、電解槽内に水道水等の原水を供給
し、陰陽極電極間への通電によって電気分解し、電解槽
内陰極室にアルカリ水,陽極室に酸性水を連続的に生成
し吐出利用する。陰極室内もしくは陰極室に供給する分
流路の原水と、陽極室もしくは陽極室に供給する分流路
の原水とに各々独立して電解質を供給添加し、電気伝導
度を高め低電圧で大電流の電解作用を与える。前記陰極
室内もしくは陰極室に供給する分流路の原水に供給添加
する電解質濃度を陽極室内もしくは陽極室に供給する分
流路の原水に供給添加する電解質濃度より高めるように
添加する。 【0007】 【実施例】以下図面の一実施例により本発明を説明す
る。図1において、電解槽1は密閉構造になり、室内を
隔膜2によって陰極室31と陽極室41に分割し、陰極
電極3及び陽極電極4を各々挿入し、図示しない電解電
源から電解電流の通電が行なわれる。電解槽1には陰極
室31に通じる原水供給口1a,陽極室41に通じる原
水供給口1bが設けられ、また反対側に電解によるアル
カリ水を吐出する吐水口1c,酸性水を吐出する吐水口
1dが形成してある。 【0008】電解槽1に供給される原水は供給管5から
供給され、途中で分岐して分流路51から陰極室供給口
1aに、他方は分流路52から陽極室供給口1bに原水
供給される。分岐流路51,52には各々食塩水を供給
する第1の添加装置61及び第2の添加装置62が設け
られ、各々貯蔵タンク71,72に貯蔵する食塩水を途
中のバルブ81,82制御によって所要量添加混合され
る。 【0009】原水の供給は水道の蛇口を開くことによ
り、或は給水ポンプの駆動により供給管5に供給され、
図示しない減圧弁で所定の水圧にし、また流量制御バル
ブにより所定流量に制御された状態で供給される。この
供給原水は途中分岐し分流路51及び52を流れるが、
その途中で食塩水の添加により電気伝導度の調整制御が
行なわれる。 【0010】貯蔵タンク71,72に貯蔵される食塩水
は、両方とも例えば10%食塩水溶液を用い、これを各
々バルブ81,82制御によって添加量の制御を行な
う。ここで陰極室31に供給する分流路51の原水中に
は添加量を多くして電気伝導度を充分高めた状態で供給
し、これに対して陽極室41に供給する分流路52の原
水中には添加量を少なくして供給する。この供給添加量
の制御はバルブ81,82の調整によって添加装置6
1,62に供給する食塩水流量制御により行なう。 【0011】このように分流路51を経て電解槽1の陰
極室31へ供給する原水中には第1の添加装置61によ
って比較的多目に食塩水を添加して充分に電気伝導度を
高めた状態で供給し、陰極室31における電解反応を促
進せしめることにより、陽極室41内に高能率で酸性水
の生成をすることができる。また分流路52を経て電解
槽1の陽極室41に供給する原水中には第2の添加装置
62によって少な目に食塩水の添加を行ない、陽極室4
1における電解作用によって陽極電極4が溶解消耗する
のを防止する。 【0012】図2は食塩水の食塩水濃度に対して陽極側
電極が電気分解によって溶出消耗する状態の説明グラフ
図で、実験によれば電極消耗の最大値は大凡食塩濃度が
0.02%〜0.5%程度であることが確められてお
り、食塩濃度がそれ以下では電極消耗が少なく、また反
対に食塩濃度が増加しても消耗が減少する傾向にある。
したがって、前記の分流路51から陰極室31へ供給す
る原水中には電極消耗がないから電気伝導度を高めるた
めに食塩濃度を高めて供給し、例えば、電気伝導度を5
00〜3000マイクロシーメンス/cm程度に高め
る。また、他の分流路52から陽極室41に供給する原
水には食塩濃度を0.02%〜0.5%程度よりも充分
少ない希薄濃度で添加供給することにより陽極電極4の
消耗を防止して電解することができ、連続的に多量の酸
性水を効率良く生成することができる。 【0013】電解槽1内の陽極室41で生成する酸性水
は吐水口1dから吐出し、配管10を通して洗浄水,殺
菌水等として利用することができる。生成する酸性水の
pH値制御は流量制御によって流量当りの大きい電気量
の電解作用を受けることによって電気伝導度を高めpH
値の低い強酸性水を生成し吐水させることができる。ま
た陰極室31に生成するアルカリ水は吐水口1cから吐
出し、飲料水等として利用することができるが、殺菌用
に酸性水のみを利用する場合は吐水口1cから吐出する
陰極水は排水として流出される。 【0014】なお前記第1の添加装置61及び第2の添
加装置62から供給添加する食塩水は食塩水濃度を変え
て、タンク71に貯蔵する食塩水濃度を高くし、他のタ
ンク72の貯蔵食塩水の濃度を低くすれば、各バルブ8
1,82による供給量制御を等しくしても、前記と同様
に陰極室31に供給する原水の食塩濃度を所要の値に高
め、陽極室41に供給する原水の食塩濃度を所要の低い
値に制御することができる。また食塩水の添加は原水の
供給路でなく、各電解室31,41内において供給添加
するように構成することができる。 【0015】図3は他の実施例で、酸性水の生成に専用
する場合の例で、陰極水を排水することなく循環させる
ことにより、生成水の無駄を防止するようにしたもので
ある。図において、図1と同符号は同一部分を示す。電
解槽1内は隔膜2によって3層に分割し、中心部分を陰
極電極3を挿入した陰極室31とし、その外側の中間
に陽極電極4を挿入した陽極室41、最外に陰極電極
3を挿入して陰極室31としたものである。陰極室31
の水は吐水口1cから循環路9を通して陰極室31の供
給口1aに循環供給する。環路9に循環用ポンプ11が
設けられている。 【0016】陰極室31の水は外部に排出されることな
く、環路9をポンプ11によって循環して使用され、電
解によって消耗する食塩分がタンク71に貯蔵する食塩
水によって補給され、一定の電気伝導度を保って電解反
応を起こさせることができる。なお図示しないが、循環
利用中の原水の消耗は、分岐管路から循環路9の一部に
三方弁等を介して補給するこができる。 【0017】なお食塩水の添加,原水の流量制御等には
原水の供給側,電解槽1からの電解水の吐出側の管路に
電気伝導度を測定するECセンサ,酸化還元電位を測定
するORPセンサ,pH計,イオン濃度計,ガス濃度
計,流量計等を設け、これらの各センサの検出信号をC
PU等によっていずれかの信号を選択し、或いは各信号
を別々に演算処理して各部制御信号を出力するとか、各
センサの信号の和,差,積等により演算処理して信号を
出力して制御することができる。 【0018】電極3,4間に通電する電解電源(図示せ
ず)は所定の設定電圧を印加するようにし、原水の流量
制御によって電解電気量の制御をすることにより、電気
量の増加によって強い電解作用を与えれば、吐水口1d
から吐出する酸性水の電気伝導度を高めpH値を低下さ
せた強い殺菌効果水を得ることができる。また電源の設
定電圧を高めることなく食塩水の添加により電気量を増
加することができ、電解電圧の上昇がないからガスの発
生,放電の発生がなく、電極面を損傷劣化させることも
なく安全な電解をさせることができる。 【0019】原水に添加する電解質はNaCl以外にKCl,HC
l,HClO,HClO3,KClO3,NaClO3,LiCl,CaCl2,NH4Cl等の塩素
系電解質,その他を単独もしくは複合して利用すること
ができる。例えば陰極室31に供給する原水にはNaCl水
を添加し、陽極室41に供給する原水にはKCL 水を添加
することができる。KCl の電離度は大きく少量でも電解
反応を促進させることができ、陽極室41には、より殺
菌性の強い酸性水の生成ができる。 【0020】また以上は酸性水の生成について説明した
が、アルカリ水の利用の場合も食塩水等電解質の添加制
御によりpH値制御が容易にでき、多量のアルカリ水を
低電気量で連続的に生成することができる。この場合も
陰極室31及び陽極室41に供給する分流路の原水に対
して各々独立した電解質添加装置を設けて陽極側原水の
電解質濃度を低く制御することにより陽極電極の消耗を
少なくして安定したアルカリ水の生成をすることができ
る。 【0021】 【発明の効果】以上のように本発明によれば、水の電解
が電解質の添加混合により容易で、電気量ワット数を低
下させて多量の電解水を安価に連続的に得られる。そし
て電解質の供給添加を、陰極室内もしくは陰極室に供給
する分流路の原水に電解質を供給添加する第1の添加装
置と、陽極室内もしくは陽極室に供給する分流路の原水
に電解質を供給添加する第2の添加装置とを別々に設
け、各々の原水中に電解質を独立に添加するようにした
から、陰極側及び陽極側の添加量及びそれによる濃度を
任意に変えることができ、陰極側の電解質濃度を多くす
ることにより電解反応を従進して洗浄用,殺菌効果の高
い酸性水の生成が容易にでき、pH値の高いアルカリ水
の生成ができる。また陽極側の添加濃度を少なくするこ
とにより電極消耗を少なくして連続して長時間の電解水
生成を続けることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing acidic water useful as washing water, sterilizing water and the like and alkaline water serving as drinking water by electrolysis of water. [0002] In the field of food and medicine, electrolyzed water is widely used as washing water or water for disinfection and sterilization. The conventional electrolyzed water generating apparatus divides the inside of an electrolytic cell into a cathode chamber and an anode chamber by a diaphragm, inserts an electrode into each chamber, and electrolyzes raw water supplied into the chamber by energization between the electrodes to form a cathode chamber. To produce alkaline water and acidic water in the anode compartment. [0003] With such an electrolyzed water generator, water having a low pH value can be obtained by acidic water discharged from the anode chamber, but it is not easy to continuously produce a large amount of this water. . The electrolysis of a large amount of water requires a large current to flow, and the applied voltage must be increased in order to allow a large current to flow through the electrolytic cell. Damage to the electrode surface. For this reason, conventionally, it has been proposed to add a salt solution to raw water to be supplied to an electrolytic cell and mix the mixture to supply a low voltage and a large current. However, in this case, there is a disadvantage that electrode consumption in the anode chamber is particularly large. is there. An object of the present invention is to provide an electrolyzed water generating apparatus capable of continuously producing a large amount of acidic water having a high bactericidal effect while simultaneously reducing the electrode consumption, and simultaneously producing alkaline water. According to the present invention, an electrode is inserted into each of a cathode chamber and an anode chamber in which an electrolytic cell is divided by a diaphragm, and raw water to be supplied through a branch channel to the cathode chamber and the anode chamber is provided. In an apparatus for generating alkaline water in the cathode chamber and electrolyzing water in the anode chamber by electro-osmosis while electrolyzing while energizing between the negative and anode electrodes, the same water as the raw water in the shunt channel supplied to the cathode chamber or the cathode chamber is used. A first supply device for supplying and adding a chlorine-based electrolyte, and a second supply device for supplying and adding a chlorine-based electrolyte to raw water in the anode chamber or in a branch channel for supply to the anode chamber, which are supplied from the second supply device. The electrolyte concentration to be added is adjusted to 0.02% or less,
Characterized in that said first said electrolyte additive concentration added supplied by the supply device controlled with a high than the electrolyte <br/> electrolyte additive concentration added supplied by the second supply device. According to the present invention, raw water such as tap water is supplied into an electrolytic cell, and electrolysis is performed by energizing between a negative electrode and an anode. Are continuously generated and used for discharge. Electrolyte is separately added and supplied to the raw water of the shunt channel supplied to the cathode chamber or the cathode chamber and the raw water of the shunt channel supplied to the anode chamber or the anode chamber to increase the electric conductivity and to perform high-voltage electrolysis at low voltage. Give action. The concentration of the electrolyte to be added and added to the raw water in the shunt channel supplied to the cathode chamber or the cathode chamber is higher than the concentration of the electrolyte to be added to the raw water in the shunt channel supplied to the anode chamber or the anode chamber. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, an electrolytic cell 1 has a hermetically sealed structure, the chamber is divided into a cathode chamber 31 and an anode chamber 41 by a diaphragm 2, a cathode electrode 3 and an anode electrode 4 are inserted, and an electrolytic current is supplied from an electrolytic power supply (not shown). Is performed. The electrolytic cell 1 is provided with a raw water supply port 1a leading to the cathode chamber 31 and a raw water supply port 1b leading to the anode chamber 41. On the opposite side, a water discharge port 1c for discharging alkaline water by electrolysis and a water discharge port for discharging acidic water. 1d is formed. The raw water supplied to the electrolytic cell 1 is supplied from a supply pipe 5, branches off in the middle, and is supplied from the branch channel 51 to the cathode chamber supply port 1 a, and the other from the branch channel 52 to the anode chamber supply port 1 b. You. The branch flow paths 51 and 52 are provided with a first addition device 61 and a second addition device 62 for supplying a saline solution, respectively. The saline solution to be stored in the storage tanks 71 and 72 is controlled by valves 81 and 82 on the way. The required amount is added and mixed. Raw water is supplied to the supply pipe 5 by opening a water tap or by driving a water supply pump.
The water is supplied at a predetermined water pressure by a pressure reducing valve (not shown) and at a predetermined flow rate by a flow control valve. This supply raw water branches on the way and flows through the branch channels 51 and 52.
On the way, the adjustment of the electric conductivity is controlled by the addition of saline. As the saline solution stored in the storage tanks 71 and 72, for example, a 10% saline solution is used, and the addition amount is controlled by controlling the valves 81 and 82, respectively. Here, the raw water in the branch 51 supplied to the anode chamber 41 is supplied to the raw water of the branch 51 supplied to the anode chamber 41 in a state where the electric conductivity is sufficiently increased by increasing the amount of addition. Is supplied with a small amount of addition. The supply amount is controlled by adjusting the valves 81 and 82.
The control is performed by controlling the flow rate of the saline solution supplied to the first and second tanks. As described above, a relatively large amount of saline is added to the raw water supplied to the cathode chamber 31 of the electrolytic cell 1 through the branch channel 51 by the first adding device 61 to sufficiently increase the electric conductivity. By supplying the solution in a heated state and accelerating the electrolytic reaction in the cathode chamber 31, acidic water can be generated in the anode chamber 41 with high efficiency. The raw water supplied to the anode chamber 41 of the electrolytic cell 1 via the branch channel 52 is slightly added with a saline solution by the second addition device 62 to form the anode chamber 4.
1 prevents the anode electrode 4 from being dissolved and consumed due to the electrolytic action in Step 1. FIG. 2 is a graph showing the state in which the anode electrode is eluted and consumed by electrolysis with respect to the concentration of the saline solution. According to experiments, the maximum value of the electrode consumption is approximately 0.02% when the salt concentration is 0.02%. It is confirmed that the concentration is about 0.5%. When the salt concentration is lower than the above, the electrode consumption is small, and conversely, even when the salt concentration increases, the consumption tends to decrease.
Therefore, in the raw water supplied from the branch channel 51 to the cathode chamber 31, there is no electrode consumption, so that the salt concentration is increased and supplied to increase the electric conductivity.
It is increased to about 00 to 3000 microsiemens / cm. Further, the raw water supplied from the other branch channel 52 to the anode chamber 41 is added and supplied with a salt concentration sufficiently lower than about 0.02% to 0.5% to prevent the anode electrode 4 from being consumed. And electrolysis, and a large amount of acidic water can be continuously and efficiently produced. The acidic water generated in the anode chamber 41 in the electrolytic cell 1 is discharged from a water discharge port 1d and can be used as washing water, sterilizing water and the like through a pipe 10. The pH value control of the generated acidic water increases the electrical conductivity by receiving the electrolytic action of a large quantity of electricity per flow rate by the flow rate control and increases the pH.
Strongly acidic water having a low value can be generated and discharged. The alkaline water generated in the cathode chamber 31 is discharged from the water discharge port 1c and can be used as drinking water. However, when only acidic water is used for sterilization, the cathode water discharged from the water discharge port 1c is drained. Will be leaked. The salt solution supplied from the first adding device 61 and the second adding device 62 is changed in salt concentration to increase the salt solution stored in the tank 71 and stored in the other tank 72. If the concentration of saline solution is lowered, each valve 8
Even if the supply rate control by the feed tanks 1 and 82 is equal, the salt concentration of the raw water supplied to the cathode chamber 31 is increased to a required value, and the salt concentration of the raw water supplied to the anode chamber 41 is reduced to a required low value. Can be controlled. In addition, the addition of the saline solution can be configured so as to be performed not in the supply path of the raw water but in each of the electrolysis chambers 31 and 41. FIG. 3 shows another embodiment in which only the generation of acidic water is performed. In this embodiment, the cathode water is circulated without being drained, thereby preventing waste of the generated water. In the figure, the same symbols as those in FIG. 1 indicate the same parts. The interior of the electrolytic cell 1 is divided into three layers by a diaphragm 2, a central portion is a cathode chamber 31 in which the cathode electrode 3 is inserted, and an anode chamber 41 in which the anode electrode 4 is inserted in an intermediate layer outside the cathode chamber 31. The cathode chamber 3 is formed by inserting the cathode electrode 3 into the layer . Cathode chamber 31
Is circulated and supplied from the water discharge port 1c to the supply port 1a of the cathode chamber 31 through the circulation path 9. A circulation pump 11 is provided in the annulus 9. The water in the cathode chamber 31 is circulated by the pump 11 without being discharged to the outside, and is used by being circulated by the pump 11. Salt consumed by electrolysis is supplied by the saline stored in the tank 71. An electrolytic reaction can be caused while maintaining electric conductivity. Although not shown, the consumption of raw water during circulating use can be replenished from the branch pipe line to a part of the circulating line 9 through a three-way valve or the like. In addition, for the addition of saline solution, flow rate control of raw water, etc., an EC sensor for measuring electric conductivity and a redox potential are measured in a pipe on the supply side of raw water and on the discharge side of electrolytic water from the electrolytic cell 1. An ORP sensor, a pH meter, an ion concentration meter, a gas concentration meter, a flow meter, and the like are provided.
One of the signals is selected by a PU or the like, or each signal is separately processed to output a control signal for each unit, or a signal is output by performing a processing based on the sum, difference, product, etc. of the signals of each sensor. Can be controlled. An electrolytic power supply (not shown) for supplying electricity between the electrodes 3 and 4 applies a predetermined set voltage, and controls the amount of electrolysis electricity by controlling the flow rate of raw water. If the electrolytic action is given, the spout 1d
A strong germicidal water can be obtained in which the electrical conductivity of the acidic water discharged from the water is increased and the pH value is lowered. In addition, the amount of electricity can be increased by adding saline without increasing the set voltage of the power supply, and there is no increase in the electrolytic voltage, so there is no generation of gas or discharge, and there is no damage to the electrode surface and it is safe. Electrolysis can be performed. The electrolyte added to the raw water is KCl, HC in addition to NaCl.
l, HClO, HClO 3, KClO 3, NaClO 3, L i Cl, CaCl 2, NH 4 Cl or the like chlorine electrolyte, others can be used independently or in combination to. For example, NaCl water can be added to the raw water supplied to the cathode chamber 31, and KCL water can be added to the raw water supplied to the anode chamber 41. Even if the degree of ionization of KCl is large and a small amount can be used, the electrolytic reaction can be promoted. Although the generation of acidic water has been described above, even in the case of using alkaline water, the pH value can be easily controlled by controlling the addition of an electrolyte such as a saline solution. Can be generated. In this case as well, an independent electrolyte addition device is provided for the raw water in the branch channel to be supplied to the cathode chamber 31 and the anode chamber 41, and the electrolyte concentration in the anode side raw water is controlled to be low, thereby reducing the consumption of the anode electrode and stabilizing. Alkaline water can be generated. As described above, according to the present invention, electrolysis of water is easy by adding and mixing an electrolyte, and a large amount of electrolyzed water can be continuously obtained at a low cost by reducing the electricity wattage. . Then, the first addition device for supplying and adding the electrolyte to the raw water in the shunt channel supplying the cathode chamber or the cathode chamber, and the electrolyte is supplied and added to the raw water in the shunt channel supplying the anode chamber or the anode chamber. Since the second addition device is separately provided and the electrolyte is independently added to each raw water, the addition amounts and the concentrations thereof on the cathode side and the anode side can be arbitrarily changed. By increasing the concentration of the electrolyte, the electrolytic reaction progresses, and the generation of acidic water having a high cleaning and disinfecting effect can be facilitated, and the alkaline water having a high pH value can be generated. Further, by reducing the additive concentration on the anode side, electrode consumption can be reduced and electrolyzed water can be continuously generated for a long time.

【図面の簡単な説明】 【図1】本発明の一実施例構成図。 【図2】本発明を説明するためのグラフ図。 【図3】本発明の他の実施例構成図。 【符号の説明】 1 電解槽 2 隔膜 3,4 電極 31 陰極室 41 陽極室 5 原水供給管 51,52 分流路 61,62 第1,第2の添加装置 71,72 貯蔵タンク 81,82 制御バルブ[Brief description of the drawings] FIG. 1 is a configuration diagram of an embodiment of the present invention. FIG. 2 is a graph for explaining the present invention. FIG. 3 is a configuration diagram of another embodiment of the present invention. [Explanation of symbols] 1 electrolytic cell 2 diaphragm 3, 4 electrodes 31 cathode room 41 Anode room 5 Raw water supply pipe 51,52 split channel 61, 62 First and second addition devices 71,72 Storage tank 81,82 control valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−94787(JP,A) 特開 昭62−102889(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 C25B 1/00 C25B 3/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-94787 (JP, A) JP-A-62-102889 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/46 C25B 1/00 C25B 3/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 電解槽内を隔膜によって分割した陰極室
と陽極室に各々電極を挿入し、前記陰極室と陽極室に分
流路を通して供給する原水を前記陰陽極電極間への通電
によって電気分解すると共に電気浸透作用により陰極室
にアルカリ水、陽極室に酸性水を生成する装置におい
て、前記陰極室内もしくは陰極室に供給する分流路の原
水に同質の塩素系電解質を供給添加する第1の供給装置
と、前記陽極室内もしくは陽極室に供給する分流路の原
水に塩素系電解質を供給添加する第2の供給装置を設
け、第2の供給装置から供給する電解質添加濃度を0.
02%以下に調整すると共に、前記第1の供給装置によ
って供給添加する上記電解質添加濃度を第2の供給装置
によって供給添加する上記電解質添加濃度より高く制御
したことを特徴とする電解水の生成装置。
(57) Claims 1. An electrode is inserted into each of a cathode chamber and an anode chamber in which an electrolytic cell is divided by a diaphragm, and raw water supplied to the cathode chamber and the anode chamber through a branch channel is supplied to the yin and yang. In a device for generating alkaline water in the cathode chamber and electrolyzing water in the anode chamber by electro-osmosis while electrolyzing by applying electricity between the pole electrodes, the same chlorine-based raw water as the raw water in the cathode chamber or the branch channel supplied to the cathode chamber is used. A first supply device for supplying and adding an electrolyte; and a second supply device for supplying and adding a chlorine-based electrolyte to raw water in the anode chamber or in a branch channel for supply to the anode chamber, wherein the electrolyte is supplied from the second supply device. Add the additive concentration to 0.
With adjusted 02% or less, the first electrolytic water generation apparatus, characterized in that the control higher than the electrolyte additive concentration added supplied by the electrolyte additive concentration added supply the second supply device by the supply device .
JP10423593A 1993-04-30 1993-04-30 Electrolyzed water generator Expired - Fee Related JP3390878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10423593A JP3390878B2 (en) 1993-04-30 1993-04-30 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10423593A JP3390878B2 (en) 1993-04-30 1993-04-30 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH06312185A JPH06312185A (en) 1994-11-08
JP3390878B2 true JP3390878B2 (en) 2003-03-31

Family

ID=14375305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10423593A Expired - Fee Related JP3390878B2 (en) 1993-04-30 1993-04-30 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3390878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729570B1 (en) 2006-07-20 2007-06-19 웅진코웨이주식회사 Electrolyzer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117285A (en) * 1994-08-26 2000-09-12 Medical Discoveries, Inc. System for carrying out sterilization of equipment
US5507932A (en) * 1994-08-26 1996-04-16 Schlumberger Technology Corporation Apparatus for electrolyzing fluids
JPH0910768A (en) * 1995-06-26 1997-01-14 Aiken Kogyo Kk Sterilized water having high electron activity and production thereof
JP4787786B2 (en) * 2007-04-23 2011-10-05 三井化学株式会社 Gas generating apparatus and gas generating method
JP6347547B2 (en) * 2014-08-20 2018-06-27 株式会社アルバック Washing wastewater electrodialysis apparatus and electrodialysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729570B1 (en) 2006-07-20 2007-06-19 웅진코웨이주식회사 Electrolyzer

Also Published As

Publication number Publication date
JPH06312185A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
US8425756B2 (en) Apparatus and method for producing electrolyzed water
JP3957476B2 (en) Water treatment equipment
EP1461291B1 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JP3390878B2 (en) Electrolyzed water generator
JP3201860B2 (en) Method and apparatus for producing electrolyzed water
JPH11128941A (en) Electrolyzed neutral water forming machine
JP3275108B2 (en) Electrolyzed water generator
JP3667405B2 (en) Electrolyzed water generator
JP3292930B2 (en) Electrolyzed water generator
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3677330B2 (en) Electrolysis method of saline solution
JPH1190447A (en) Apparatus for circulating bath water
EP1226094B1 (en) Device for electrolysis
JP3568290B2 (en) Electrolyzed water generator
JP7212978B1 (en) electrolytic device
JP3653129B2 (en) Electrolyzed water generator
JP3980720B2 (en) Chlorine generator
JP3637114B2 (en) Electrolyzed water generator
JP3398173B2 (en) Electrolysis method of saline solution
JP3575712B2 (en) Electrolyzed water generator
JP3495722B2 (en) Hypochlorous acid generation system
JPH06246265A (en) Device for producing electrolyte
JPH09262585A (en) Sterilizing and bacteriostatic method of continuous electrolytic water making apparatus and apparatus therefor
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP2023089000A (en) Method and device for controlling oxidizer concentration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees